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1

Introduction

1.1 Motivation

Automotive industry development

The current control design development process in automotive indus-
try involves many expensive experiments and hand-tuning by experi-
enced personnel. This process is time-consuming and even if only small
changes have been done between two models, many tuning tasks have
to be made over and over again.
Model based development is a promising approach to reduce costs,

development time and dependency of the undocumented knowledge
possessed by experienced personnel. The idea is to replace expensive
experiments with simulation of mathematical models.

Complexity versus fidelity

The modeling process is highly dependent of the model purpose. De-
pending of the model usage different effects in the physical plant should
either be taken into consideration or be neglected. However, what ef-
fects to be included can be very hard to know and requires experience
and understanding of the real process.
A model is always approximate and the level of accuracy is typically

a function of its complexity. A very detailed model is more likely to cover
the most important dynamics but large complexity has many down-
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Chapter 1. Introduction

sides. In general simulation time and memory requirements scales
badly with complexity, also model analysis is made harder. Yet another
inconvenience is that larger models generally contain more model pa-
rameters. In control design, this could yield that the hand-tuning saved
by model based control design is replaced by time consuming calibra-
tion of model parameters.

Why model reduction?

A systematic method to reduce model complexity would be very useful
in many situations. If a detailed component model has been developed,
the modeling effort could later be reused for other purposes. For ex-
ample, component models could be combined to model a more overall
behaviour. The model complexity could then be reduced with a model
reduction method to match the required detail level of the actual pur-
pose.
In model based control design, simple models are highly preferred.

Some methods, e.g. Linear Quadratic Gaussian control or Model Pre-
dictive Control, yield controllers with complexity comparable to the
model.
A control design approach where model reduction plays a central

role is illustrated in Figure 1.1. A complex physical model with a large
number of uncertain parameters could be reduced by a model reduc-
tion method. Ideally, the resulting model should not only be of low
complexity but should also contain few parameters, facilitating cali-
bration. The small model is then calibrated with experiment data and
used for model based control design.

Complex

physical

model

Low

complexity

model

Calibrated

low

complexity

model

Controller

Model

reduction

Calibration

experiments
Control

design

Figure 1.1 Example of alternative controller development process

In some cases fast simulation models for real-time purposes are
essential, e.g. in on-board fault diagnostics where computing power is
not abundant.
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1.2 Outline of the thesis

1.2 Outline of the thesis

The thesis combines the areas of modeling and model reduction of au-
tomotive systems. First, in Chapter 2 a brief introduction to model
reduction methods of linear and nonlinear systems is presented. In
Chapter 3 a model of an exhaust gas oxygen sensor, also called Lambda
sensor, is derived. This sensor is a core component in the emission con-
trol in modern spark ignition combustion engines. In Chapter 4, two
model reduction methodologies are applied on a detailed engine air
path model. One of the methodologies is systematic with mathemat-
ical founding while the other is heuristic and based on intuition and
experience. A general model reduction method for nonlinear systems
is presented in Chapter 5 together with numerical examples. Finally,
Chapter 6 contains concluding remarks together with the direction of
further research after this thesis.
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2

Background

Model reduction methods currently used in automotive industry are
mostly ad hoc and heuristic. This chapter presents this approach to-
gether with other model reduction methods for linear and nonlinear
systems. For further reading, a broad overview of model reduction
methods is presented in [Antoulas and Sorensen, 2001].

2.1 The goal of model reduction

The goal of model reduction is defined depending on the application. In
general the reduced model should be easier to handle, which in most
cases implies facilitated analysis and simulation, without too much loss
in quality. A model developed for control design purposes is usually
equipped with input and output signals and in that case, the quality
demand could be a bound on the input-output relationship deviation.

2.2 Model reduction of linear systems

A linear time-invariant system can be represented in many different
ways. A common description is the state-space form

ẋ(t) = Ax(t) + Bu(t)

y(t) = Cx(t) + Du(t)
(2.1)
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2.2 Model reduction of linear systems

where x(t) ∈ Rn, u(t) ∈ Rl and y(t) ∈ Rm. If the model order n is
much larger than the number of inputs and outputs(n ≫ l, n≫ m) it
can be suspected that the model contains redundant states. The model
reduction problem is how to find and remove such redundancy.

Gramians

Gramians is a central concept in model reduction, they give a measure
on how strong a connection is between states and input resp. output
signals.
The controllability function, as defined in [Scherpen, 1993], is the

minimum amount of input energy required to drive the system from
the zero state to x0.

Lc(x0) = min
u∈L2(−∞,0)
x(−∞)=0
x(0)=x0

1
2

∫ 0

−∞

ppu(t)pp2dt (2.2)

Further, the observability function is the amount of energy the initial
state x0 generates in the output signal while the input signal is zero.

Lo(x0) =
1
2

∫ ∞

0
ppy(t)pp2dt, x(0) = x0, u " 0 (2.3)

For linear systems, as defined in (2.1), these functions become the
quadratic expressions

Lc(x0) =
1
2
xT0 P

−1x0 Lo(x0) =
1
2
xT0 Qx0

where P and Q are called the controllability gramian resp. the ob-
servability gramian. It can be shown, see [Moore, 1981], that these
gramians are

P =

∫ ∞

0
eAtBBT eA

T tdt Q =

∫ ∞

0
eA
T tCTCeAtdt

Often stability is assumed and these integrals are defined. A more
numerically feasible way to compute the gramians is to determine the
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Chapter 2. Background

unique solutions to the Lyapunov equations

AQ + QAT + BBT = 0

ATP + PA+ CTC = 0
(2.4)

Moreover, the column vectors of P span the controllable subspace in Rn

and correspondingly the null space of Q is the unobservable subspace.

Balanced truncation

Balanced truncation is a popular model reduction technique introduced
in [Moore, 1981]. The method guarantees preserved stability and comes
with an a priori error bound.
The idea of the method is to apply a coordinate change so that each

state is equally controllable and observable. The model is then reduced
by truncating states with relatively weak input-output dependency.
Applying a linear coordinate change, T x̃ = x, to the state-space form
given in (2.1) yields the system

˙̃x(t) = TAT−1 x̃(t) + TBu(t)

y(t) = CT−1 x̃(t) + Du(t)

How controllable and observable these new states are is determined by
the previously mentioned gramians. From (2.4) it can be derived that
the new gramians become P̃ = TPTT and Q̃ = T−TQT−1. A balanced
realization is achieved if the coordinate change makes the gramians
diagonal and equal.

P̃ = Q̃ = Σ̃ =





σ 1
. . .

σ n



 (2.5)

Methods for computing this coordinate change T can be found in [Li,
2000]. The diagonal elements σ 1 ≥ σ 2 ≥ ⋅ ⋅ ⋅ ≥ σ n are the Hankel
singular values that indicate how important a state is for the input-
output relationship. Consequently, the reduced model is derived by

12



2.2 Model reduction of linear systems

truncating states in the balanced realization corresponding to small
singular values. Moreover, the approximation error is bounded as

max
u

qỹ(t) − y(t)q2
qu(t)q2

≤ 2
n∑

k=n−r+1

σ k (2.6)

if the r least important states are truncated.
This model reduction method is applied on a combustion engine

model in Chapter 4.

Balanced truncation of linear time-varying systems

Balanced truncation has been extended to also cover the linear time-
varying case, see [Verriest and Kailath, 1983; Shokoohi et al., 1983].
For this class of linear systems, the matrices A, B, C and D are time-
varying.

ẋ(t) = A(t)x(t) + B(t)u(t)

y(t) = C(t)x(t) + D(t)u(t)
(2.7)

The method follows the ideas of balanced truncation of time-invariant
systems. For time-varying systems one can use the notion of controlla-
bility or observability over a time interval, say t ∈ [0,T ]. The energy
functions in (2.2) and (2.3) are then slightly modified. The controlla-
bility function is here the minimum required input energy to reach x0
at time t starting from the zero state at t = 0.

Lc(x0, t) = min
u∈L2(0,t)
x(0)=0
x(t)=x0

1
2

∫ t

0
ppu(τ )pp2dτ

The observability function is the energy induced by the initial state
x(t) = x0 in the output-signal over the time interval [t,T ], while the
input-signal is zero.

Lo(x0, t) =
1
2

∫ T

t

ppy(τ )pp2dτ , x(t) = x0, u " 0

As in the time-invariant case, these functions are quadratic but the
gramians P(t) and Q(t) are now time-dependant.

Lc(x0, t) =
1
2
xT0 P(t)

−1x0 Lo(x0, t) =
1
2
xT0 Q(t)x0

13



Chapter 2. Background

Furthermore, the time-varying generalization of the Lyapunov equa-
tions in (2.4) becomes

dP

dt
(t) = A(t)P(t) + P(t)A(t)T + B(t)B(t)T P(0) = 0

dQ

dt
(t) = −Q(t)A(t) − A(t)TQ(t) − C(t)TC(t) Q(T) = 0

Once more, a balanced realization is achieved if a time-varying coordi-
nate change yields diagonal and equal gramians

P̃(t) = Q̃(t) = Σ̃(t) =





σ 1(t)

. . .

σ n(t)





The low order model is derived by truncating states corresponding to
small singular values σ i(t). It is reasonable to let the reduced model
order vary with time as σ i(t) is time-varying. A priori error bounds,
similar to (2.6), are available for the time-varying case, see [Lall and
Beck, 2003; Sandberg and Rantzer, 2004].
This theory will be revisited in Chapter 5, where the time-varying

gramians are used as tools to reduce nonlinear systems.

Descriptor form

Another linear state-space representation is the descriptor form

Eẋ(t) = Ax(t) + Bu(t)

y(t) = Cx(t) + Du(t)
(2.8)

This representation can be transformed to the standard state-space
form in (2.1) if E is invertible. However, if E and A are sparse E−1A
can be dense and it might therefore be beneficial to keep the form
in (2.8).
If E is singular, the system is a set of algebraic-differential equa-

tions and the problem becomes more involved. A generalization of
the gramians defined for the standard state-space form is presented
in [Stykel, 2004]. Theory together with numerical methods are defined
and also in this case an a priori error bound is available.
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2.3 Model reduction of nonlinear systems

2.3 Model reduction of nonlinear systems

Model reduction of nonlinear systems is a research area under heavy
development. Currently there is no method that generally provides
guaranteed preserved stability or error bounds.

Ad hoc methods

Indirect model reduction is performed in all modeling work when com-
plexity is chosen to match the intended model purpose. There are three
common ways to reduce complexity:

• To discard effects that by intuition or experience have a relatively
weak impression on the dynamics.

• Separation of time-scales and replacing relatively fast dynamics
with static gains.

• Averaging effects into one pseudo-effect.

All three approaches require great knowledge and intuition of the mod-
eled object. The second mentioned method is more formally called the
singular perturbation method. The differential equations of ẋ = f (x,u)
are divided into two parts, one relatively faster than the other

ẋ1 = f1(x1, x2,u)

ẋ2 = f2(x1, x2,u)

If x2 corresponds to the fast dynamics, one introduces a factor ǫ ac-
cording to

ẋ1 = f1(x1, x2,u)

ǫẋ2 = f2(x1, x2,u)

and then set ǫ = 0. The original system is now replaced with a set
of differential algebraic equations with fewer states, for more details
see [Khalil, 2002].

15



Chapter 2. Background

Linearization around equilibrium point or trajectory

In some applications the intended model usage is in the neighborhood
of a certain operating point in state-space. Then the detailed nonlinear
model could be linearized at this point, giving rise to a linear model.
This model can then be reduced with a linear reduction method. The
reduced model will however also be linear and only be a valid approx-
imation close to the operating point.
Sometimes a nominal input-signal is available and the effect a devi-

ation from this signal would give is of interest. A linearization around
a trajectory in state-space is then a valid approximation. This yields a
time-varying system as in (2.7) and the theory of balanced truncation
of linear time-varying systems can be applied. This procedure has been
done successfully, see [Sandberg, 2006].

Balancing nonlinear systems

Balancing using energy functions An extension to nonlinear sys-
tems of the mentioned balanced truncation method is proposed in [Scher-
pen, 1993]. Here nonlinear systems of the form

ẋ = f (x) + �(x)u

y= h(x)
(2.9)

are considered. Again, the controllability and observability functions
in (2.2) and (2.3) are used. For the given nonlinear system it can be
shown that, under some conditions, Lc(x) and Lo(x) are the unique
smooth solutions of

�Lc
�x
(x) f (x) +

1
2
�Lc
�x
(x)�(x)�T (x)

�T Lc
�x

(x) = 0, Lc(0) = 0

and
�Lo
�x
(x) f (x) +

1
2
hT(x)h(x) = 0, Lo(0) = 0

After a coordinate transformation, x =ψ (z), the functions can be writ-

16



2.3 Model reduction of nonlinear systems

ten

L̃c(z) =
1
2
zT z L̃o(z) =

1
2
zT





τ1(z)

. . .

τn(z)



 z

This form is not balanced, in the linear case it is sometimes called
“input normalized”. However, an additional coordinate change can bal-
ance Lc and Lo. For more details see [Scherpen, 1993]. In analogy with
the linear case, the functions τ1(z) ≥ ⋅ ⋅ ⋅ ≥ τn(z) are called the singular
value functions of the system. Model reduction is performed by trun-
cating states in the balanced form corresponding to small singular
functions.
A linearized version of the method applied to a linear system yields

the same result as the standard balanced truncation method would.
Further, the singular value functions become constant and τ i(z) = σ 2i
as given in (2.5).
The main disadvantage with this method is that it requires great

numerical effort and it is therefore only applicable to very small sys-
tems, see [Newman and Krishnaprasad, 1998].
A resent contribution to this problem setting is among others [Fu-

jimoto and Tsubakino, 2006].

Balancing using empirical gramians A model reduction method
for nonlinear systems of the form

ẋ = f (x,u)

y = h(x)

is proposed in [Lall et al., 2002]. The approach applies ideas concerning
linear systems, introduced in [Moore, 1981], to nonlinear systems.
Here state-space data is collected while impulse input-signals in

different directions are injected. The data is then used to estimate a
constant controllability gramian matrix. Similarly, a constant observ-
ability gramian matrix is constructed from simulation data generated
by different initial values distributed on the unit sphere.
When the gramians have been computed they are balanced using

linear theory, see Section 2.2. The reduced nonlinear model is then

17



Chapter 2. Background

derived by applying the corresponding linear coordinate change Tz = x

ż = T−1 f (Tz,u)

y = h(Tz)

followed by truncation of states, as in the linear case. This method also
yields the same reduced system as standard linear balanced truncation
if applied to a linear system. In [Liu and Wagner, 2002] the method is
applied on an automotive model.
The method is much less computationally intensive than the method

using energy functions. However, the heuristic use of simulations does
not leave much room for proofs and analysis.

Proper orthogonal decomposition

Karhunen-Loéve expansion [Karhunen, 1946; Loève, 1945], or proper
orthogonal decomposition (POD), is a model reduction method for state-
space models based on principal component analysis. The method was
pioneered for applications in turbulence models in [Lumley, 1967] and
is one of the most commonly used tools for model reduction of nonlinear
systems. It uses simulation data to find a low-dimensional subspace
that captures most of the state dynamics. Figure 2.3 illustrates a pos-
sible truncation of state-space, (x1, x2) to (x̂1).

x1

x2

x̂2

x̂1

Figure 2.1 x̂2 is a dominant state-subspace in (x1, x2)

The method can briefly be described in three steps.

18



2.3 Model reduction of nonlinear systems

1. Simulate the nonlinear system

ẋ = f (x,u)

and collect snapshots of the state vector in a matrix X .

X = [ x(t0) x(t1) . . . x(tN) ] , x(t) ∈ Rn

2. Factorize X with the singular value decomposition

UΣVT = X

3. Choose truncation level after size of singular values in Σ. Trun-
cate U ∈ Rnxn to Û ∈ Rnxn̂ so that x ( Û x̂ where x̂ ∈ Rn̂. Then
the reduced model becomes

˙̂x = ÛT f (Û x̂,u) (2.10)

This method lacks general error bounds, which can easily be demon-
strated. Put short, a state can be important even though it is small.
For example, scaling of states by a diagonal coordinate change

x∗ = diag(c1, c2, ..., cn)x ci > 0

does not change the dynamic behaviour of the system but can make
the method choose an arbitrary subspace. Further, all states are usu-
ally not interesting for control purposes and as this method does not
take any output-signal into consideration one is forced to use a larger
subspace than might be necessary.
A common source of large models is discretization of Partial Dif-

ferential Equations (PDE’s), where the states share the same physical
units. In this case size comparison might be feasible. More details and
numerous examples can be found in [Astrid, 2004].

Trajectory piecewise-linear model reduction

A novel approach to nonlinear model reduction is presented in
[Rewieński, 2003]. The method is based on linearizations distributed
over one or many training trajectories. The method can be divided into
three steps.

19



Chapter 2. Background

First step: Linearizations Simulate the nonlinear system

ẋ = f (x,u)

y = �(x,u)

with a training input u0(t). Then choose a set of linearization points
(xi0,u

i
0) along the training trajectory, see Figure 2.2. Observe that the

points are in general not stationary.

(xi0,u
i
0)

Figure 2.2 Linearizations distributed over a training trajectory

Close to linearization i, the linearization

ẋ ≃ f (xi0,u
i
0) + Ai(x − x

i
0) + Bi(u− u

i
0)

y ≃ �(xi0,u
i
0) + Ci(x − x

i
0) + Di(u− u

i
0)

(2.11)

approximates the nonlinear system. The matrices Ai, Bi, Ci and Di are
the partial derivatives

Ai =
� f

�x
(xi0,u

i
0) Bi =

� f

�u
(xi0,u

i
0)

Ci =
��

�x
(xi0,u

i
0) Di =

��

�u
(xi0,u

i
0)

20



2.3 Model reduction of nonlinear systems

Second step: Piece-wise linear approximation The local linear
approximation (2.11) can be rewritten as

ẋ ≃ fi(x,u)

y≃ �i(x,u)

Now let the original nonlinear system be approximated in a less local
way by a weighted sum of the local linearizations.

ẋ ≃
∑

i

wi(x,u) fi(x,u)

y ≃
∑

i

wi(x,u)�i(x,u)
(2.12)

The weighting function wi(x,u) is close to one in the neighborhood
of linearization i and zero otherwise. Additionally, wi(x,u) ≥ 0 and∑
iwi(x,u) = 1 for all x and u.

Third step: Model reduction So far the original nonlinear system
has been approximated but no gain in terms of number of states or
simulation time has been achieved. In this step linear model reduction
theory is used to reduce the local linear models.
In [Rewieński, 2003] the Krylov subspace method was used. This

method uses the Arnoldi algorithm, which is numerically effective even
for very large systems. However, it has the drawback of not generally
provide guaranteed preserved stability or error bounds, see [Grimme,
1997]. The use of balanced truncation has also been investigated, see
[Vasilyev et al., 2006].
The Krylov subspace method generates an orthonormal projection

z = Wx,W ∈ Rn̂xn, which is used globally to reduce all the local models.
For further details see [Rewieński, 2003]. Introducing the new coordi-
nates in (2.12) yields

ż =
∑

i

wi(W
T z,u)W fi(WT z,u)

y≃
∑

i

wi(W
T z,u)�i(WT z,u)

This reduced model has fewer states, n̂ < n, and improved simulation
time compared to the original model.
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Chapter 2. Background

2.4 Summary

Model reduction of linear systems is a well developed research area.
Methods as balanced truncation provide error bounds and guaranteed
preserved stability.
How to reduce nonlinear systems is however still a quite open prob-

lem and there is a large room for improvement of existing methods.
Theorems concerning preserved stability or error bounds are sparse.
Common for all mentioned nonlinear methods in this chapter, ex-

cept the piece-wise linear approach, is that even though the order is re-
duced, simulation time is in general not shorter. This is due to the fact
that in practice most models are sparse and this sparsity is lost using
the substitution shown in (2.10). Many states and small right-hand-
side functions are replaced with few states but large right-hand-side
functions.
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3

Modeling the exhaust gas

oxygen sensor

3.1 Introduction

Lambda sensors, or exhaust gas oxygen(EGO) sensors, are core com-
ponents in the emission control in modern spark ignition combustion
engines. The sensor, shown in Figure 3.1, is typically placed in the
exhaust gas manifold between the engine and the catalyst. The per-
formance of catalysts is highly dependent on exhaust gas composition
and, e.g., the air-fuel ratio needs to be precisely controlled. A common
air-fuel ratio control setup is illustrated in Figure 3.2.

Figure 3.1 An exhaust gas oxygen sensor

There exists many different kinds of oxygen sensors but the most
commonly used is the zirconia switch-type sensor, this chapter is fo-
cused on this type. The sensor generates a voltage of roughly one Volt
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if the air-fuel ratio is rich and zero Volt otherwise, see Figure 3.3. The
lambda value is another name for air-fuel ratio and in this chapter, a
normalized lambda value is considered, where the value one implies
stoichiometric conditions.

Torq

PI

control

Injected

fuel
Engine

Exhaust

Oxygen

sensor

Catalyst

Voltage

Figure 3.2 An air-fuel ratio control scheme
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1
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Figure 3.3 Lambda sensor characteristics

To meet future emission legislations, it is required to refine and
extend current lambda control strategies. Good understanding of cat-
alyst operation is essential to improve emission performance. It is nec-
essary to understand the interaction of the catalyst and the lambda
control system, including the lambda sensors, to optimize the exhaust
gas treatment. Physically based simulation models are then vital tools
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to analyze and evaluate new control strategies. An important part in
this is the sensor models, and their ability to correctly reproduce effects
of significance to catalyst operation. Of particular interest is the shift
in voltage characteristics with respect to lambda value that is observed
when the exhaust gas is diluted with hydrogen or carbon monoxide.

3.2 Modeling the exhaust gas oxygen sensor

A model with moderate complexity, which captures the lambda char-
acteristics and it’s dependency of hydrogen and carbon monoxide is
sought for. A model of reasonable complexity level is developed in [Flem-
ing, 1977] but with the drawback of not being able to model hydrogen
dependency. The model presented in [Auckenthaler et al., 2002] is a
very detailed and complex model based on state of the art methods in
literature. It models the hydrogen dependency along with many other
effects. Unfortunately it suffers from numerical ill-conditioning. Due
to the great time-scale difference between the electrode dynamics and
the diffusion, the model becomes very stiff and is therefore difficult to
use, e.g. in simulation. Possible model extensions could be

• Extend Fleming’s model with hydrogen dependency.

• Derive an equilibrium approximation to Auckenthaler’s model in
order to avoid the numerical stiffness problem.

Both alternatives have been investigated, but more progress was ob-
tained by following a model description found in [Barrick et al., 1996].
This model is compact, considers hydrogen dependency and is static, so
no numerical stiffness problem arises. Whether or not the dynamics of
the sensor can be neglected depends on the control scheme and sensor
placement. Here it is assumed that the dynamics can be disregarded.

The physics of the sensor

The sensor mainly consists of four manifold layers between the exhaust
and reference gas(outside air), as can be seen in the cross-section in
Figure 3.4.
A close-up of the four layers is shown in Figure 3.5. As the figure

indicates, the model by Barrick takes into account the species H2, CO,
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Air Porous spinel layer

Exhaust manifold

Solid electrolytePorous Pt electrodes

Exhaust gases

Figure 3.4 Sensor cross-section

O2, CO2 and H2O, other species are assumed not to affect the sensor
voltage.
Firstly, the exhaust gases have to diffuse through the porous spinel

layer to affect the sensor voltage. Different species have different mass,
and therefore different diffusion velocities, so the concentrations at the
platinum surface are different compared to the ones in the exhaust gas
close to the sensor. Secondly, at the cathode surface the platinum acts
as a catalyst for the chemical reactions bringing the modified gas mix-
ture to chemical equilibrium. And finally, the difference in gas concen-
trations at the electrodes yields the sensor voltage. The sensor model
can thus be divided into three parts

• Diffusion through the porous spinel layer

• Platinum surface reactions

• The resulting sensor voltage

Here these three parts will be studied in more detail.

Diffusion N2 is assumed to be abundant in the exhaust gas and is
viewed as a media for the other species. Binary diffusion (also called
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Figure 3.5 Sensor layer close-up

Fick’s law diffusion) is then a valid approximation. In [Barrick et al.,
1996] a more detailed transport model with Stefan-Maxwell diffusion
was investigated without gaining much accuracy. Thus, in principle
the species diffuse through the porous layer without interacting with
each other. When the platinum surface is reached they will combine
according to the reactions in Equation 3.2 until chemical equilibrium is
reached and diffuse out of the sensor again. Balancing the steady state
flux of the three kinds of atoms gives rise to three linear equations

DCO2(XCO2 − X
exh
CO2
) = −DCO(XCO − X

exh
CO )

DH2O(XH2O − X
exh
H2O
) = −DH2(XH2 − X

exh
H2
)

DO2(XO2 − X
exh
O2
) =
1
2
DCO(XCO − X

exh
CO ) +

1
2
DH2(XH2 − X

exh
H2
)

(3.1)
where

• X i, X exhi are the molar fractions of gas i at the platinum surface
resp. in the exhaust.

• Di is the diffusion coefficient of gas i in N2, which is dependent
of temperature, pressure and tortuosity of the material.
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Platinum surface reactions The model contains five active species
interacting through two simplified reactions

CO +
1
2
O2 TS CO2

H2 +
1
2
O2 TS H2O

(3.2)

A key simplification is to assume chemical equilibrium at the platinum
surface, which induces two nonlinear algebraic equations

XCO
√
XO2 = kCXCO2

XH2
√
XO2 = kHXH2O

(3.3)

where kC and kH are temperature dependent constants arising from
reaction velocities.

Sensor voltage In order to keep down model complexity, the three
phase boundary cites (where species can be adsorbed) are assumed to
be abundant. There is no competition for vacant sites, so the voltage
model only depends on O2 concentration, see [Barrick et al., 1996]. The
sensor voltage is then obtained by

V = −
RT

4F
ln
XO2
0.21

(3.4)

where R is the universal gas constant, T temperature in Kelvin, F
Faraday’s constant and 0.21 is the molar fraction of oxygen in the
reference air.
An extension to this voltage model was described in [Fleming, 1977]

where carbon monoxide’s chemical effect on the voltage was included.
It is however equivalent to (3.4) when assuming chemical equilibrium
at the platinum surface so the simpler version was chosen in favour of
low complexity.

Parameter estimation

For this model no calibration experiments are needed since all param-
eters are physical constants. Some are very well known, e.g. Faraday’s
constant, and others can be estimated using semi-empirical formulas.
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Diffusion velocities The diffusion velocities have been estimated
using the method by Chapman and Enskog, see [Reid et al., 1977].
This method has an accuracy of about 6% error margin. As mentioned,
the velocity is temperature and pressure dependant. However, all ve-
locities have approximately the same dependencies, so by dividing with
a nominal velocity in equation 3.1, the temperature and pressure de-
pendencies can be omitted.
The method by Chapman and Enskog estimates the diffusion veloc-

ity in an open geometry. In the sensor however, gases diffuse through a
porous media and this has to be taken into account. The standard way
to deal with this, see [Smith, 1981], is to multiply the nominal velocity
with a material dependent factor

D∗
i =

ǫ

τ
Di

The tortuosity, τ , and the porosity, ǫ, are material specific and the same
for all species i. Inserted in (3.1), the factor does not have an impact
and can therefore also be disregarded.

Chemical equilibrium constants The program HSC ChemistryTM

has been used to estimate the chemical equilibrium constants kC and
kH .

Lambda characteristics perturbation

This effect is analyzed in [Saji et al., 1988], where a lambda sensor
was exposed to different test gas mixtures. Some results presented in
the article are illustrated in Figure 3.6, where it can be seen that deu-
terium has a different impact than H2 although they have the same
chemical properties. This displays that the perturbation effect is not
due to chemical reactions but to physical properties, i.e. diffusion. The
article also claims that this effect depends on non-equilibrium gas con-
centrations in combination with diffusion.
For example, for lambda equal to 1.1 a gas mixture in chemical

equilibrium would contain O2 and almost no H2. The O2 would be able
to undisturbed diffuse to the cathode and as the sensor mainly pro-
duces voltage in function of difference in O2 concentration, no(or low)
voltage would be obtained. However, if the gas is not in chemical equi-
librium there is O2 and H2 present in the exhaust. H2 diffuses faster
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Figure 3.6 Lambda characteristics for non-equilibrium gas concentrations
from [Saji et al., 1988]. Reproduced by permission of ECS - The Electrochemical
Society

than oxygen and the cathode would be exposed to a disproportionally
large amount of H2. The cathode acts as a catalyst for the reaction

H2 +
1
2
O2 TS H2O

and the oxygen is depleted inducing a high sensor voltage. Similar rea-
soning can be applied to other disturbing gases, the deviation depends
on the degree of non-equilibrium and the mass difference between the
species. This explains the perturbations in Figure 3.6, taken from [Saji
et al., 1988].
If the exhaust gas is heated to a higher temperature the gas would

have a higher probability to reach equilibrium before exposing the sen-
sor as can be seen in Figure 3.7, also taken from [Saji et al., 1988].

30



3.2 Modeling the exhaust gas oxygen sensor

Figure 3.7 Switch point sensibility to temperature from [Saji et al., 1988].
Reproduced by permission of ECS - The Electrochemical Society

Possible model extensions

• Sensor dynamics can probably be neglected, but should preferably
be modeled in case it has importance.

One way to introduce dynamics could be by adding, to the cur-
rent static model, a linear first order filter with a time constant
corresponding to the diffusion time of oxygen.

• Consider, and if necessary include in model, effects of NOx and
methane in the exhaust gas.

A first attempt could be to model the effect NOx and methane
has on gas outside the sensor and in that way perturb the volt-
age. This can be motivated since NOx and methane are both
heavy species, and therefore diffuse slowly. For this reason they
probably do not have an active role at the cathode layer.
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3.3 Implementation

The implementation has been done in the Modelica language, see [Fritz-
son, 2004]. The model sums up into a set of nonlinear algebraic equa-
tions

DCO2(XCO2 − X
exh
CO2
) = −DCO(XCO − X

exh
CO )

DH2O(XH2O − X
exh
H2O
) = −DH2(XH2 − X

exh
H2
)

DO2(XO2 − X
exh
O2
) =
1
2
DCO(XCO − X

exh
CO ) +

1
2
DH2(XH2 − X

exh
H2
)

XCO
√
XO2 = kCXCO2

XH2
√
XO2 = kHXH2O

V = −
RT

4F
ln
XO2
0.21

where the exhaust molar fractions, X exhi , are considered as model in-
puts and the sensor voltage, V , as model output. The sole alteration
that has to be done to get a working Modelica code is the coordinate
change

Yi = log(X i)

for molar fractions inside the sensor. The new coordinates give far bet-
ter numerical results for calculating small concentrations. The Model-
ica code has been simulated with the software tool Dymola, see [Dy-
nasim AB, 2006]. The top view diagram is shown in Figure 3.8.

3.4 Simulations

The top plot in Figure 3.9 shows a 6 species (N2 is omitted) varying
gas configuration, this gas is at all lambda values in chemical equilib-
rium. The lower plot of the same figure show the same gas mixtures
but the species has been manually modified to deviate from chemical
equilibrium, by pushing the reactions in (3.2) from the equilibrium
points.
Exposing the model to these gas mixtures yields the voltage in

Figure 3.10. As can be seen, the model shows promising and reasonable
results, the voltage shift due to non-equilibrium H2 is clearly visible.
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Figure 3.8 Layout of Dymola model

3.5 Model validation

Data from test-gas experiments has been used in validation purposes.
In-house experiments were conducted but the equipment for oxygen
concentration measurement turned out to have inadequate resolution.
Instead, other data was used that, unfortunately, are proprietary in-
formation and not publishable.
Two types of experiments were used for validation, a constant flow

of hydrogen or carbon monoxide were mixed with oxygen and nitrogen.
The gas mixture was then heated to 500○C and exposed to the sensor,
see Figure 3.11. During the tests the sensor voltage together with the
lambda value were measured while the gas composition was changed
according to Figure 3.12.
The lambda value for the hydrogen experiment is defined by the

combustion reaction

2H2 + λO2 → np(XH2H2 + XO2O2 + XH2OH2O)

where np is the total mole amount of the gas. An expression for the
lambda value is achieved by balancing the amount of hydrogen and
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Figure 3.9 Gas mixtures with the corresponding lambda value

oxygen atoms.

λH =
XH2O + 2XO2
XH2 + XH2O

(3.5)

The same procedure for carbon monoxide yields

λC =
XCO2 + 2XO2
XCO + XCO2

(3.6)

As can be seen, the gas configuration is not uniquely defined even
though the hydrogen (resp. carbon monoxide) concentration is known.
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Figure 3.11 Experiment setup

To analyse the completeness of combustion reactions at the sensor po-
sition in Figure 3.11, the software Cantera [Cantera, 2006] was used
to simulate the reaction dynamics. It turned out that a temperature
above 700○C is needed to activate the reactions in the mixed gas. The
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Figure 3.12 Experiment gas composition

reaction speeds can be seen in Figure 3.13 and 3.14. For lower temper-
atures it’s a good approximation to assume that the gases do not react
and the concentrations remain unchanged until they reach the sensor.
The absence of H2O and CO2 in the mixed gas change (3.5) and (3.6)

into

λH =
2XO2
XH2

λC =
2XO2
XCO

Now the gas composition is uniquely defined by the lambda value and
the corresponding experiment can be simulated with the model derived
in Section 3.2.
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Figure 3.13 Reaction speed with hydrogen
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Figure 3.14 Reaction speed with carbon monoxide
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Validation results The simulated model has been compared with
the experiment data, with 100ppm of H2 resp. CO at a temperature
of 500○C. As mentioned, the experiment data are proprietary infor-
mation and is not publishable. However, the model output, shown in
Figure 3.15, captures the sensor behaviour well. The curves have ap-
proximately the same switching point as the measured data and the
voltage, at the rich and lean sides, does not deviate much. The mean
absolute error compared to experiment data is 0.14V for CO and 0.057V
for H2.
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Figure 3.15 Model output for a gas mixture with 100ppm CO or H2 at 500○C

Calibration Most of the model parameters described in Section 3.2
are estimated with a level of uncertainty. If they are treated more as
non fixed parameters than natural constants, then higher accuracy to
the experiment data can be achieved. In Figure 3.16 the calibrated
model’s output is shown. Now the mean absolute error is reduced
to 0.033V for CO and 0.0261V for H2. Here the diffusion velocities
are modified but kept inside the Chapman and Enskog method’s error
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Figure 3.16 Calibrated model output for a gas mixture with 100ppm CO or
H2 at 500○C

margin. The reaction constant was modified corresponding to a 100○C
change to match the voltage level for rich mixtures of carbon monoxide.

3.6 Conclusions

A simple and static model with H2 dependency has been developed
and implemented in the Modelica language. Simulations show reason-
able results where the effects of H2 in a non-equilibrium gas can be
observed.
The model has successfully been validated with test gas experiment

data. By adapting parameters within reasonable physical limits, higher
fidelity to experiment measurements was achieved. The mean error in
sensor output voltage did not exceed 3% of the maximum output, when
the model was compared to experiment data.
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4

A model reduction case

study

The contents of this chapter is based on the article [Nilsson et al.,
2006].
Low complexity plant models are essential for model based con-

trol design. Often a detailed high order model is available and sim-
plification to a low order approximate model is needed. This chapter
presents a case study of two model reduction methodologies applied on
the automotive engine air path. The first methodology is based on bal-
anced truncation of models obtained by linearization around equilibria
and trajectories. Under appropriate assumptions, this technique yields
strict bounds on the approximation error. The second is a heuristic
methodology, based on intuition commonly used in modeling of engine
dynamics. Although it is successfully used in practice, the approxima-
tion error is seldom known. The two methodologies are used to derive
simple models for the required fuel charge in a spark ignition engine,
given throttle and swirl flap positions and engine speed. Performance,
complexity and similarities of the two resulting low order models are
compared.

4.1 Introduction

The air path dynamics is a major problem in automotive engine con-
trol. The main problem for spark ignition (SI) engines is to regulate
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the Air/Fuel Ratio. The electronic fuel control system of a modern
SI automobile engine employs individual fuel injectors located in the
inlet manifold runners close to the intake valves to deliver precisely
timed and accurately metered fuel to all cylinders. This fuel manage-
ment system acts in concert with the three-way catalytic converter
(TWC) to control HC, CO, and NOx emissions. Figure 4.1 illustrates
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Figure 4.1 Typical conversion efficiency of a three-way catalyst

the conversion efficiencies provided by a typical TWC as a function of
exhaust air-fuel ratio (A/F) for the three constituents. It can be seen
that there is only a very narrow range of A/F near the stoichiomet-
ric value (14.64) over which high simultaneous conversion efficiencies
may be attained, see [Heywood, 1988]. In order to utilize the TWC ef-
fectively, feedback from an exhaust gas oxygen (EGO) sensor in the
vehicle exhaust system is used to regulate the A/F operating point,
see Figure 4.2. If the operating point is changed by, for example, an in-
creased torque demand, the injected fuel amount has to increase. The
EGO sensor will not instantly detect the unbalance in the A/F ratio
and a good feed-forward control is needed to adapt the injected fuel
amount before the deviation is detected by the sensor. To this purpose,
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a good low complexity model of the air entering the cylinder is essen-
tial. Given throttle position, swirl flap position and engine speed the
required fuel charge (Fc) has to be estimated to achieve stoichiometric
conditions.
Torque

demand Feed

forward

PI

control

Injected

fuel
Engine

Exhaust

Oxygen

sensor

Catalyst

Air-fuel

ratio

Figure 4.2 A standard air-fuel ratio control scheme

4.2 Model properties

The article is focused on the setup shown in Figure 4.3, which shows
an illustration of the air path. The throttle is used to get the desired
airflow and the swirl flap is used for inducing turbulence and thereby
achieving better mixing in the cylinder. Volume 1 and 2 in the figure
represent the connecting pipes between the elements.
The base for the model reduction is a detailed one-cylinder model

provided by Toyota Motor Corporation. It is written in the Modelica
language, see [Fritzson, 2004], and managed with the software tool
Dymola, a multi-domain modeling and simulation tool, see [Dynasim
AB, 2006]. The model is based on conservation laws such as mass
balances. The top view of the Dymola model can be seen in Figure 4.4,
which shows the same physical layout as Figure 4.3.
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Figure 4.3 Schematic of the engine air path

Figure 4.4 Top view of the one cylinder Dymola model

Translating the model Dymola induces a nonlinear differential al-
gebraic equation (DAE) with 37 continuous time states, distributed
as

• 11 states in volume 1

• 11 states in volume 2

• 15 states in the cylinder

The states in the three objects are among other things mass, energy,
momentum and concentrations of the seven species gas mixture. The
model is ideal for simulation but is too complex for model based control
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design. By applying model reduction techniques a low-order approxi-
mate model can be derived.

4.3 Model reduction by balanced truncation

In this section the balanced truncation method is applied to obtain
a low order approximate model. The theory of balanced truncation, as
described in section 2.2, is clearly not directly applicable on the Dymola
model as it is non-linear, hybrid and is defined both by equations and
algorithms. However, with the below described methodology an approx-
imate low order model is obtained. The methodology can be separated
into three steps.

Obtain a linear time-varying system by repeated linearization

The Dymola model was simulated with constant input signals, i.e.
throttle position, swirl flap position and engine speed. The simula-
tion gave rise to a state-trajectory around which the non-linear model
can be linearized. Since the model is nonlinear the linearized model
becomes time-varying, i.e. the A,B,C and D matrices are time depen-
dent.

ẋ(t) = A(t)x(t) + B(t)u(t)

y(t) = C(t)x(t) + D(t)u(t)
(4.1)

The state vector x is the deviation from the nominal state trajectories
and all 37 states have known physical interpretations. The fuel charge
is defined once per engine cycle (when the inlet valve closes) and is
proportional to the amount of oxygen in the cylinder. To be able to
linearize the system at any time point a continuous version of the
signal was defined that coincides with the discrete when the inlet valve
closes.
Dymola has the functionality of derivation of linearizations of the

nonlinear DAE. By using Dymola’s scripting capabilities this can be
done repeatedly at times tk and snapshots, with 50µs intervals, of the
continuous linear time-varying system in (4.1) is obtained. With the
assumption that the A(t),B(t),C(t) and D(t) matrices are constant
between the times tk a discrete linear time-varying (LTV) system can
be derived by zero order hold sampling. The discrete system (4.2) only
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captures the state vector at the snapshot times, x(tk) = xk.

xk+1 = Φkxk + Γkuk

yk = Ckxk + Dkuk
(4.2)

Resample the discrete LTV system once per engine cycle The
required fuel charge is defined once per engine-cycle and the system is
therefore sampled. Resampling, with the sampling periods defined by
the closing of the inlet valve, gives rise to a cycle-to-cycle model for the
fuel charge. Here the input signals are assumed to be constant during
the cycle and n denotes the number of sampling intervals per cycle.

xk+n = Φ̃xk + Γ̃uk

Letting k = 0 represent the first sample time in the cycle the matrices
Φ̃ and Γ̃ can be computed according to

Φ̃ =

n∏

i=1

Φn−i

Γ̃ =

n−2∑

i=0




n−i−1∏

j=1

Φn− j



 Γi + Γn−1

Linearization around trajectories captures hybrid phenomena such
as dynamics changing depending of time and position in state-space,
but not instantaneous changes such as reset maps. The Dymola model
contains reset maps, for example the cylinder mass is instantaneously
increased by the amount of fuel injected, similarly the oxygen amount
is reset after combustion. These two and others all occur when the
inlet valve closes and can all be represented as an instantaneous linear
transformation of the state vector

x∗
k = Hxk

This can be included in the LTV system by introducing the transfor-
mation in the beginning of the cycle, i.e. when the inlet valve closes.

x1 = Φ0Hx0 + Γ0u0
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Γ̃ is not affected and the only alteration is in the calculation of Φ̃,
which becomes

Φ̃ =

(
n∏

i=1

Φk+n−i

)
H

Only slight cycle-to-cycle variations can be seen in Φ̃ and Γ̃ but to
improve numerical precision the matrices are calculated by averaging
over several cycles.

Apply balanced truncation to obtain low-order model By lin-
earization and resampling a linear time-invariant model for the re-
quired fuel charge has been derived. And now the balanced truncation
method, as described in Section 2.2, can be applied.
The model has 37 states, a number that can significantly be re-

duced without much loss of accuracy. The five largest Hankel singular
values described by (2.5) are shown in Figure 4.5. The plot indicates
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Figure 4.5 The five largest singular values of the balanced realization

how well the model can be represented with a lower order approxima-
tion. How many states the low order model should have is a trade off
between approximation error and model complexity. In this case sim-
ulation shows that it is reasonable to truncate all but two states. The
new low order state vector will be a linear combination of the physi-
cal states and reducing to a second order system yields the coordinate

46



4.3 Model reduction by balanced truncation

change

x̄ = Tx =

[
T1

T2

]
x

where T ∈ R2x37. The absolute value of the elements in T1 and T2 can
be seen in Figure 4.6, which illustrates the relative importance of the
physical states in the reduced model. The most important states are
listed in Table 4.1.
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Figure 4.6 Relative importance of physical states in the reduced model

Table 4.1 The most important physical states

State number Physical interpretation

11 Amount of oxygen in cylinder

15 Mass in volume 1

21 Amount of oxygen in volume 1

32 Amount of oxygen in volume 2

Results

The nonlinear Dymola model with 37 states has been approximated
with a 2 state linear time-invariant system. Figure 4.7 shows the re-
quired fuel charge computed by the original Dymola model, the lin-
earized model and the reduced model as a response to the illustrated
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Chapter 4. A model reduction case study

change of input signals. As can be seen, both the linearized and re-
duced model approximates well the Dymola model’s result. For this
trajectory the approximation error is dominated by the linearization
and not the truncation.
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Figure 4.7 Simulation results for the linearized and truncated model
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4.4 Heuristic model reduction

Equation (2.6) gives a bound on the approximation error between
the two linear models and keeping two states yields

max
u

qỹ(t) − y(t)q2
qu(t)q2

≤ 2
37∑

k=3

σ k (4.3)

where ỹ is the reduced model output. In this case the input signal u(t)
consists of three scalar signals, throttle position, swirl flap position
and engine speed. The norm is calculated according to

qu(t)q2=

√∫ ∞

0
uT (t)u(t)dt

The throttle and swirl flap positions are given in effective area [m2] ∼
10−5 and engine speed in [rpm]∼ 103, as can be seen the engine speed
will greatly dominate the input signal norm. To achieve more reason-
able results the inputs are balanced by including a 10−8 gain before the
throttle and swirl flap positions in the model, which could correspond
to a unit change. Now the input signals all have the approximate mag-
nitude of 103 and if all but two states are truncated, according to (4.3),
the following holds

qỹ(t) − y(t)q2≤ 2.6784 ⋅ 10−10qu(t)q2

y(t) and ỹ(t) denotes the outputs of the 37- and 2-state linear models.
For the trajectory in Figure 4.7 this implies that the output error is
bounded as

qỹ(t) − y(t)q2≤ 5.0 ⋅ 10−6

while the actual approximation error is 6.9⋅10−7. This is not uncommon
when applying balanced truncation, the result is often much better
than the error bound indicates. There are two reasons for the differ-
ence, the norm is worst-case and that the bound is often conservative.

4.4 Heuristic model reduction

A common way to accomplish model reduction is to use experience and
insight into the physics to omit dynamics with little importance. In
this case the problem is split into two parts
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Chapter 4. A model reduction case study

1. The cylinder dynamics

2. The air path including the two volumes

where the first part has far faster dynamics than the second. Therefore
the common technique of time scale dynamics reduction can be per-
formed on the first part. The result is a static mapping from pressure
in volume 2 and engine speed to required fuel charge. Simplification of
more detailed physical modeling yields that the dynamics of the second
part can be modeled as two first order dynamics. The states represent
the pressure in each volume and the throttle and swirl flap positions
act as input signals in a similar configuration as in Figure 4.3. The
effect of varying engine speed is introduced in the model by letting the
gains and time constants of the first order dynamics be dependent of
engine speed, Ne. The complete model is the combination of the two
parts and is illustrated in Figure 4.8.

Throttle

Swirl flap

Engine speed

K1
s/T1+1

K2
s/T2+1

Required

fuel charge

p2

Volume 1 Volume 2 Volumetric map

Figure 4.8 Structure of the heuristically derived model

A more detailed description of how the model structure was ob-
tained for the two parts is presented below. For further details and
background see [Chevalier et al., 2000; Hendricks et al., 1996] and [Føns
et al., 1999].

Time scale dynamics reduction

One simple model of the air flow in an intake manifold is the filling
and emptying model. The air flow enters the manifold through the
throttle and is pumped out of the manifold into the cylinder. Assuming
no leaks, the intake mass air flow Dair, into the manifold and the flow
entering in the cylinder, Masp are identical only in steady state.
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4.4 Heuristic model reduction

Pumping fluctuations Pumping fluctuations are caused by any
disturbance initiated at the boundary of inlet manifold such as mov-
ing piston, moving valve and moving throttle plate. These disturbances
travel along the pipe experiencing many reflections. When the engine
is operated in the steady-state, they finally settle down into a stand-
ing wave. The source of pumping noise is periodic, so the pumping
fluctuations are frequency locked to the engine event frequency.

Mean model of the aspirated flow In spite of the complexity of
the fluid dynamic phenomena occurring during a transient (due to
fast opening or closing of the throttle), the conventional volumetric
efficiency η (function of the engine working point), identified during
steady-state conditions, is used to describe the inlet air mass flow rate.
So the speed-density gives an accurate description of the air mass flow
rate through the inlet valve

Dasp,map = ηmap(P̄2,Ne)
Vcyl P̄2

RT̄2

Ne

120

where:

• P̄2 is the mean pressure over a TDC in volume 2

• ηmap is the volumetric efficiency

• T̄2 is the mean temperature over a TDC in volume 2

• Ne is the engine speed

• Vcyl is the cylinder volume

• R is the universal gas constant

The volumetric efficiency ηmap is highly nonlinear function of the en-
gine speed (Ne) and manifold pressure (P̄2). It can only be estimated
via experimentation. Figure 4.9 shows the volumetric efficiency of a
commercial gasoline engine. The used volumetric efficiency should prefer-
ably been generated from the Dymola model. The map derived by ex-
periment data is considered to be accurate enough for the purposes of
this article.
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Figure 4.9 The volumetric efficiency map

Air path dynamics reduction

During throttle transients, the difference between these two flows equal
the rate of change of the air mass in the manifold plenum. Assuming
that the manifold pressure is uniform and the intake manifold tem-
perature is constant, the continuity equation and ideal gas law can
be applied to the manifold plenum. Usually, the flow is defined as a
function of the total mass MT and can be factorized as

d(MT ,Ovalve) = p(MT )MT

where Ovalve is the effective area of the valve and p is a positive increas-
ing (concave) function with respect to the total mass MT as proposed
in [Heywood, 1988],

p(z,Ovalve) = p0(Ovalve)
√
2

γ

γ − 1
((
z

z0
)−

2
γ − (

z

z0
)−

γ +1
γ )

Here z0 is the mass in atmospheric conditions, γ is the heat ratio and
p0 is a function transforming the valve opening into the effective area
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4.4 Heuristic model reduction

of the valve. By linearization of the flow equation, the model of the
two volumes writes as two first order dynamics with the states p1 and
p2 (the pressure in the volume 1 and 2 respectively) as described in
Figure 4.10. Although the parameters depend on engine speed, the cal-
ibration task is easier than for the original nonlinear model. Moreover,
first-order dynamics (with the parameters varying with respect to the
operating conditions) is well representative of the filling-emptying dy-
namics.
The combination of the time-scale reduction and the volume’s dy-

namics yields the total model showed in Figure 4.8.

Throttle

Swirl flap

Engine speed

K1
s/T1+1

K2
s/T2+1

p2

Volume 1 Volume 2

Figure 4.10 Air path dynamics approximation of the two volumes

Results

The nonlinear Dymola model with 37 states has been approximated
with a second order linear parameter varying system combined with a
look-up table. Figure 4.11 shows the required fuel charge computed by
this model as a response to the illustrated change of input signals. The
model is able to approximately describe the variation of the requested
fuel charge. Nevertheless, the qualitative response is not so good. In-
deed, without observers and correction mapping, a precise estimation
of the aspirated flow is not available. It means that the air-fuel ratio
controller-action will be necessary and predominant as the requested
fuel charge is not well predicted.
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Figure 4.11 Simulation results for the heuristically derived model

4.5 Methodology comparison and conclusions

Two low order models have been derived, one using balanced truncation
and one using heuristic methods. The complexity of the two resulting
models is almost the same but the methodology is quite different.
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4.5 Methodology comparison and conclusions

Methodology comparison

In the case of the heuristic procedure the methodology is based on
modeling and simplifications are made based on intuition and expe-
rience. When an appropriate model complexity is chosen, parameters
are determined by physical properties or, as in this case, by tuning to
fit simulation data. The tuning could also been done to fit experimen-
tal data, that is not the case for balanced truncation which needs a
detailed model.
The resulting model from the balanced truncation based technique

is always a linear time-invariant system, the heuristic procedure does
not have this restriction and has therefore greater potential. On the
other hand, it can be very hard to tune the parameters, especially
for larger nonlinear systems. This time-consuming tuning can be com-
pared to the rather heavy computations needed to derive the lineariza-
tions required for balanced truncation, which can be carried out by a
computer without human supervision.
The balanced truncation methodology is very systematic and does

not need physical knowledge of the model, neither is any parameter
fitting necessary. It also delivers a bound on the approximation error
compared to the linearized model.
In this example better performance was achieved with balanced

truncation, this is however more a question of how well you can fit
the parameters in the heuristics based model. In cases when nonlinear
dynamics is essential the balanced truncation technique used here will
not be sufficient.
Similarities in choice of states can be seen in the two methods.

For example, both methods neglect the fast dynamics occurring in the
cylinder and other gas species than oxygen are ignored. The heuristic
method chose the volume pressures as states, which are (at constant
temperature) proportional to the amount of oxygen. For the model gen-
erated by balanced truncation, the oxygen concentrations are present
as components in the two states.

Conclusions

Both methodologies have their advantages and disadvantages. If a de-
tailed model is available and linear behaviour is expected then the
balanced truncation technique could be preferred. This technique can
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Chapter 4. A model reduction case study

require a large computation time but needs very little manual atten-
tion. Using the heuristic method requires more experience and knowl-
edge, it may also involve extensive parameter fitting, but renders more
insight to the simplifications made.
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5

A new approach to

balanced truncation of

nonlinear systems

In this chapter, a new method for simplification of nonlinear input-
output models is outlined. The method is based on state transformation
followed by truncation of some states. Consider the following example.

EXAMPLE 5.1
The nonlinear system

ẋ1 = −3x31 + x
2
1x2 + 2x1x

2
2 − x

3
2

ẋ2 = 2x31 − 10x
2
1x2 + 10x1x

2
2 − 3x

3
2 − u

y= 2x1 − x2

has exactly the same input-output relationship as the system

ẏ = −y3 + u (5.1)

It is a challenge for any model reduction procedure to detect that a
reduction like this is possible. A general methodology for such problems
will be developed, but first a simple proof of the equivalence in this
particular case is given.
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Chapter 5. A new approach to balanced truncation of nonlinear systems

Hence, note that the system can be rewritten as

ẋ1 = −(2x1 − x2)2x1 + (x1 − x2)3

ẋ2 = −(2x1 − x2)2x2 + 2(x1 − x2)3 − u

y= 2x1 − x2

With the new variables z1 = 2x1 − x2, z2 = x2 − x1, this means that

ż1 = −z
3
1 + u

ż2 = −z
2
1z2 − z

3
2 − u

y= z1

In particular, the state z2 does not appear in the output. Hence, it can
be truncated and (5.1) holds.

In the example, a linear coordinate transformation followed by state
truncation gave a simplified model without approximation error. The
goal of the method described in this chapter is to provide a systematic
way to find such transformations whenever they exist and otherwise
to find good approximations.

5.1 Method description

Let the system to be reduced have the form

dx

dt
(t) = f (x(t),u(t))

y(t) = h(x(t),u(t))

To find states that are redundant or that have small importance for the
input-output relationship, linearizations of the system dynamics will
be used. Local importance of states would be revealed if one would lin-
earize the system around a stationary point. A combination of several
linearization points could then indicate which the important states are
in the nonlinear system. However, some states may only have an ac-
tive role during transient behaviour, which will be later commented in

58



5.1 Method description

Example 5.4. Instead, linearization around a trajectory will be used as
a tool to find an approximate low-order model.
Recall the theory concerning balanced truncation of linear time-

varying systems presented in Section 2.2. The time-varying grami-
ans give information about state importance even in transient regions
of state-space. These gramians can be computed in the neighborhood
of simulated trajectories using linearization of the system dynamics.
When there exists a linear coordinate transformation that disconnects
some states from the input-output relationship, this will be revealed
in those localized gramians.
The choice of training trajectory, around which linearization is made,

is an important aspect of the reduction procedure. The corresponding
training input should be chosen as a typical input-signal, which is rich
enough to excite all dynamics important to the intended model use.
The first step of the procedure is to simulate the system for t =

[0, t f ] with the training input-signal. Along the simulated trajectory,
define

A(t) =
� f

�x
(x(t),u(t)) B(t) =

� f

�u
(x(t),u(t)) C(t) =

�h

�x
(x(t),u(t))

and compute the time-varying gramians P(t), Q(t) by simulation of
the Lyapunov equations

dP

dt
(t) = A(t)P(t) + P(t)A(t)T + B(t)B(t)T P(0) = 0 (5.2)

dQ

dt
(t) = −Q(t)A(t) − A(t)TQ(t) − C(t)TC(t) Q(t f ) = 0 (5.3)

The controllability gramian P(t) reveals how large deviation in input-
signal is needed to perturb x(t). If a certain state component is hard
to perturb for all times, one can suspect that this state is in general
hard to affect in the nonlinear system. Similarly, Q(t) shows how much
the output-signal is affected if x(t) is perturbed. If the output-signal
is weakly influenced by a certain state-perturbation, independently of
when the perturbation is made, it can be suspected that this state
needs a high variation to affect the output-signal in the nonlinear sys-
tem.
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Chapter 5. A new approach to balanced truncation of nonlinear systems

In order to isolate the overall important states with a constant
state-transformation, one could use the average gramians

P̄ =
1
t f

∫ t f

0
P(τ )dτ Q̄ =

1
t f

∫ t f

0
Q(τ )dτ

and then treat P̄ and Q̄ as if they belonged to a linear time-invariant
system. Then rank deficiency of the matrix P̄Q̄ indicates that some
states are obsolete and can be truncated from the model without chang-
ing the input-output relationship.
Define

T = [T1 . . . Tn ] T−1 =





S1
...

Sn





to diagonalize T−1 P̄Q̄T with diagonal elements in decreasing order
and introduce new coordinates according to the formula Tz = x. The
coordinate change T is obtained in the same manner as for balanced
truncation of linear time-invariant systems. Then the truncated model

dz

dt
(t) =





S1
...

Sm



 f
(
[T1 . . . Tm ] z(t),u(t)

)

ŷ(t) = h
(
[T1 . . . Tm ] z(t),u(t)

)
(5.4)

approximates the input-output behavior of the original system near
the simulated trajectory provided that the m largest eigenvalues of
T−1 P̄Q̄T are dominating.
For further illustration, the method is applied in the three following

examples.

EXAMPLE 5.2
Consider again the system defined in Example 5.1. Simulating this sys-
tem along various trajectories and computing the observability gramian
according to the differential equation

dQ

dt
(t) = −Q(t)A(t) − A(t)TQ(t) − C(t)TC(t) Q(t f ) = 0
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5.1 Method description

one observes that the rank of Q(t) never exceeds one for any trajectory.
The reason is that q(t) = [ 1 2 ]Q(t) [1 2 ]T obeys the differential
equation

dq

dt
(t) = − [ 1 2 ]

[
Q(t)A(t) + A(t)TQ(t) + C(t)TC(t)

]
[1 2 ]T

with q(t f ) = 0. In this case

A(t)

[
1

2

]
=

[
−9x21 + 2x1x2 + 2x

2
2 x21 + 4x1x2 − 3x

2
2

6x21 − 20x1x2 + 10x
2
2 −10x21 + 20x1x2 − 9x

2
2

] [
1

2

]

=

[
−7x21 + 10x1x2 − 4x

2
2

−14x21 − 20x1x2 − 8x
2
2

]
=

[
1

2

]
(−7x21 + 10x1x2 − 4x

2
2)

C(t)

[
1

2

]
= [ 2 −1 ]

[
1

2

]
= 0

so

dq

dt
(t) = −2q(t)[−7x1(t)2 + 10x1(t)x2(t) − 4x2(t)2], q(t f ) = 0

and q(t) = 0 for all t. In particular, Q̄ and P̄Q̄ are singular and one
state can be truncated without affecting the input-output relationship.
By simulation of the differential equations (5.2) and (5.3) one obtains
P̄ and Q̄. For a certain training input-signal u0(t) the average gramians
are computed to

P̄ =

[
0.0018 −0.0145

−0.0145 0.2936

]
Q̄ =

[
1.3058 −0.6529

−0.6529 0.3264

]

and the matrix Q̄ is, as expected, singular. The corresponding coordi-
nate change Tz = x is determined so that T−1 P̄Q̄T is diagonal with
decreasing order, in this case

T−1 P̄Q̄T =

[
0.1171 0

0 0

]
.
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Chapter 5. A new approach to balanced truncation of nonlinear systems

Truncation of z2 and substitution according to (5.4) yields the nonlin-
ear system

ż1 = −1.23z31 − 0.901u

y= −1.11z1

which is equivalent to ẏ = −y3 + u

EXAMPLE 5.3—A SEVEN-STATE SYSTEM
The procedure can be applied to larger examples and also when loss-
less truncation is not possible. Consider the seven-state system

ẋ1 = −x
3
1 + u

ẋ2 = −x
3
2 − x

2
1x2 + 3x1x

2
2 − u

ẋ3 = −x
3
3 + x5 + u

ẋ4 = −x
3
4 + x1 − x2 + x3 + 2u

ẋ5 = x1x2x3 − x
3
5 + u

ẋ6 = x5 − x
3
6 − x

3
5 + 2u

ẋ7 = −2x36 + 2x5 − x7 − x
3
5 + 4u

y = x1 − x
2
2 + x3 + x4x3 + x5 − 2x6 + 2x7

Following the described procedure, the system is linearized along a
simulated training trajectory generated by a a 10Hz square wave sig-
nal with amplitude one. Further, the gramians are calculated according
to Equation (5.2) and (5.3). Again, the balancing coordinate change T
is computed so that T−1 P̄Q̄T is diagonal with decreasing order. The
diagonal elements computed for this system and choice of training tra-
jectory are shown in Figure 5.1. The size of these diagonal elements
indicate the importance of the new states for the input-output rela-
tionship. If the nonlinear system is truncated to one state, using the
substitution in (5.4), the reduced system becomes

ż1 = −0.492z1 − 0.0879z31 + 5.08u

ỹ= 1.34z1 + 0.0792z21
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Figure 5.1 Diagonal elements for the system in Example 5.3

A comparison achieved by simulating the original and reduced system
with the same input signal u(t) can be seen in Figure 5.2. The system
lack physical interpretation and the input-signal used for comparison
can therefore be chosen arbitrarily. In this case it has been chosen to
be the sum of a sinusoidal and a square-wave signal.

EXAMPLE 5.4—MASS-SPRING-DAMPER SYSTEM
In this example, the method is applied to a two-dimensional mass-
spring-damper system. Figure 5.3 shows six masses connected with
springs and dampers. The input-signal is an external force, in horizon-
tal and vertical direction, on the leftmost mass. The output-signal is
the position coordinates of the top middle mass.
A thin line in the figure represents a linear spring-damper with an

unforced length l0 according to the figure. The masses, except the two
rightmost ones, are also connected to the ground with linear spring-
dampers.
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Figure 5.2 Simulation results for the system in example 5.3

Fx

Fy

yy

yx

Figure 5.3 Mass-spring-damper system in Example 5.4. Force on the left mass
as input signals and position of the marked mass as output.
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5.1 Method description

The motion equations for each mass consist of four differential equa-
tions

ṗx = vx ṗy = vy

v̇x =
1
M

∑

i

Fx,i v̇y =
1
M

∑

i

Fy,i

where px and py are the position coordinates with the corresponding
velocities vx and vy. The mass is denoted M and the forces Fx,i and Fy,i
are the forces in horizontal and vertical direction inflicted by spring-
damper i

Fx,i =

(
K (li − l0i) + D

d

dt
(li)

)
cosθ i

Fy,i =

(
K (li − l0i) + D

d

dt
(li)

)
sinθ i

Here li is the length of spring-damper i, D the damping coefficient and
K the spring coefficient. In this example all coefficients have been set
to one, M = K = D = 1. Further, the angle θ i is the angle of the
spring-damper. Here, only small angle perturbations are considered
and θ i is therefore assumed to be constant.
The thick line is a nonlinear damper that gives a force proportional

to the deformation rate to the power of three,

Fx,i = D

(
d

dt
(li)

)3
cosθ i Fy,i = D

(
d

dt
(li)

)3
sinθ i

Linearization of the model around any stationary point would neglect
this nonlinear damper, it only affects the linearization during transient
behaviour. In the case of the leftmost mass, the external forces also
contribute to the equations.
The model has four states per mass, yielding a total of 24 states,

and can be written on the form

ẋ = f (x,u)

y = h(x,u)
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Chapter 5. A new approach to balanced truncation of nonlinear systems

In this example the described method is compared to the Proper Or-
thogonal Decomposition method as defined in Section 2.3. Reduction
to 8 states is performed with both methods using the same training
trajectory. A simulation result can be seen in Figure 5.4. A better re-
sult is obtained with the described method, which partly is due to the
fact that the Proper Orthogonal Decomposition method does not take
the output function into consideration.

5.2 Summary

A method for simplification of nonlinear input-output models has been
outlined. The given procedure is focused on reducing the number of
states using information obtained by linearization around trajectories.
The number of states is one factor contributing to simulation time

and in the presented examples computation time has been reduced.
Although, in the procedure many short right-hand-side functions can
be replaced by fewer more complicated ones. Therefore, simulation time
does not necessarily diminish in the general case.
No proofs concerning preserved stability or error bounds are pre-

sented. However, the methodology is closely tied to existing theory on
error bounds and good results are shown in form of examples and sim-
ulation data.
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Figure 5.4 Simulation results for example 5.4. Method comparison for model
reduction from 24 to 8 states.
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6

Conclusions and future

work

The current control design development process in automotive indus-
try involves many expensive experiments and hand-tuning of control
parameters. Model based control design is a promising approach to re-
duce costs and development time, in this process low complexity models
are essential. This thesis combines the areas of modeling and model
reduction of automotive systems.
A model of the exhaust gas oxygen sensor has been developed.

The end result is a simple and static model that is sensitive to non-
equilibrium concentrations of H2. The model has been implemented in
the Modelica language and successfully been validated with test gas
experiment data. By adapting parameters within reasonable physical
limits, higher fidelity to experiment measurements was achieved. The
mean error in sensor output voltage did not exceed 3% of the maximum
output, when the model was compared to experiment data.
Also, a model reduction method comparison has been conducted on

an engine air path model. The heuristic method commonly used when
modeling engine dynamics is compared with a more systematic method
based on balanced truncation. Both methodologies have their advan-
tages and disadvantages. If a detailed model is available and linear
behaviour is expected then the balanced truncation methodology could
be preferred. This technique may require a large computation time
but needs very little manual attention. Using the heuristic method
requires more experience and knowledge, it may also involve exten-
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sive parameter fitting, but renders more insight to the simplifications
made.
Finally, a method for model reduction of nonlinear systems has been

presented. The given procedure is focused on reducing the number of
states using information obtained by linearization around trajectories.
No proofs concerning preserved stability or error bounds are presented.
However, the methodology is closely tied to existing theory on error
bounds and good results are shown in form of examples and simulation
data.

6.1 Future work

The continued work of this thesis will be in the area of model reduction
of nonlinear systems. So far, a method for order reduction has been
developed but an attractive method should also diminish simulation
time and the number of model parameters. Further, nonlinear model
reduction of more realistic examples has to be considered.
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