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ON_THE UNIQUENESS OF MAXIMUM LIKELIHOOD IDENTIFICATION
FOR DIFFERENT STRUCTURES.

T. S8derstrdm

ABSTRACT.

Maximum likelihood identification of a linear dynamic sys-
tem is performed as a minimization of a loss function, The
concept of uniqueness of the parameter estimates is close-
ly related to the number of local minimum points of this
loss function. The number of local minimum points is exa-
mined for some different models. Asymptotic expressions
for the loss function are used. Conditions are given which .
imply a unique local minimum point.
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I. INTRODUCTION,.

The maximum likelihood (ML) method is a useful tool for
estimation of parameters in system equations. The ML es-
timate By, is the global maximum point of the likelihood

~

function L{8), i.e.

L(6y ) » L(8) all o

In most cases there is no analytical expression for the

maximum point 8 The maximization of L£6) has to be

ML’
done computationally using some search routine. Such a
search routine may converge to a local maximum point 6%

of L(8), i.e.
LCo*) 2 L(6) all @& close to 6%

It is then valuable to know if the likelihood function

has a unique local maximum point or not.

This issue is closely related to the concept of identi-
fiability, see Bellman-Astr8m (1970). The purpose of this
report is to analyze the local maximum points of the like-
lihood function for some different structures. Bohlin
(1971) has given some tests, which can be used for de-
tecting if a local maximum or generally an arbitrary point

is a global maximum point or not.

The report is organized as follows: In this chapter some
basic assumptions are given. In the next chapter the ma-
thematical tools of the analysis are penetrated. Chapter
IIT contains an examination of the global maximum points
for the different structures. It is desirable that the

true value 6 is a global maximum point and preferably a

unique one.



Moreover, this examination simplifies the analysis of
the local maximum points, since it describes all "de-
sirable" points. The last three chapters deal with the
examination of the local maximum points for some speci=~

fic likelihood functions.

Consider a system given by

y{t) = G(@;qmj)u(t) + H(e;qaq)e(t)

where
-1, _ = -1
G(e3q ') = ) g;(8)q
0
-1 - -1
H(esq ') = § h.(e)q
&7

u(t) is the input, y(t) the output and e(t) gaussian white noise
with zero mean and standard deviation i. q ' is the back-
ward shift operator. It is assumed that ho(e) z 1. The

system can be illustrated by the figure below.

l’e(t)

H{B:q)

-l—"w——_p G(6:q-1) ¥, i

Figure 1 - Block diagram of the system.



The purpose of an identification is to estimate the
value of the vector & based on an input-output record.
The true value will be denoted by 6.

In this report some different transfer functions 6 and
H will be considered. It is assumed that G and H are
rational functions in q-1. The coefficients are func-
tions of a.

Under these assumptions the maximization of the likeli-

hood function is equivalent to the minimization of the
loss function, see Astr®m-Bohlin (1966).

V(6,8) = 3 Z e (1) (1.1)
£51

where the residuals e(t) are defined by

y(t) = G(835q7 Dult) + H(o3q 1)elt) (1.2)
while the output is given from

y(t) = G(o3q” Dult) + H(osq Nelt) (1.3)
The ML estimate 6ML of 8 is thus given by

V(éML,e) = min V(e,6)
6

assuming that a global minimum exists.
The residuals can be written as

1
e(t)

o g i~
= 8003q ) - 8Lesg ) ey 4 HEOSQ D ey b
H(o3q ) H(83q )



In the analysis of the loss function (1.1) ergodic theo-
ry will be used.

The generalized least squares method has been treated
elsewhere by the author in S&derstr®dm (13872), where it

is shown that the loss function in this case has a unique
local minimum point when the signal to noise ratio is
high enough. For small values of this ratio there may

exist several local minimum points.

For the other cases treated here it is shown (under suit-
able assumptions) that all local minimum points are glo-
bal minimum points. There will be a unique global (and
local) minimum point if the correct order of the trans-

fer functions is used,



II. MATHEMATICAL PRELIMINARIES.

In this chapter the basic mathematical tools for the ana-

lysis of the loss functions are given.

First some conventions used in the report are presented.
Then some polynomial equations are studied. A lemma giving

sufficient conditions for the existence of

lim V(é,e)
N-rew

is considered. Finally the concept of persistently exciting
signals is treated and some applications are made. Some of
the lemmas are given in S8derstrdm (1972). They are stated

- here too in order to clarify their use in the analysis.

In order to simplify the notations the following conven-
p Yy

tions will be used throughout the report.

Convention 2.1. Polynomial operators will be denoted by ca-

. -1 .
pital letters, e.g. A(q '). The number of coefficients

~

will be denoted by n or n with a corresponding lower case

letter as a subscript.

Examples:
n n
a 5 a . =
A =1+ ] aqt Ag™M=1 4+ 7 aq”
1 1
n n,
b . B b .
Blg™ ) = ; b.q B(q™") = ; b.q



The expression

is interpreted as zero if n = 0.
Lo

Convention 2.2. Given two polynomials

ACz) = ) a;z B(z) = | b.z

B(z) means

rf.
o
[
3
o}
+
a
+
e
o]
=
o=
N
N
il

&
i
*2
(=]
"
=
A

mln(na,nb)

and

i f > . = < i ¢
if n, Iy a 0] ny, ign

. N e .
if ny n, bl 0 n, <isn

Convention 2.3. Given the polynomials A(z) and B(z) (and
C(z)). They are said to be relatively prime if there is
no common factor to all the polynomials. The physical in-

terpretation is that the system
~1 =1
A(q Jy(t) = B(q u(t)
-1 ) - -1
(ACq™ Dy(t) = Blq Dult) + Clq Nelt))

is controllable and observable.



Convention 2.4. €x(t) denotes

If x(t) is an ergodic stochastic process Ex(t) = Ex(t).
All stochastic processes in this report are ergodic. The
notation is used for deterministic signals as well.

The following elementary two lemmas from the theory of
equations will be useful. The proofs are not very diffi-
cult and they are given here.

The first lemma deals with an equation, which will occur
several times in the forthcoming analysis.

Lemma 2.1. Given the polynomials

A(z)

i

N

*
e 3
-

A

N

and

B(z)

1]
3
v
.
N

Consider the following equation in the unknowns (51, ceas

0 b1, chey bnb) with n, = mln(na~na, nb-nb) 3 0

H

ACz)B(z) ~ A(z)B(z) = 0 (2.1)

Agsume that A(z) and B(z) are relatively prime.



i) If n, = 0 the only solution is given by

A(z) = A(z)

. (2.2)
B(z) = B(z)
ii) If n, > 0 all solutions are given by
A(z) = Alz)L(2)
(2.3)

l

%(z) = B(z)L(z)
whenre

L(z) = 1 +
i

g3 o
x>
=

.7
1

n
The cocefficients (zi)1£ are arbitrary.

Proof. Since A(z) ¥ 0, A(z) t 0 the equation can be writ-
ten

B(z) _ é(z)
ACz) A(z)

all =z

Noting that the right hand side must have the same zeros
and poles as the left hand side the assertions are ocbvious.

Q.E.D.

Corr. If B(z) is of the form

ny, )
B(z) = 1 + ) b.z
: i

and ﬁ(z) of the form



the lemma remains true without changes.

Lemma 2.2. Consider the following matrix of order

max(na+nb, na+nb) x (na+nb)

0 ’ 1
bnt ] . 0
L] - 1
P - br}.b L . l ana . ( 2 . L" )
b1 ! .
a e 0 .
' !
i bnb 1 ana_
n, columns ny columns

(At least one of the figures Pnps @ng is on the last row.)

~

Let A(z) and B(z) have m common zeros. Assume that n, ps
2 N, Ny % 0y
Then rank P =

~ ~

max(na+nb, na+nb) ~- m.
Proof. Consider the equation
A(z)B(z) - A(z)B(z) = 0

From lemma 2.1 it is known that the general solution is
of the form

Alz) = B(z)L(z)

B(z) B(z)L(z)

th



where

A(z) and B(z) are relatively prime

ng ;
L{z) = 1 + ; £z

n, = min(na-na, nbenb) + m
Introduce new variables ¢ ch o, d
1 g 1
ng )
Clz) = § c,z7 = Alz) - A(2)
41

B(z) ~ B(z)

1
1
(a7
N
Hi

D(z)

The equation is then

C(z)B(z) - A(z)D(z) = 0

with the general solution

1

Clz) = Alz)(L(z) - 1)

D(z) = B(z)(L(z) - 1)

K

However, this equation can.be written as

)

. d“

nb

by

10.
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The expression of the general solution implies that

dim N(P) = n,-

Thus rank P is given by

= aim R(PT) = n_ + ny - dim N(P)
= ﬁa + ﬁb - min(ﬁa~na, ﬁb—nb) - m
= max(ﬁa+nb, na+ﬁb)- m _
Q.E.D.
Remark. In the case ﬁa = ng, ﬁb = ny (P is square) P is

nonsingular if and only if m = 0. This fact is already
shown by e.g. Dickson (1922). In this report, however,
the general case will be needed.

In the analysis of the loss functions ergodic expressions
will be used. The loss functions are all of the form

N
i Z 52(1:)
2N t=1

with e(t) given by (1.4). The following lemma gives suf-
ficient conditions for convergence of such expressions.
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Lemma 2.3. Consider the system

g(t) = G(q" Hult) + H(qg elt)

where G(q-1) and H(q_1) are asymptotically stable fil-
ters of finite orders, and e(t) is white noise with fi-

nite fourth moment, independent of u(t).

The input u(t) is the sum of two terms,u1(t) and uz(t),
of which one may vanish. The term u1(t) is deterministic
such that to every e > 0 there is a periodic function
u%(t) fulfilling

lu () - wi(t)] < ¢ all t

The second term is given by
u,(t) = P(q-1)v(t)

where F(q_1) is an asymptotically stable filter of finite
order and v(t) white noise with finite fourth moment.

Let D1(q‘1) and Dz(q_1) be two arbitrary asymptotically
stable filters of finite order. Then

-1 -1 y(t) '
[D,](q d)y(t) + Dy(q yu(t) ] (2.5)

»
lim
N t= u(t)

N+ 1
exists with probability one and in mean square.

If u(t) and y(t) are stochastic processes the limit is

1 -1 y ()
E[D,(q y(t) + Dy(q Hult)]
u(t)

Proof. See S#derstrdém (1972).
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The notion of persistent excitation introduced in Astrém-
-Bohlin (1966) is very useful in the analysis of the loss

Function.

Definition 2.1. u(t) is said to be persistently exciting

of order n if

. 7 N -
i) lim 5 } u(t) = u and
N+ t=1
1 ¥ = -
lim o ) [u(t) - ullult+r) - Ul = r, (1)
N+w £z :

exist and
ii) the n by n symmetric matrix

ru(O) ru(T) e ru(n-1)

.

ru(O)

is positive definite.

Some simple properties of persistently exciting signals
and a characterization, of this concept in the frequency
domain is given in Ljung (1971). In this report the fol=-
lowing properties will be used (proved in Ljung (1971)).

Lemma 2.4. u(t) is persistently exciting of order n if
and only if the spectral density corresponding to the
sample covariance function is non zero (in distributive

sense) in at least n different points.
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If u(t) is periodic, the spectral density will be disc~-
pete and consist of a number of §~functions. The distri~

bution 6(x) is here considered as non zero in x = 0.
Corr. Let y(t) = H(q“1)u(t). If u(t) is persistently ex-
citing of order n and H(q-1) ig stable and has no zeros

on the unit circle, then y(t) is persistently exciting

of order n.

A simple application is made in

Lemma 2.5. Let

y(t) = H(q_ﬁ)u(t)

-1 n=-1 -i
H(g ) = h;q
i=0
i) If y(t) = 0 with probability one and u(t) is per-
sistently exciting of order n, then hi = 0, i1 = 0y...yn=1.
ii) If u(t) is not persistently exciting of order n,

then there exists H(qwq) £ 0 such that y(t) = 0
with probability one.

Proof. See SBderstrdm (1872).

A combination of Lemma 2.1 and Lemma 2.5 gives a further

result,
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Lemma 2.6. Given A(q'1), B(q“1) and u(t). Assume that
A<q‘1) and B(q‘1) are relatively prime and that n, =
= min(n_-n_, nb~nb) z 0.

Consider the equation:

R -1 =1y a1 . '
[A(q ")B(gq ") - Alqg ")B(g ")Ju(t) = 0 a.s. (2.6)
Let m = max(na+nb, na+nb).

i) If u(t) is persistently exciting of order m the

general solution is given by

A™ 1 = A g
(2.7)
Blg™") = B(g"MHLig™hH
where
n
- L -
L(q)=’%+ZIL1q if n, = 1
1
1 if n, = 0

The numbers L, are arbitrary.

ii) If u(t) is not persistently exciting of order m
there is at least one more solution of (2.6) than
(2.7).

Proof. If u(t) is persistently exciting of order m it

follows from Lemma 2.5 that ’

.1

A" HBg™ - atg™Meg™") = 0

The general solution is then obtained from Lemma 2.1.
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If u(t) is not persistently exciting of order m, Lemma
2.5 implies the existence of

m

H(q—1) =Y h.q " k0
T 1
such that
-1
H(q Ju(t) =0

Writing the equation

ata™hHe™ M - a@™ e = v

and invoking Lemma 2.2 the assertion ii) follows.

Q.E.D.

The concept of persistent excitation is now applied to
a matrix consisting of covariances of the input and the
output.

G(q-1)u(t). The following mat-
called the system

Definition 2.1. Let y(t)
rix of order (ma+mb) x (ma+mb) will be

covariance matrix of type (m_ , my).
ry(o) . ry(ma-1) | -ryu(O) . —ryu(mbn1)
o | Ty O 1‘ Tyl Ty M)
—ryu(D). . -ryu(1~ma) ru(O) ai - u ru(mb-1)
f ' ' . "
_-ryu(mb~1),,-ryu(mb-ma) | ru(mb-1) .. ru(O) |
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Lemma 2.7. Let

B(g™ )
y(t) = -**9':-31—-— u(t)
Alq ')

where A(q-q) and B(q"1) are relatively prime. Consider

the system covariance matrix R of type (ma, mb). Assume
that u(t) is persistently exciting of order max(ma+nb,

na+mb) and let n, = mln(ma~na, mb—nb).

i) Then R is positive definite if and only if n, £ 0.

ii) If n, > 0 the null space of R has dimension n, and
is spanned by vectors of the following form:

T

(e «vv omgs Ay +ov dp 1T with
m
1 @ ~i -1 -1
Cq” ") = ] ega " = Alg” DL )
1
T T a1
D(q ') = } d;a ~ = Blg DL(q )
1
" Ry :
Lq™ = J ;97"
II

The numbers £. are arbitrary.

Proof. In order to investigate the null space of R con-
gsider the equation

xTRx = 0 (2.8)
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. T _ : )
Let x* = [ey .. ep, dy --+ dp ] and introduce the cor

responding operators

n My
a . . : .
C(q"1) =) ciq-l, D(q ') = ) diq -
1 1
Then
T : 2
X Rx = E[[*y(t-1) coe =y (tem Jult=1) ... u(t~mb)]x]

E[wc(qnq)y(t) + D(qq)u(t)_]2

it

The equation (2.8) is thus equivalent to

1

cta” Bt - pta”Ha™h

= u(t) = 0 a.s.
A(q )

From Lemma 2.4 Corr and Lemma 2.6 it follows that this

equation can be replaced by

1

ctg"MHreg™ - pig™Hag™ = o0

Using new variables given by

n
A - -8 ~ - - — ~ e
Alq 1) = 1+ ; a;q ; = A(g 1) + Clq 1); n, = max(ma,na)
n
o -1 b3 -1 Ay n
Bg~ ') = ] bya " = B(q )+ D(g D3 nmy = max(my,np)
1

the equation is written as

1

Ata™MBg™ ) - aghBg™h = 0
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From Lemma 2.1 itthus follows that:
i) if n, €0 x = 0 is the only solution,
1i) if ny > 0 the general solution is given by

et = acgHue™h

/I

|
[9v]
~

Na)

§
~
o
~

D(q ')

1

Llq )

"
R =
o
o
[}
0

where the numbers 25 are arbitrarvry.

As a consequence N(R) has dimension ng.
Q.E.D.

The following two lemmas were originally used in the
author's previous work, S8derstrém (1972), where also

proofs can be found.

Lemma 2.8. Consider the equation

F(x) = f(x) + eg(x) (2.9)

it
[aw]

where dim f = dim g = dim x. Let @ denote a set with the

following properties:

f and g are twice differentiable,
f(x) = 0 implies X = X4

£'(xy) is non singular.

Then there is a eq > 0 such that 0 < e < ¢y implies that
(2.9) has a unique solution x in q. x fulfils

X = x5 = 0(e), e > 0
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Lemma 2.9. Consider the function

xTP(y)x + gh(x,y)

aaf—

V(x,y,e) =

where (x,y) belongs to a set &, for which P(y) is a po-
sitive definite matrix for all y, twice differentiable
with respect to y and h(x,y) a twice differentiable func-

tion. & is considered as a fix parameter.

The following necessary and sufficient conditions for

local minimum points in © are true.

There is a constant €g > (0 such that if 0 < € g 50 the

following is true.
i) Every stationary point of V{x,y,e) in o fulfils

(x,9) = (0,yq) + (0Ce),0(1)), e » 0 (2.10)

where y,, is a solution of

! =
hy(O,y) 0 K2=ill)

If (x,y) is a local minimum point it is necessary
that h;y(o,yo) is positive definite or positive

semidefinite.

ii) If Yo is a solution of (2.11) and h;y(o,yo) is po-

sitive definite then there exists a ﬁnique local

minimum of the form (2.10), and the point will in
fact satisfy '

(X,y) = (Ogyo) + (O(E),U(E)), £ > 1]

The matrix of second order derivatives is positive

definite in the minimum point.
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ITI. GLOBAL MINIMUM POINTS FOR DIFFERENT STRUCTURES.

In this chapter the global minimum points of loss func-

tions of the type

r

” N
V(6,8) = 2 T (1)
=1

2N "
) <3.1)
Go39" 1) - @(635q 1) H(e:q™ 1)
e(t) = 2ol () 4+ ol et
i H(83q ') H(83q )

are analyzed.

For finite N the analysis has to be done in a probabilis-
tic setting. In order to do the analysis reasonable ergo-

diec theory will be used.
The following assumptions are made:

0 Let 2 = {83 such that the poles of G(632), the poles
of H(83z) and the zeros of H(6;z) are outside the
circle |z} = 1 + e, where ¢ > 0 is some small num-
ber}. It is assumed that 6 € 2 and only points 5
in the set Q are considered. This limitation is mo-
tivated from the representation theorem, Astrdm
(1870), and the demand of a finite variance of the
output.

0 The input is assumed to be a periodic signal or fil-

tered white noise (or a sum of these two types).
0 The input signal and the noise e(t) are independent.

Under these assumptions it follows from Lemma 2.3 that
v(é,e) has a limit W(B,e) (with probability one and in
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mean square) as N tends to infinity. The function W(8,s )

is given by

. 12
; S PO .
W(6,6) = % E(é(e’q 2 000000 u(t)J +

H( 639 1)
-1 2
+ %- BFiﬁgiirTl e(t)J (3.2)
H(65q )
Let
ﬁ(q-1) = EigiQ:Tl =1 4+ ] ﬁlq"l
H(63q ) iz1
Then
. 2
W(B56) > 1 Ele(t) + J B.e(t-i -
i=1
“ 12 I
= = A°|1 4 zhi| % = (3.3)
2 i 2
But w(egje) = % 2% which implies that 8 = 6 always is a

global minimum point of W(®,8)., However, 6 = # is not ne-

cessarily a unique solution of

W(8,6) = inf W(8¥,0) (3.4)
g%

This equation can in view of (3.3) be written as

G(839" ") - G(B3q ]

H(g;q'1

) u(t) = 0
) (3.5)

1

H(B;q-1) = H(é;q~ )



23.

The equations (3.5) will now be discussed for different
structures of the system. The input signal will be as-
sumed to be persistently exciting of a sufficiently high
order. The first part of (3.5) will then in fact be re-
placed by

1) = G(e;q"q)

G(o3q
Most of the material is well-known and parts of it have
been treated by the author before in S&derstrém (1972),
Astrém-Séderstrdm (1973). These parts are included here

to get a more complete survey.

Ag a general result it can be said that the loss functions
for the different cases have a unique global minimum if
a model of correct order is applied. If the model order
is too high there 18 in most cases no unique global mi -

nimum point.

To simplify the notations the second argument in W will be

dropped in the rest of the report.

Structure 1: The Least Squaves (LS) Method.

The system is in this case given by

Al Myey = Blg™Hult) + e(t) (3.6)
50
-1 B(q™ ) =1 !
G(83q ) = -—-—9*:-7—- H(e3q ) & -—=mg—
Alq ) A(q )

The equatiors (3.5) become
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A" Mgy = ag" Y™

=3 u(t) = 0
Alg )

A™h =A™
or simplified

(Bq™ Yy - Blg™ Hjult) = 0
(3.7)
A™ T a™h

The consistency properties of this method are well-known,
Astrém (1968).

Lemma 3.1. Assume that n, = min(ﬂa-na, ﬁb-n 2 3 0 and

that u(t) is persistently exciting of order ny. Then t?ere
is a unique global minimum point given by A(q-1)a(A(qml),
é(qmq)EB(qmq), There are no other local minimum points.
Proof. The first statement follows immediately from Lemma
2.5 and (3.7). The second statement is true since V is

convex.
Q.E.D.

Structure 2: The General lLeast Squares (GLS) Model.

The structure is given by Clarke (1967), Stderstrdm (1972)

1
C(q

— . e(t) (3.8)
)

A" Dyt = Bl Huce) « a

Thus
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-1
G(e;q—1> = :b;(—g‘;-q—)- s H{eosq 1) = ..11 =7
Alg ) Alq ')C(q )

A

9~m-’ tata" B - a@™HBa ™ Hiuwe = o

[ &
11 (3.9)

1y 2 atqg He™

1

(g~ )C(q )

S

The solution of these equations is treated in S8derstrim
(1972).

A

S T 1 + =z mi - A'm x 0
Lemma 3.2. Assume that n, mln(na Ngs Dy nb) 5

(nc-nc) 3 0,u(t) ig persistently exciting of order

max(na+nb,na+ﬁb), and that A(q-1) and B(q"1) are relative-
ly prime. Then the solutions of (3.9) fulfil

A(q-1) z A(q-1)L(qp1)
B(q™" = Bla"HiLe™H C(3.10)
L(qﬂq)é(q-1) = C(q_q)
where
i)

-1, _ -1

L{g ') = 1 + ; g;9 7 if ny o 1
= 1 if n, = 0

Proof. The assumptions of the theorem imply that the first
equation in (3.9) can be replaced by

-1

At Mee™ ) - agHBe™h = o0
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Lemma 2.1 gives the rest of the proof.
Q.E.D.

Remark 1. If n, = 0 g = s is the unique solution.

Remark 2. Note that when n, 3 1 there are only a finite
number of solutions of (3.9). This is particular for the
GLS case. The reason for this property is the special

structure of the system eguation.

Remark 3. If u(t) is not persistently exciting of order
max(ﬁa+nb, na+ﬁb) there may exist global minimum points
which do not fulfil (3.10). An example is given in S&der-
strém (1972).

It is well-known, Sdderstrdm (1972), that the number of

local minimum points depends on the signal to noise ra-

tio.

Structure 3: Time Series.

In this case stochastic processes of the form
- _ -1 N .
Alg Dy(t) = Clg elt) (3.11)

are considered. Then

15 . cq™h
A(q-1)

1

Gleyq ') = O H(83q

The equations for the global minimum point (3.5} are

aq™Hee™ - Atghew = 0 | (3.12)
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Lemma 3.3. Assume that
i) A(q"1) and C(q-1) are relatively prime
ii) n, = mln(na-na,ncmnc) s 0

The solutions of (3.12) are

A = A Huh
N » . (3.13)
Clq ') = Clqg IL(q )
where
n
L(“1)“14-£5L-i1fn s 1
q - ;iq R;’
= 1 ifn =0

The parameters i, are arbitrary. These points are the on-

ly stationary points as well.
Proof. See Astrdm-S8derstrdm (1973).

Remark. If n, =0 8 = 8 is the only giobal as well as lo-

cal minimum point.

Structure 4.

The system is assumed to be governed by

A" Hyt) = Bla~Hutt) + AlqT Delt) (3.14)

50
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Glesq” "y = Bla 2 Hesq ) = 1
A(qg )

The equations (3.5) are thus replaced by

e s - A HBg™hHl ult) = 0

o RS a.s. (3.18)
A(g JA(q )

Lemma 3.4. Assume that n, = min(namna, ﬁb—nb) x 0, A(q_1)
and B(q~1) are relatively prime, and that u(t) is persis-

tently exciting of order max(na+nb, na+nb). Then the so-

Jutions of (3.15) are

A = ag™Hi™
A -1 -1 (3.186)
B(q ') = B(q JL(g
where
Lg™ Ty = 1 + ?i n.q " n, 3 1
g - 4 iq ) “

=z 1 nz = 0
The numbers £, are arbitrary.
Proof. Lemma 2.4 and Lemma 2.1 give the result.

Q.E.D.

Remark. If n,2 = 0 6 = o is the only global minimum point.
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Structure 5.

This structure is discussed e.g. in Astrém-Bohlin (1966).

It is given by

alq" vy = Btg Hult) + clg" Delt) (3.17)

This means that

...‘I _.1
Glosq™ ") = Bla ) H(o3q ") = S 2
Alq ) A(q )

and (3.5) can be replaced by

A HBE™ - aGTHBWETD Ly - o
- “1 ) _1 =
g iC(a ) (3.18)

At Mo - ag™hea™ = o

”~ ~

Lemma 3.5. Assume that n, = min(na-na3 nb—np, nc*nc) ? 0,
u(t) is persistently exciting of order max(n_+np, na+ﬁb),
and that A(qnq), B(q_1) and C(q_1) are relatively prime.
Then the general solution of (3.18) is given by

.1

A" = ag"Hue™h
B(q™") = B(g"Hnig™h : (3.19)
é(qu1) = C(q“1)L(q-1)
where
-‘1 ng’ -
L{g ") = 1 4 g 2: 4 if n, s 1

H
-
e
[y}
o

o

t

[}
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The coefficlents &, are arbitrary.

Proof. Define K(q'1)5 %(q-q) and D(q-1) from

113

actehy = A Hp™H

B(q'1) %(q~1)D(q-1)

i

K(qf1), g(q‘1) are relatively prime

!

D(q_1) =1+ ) diq"i
1

(nd x 0)

The first equation of (3.18) can be replaced by (Lemma
2.4)

1

A(q-1)§(q“ n = K(q"1)ﬁ(q‘1) z 0

The solution is (Lemma 2.1)

A"y = Rag™Hmue™h
8™y = Bam M h (3.20)
- ' -7
M(q™') = 1+ ) m;q
1
L | tony
O
(mi)j=1 ape determined only by the second equation in (3.18)

The last equation of (3.18) -gives

Mg~ e - D" M8 = 0 (3.21)

According to the assumptions of the lemma C(q_q) and

D(q-1) have no common factors.
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1

The solution of (3.21) w.r.t. M(q_1)-and a(q* ) is‘
¢a™"y = ctq™Hn™
Mg~ = peg"Hng™H - (3.22)
n
- L“ [ ¥
L{g 1) = 1+ ; ;9 *

Ny
(Ei)1 arbitrary

The combination of (3.20) and (3.22} gives the desired

solution (3.19).
Q.E.D.

Remark. If n, = 0 6 = 6 is the only global minimum point.

Structure 6.

In this section the structure used by Bohlin (1970) is

considered
-1 -1
y(ty = B )y » S o (3.23)
AlCq ) D(q )

The equations (3.5) turn out to be

5(q"1) A(qa1)B(Qf1) - A(qf1)é(q-1) u(t) = 0 a.s.

P SN
Gla™ ") ACq” AT 3 oup

cta"Mintg™ £ ccg™Hde™H



Lemma 3.6. Assume that

Dy

if

n
m

A(q-q) and B(q"15 are relatively prime

C(q-1) and'D(q-1) are relatively prime

min(n_-n_, ny-ny)

mln(nc—nc, nd-nd)

32.

u(t) persistently exciting of order max(ﬁa+nb, na+ﬁb)

Then the geneﬁal solution of (3.24) is

R(q-1)
ﬁ(q“1)
é(q"1)
ﬁ(q“1)

where

n
1

%
(2:)

it

IH

i

1)

)

A(q-1)L(q-13

B(q  HL(q™ )

clq” Mg

pq” HMea™

n

m .
s (mi)1 arbitrary

(3.25)

Proof. The result follows from Lemma 2.1 and Lemma 2.4,

Remark.

point.

If n

%

Q.E.D.

# is the only global minimum
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Iv. LOCAL MINIMUM POINTS FOR STRUCTURE 4.

In this chapter the local minimum points for the case

with whlte measurenments noise are treated. It will be

shown thatna = ﬁa =1, Ny arbitrary will imply a unique lo-
cal minimum point. The loss function can in certain ca-

ses have "singular" saddle points corresponding to

é(qﬁq)

ded to the case ng > 1.

0. The analysis can unfortunately not be exten=

For the structure with white measurement noise the sys-

tem i1s described by

A My = BGa™ Hult) + Alg™He(t)

The loss function for this structure is given by

e

. P -1y 1.8, =1

2wce) = g|Ala 1B(g _i 3 Af? Bla_ ) ey o+ A%y 1)
A(g JA(g )

Assume that ;a R ﬁb 2 My, B(q—j) £ 0 and thaf u(t)

is persistently exciting of order max(na+nb, na+nb).

The stationary points of the function are the solutions

of Wé(e) = 0, which is written as

N1 -1 =138~ 1y [N R .
Jag D™ - a@Hd™ ) o] BT i )
t o u(t) :—Q:T—— q “u(t)| =0
[ ACQ" AT J[ Ag™")?

1T ¢« 1 ¢n

(4.2)

PG -1 “ne =1 - -3

ACqa" DA™ Alq
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It is not possible to find all solutions of (4.2} in an
easy way. The following attempt of analysis will be made.
Let

-1 O P -1 ~1ya, =1
H(g ) =} h:q = = ACq IB(q ') - Alq )B(q )
1
with m = max(ﬁa+nb, na+ﬁb). The equations (4.2) will be

rewritten as

where Q(é) isﬂa matrix of order (ﬂa+ﬁb) x m, If rank Q(é)
is m for all & it can be concluded that hi = 0 for i =

1y «+v.s m. This gives the equation for the global minimum
peints, Lemma 3.4,

Put

vit) = s u(t)

A(qhq)A(q )

Then (4.2) is equivalent to

o, =1 -1
-B(q JA(q v(t-1)

F"h1 =
” _1‘ ,_1 »
-B(q )JA(q Jv(t=n_)|r. -1 A4
E A4 -1 [A(q Jv(t=1) ... Alq )v(t—m)]
A(q DJA(q Iv(t-1) .
g h
L] o m—

A A v t-ny)



which can be written as

° b, . . -bj

o b‘ 0

O -~
LA
1 ¥ ;_“

na )
0
1

35.

ny
- b . -
D3 Py * | = 0 (4.3)
P
aﬁa

where P, is the following matrix of order (ﬂa+ﬂb) x M.

alq™ vit=1)

~

atq"DHvlt-n -n)

]

-

[ﬁ(q'1)vct-1) . A(q”1>vct—m>]

(4.4)

To continue the analysis it is necessary to examine the
rank of the two matrices in (4.3). It will be necessary

to separate three different cases.

Case 1.

Consider peoints such that A(q“1) and é(q—1) are relative=
ly prime. Then the first matrix of (4.3) is non singular
(Lemma 2.2). Define a square matrix P of order m x m.

-

P(AA,v) =

A(q~1)v(t-1)ﬂ

[Acq‘1)v(t-1) e A<q'1>v<t-m)]

ACq™ v (t-m) | (4.5)
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which consists of the upper square part of PO.

-

n
a
i=1
possible to conclude that hi = 0 is the only solution of

(4.3).

If P is non singular for all possible (éi) then it is

The properties of P(A,A,v) are described in

Lemma 4.1.

i) Assume that n, = g™ ﬁa = 1., Then P(A,A,v) is non
singular for all A, all A and all v(t), such as v(t)

is persistently exciting of order m.

ii) There are A, A and v(t) such that n, =1, ﬁa =2,

m = 3, v(t) persistently exciting of order m and
P(A,A,v) singular.

Proof.
T

i) Let x = [x1 .+« X1 be an arbitrary vector and de-

m
fine

X(q-j) = ; xiqml
Then

«Px =€ [AG” X v 1A xR v =

1

Tr ’ » I v
= | Relatel®)A(e™ )1 ]x(e**) | %0 (w)du
- T

%]

The function ¢ _(w) is the spectral density associated

with the asymptotic sample covariance function.
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But

Re[A(e™¥)A(e™ %)) =
= 1 + aa + (a+adcos » 3 1 + aa - |a+a| »

> (1-]al)Ci-lal) > o

Thus x'Px > 0 and equality implies |X(e1m)ld¢v(w) =
2 0. From Lemma 2.4 it is concluded that this im=-
iw

) .

plies X{e = 0 or x = 0,

iid Let v(t) be white noise with unit variance. Take

A(q—q) = 1 + aq“q and A(q-1) = (1-aq-1)2. Then
1-2a2 a 0
~ = 3 2
P(A,A,v) = | =2a+a 1-2a a
a2 -2a+a3 1-2a2
9 . 2 L 6 .
det P = 4 - 2a“ + 3a’ - ha is a continuous func-

tion of a. Det[P(a=0)] = 1 and det[P(a=1)] = -2
imply that there is |a| < 1 such that det P = 0.

Q.E.D.

Case 2.

Consider points such that A(q“1) and é(q"1) are not rela-
tively prime, but B(quq) $ 0.

Define
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by

Alg™h = A" Hig™h

~ - - - - -

B(q™") = B(q” g™

Ag™") and E(q-1) are relatively prime
n, =n, - 0,3 n =0 -0,

Change the definition of H(q”1), m and v(t) to

-1 Too-i 2, -1 -1 -1z, =1
H(q ') =} h.q = = A(q JIB(g ) - Alq )B(q )
1
m = max(ﬁa+nb, na+ﬁb)

1
AGQ” DA™ A"

=

v(t) ult)

Y

Then the equation VE(B) 0 can be written as

0 by -Bry 0 ]
~ J N K N
n _ h1
i 0 -b, By, ]
r 1___ W= 3 e S e == e . QO . . = 0
a an *
1 a 0
ny 1 h
b 0 ) ) | ]
i 1 ay a“a;
na+nb—nz columns

where Q, is the following matrix of order (na+nb~ﬁz)

(4.6)
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'ﬁ(q—1)v(t—1)
: [A(q‘1>v<t-1) . A(q"1>v<t-m9]

Vo
(e ]
4]
™

-

-1 -~ -~ -
hﬁ(q )v(tana-nb+nk) _ (4.7)

According to Lemma 2.2 the first matrix of (4.6) has rank
ng +ny - n.. Thus hi = 0 1s the on%y solution if rank Q0 =
= m. This condition, however, is already analyzed in the
previous case.

Case 3.

Consider points such that ﬁ(q-1) 0. Such singular pocints

HE

may look uninteresting from a theoretical point of view.
For two reasons they are studied here,'besides the purpose
to give general information of the loss function W. The
first reason is that in a practical case it is not trivial
to determine if ﬁi = ., The other reason is that the re-
sult of this chapter will be used later on in Chapter 6.

For this case the equations (4.2) turn out to be

Bla™") . ~d 1 -
150wt | [z u(t)| = 0 1 ¢i¢ny (4.8)
Alq ') Alq ')

If ng, > ny this system is overdetermined and may have an
infinite number of solutions such that A(z) has zeros out-
side the unit circle. In Appendix A this case is further

considered. It is also shown that the stationary points

1

satisfying é(q— ) = 0 always ,are saddle points.

The equation (4.8) implies

A(q_1) a 1) (4.98)

-1 =1 »
e[RA oo [BSLR wcee] -
3 Alq
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Put
-1
B( )
Y(t) = e u(t)
A(q )A(q )
If n = ﬁa = 1 it follows from Lemma 4.1 that (4.9)

cannot be satisfied.

In Appendix B the special case of u(t) as white noise

is treated. It is shown that the mild condition n_=n, >

P max(na,nb) implies that the global minimum points are

the only stationary points.

Summing up, the analysis has given the following informa-
tion of the loss function W(e). Assume that u(t) is per-

sistently exciting of order max(na+nb, na+nb)

( if ﬁa =n, = 1, Ny, % Ny Dy arbitrary then W(e) has
a unique stationary point, namely the local (and
global) minimum point 6 = 6.

2% If n,'> n, and ny > n; there is no unique global

minimum point.

. The analysis gives no information of the number of

local minimum points if n_ 3 2.

~ F

4, There are systems such that n, n, = 2, Ny, = 0y = 1

and with a set of saddle points satisfying B(qg~ 1) = 0.

An immediate implication is that it is not sufficient
to consider only W'(8) = 0 in the general analysis

of the number of local minimum points.

5l If ul(t) is white noise and N ENny 3 max(na,nb) then
the global minimum points are the only stationary

peints.
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V. LOCAL MINIMUM POINT FOR STRUCTURE 5.

In this part structure 5 is considered. Partial results
on the number of local minimum points will be given. On-
ly cases with very high or very low signal to noise ra-
tios are treated. The mathematical tools are Lemma 2.8
and Lemma 2.9, These two lemmas deal with the effects of
a disturbance term eg(x) resp. eh(x,y). The application
of them will be made on the loss function. € will be in-
verse proportional or proportional to the signal to noise

ratio.

Theorem 5.1. Consider the system

At Hy) = B Hury + cq” el ES%E?%EI’“
and the loss function
T T L 1.0, - 2
2W(e.) = E{é(q )B(g "3 - AE? )B(a ) u(t)} 5
Alq ICla .
At He™h ‘
+ B|ZAme At e () (5.2)
Alq )C(g )

Assume that

~ ~

i = ] - - -
) ny mln(na Ngs Np=Nps N nc)

4
Q

~

ii)  ult) is persistently exciting of order max(n_+n,,
na+nb)

1), B(q_1) and C(q“1) are relatively prime.

iii) Alq~
Denote the signal to noise ratio by S. There is a number

Sy (which may depend on 2), such that if S; € § < « then
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W(e) has a unique local minimum in @, namely 6 = 8.

Proof. This procf is a modification of Appendix E in S&-
derstrém (1972). Perform a change of variables by

a,‘ = a,‘
‘ 1
an .
x = (.2 vy = |. (5.3)
b1 - b1 ¢
N 'Fncj
Bnb bnb
L Bb ]

Assume that A(q~ 1) = K" Hnta™My, B(a™" = Ba Hing™

)
where K(q-1) and %(q_1) are relatively prime and

d.q™* (ny > 0)

113

-

+
t~2

D(q_1)

The loss function can be written

% xTP(y)x + eh(x,y) (5.4)

Wix,y)

with P(y) as the system covariance matrix of

ag™hyfee = B, W = e wn)
Clg )

is .
where u (t) is the input and yf(t) the output.
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P(y) may be singular, but the null space of P(y) is in-
dependent of y. This is obvious, since from Lemma 2.7
the null space is spanned by vectors of the form

[T,
|
o
81
Bay,
with
r;a
F(q~ 1y = 7 f.q7% = g Hrre™
1L
I;b
6(q™ 1) = ; g;a™t = Ba"HLi(e™h
ko ,
L'(q" ") =} E'iq‘l is arbitrary
1

The simplest case k = 0 is not treated explicitly in the
following. In this case P(y) is non singdilar. It is easy
to see how the proof can be simplified for this case.

Introduce now the new variables



by,

where x; is of dimension k and xé of dimension (na+nb“k).

The vector x' is defined by

%
- 1 ]
x QX et [Q1 t Q2] i
X2
where
= ¢ @
Ty
a4
473
ny
ang 1
i . &
0 aga
0
Q = e S
L 0
4"
by
’\3‘,\J 4]
By B,
",
0 By
L 0 -

Q, is a (ﬁa+ﬁb) x k matrix and Q2 an arbitrary (na+nb) x
x {n_+n~k) matrix with the properties Q;Q, = 0 and Q
non singular. Q, can for instance be constructed by Gram

Schmidt orthogonalization.

Prom the discussion it follows that
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ij% is a typical element in the null spacé N(P(y))

szé.is a typical element in the space N(P(y))'L

From these facts it is concluded that

P(y)Q, = 0

and that the matrix

R(y) = QpP(y)Q,

of order (ﬁa+ﬁb~k) x (ﬁa+ﬂb—k) is non singular for all y.

The loss function is now written as

W(x),2) = 3 xhTR(zIx) + ehlx},z) (5.5)

where z denotes the vector

1
X4

Write the vector x; as

Then x = Q1x% is equivalently expressed as

~—r
1]

Al DL, Bg™H = Bq" L™
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with

Leg™ "y = 1+ E1q Vel na

The function h{0,z) is writtenwith operators as

ST T
n(o,z) = p|d ¢l ) e<t>] (5.6)
D(g )C{q )

From assumption iii) and the discussion above it follows
that k 2 ngs min(k=n nc-nc) = 0 and that C(q*1) and
D(qﬁq) are relatively prime. From Lemma 3.3 it follows

that h(0,z) has a unique local minimum point given by

1

ﬁ(qaq) D(q )

HI

1

) = clq™ )

[kH

clq~

The matrix of second order derivatives of h in this point
turns out to be the system covariance matrix of the sys-

tem
ctg™ ) 1

yr(t) = === u't); u'(t) = —— e(t)
D(q ) Clq )

It is positive definite according to Lemma 2.7.

From Lemma 2.9 it follows that \% has a unique local mini-

mum point in Q. It fulfils

S+ = (5.7)

[#3]
A

@D >
H]

8 + 6(1/8) 0

Since 6 = 6 is a minimum point it is concluded that it

is the only local minimum point in Q.
Q.E.D.
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The other theorem of this chapter deals with the case of

a low signal to noise ratio and utilizes Lemma 2.8.

Theorem 5.2. Consider the system (5.1) and the loss fune-
tion (5.21}.

Assume that

. mi _ _ .
i) J.n(na n s N nc} 0

(o]

-~

ii) u(t) is persistently of order ny
iii) A(q-1) and C(quﬁ) are relatively prime.
Denote the signal to noise ratio by S.

There is a number S, such that 0 < § s S1 implies that

W(8) has a unique local minimum in @, namely 6 = 6.

Proof. From the equation

~

3 .
1 s £ N
1 r\b

3

=

|

P

i

{Bi} can be solved as functions of {;i’;j} according to
assumption ii). Cf. the representation (5.4) of the loss
function. Theseﬂi functions are put into the remaining

equations. The remaining equations can be written (after

division by kz)

fix) + egl{x) = 0 (5.8)

x is the vector [a ... aﬁa, Cy e cﬁC]T. f(x) is the

gradient of



A( _1)C( _1) ’

q q

B -1.2 w ] eft)‘
A(q )C(gq )

and g(x) is the gradient of

~ = - " o N -§2
aa e - agHhew™h |
E -1. - o U(L)J
Atg" g™

&
where the expressions for bi are used.

The quantity e = 1/12 is proportional to S.

Since {according to assumptions 1) and iii)) f(x) = 0

has a unique solution given by

i 1

Alg™h = a™h cg™"y = cta™h

and £' is non singular in this point it follows from Lem-
ma 2.8 that (5.8) has a unique solution in 2. Since & =

= 8 is a local minimum point it follows that it is the

only local minimum point of V in 0.

Q.E.D.

Discussion of Assumptions_and Results.

The assumptions i) = iii) of Theorem 5.1 .are sufficient
(and almost necessary) conditions for a unique global

minimum, Lemma 3.5.

The assumptions i) - iidi) of Theorem 5.2 are slightly

stronger than the conditions uged in Lemma 3.5.

If assumption i) in Theorem 5.1 is changed to n, > 0 the



L"gl

mathematical machinery of S8derstrdm (1872) will give
that every local minimum points are close to some global
minimum point. It is hdrder to examine if there are lo-
cal minimum points which are not global minimum points.
S8ince the case n, > 0 is rather degenerated it is the
author's point of view that a careful analysis 1is of

little interest.

The very strong assumptions in the theorems are the rest-
rictions of the signal to noise ratio. It is shown that

a sufficiently high and a sufficiently small signal to
noise ratio will imply existence of a unique local mini-
mum point. However, it is unfortunately not practically

possible to give any estimates of the bounds S, and Sy
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vI. LOCAL MINIMUM POINTS FOR ST UCTURE 6.

The gtructure is given by

I cta™ D)
gty = =t ult) + A e ()
AlCq ) D(q )

and the loss function for this structure can be written

2W(0) = W (B) + W,y(8)

Ve 1y A, =1 12
W,(8) = ¢ {?‘q"1> - Bla D1 e ) e (5.1)
5 |A(g” ') Alg )/ Clg ) i
- 2
. Y 17
W,(8) = E ?(q_1)b(q“1) e(t)‘
[C{q D(q ) ]

PR s, = A
Tf the operator Dig 1)/C(q ) has no influence on the

i

number of stationary points of Wﬁ(é) the properties O
thig function is already known from Chapten 4, The func-
tion Wz(é) is exactly the loss function for structure 3.
Tn order to utilize these facts the following condition

is introduced.

Definition 6.1. The function

B oBgTh i
W(e) =¢ L s ]u(t) (6.2)

LﬂA(q-'} ACq ")

is said to fulfil the uniqueness condition (abbreviated
UCY if for ult) persistently exciting of order max(n_ +n.,

na+nb) it follows that all local minimum points satisfy
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Ael o, =1 R o
Alq 1B(q ) - Alg JB(q } =0 (6.3)

From Chapter 4 it is known that UC holds at least in the
1 Ld

it

case =
Ao I'la n.a

Theorem 6.1. Consider the loss function

- (Bea~?y B~ D)D) ‘
2W(8) =§ [; 4= - 1 IA = u(r)]
Alg - ) Alq ) C(q )

+ E ?(q_1)3(q“1) e(t)
Clq ID(g )
Assume that
i) ﬁa 2 Ty ﬁb 3 Nyos ac z2 Mg ;d Z nd

ii) A(q"1) and B(q_1) as well as C(q-1) and D(q“1) are

relatively prime

$1i) u(t) is persistently exciting of order max(na+nb,

na+nb)
iv} The UC is fulfilled.

Then all localiminimum points of W(s) are global minimum

points, i.e. they fulfil

it
o

A e - a@HBEh

te” e - cta”Hd™

It
o



Proof. Let 6% be a local minimum point of W(8). Then
there is a § > 0 such that ||e"~e|l < § implies W(e“) <
£ W(e) Let especially 8 001nc1de with 6% in the clﬁ and

dl—components. Then W, (9") s Wy (6) Thus 6% is also a lo-

cal minimum point of w (6). From uc it follows that

-1

A" B - A" BT = 0
When this expression is used in Wg = 0 it follows that

i+ is necessapry that (¢ s .+« ol d ) d“ ) is a
1 N 1 ng

stationary point of w2(8>, i.e.

-1

S Hng™ - cg™Hn™ = 0

Q.E.D.

Corr. 1f especially mln(n “n_s nb nb) = 0 and min(n_-n,
d—nd) = 0 the loss functlon has a unique local mlnlmum
point 6 = 8.

The conditions in the theorem for a unique local minimum
point are partly the same conditions “as used in Lemma 2.6
for a unique global minimum point, partly the uniqueness
condition (UC). In contrast to the theorems for structure
5 no assumptions on the signal to noise ratio have been

done.
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APPENDIX A.

This appe;llx deals with the degen@ratnd solutions of

(4,2). If D(q 1) = 0 the condition W (0) = 0 gives

-1 -i 1 A
gFﬁﬂ:Tl u(t)}|;9*:?u )l = 0 1 ¢ i ¢ ny, (4.8)
Alg ) Alg )7 |

Congider for a whlle the following example. Let B(q 1) =
= bq—1 $ 0, n, ¢ na = 2, Further the 1nput u(t) is as-
sumed to Fulfil u(t) = Alq ) (1+e,q 1+c7q yw(t) where

w(t) is white noise.

The equation (4.8) gives after a simple calculation

”~

2
(1+a1La cita e e tascyte) ) + (-a C4=C4Cy )a +

2 1C9~

~

For c, % 0 (A.1) describes a parabola in the (;1,a2)—
plane. Let S be the subset of the (a1,a2)*plane suchzthat
(a,,a ) € S implies +hat the zeros of ’1 + agz + azz. = 0
are outsxde the unit circle. Depending on the values of
dqs dps Cy and Cy the parabola may intersect the set S.
set 5 are drawn for

In Figure A.1 the parabola and th )
B1, cq4 = 1.8, ¢, = 0.81.

oo

e
the special case ay = -1.8, a, = 0.
The following discussion will show that all stationary
points, which satisfy (4.8), are saddle points.

-1

Let 6F satisfy B(q ') = 0 and (%,8). The matrix formed by

Wb b =g {__l__“ ut—" - 1,1 u*wki
Alqg™ ") I ICE




Figure A.1 - Illustration of eq. (A.1).

ie positive definite for all arguments 6. If only the

b.-components of 0¥ arve changed W(6) will increase. If
d- B ~
. *

only the ai~components of 8% are changed W(€) will have
2w . * .
the same value. There exists a peint © *  which
- - e 1 . . -)6
1) is zrbitrary close to 6
s g £ * : )
2) differs from 6  only in the a.-components
3) does not satisfy (4.8).

o¥* 2 pnew point

Clearly from 2) weed*y = wee®). cgiven
o*%*% {5 constructed. W(é) is minimized with respect to
the %i—parameters and with the éi—parameters given by
o*¥*. Since wﬁigj ig positive definite the optimization
problem has a well defined solution. Call it o¥¥¥ pc-
cording to 3) W(e*E®y < w(e¥¥) = W(S*). Finally it is

observed that EI@***~6**|} depends continuously on
|| ¥¥-6%||. To summarize this means that there exists a

point g WHh arbilitrary close to e*, such that W(B***) <

< W(e®). This discussion proves that 6% must be a saddle

point.



The following schematic figures are intended as an-expla—

nation of the behaviour of W(éj.

~

b4

3

L\‘
[=}]

=

6* 9#*
e* £ 13

Figure A.2 - Schematic figure of e*, e**, it

The curve S' is given by (4.8) and lies in the (51,52)~
plane. e*’lies on S. e** lies in the (51,52)~p1ane, close

to 6% but not on S. g¥¥*% 1ies below the (ay,a,)-plane. In

Figure A.3 it is shown how W(e) may vary in the plane spanne
py 6%, o%¥  o¥E¥
by

N \ Increasing

a* ag** values of
——e = e | (8]

Figure A.3 - Schematic curves of W(8) = constant.



APRENDIX B

In this appendix the structure 4 will be considered in the
special case when the input signal is white noise. First
the rank of the matrix Qg defined in (4.7) will be examined.

Then the equation (4.8) will be discussed.
Tn opder to simplify the analysis it is assumed that
n > n (B.1)

This is a mild condition. Further let u(t) be white noise

of unit variance. Denote n_ and n, Dby f, which particularly

means m = n+n. Define

x n -1 n n n-i
Argzy= 2z Az ) =z + 1 a2
iz1 *
I - . H° =%
AR (z) = 2" A(z 1) =z ¢+ X aizn *
i=1

Then the ij:th element of QO can be written as

~

1,0e0 NN

i -3 n¥n - i
§ Z zjzn.n dz

e = ¥ ¥ o (B.2)
A(z)A(z) A" (z)A (2)

1
Q 3T

O,‘ij i = 1 3 0 & 2 n+n

The matrix QO will be factorized uding ideas from Agtrbm-
~-S8derstrdm (1973).

The poles inside the unit cirele of (B.2) are exactly the
% - .
zeros of A (z)E (z). They are relabelled by

® - % ty
A (zYh (z) = (z-uk)

k

(B.3)

=g

1



X Fou, if x # & and

With the use Sf (B.3) Qo“ij ig evaluated as follows.
1)

Q L= 1 . é zm'l'l":]"'l 1
0,13 201 A(Z)X(Z) E (Z-u )-tk
k=1 K

dz

P m+i-j-1

: = P : t

A(z)A(z) (z-u,) k
k=1

t,-1
P L 1
T X

)y, i1 (£,-1-K)" ¢ m=7 o
I, s (271, D Lz TF (e,

L

(Buu)



where D denotes differentiation with respect to z and

the functions Fg(z) are defined by

F,(z) = = 1_ L T (B.5)
AA(z) B oy K
k=1 X
kg
Fa ]
Thus ig1i
2 |
| |
Q, = veld = LV, V... vl | (B.6)
g |
L P

1 0 0
Iz 1 0
v, = B . . _ (B.7)
l . . . i
i g - . (t ‘1) " .
LG+n 1 D[Zn+n 1] D [ [Zn+n 1] )
Jz=uy

The matrix 5£(1§£5p) is tzxm and is given by

(t,~i) "
s 1 % m=3j
8,15 = onTE,=DT D R NES) (B.8)

The matrix V is a generalization of the van der Monde matrix. .
T+ follows from Kaufamn (1969) that the rank of V is m.



The matrix 6 also can be factorized. In fact
¥ = s-X (B.9)

where X is an mxm matrix which can be written as

|

!
|
l -
L x

>SS

1
2

P .

The matrix Xz(1§£§p) is t,xm and holds

[ -
Zm 1 " . . 1
;D[zm_1] 0
XQ - t, . (R.10)
]'(t 1 '
| 2 m=1
LD [Z . ™ v 0'__ Z=u

According to Kaufman (1969) X is nonsingular. The square

matrix S can be written as




where 81,..., Sp are square block matrices of the orders

Tyxtiseees t XtP. They are given by

1 P

0 if k » tz + 1 - 1

(t£—1+1-k)

A
D [Fz(z)lz=u

(i—1)!(k-1}1(tg—i+1—k)!

2

if kst +1 - i

This means that S, has the following: structure

The elements of the cross diagonal are given by

S

) 1 __ _
%51 tg+1+i\_i(i-1)!(t£"i)l Fg(ui) 1 izt

and they are nonzero according to the definition (B.5) of
Fﬂ(z). This means that S is nonsingular.



Thus it has been proven that the rank of Qo is m.

Now the degenerated case of B(q_1) z 0 will be treated.

*
Consider the equation (4.8)., Factorize A (z) as

¢ q S.:’
A(z) = T (z2=us) - (B.11)

i MO

Using (B.11) the equation (4.8) is written as

* i A
s 6 BLz) 2. 4z =0 0 <i=<n -1 (B.12)
t 9 S5 A(2) -
T (z-u.,) 3 z
j=1 3
Straight-forward calculations analogous to (B.4) give
g
e4]
i | :
Urg = Uy Uy +oU ] %2| =0 (B.13)
gqj
The matrix U,(1<22q) is ﬂxs% and holds
-1 O - L - O
z 1 .
Uy = |, : (B.1%)
. " (s ,~1)  2_
U TS TR R C A |



The vector g, is given by

. = . . D
Bo,i STEBH P DR 3 z=u

The functions fz(z) are given by

B*(z)

fz(z) =

~ '"q S-
A(z) T (z-u.) 3
3=1

J#R

(B.15)

(B.16)

Sinee the rank of U is n, see Kaufman (19639), it follows that

gy *© 0 1 ¢c8<q

Then it follows from Astrdm=-Séderstedm (1973) that

D(k)LB*(z)] . = 0 0 < k < s8.-1, 1
Z"Uj - - J

Thus
q S
B¥(z) = B(z) 1 (z=-u.) ]
j=1 ]

< q (B.17)

_*® ) .
where B(z) is some polynomial. B (z) is, however, a poly-

nomial of degree n-1, while the product

S

=1
*hat B(z)

0 and the contradiction B(z)

q < . - 3
n (z—uj) ] is a polynomial of degree n. This implies

z 0 is established.



To summarize it has been shown that 1f the input is white
noise and the assumptions (B.1) hold, then the loss function

has no other stationary points than the global minimum points.

Ts it possible to extend the calculations? One extension
would be to substitute (B.1) with the more general - °
mln(na~na, Ar-n > » 0 and another to permit input signals
which are filtered white noise. Note that it is trivial
to allow the case n > maxina,nb). If e.g. N, is larger
than ny the pelynomial .B (z) can be multiplied by

n_-n

z & b and the new polynomial will have n, coefficients.

However, the extensions desired are not possible in general.
The reason is that the number of poles inside the unit
circle may be larger than the numbero of rows in QO resp.
t+he number of equations in (B.12). This means that the ma=-
tpices V and U will have a smaller number of rows than
columns which causes the idea of the caleulations to break

down,

However, there are cases uhere the results can be extended further.
For instance, the analysis of (4.8) can be extended in a
straight-forward way to the case

A

max(na,nb) < nys Dy arbitrary

Since the extensions can not be done in general and since
the assumpfions (B.1) are mild, it is of minor interest

+o extend the calculations further.



CORRECTIONS
The abbreviation pa.b denotes page a line b.

p6.10 Read "na < i i‘nb"

P9.6 Read "the coefficients b, a_ "
Y
P14 Read "given by dim R(P)"

p20.4,p20.5 Read "three times differentiable"

p20.6 Read "fixed parameter"

p22.15, p24.1, p?“ H, p25 <F p29 g Read "= 0 a.s."

p24.10 Read “A(q ) A(q )

p2k.13 Read "since trivial calculations show that V is strictly convex"

p26.3, p27.13, p28.16, p31,9, p32.18, pHD 1M, p42,1, pu6.18, phb.19,
p47.11, p48.10, pS2.14. The equality 6 = 8 is not consistent if
the vecters are of different orders. The meaning is for p26.3
AT = A, B = B, @™ = @™
For the other cases the modifications are analogous.

p27.5 Replace "=" with "z"

p28.14, p30.8 Read "lLemma 2.4 Coarr and Lemma 2.6"

p30.16 Replace the line with "which gives"

p32.16 Read "Lemma 2.1, Lemma 2.4 Corr and lemma 2.6"

p33.3 Read ”measurement"

p37.19  Read "ﬁ(q ) ="

616 Read "Aq ) = A@"hita™, Bg™ = Bea” Leg™ "
pU6. 8 Read "a unlque stationary point"

p47.6 Add "and n x nb .
p52.5  Read "minimum point with respect to (840002 bq*--bﬁb)"
p55.9 Read “Canonical" a

pB.3.11  Read "Kaufman"

pR.8.13 Read "n "

~



