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REGLERINGSTEKNIK
LTH

OPTIMAL TEMPERATURE AND PRESSURE CONTROL OF THE ACID
SULFITE COOKING PROCESS

Krister Midrtensson Lennart Ljung Lars-Olof Nilsson

ABSTRACT.

The determination of efficient temperature and pressure
control strategies for a sulfite cooking process is for-
milated as an optimal control problem. Different cost
functionals and constraints are considered, and it is
shown that a realistic formulation of the problem results
in a singular problem with both control and state vari-
able constraints. Numerical solutions are presented and
the computational aspects are thoroughly discussed.
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1. INTRODUCTION.

Optimal control of dynamic systems has become a well es-
tablished field in control theory, and theoretical results
are available for a large class of problems. However, very
few applications to complex industrial or other real-life
processes are reported. One contributing factor to this is
the difficulties that generally are associated with the nu-
merical solution. Although various algorithms have been
suggested, e.g. [1], [3], [4], there is no universally ef-
ficient method, and in general each problem has its own
inherent difficulties.

The optimal control problem considered here is based on a
mathematical model developed by N.-H. Sché8n and B. Hagberg
for the acid sulfite cooking process [7]. The model is
based on known chemical properties as well as on experi-
mental data, and very good agreement has been reported for
a laboratory pilot process.

The optimization problems that we formulate and solve for
this process turn out to be very complex when all the dif-
ferent technological constraints for the process are con-
sidered. Thus, the cooking process 1is described by five
state variables and two control variables (change rates of
temperature and partial pressure of sulvhur dioxide), and
there are constraints on thé control as well as on the state
variables. Besides., the problem is sinqular and the diffe-~
rential eguations X = f(x,u) describing the process have

discontinuous right-hand sides.

The numerical algorithm that we use is based on the diffe-
rential dynamic programming technique [3]. The state vari-
able constraints are handled with the constraining hyper-—
plane technique [4], and the singularity is removed with

a modified form of the so called "e-oa(-) algorithm”. With



these tools it proves possible to compute the optimal
control strategies.

The report is organized as follows. In Section 2 a brief
description of the acid sulfite cooking process is given,
and a mathematical model is presented. In Section 3 the
optimal control problem is formulated. Section 4 deals
with the optimization of a simplified problem, where the
comstraints on control change rates are neglected. In
Section 5 the complete set of constraints js- considered,
and finally in Section 6 the same problem is formulated
and solved for a modified model of the process.



2. THE ACID SULFITE COOKING PROCESS.

The different cellulose cocking processes constitute a
class of very complex chemical processes. The complete
mechanisms of these processes are rather poorly under-
stood, and thus mathematical models based on pure chemi-
cal reaction laws have not yet been possible to develop.
An alternative approach to the modelling problem is de~
scribed by N.-H. Sch&¥n and B. Hagberg in [7] where they
combine measurements from an acid sulfite cooking process
with known chemical properties to describe the quantita-
tive behaviour of the most important reactants. These re-
sults have served as a basis for the mathematical model
used in this study, and we thus refer to [7] for a com—
prehensive account for different problems connected to
the modelling. In this section we will just summarize the
necessary fundamental relations, and give a very brief
account of the acid sulfite cooking process.

Roughly, the outcome of the process depends on a few com-
ponents, namely the cellulose, the lignin: and the hemi-
cellulose concentration. The cellulose is obtained through
dissolution of the lignin which acts like some kind of
glue in the wood-chips, and the dissolution of the lignin
can be obtained by chemicals that do not react with the
cellulose. Thus the problem to get a certain amount of
free cellulose fibres is equivalent to reduction of the
lignin content below a certain level. Since the cellulose
does not take part in any chemical reaction, the cellulose
concentration can then be excluded from the mathematical
model. However, the wood~chips also contsin different
kinds of celluloses that do react with the chemicals.
Thege are lumped together in what ig called the hemicel~
lulose content of the chips. The hemicellulose content
decreases .ag the lignin dissolution proceeds, and this

ig highly unsatisfactory since the hemicellulose as well



as the cellulose may be utilized in the paper production.
A desirable quality of the control strategies for the pro-
cess is thus to reduce the lignin content below a prede-
termined level in such a way that the hemicellulose reduc-
tion is minimized. However, as will be shown below, the
lignin and the hemicellulose reduction depend approximate=-
ly in the same way on the control variables (temperature
and pressure). The problem could thus be expected to be
well suited for a refined mathematical technique like op-

timal control theory.

As a first attempt to describe the lignin dissolution, the
following structure of the delignification rate equation

was assigned.

"f'([“o“ [L1) = ry = k(7 (L1™(8s031% 1P (2.1)
t

kL(T) is a temperature dependent parameter which is as-
sumed to be of the form kL(T) = kg exp(—EL/T). [L] is the
lignin concentration in the wood~chips calculated with
respect tq the uncooked wood. [L]O is the initial value.
{HSOEJ and [H'] are the concentrations of hydrogen sul-
fite ions and hydrogen ions at the cooking temperature.
m, & and B are exponents (the orders of the reaction)
which are assumed tc be constant.

The best fit of equation (2.1l) to the experiments was found
if (2.1) was replaced by two similar equations, one valid
above the lignin content 12.42% and the other one valid be-
low 12.42%. The following rate equations were then found.



[L] » 12.42%:

0.8186 0.7053

_ . 0.6463 - "
= k(1) [L] [HSO3] [H ]

s

ky (T) = 0.4845 . 1016

« exp(~12495/T)
(2.2)
[L] < 12.42%:

e

0'7647[H

_ 1.6212(,0," 0.7794
ry =k (T) (L] (8505 ] ]

k. (T) = 0.1464 . 10%°

- exp(~12506/T)

The temperature T is in degrees Kelvin and time t is in
hours. It can be seen from (2.2) that the reaction order
with respect to the lignin content as well as the parame-
ter kg change considerably. The chemical aspects on this
phencmenon are discussed in [7], and an explanation based
on topochemistry is given. However, from the optimization
point of view the split of the rate equation is rather un-
satisfactory since it will imply discontinuities in the
adjoint varlables. Different ways to approximate (2.2)
with one smooth equation will thus be discussed in Sec~
tion 4, Aiso notice that the rate equations depend on the
concentration of hydrogen sulfite ions, [HSOE], as well
as the concentration of hydrogen ions, [H+]. These quan-
tities are related to the formation of different acids,

and the necessary equations are given below.

The hemicellulose content is in practice a composite of
many hemicelluloses with very different properties. When
modelling the process, these were lumped together into
one guantity {[C]. The best fit to the measured reduction
of the hemicellulose content was then obtained with the
rate equation

- e g = k() [c]?- 3420 y*;0.7069 (2.3a)

dt =



where

ko (T) = 0.4541 + 10  exp(~14031/T) (2. 3b)

The unit of [C] is gram hemicellulose per 100 g uncooked
wood.

The paper pulp yield and the lignin content of the pulp

are not possible to calculate from egs. (2.2) and (2.3),
since these depend on the hydrogen ion concentration and
the hydrogen sulfite ion concentration of the digesting
liquor. These concentrations depend in its own turn on

the formation of several different acids during the cook
(7], and it is very difficult to mathematically describe
these different formations. It was thus proposed in [7] and [8]
that the concentration of the different strong acids should
be lumped together into the quantity [SA" ], and as a first
attempt the following relation (Model I) between [SA ] and
the lignin dissolution was considered, t8].

[(sa”1v/(IL] ~[L]) = g + h((Ll-[L]) +
= S L T
+ [ kga([L1,~[L])7[HSO517[HT]%@r  (2.4a)
0

The parameter Kga 1s given by
= 1@ i
kga = kgpexp( Eqp/T) (2.4b)

and is thus a function of time when the temperature T va-
ries during the cook. The left-hand side of (2.4a) gives
the concentration of strong acids per amount of lignin
dissolved, and a correction v is introduced for the liquor
to wood ratig. The first two terms on the right-hand side
give the deygree of sulfonation of the dissolved lignin,
and the third term gives the formation of sulfonic acids



due to further sulfonation in the digesting liquor. The

parameters g, h, k s, 6 and ¢ were determined by

o E
sSa’ “sa’
fitting (2.4a) to the measurements, and the following nu-

merical values were obtained:

g = 0.09703
h = -0.002584
o _ 16
kgy = 0.2824 - 10
E.. = 15715
SA (2.5)
s = 1.3991
6§ = 1.5287

€ = 0.6903

v = 4.5

Notice that these numerical values are of very little in-
terest from a wood chemist's point of view, since many
different phenomena are lumped together in (2.4).

To get a differential equation for the formation of strong
acids, (2.4) is rewritten as

2
[sa™] = &(1L) ~[1]) + B(L14-[2]) +

t —
(w1 -IL1) é ksA([Llo—[L])’[Hso3]6[H+}5dr

-+

Sl

Then



Lisa"1 = Sy 4 By )y,

dt v v

+ L rL(J kSA([L]o,[L])S[Hso;]5[3+ledr +

<

+ (1010 (L1)%* kg, w803 10 (¥ 18
v

and thus the rate equation for the formation of strong
acids (model I) may be written as

(L] = (L],

Tsa = (g/v)r/
(2.6)

(L} < [L]
o = {[SA”]/([L]O—[L]) + (h/V)[fL]o‘[L]}}rL +

+ (kgp/v) ((L1-181) 5+ tns0] 18 (a8

/

Alternatively, we may consider the quantity [SA~ 1/ (L] o~ (L),
A straightforward differentiation of (2.4a) then yields

- k =
il{ISA ]/([L]o-[L])} =By 4+ —§§([LIO-IL])S[H303]6[H+]‘ (2.7a)
dt v v
and the boundary condition is
{ISA‘]/([Lloth])}ﬁgto = ;’-{rL}t__to _ (2.7b)

This reformulation of the problem will later prove to be
necessary to do to get a well conditioned optimization
problem.



An alternative model (model Il) of the formation of strong
acids is presented in [6] apd [7] . The raté eguation

rep = {kSA(T)/v}[SA“ 12 [HSO Pt (2.8a)
with
kga(T) = kg exp (-Eg, /T) (2.8b)

was fitted to the measurements, and it proved to be slight-
ly more accurate than the relation (2.4). The best fit was
obtained with the following values of the parameters.

12

]

(8]
kgp = 0.9882 . 10

i

ESA 10484

a = ~0.4296 (2.9)
b = 0.6248
c = (0.5537

Both models are investigated in the optimization study pre-
sented below. The ﬁain effort was concentrated to the rela-
tion (2.4) (model I) since (2.8) (model II) was not avail-
able when the study was initiated. However, the model (2.8)
is investigated in Section 6, and it is shown that the
change of the model has very little influence on the opti~
mal control strategies. Besides, (2.4) results in a some-
what more difficult optimization problem, and (2.4) will
thus better illustrate the possibilities of optimal control
theory.

Since the rate equations (2.2), (2.3), (2.6), (2.7) and {(2.8)
depend on the concentration of hydrogen sulfite tons, [H+],
it remains to determine these in terms of the known quanti-
ties. According to [7], these concentrations are related to



10.

the formation of strong acids through the electroneutrali-
ty condition

(Nat) + [wt) = [HSOZ] + [SA”] (2.10)

where [Na+] (=0.375) is the concentration of sodium ions
from the ionic medium (sodium chloride). This quantity is
measurable, and is kept constant during the cooking through
a continuous provision of ionic medium. Finally, the parti-
tion of the sulphur dioxide between the liquor and the gas
phase is governed by the relation

+ -
§:! }[Hsoal/pso (T) (2.11)_

= K. .
P
2 S0g.

where Pso, is the partial pressure of the sulphur dioxide
in the steam and Kﬁﬁ@ﬁ(T) is an equilibrium constant gi-
ven by

10909 k. (T} = 2665/T ~ 10.208 (2.12)
Pso.

If the control variables are chosen as the partial pres-
sure Pso, and the temperature T, it is clear from (2.10)
and {(2.11) that [H+] and [Hso;] may be expressed in terms
of the control variables and the strong acid concentration
[sa”]. Alternatively, we may consider the temperature and

the total pressure

(2.13)

as control variables. The vapor pressure of water 1is given

by

10106g Py = 5:882 - 2198/1 (2.14)
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and then [H') and [HSOS] may again be expressed in terms
of [SA”] and of the control variables. In both cases, the
delignification, the hemicellulose dissolution and the
formation of strong acids are then uniquely determined by
the control wariables and by the initial state of the pro-
cess.
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3. MATHEMATICAL FRAMEWORK FOR THE OPTIMIZATION PROBLEM.

In this section we will briefly account for the mathema-
tical concepts involved in the optimization problem. We

will thus consider the acid sulfite cooking process as a
dynamic system described by the following set of ordina-
ry nonlinear differential equations.

== = f(x,u;t) x(to) = X (3.1)

where x(t) is the n-dimensional state vector and u(t) is
the m~dimensional control vector. x(to) is the initial
state of the system. For the basic model given in Section
2, we then obviously have n = 3 (lignin, hemicellulose
and strong acids) and m = 2 (temperature and pressure).
However, it will later (Section 5) prove to be necessary
to introduce further state variables, and thus the order
of the system will increase.

Given the system (3.1), we then define the cost functional

-

e
£
T = Fx(tg)ity) + [ Lix,ust)at (3.2)
t
0

where F is a function of the terminal state, that is the
state at time te. The terminal time te is a priori fixed,
and the time interval [to,tf] thus represents the length
of the cooking time.

In general, it is necessary to put different kinds of re-
strictions on the class of control strategies that we con-
sider. For example, for technological reasons the tempera~
ture and the pressure of the cook cannot be arbitrarily
chosen. Thus, we also specify that the optimal solution



I3.

must satisfy the following set of constraints:

w(x(tf);tf] =
S{x;t) < 0 VtE[tO,tf] {3.3)

glx,ust) < 0 vtelty, te]

Y 1s an s-dimensional (s ¢ n) nonlinear vector function
of the terminal state, and with this kind of constraints
it will be possible to handle the condition that the de-~
sired terminal lignin concentration is 2%. The mixed
state-control variable constraint g is a p-dimensional
nonlinear vector function. The components of g are expli~-
cit functions of at least one control variable u;, but
the explicit dependence on x is arbitrary. In the follow-
ing, constraints of thig type are included to handle dif-
ferent kinds of constraints: on the temperature and the
pressure. For example, we will consider the case where
the control variables are bounded by maximum available

temperature and pressure, that is,

9i = uy - ouy <0 (3.4)
max

The dimension p of g is arbitrary, but to guarantee com-
patibility of the constraints, it is generally necessary
to restrict the number of active constraints. This prob-
lem is further discussed in [ 4], where also other kinds
of regularity conditions are given. Finally, we may spe-
cify that the optimal state variables lie within some
prescribed boundaries, and this is formulated as S(x;t) <
¢ 0, where S may be a nonlinear vector function. The dif-
ference between the constraints g and S is that 8 does
not depend explicitly on the control variables, while g
does. The separation of these types of constraints may
seem to be nonessential. However, from a mathematical
point of view, constraints of the type S{x;t) £ 0 are



14.

much more difficult to handle, and they are also much har~
der to solve numerically. It turns out to be necessary to
include this kind of constraints when we consider con-
strained temperature and pressure change rates (Section 5).
We then introduce dT/dt and &pP/dt as new control variablesg
and T and P as new state variables, and the upper bounds
on the temperature and the pressure then have to be formu-
lated as constraints of the type S(x;t) < 0.

We may now finally formulate the optimal control problem
as follows: Given the dynamic system (3.1) and the cost
functional (3.2), determine the optimal control strategies
u(t) subject to the constraints (3.3), so that the cost
functional is minimized.

The numerical soclution of optimal control problems is ge-
nerally far from easy, and many different algorithms have
been proposed (see e.g. [4] for references). The best
choice between the different methecds is probably not unique-
ly determined, but since we had previous computational ex-
pPeriences from methods based on the Differential Dynamic
Programming technique, this approach was used to develop

a4 computer program, The DDP technique is thoroughly de-
scribed in [3], and the algorithm for the problem stated
above is given in [4], where also different computational
aspects are discussed.
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4. OPTIMAL CONTROL OF MODEL I.
UNCONSTRAINED CONTROL CHANGE RATES.

We will consider the case when the formation of strong
acids is given by (2.6) and when the control change rates
are unconstrained. In 4.1 the necessary mathematical pre-
parations are given, i.e. & compact mathematical model of
the form (3.1), the cost functional and the specifica~
tions of the constraints. we also illustrate the propear-
ties of the model, and account for different problems con-
nected to the applicability of the computer program, Dur-
ing the computations, further problems appeared, and these
are discussed in 4.2, In particular, it is shown that it
is hecessary to introduce rew gtate variables, and that
the cost functional has to be modified. In 4.3 the optimal
solutions for various terminal times tf are then given,
and the effect of the different approximations that have
been made ig discussed.

4,1. Preparations.

”

i et e e e 1o et -—»—-&M‘mm—o-wu—unul—-‘-—mnﬁ-

To get a Compact mathematical model of the process, we
introduce the following state variables:

Xy = lignin content [L] (gram per 100 g of uncooked wood)

= hemicellulose content [C] (gram per 100 g of un-
cooked wood)

e
XY
4

¥3 ¥ concentration of strong acids [SA”] (moles per
litre)

In principle, the control variables'can be chosen as the
temperature of the ligquor and the total pressure in the
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digester. However, from a numerical point of view, it
turned out to be favourable to choose

u; = exp(-1/7)

instead of T (where T ig measured in degrees Kelvin) as
one of the control variables. This will also simplify the
mathematical model. The second control variable is chosen
as

U, = total pressure P (bar),

but it should be pointed out that this control variable
will later also be changed (Section 5). To simplify the
notations, we also introduce some additional (or slack)
variables., Thus, &2 is defined as the partial pressure
of the sulphur dioxide in the gas phase (Pso,) . From
(2.13) then follows that

Ny

u2 = u, - pHZO (4.1)

where PHoor the partial pressure of water, is given by
(2.14) ‘

103 0q Py o = 5:882 - 2198/1

Thus,

"y _ C4
w2 (W) =y - equy

where

¢, = 105-882
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c, = 2198 . ®log 10

We also introduce ‘s as the concentration [HSOE] of‘hydw
rogen sulfite ions. From (2.10) and (2.11) follows that

[HSO,] = [N +]—[SA‘ + N +]-[SA-] 2'/4 + K A
3 (Iva )2 V( a ) Kps%pso2

and thus

\
£ o= ((Natex,) /2 +\/([Na*1~x3)2/4 o+ G,_(u)xg,sa (4.2)
2

To further abbreviate the notations, we also set 212 equal
to the equilibrium constant Kppgg ¢+ 1.e.
2

lolog Lypfu) = - ¢y elog Uy - c, (4.3)

where

2665

€1

10.208

i

€2
Since the concentration of sodium ions from the ionic me-~
dium is kept constant, we also define

N = [Na']

(Unless otherwise explicitly stated, the numerical value
of N is equal to 0.375.) Substituting 292 and N into (4.2)
we get

o) = (N-xg) /2 4\ exy) 2/ 4 W, (e, (). (4.4)
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and the rate equations (2.2), (2.3) and (2.6) then final-
ly become:

dx L4(x) 2, (x) Le(X)=0, (%)
~% = £ 00w = -k et g 5
dat
' L. (x)
C LYy () 2y, (w8
dx L4 & -2 £
T e = - ufelrewl e, w1 8 (4.5
[ ax x
a 1{ - S k4([L]0~x1]} -
dt [Llonxl
2 %g £107%121
) + kyuy (18] -%p) 2z (x,w) ] -
X
— = fo(x,u) =
at 37 ] N £y
» [y (u) ey, ()] if %) < [L],
o] if (L]
...k ———— X =
k 5 dt 1 o
The initial conditions are:
x(0) = [L], = 28
%5(0) = [€], = 32 (4.6)

4

X4 (0) [SA“]O = 0.0

The parameters kl, Ly L4, e and zs’are functions of Xq
and the numerical values are:



k? = 0.4845
kl(x) = L
ki = 0.1464
z? = 12495
Ll(x) = .
27 = 12506
2f = 0.6463
La(x) = .
by = 1.6212
) zg = 0.8186
25(X) = y
45 = 0.7646
H_ , -
( !:6 - O- f053
ls(x) = L
2y = 0.7794

]

10

10

16

16

A A
S »
Lalivy) ~ W

—

v
e
Lol v I S v

A
"
f_l

A

B
%1

(]

12.

19,

E

L]

L)

(=m) (4.7)

All other parameters are constant during the cook, and

the numerical values are:

k, = 0.4541 » 1013
ky = 0.2824 - 10%6/4.
k, = - 0.002584/4.5
kg = 0.09703/4.5
2, = 14031
by = 15715
£, = 2.5420
rg = 0.7069

2.3991

=
o
i

[ 1)

s+1)

(4.8)

(Contd. p. 20)



b0 = 1.5287
t,1 = 0,6903
N = 0.3750

4:1.2. _The

L p— - ==+

[Nat])

T G A s e o e B S S e L NP S B o e B ks

20.

(4.8)
(Contd.)

Given the dynamiaal system (4.5) with initial conditions
(4.6), we may now formulate the following optimal control

problem:

Determine u(t), 0 s £ < ¢+

'f,

such that

(4.9)

is minimized, i.e. such that xz(tf) (final hemicellulose

concentration) is maximized. (The terminal time tf is
fixed, but we will below investigate the role of te by

computing the optimal strategles for some different ter-

minal times.) The optimal control strategies must also

satisfy the following constraints:

MIN MAX
uy FS ul(t) € uy

MIN . MAX
u, € u,(t) ¢ u,

Vv £ € [O,tf]

(4.10)

The terminal constraint (xl(tf) = 2.0) is due to the de-
sired final lignin concentration, while the control vari-
able constraints are due to technological constraints on
the digester. The numerical values of the upper and lower

control variable bounds are:
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u?IN = exp(+~1/293)
a}™ = exp(-1/423)
™ = 0.0 (bar)
B < 1000 (bar)

that is, the temperature T is bounded between 293°k (room
temperature) and 423°k.

e .  ar WS v -—-—--—.-..-n-—--c-——.—_—q.——n—u—-—-——-.u i et e San min el dn o e e ks e

Inspection of the system equations (4.5) shows that x; and
Xy are decreasing for all t, u; and u,, while X3 is gene-
rally increasing. A typical control strategy is shown in
Fig. 4.1 together with the corresponding trajectories. Si-
mulations with different control strategies also show that
u; and U, primarily affect the decreasing rates of Xy and
¥y, and that the decreasing rates are more sensitive with
respect to changes in u, than in Uy



t {hours)
t (hours)

T
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T T(°K}
380~

x.-"\'
T = = T T =4
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on
Fig. 4.1 - solution of the system equations (4.5) for a
typical control strategy. The pressure u, is

raised from 1 bar to 10 bars in the same way
as the temperature.
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The system equations (4.5) have severa® non-desirable pro-
perties, such as complexity and discontinuous right-hand
sides. In this section we will discuss the consequences

of the discontinuities, and show that it is necessary to
approximate them with smooth functions.

It can be shown {%1, that discontinuities of the type (4.5)
will produce discontinuities in the adjoint variables A(t),
and the magnitude of these jumps are not a priori known.
To solve the optimal control problem, we would thus have
to include these jumps, and to handle them in the same way
as the boundary conditions of the adjoint variables, i.e.
to successively update the initial guess. However, this
would considerably increase the complexity of the computer
program, and it was thus decided o try to approximate the
discontinuities with smooth functions. These functions
should them have the properties that they generate an ap-
proximation of the discontinuities of A(t). Besides, the
DDP algorithm requires that £ is twice continuously diffe-
rentiable with respect to both x and u, and a natural ap~
proximation then turns out to be:

kH Kk L
1 - - kg B
k(%) = + arctan{K(xl~xl)] (4.11)

and analogously for El’ 24, 25 and 16 {(4.7). We will re-
fer to K as the smoothing parameter, and it is easily ve-
rified that the larger XK is, the better is the approxima-
tion. The discontinuity obviously corresponds to K = + =,

In Figs. 4.2 and 4.3 the solutions of the system equations
are shown for K = + = (discontinuous right-hand sides),
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K = 10 and K ="2., Although f, changes considerably, it can
be seen that the approximations have very little influence
on the solutions. It was thus concluded that K = 10 yields
a sufficiently good approximation and that K = 2 may also
be used if K = 10 shoui? create numerical dtfficulties in
the integration of the adjoint variables, that is, in the
simulation of the jump in »(t).
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From Fig. 4.1 it can be concluded that the system equations
(4.5) are not stiff, i.e. they do not contain both very fast
and very slow time constants. Hence, a straightforward inte-
gration scheme can be used, and in the following a fourth or-
der Runge-~Kutta scheme with fixed step~size has been used
for the simulations as well as in the computation of the op~
timal control strategies.

Since the integration step length will directly influence
the execution time of the computer program, it should be fa-
vourable to choose as large a step length as possible.

Thus, the system equations were solved with both the step
length h = (.12 hours and with h = 0,04. The relative diffe~
rences between the two simulatiocns were always less than 0.6%
and hence the step size h = 0,12 (corresponding to 100 steps
for a typical simulation) proved to be sufficiently small for
the integration of the system equations.

However, the optimization algorithm also includes the back-
wards integration of the adjoint variables Vx(t) and of the
matrix Vxx(t) {41, and it can be seen fron [4], that these
equations will become stiff if the smoothing parameter K is



25,

,T. T{°K)
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0 5 £ (hours)
A la(x)
I T f T T T T T "
5 t (hours)
f, (X,U)

T v
t (hours)

O —

Fig. 4.2 - The parameter 24(x) and fl(x,u) for the smoothing
parameters K = + », K = 10 and K = 2. The same
control strategy as in Fig. 4.1 was used.
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Fig. 4.3 - Corresponding solutions of the system equatilons.
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large, Thus, if K is large and h is too large, the back-
wards integration will "explode" aromnd Ry = x?. This is
illustrated in Fig. 4.4. The full lines represent the op-
timal multipliers Vx(t) for K = 10, computed with 500 in-
tegration steps. The dashed lines show the result when on-
ly 50 steps where used in the integration of V_(t). Ob-
viously, there is a trade-off between the accuracy in the
approximation of the discontinuities and the number of in-
tegration steps. Thus, 500 steps were required to avoid
"explosion" for K = 10, while 100 steps was sufficient for
K = 2. In the following, K = 2 and 100 steps has thus been
used unless otherwise explicitly stated.
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In the DDP algorithm it is required that the Hamiltonian
of the problem is minimized with respect to control vari-
ables., For the cost functional and the constraints given
in Section 4.1.2, we thus have to minimize

= V R
H xlfl + VX2f2 + szf3 (4.12)
subject to
( MAX )
oy
MIN
e Pl |
gl(u;t) = < 0 (4.13)
q. -  MBAX
2 T W2
cu. - MIN
U2 T U3

for each t, t € [0, t ]. However, substituting the system
equations (4.5) 1nto (4.12), it is easily seen that an
analytic minimization of H subject to the constraints
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Fig. 4.4 - Computed optimal multipliers Vx(t) for K = 10.
Full lines correspond to 500 integration steps,
dashed lines correspond to 50 steps. (The diffe-
rent step sizes give slightly different values
of x;(tg), which via the terminal constraint mul-

tiplier b affects the start value Vx_(tf).]
1
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(4.13) is very difficult or even impossible. It was thus
necessary to carry out the minimization numerically, and
a very simple search scheme was developed. First of all,
the admissible region g ¢ 0 was divided into a number of
equally spaced points, and the numerical value of H for
these points was determined. Then, the point where H at-
tained its smallest value was chosen, and a new smaller
search region was constructed around this point., This pro-
cedure was repeated until no further significant reduc-
tion of H could be obtained. In general, a search region
consisting of 100 equally spaced points gave sufficient

accuracy when repeated three times.

A distinct disadvantage of the method is that it is very
time consuming. However, the method gave a very detailed
insight into the structure of the Hamiltonian, and this
proved to be very valuable. For example, in several ca-
ses it was possible to fix u, to its upper bound and then
minimize only with respect to u,. This is further illust- .
rated below.

S e i o o e e S0 it A e A e e S e 6 A D S R A e S e G b Al

The cost functional as posed in Section 4.1.2 is

J = - x2(tf)

and the terminal constraint is

Y = xl(tf) - 2.0=0 (4.14)

However, it turned out to be favourable to slightly modi-
fy J, and instead consider the cost functional
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I = = x,(te) + cfx(tp) - 2.0) (4.15)
with the constraint (4.14). This may seem to be a meaning-
less modification, since the minimal values (and the opti~
mal control strategies) are the same for the original cost
functional as for (4.15). However, the reason for this mo-
dification is due to the way the algorithm is constructed.

The algorithm works with the adjcined cost functional

te .
) + § Lix,uzt)at + bry(=(ty)ite) {4.16)

J = Fx(te) st
%o

f

where the multipliers b have to be determined so that the
optimal solution of (4.16) satisfies the condition y = 0.
The algorithm can thus be separated into two different
phases. First the adjoined cost functional is minirmized
for a fixed value of the multipliers b. If the optimal so-
lution of J does not satisfy y = 0, b is changed by a small
quantity b, so that the optimal solution of J(b+6b) redu-
ces the norm of y. However, to start up the algorithm, it
is necesgary to guess a value of the terminal multipliers
b, and generally the only natural guess is b = 0. For the
cost functional J = = X, (tg) it is then clear that the op-
timal solution is to choose uy and u, sO small that no re-
action takes place in the digester. From these nominal
strategies (which are far away from the optimal ones) it
turned out to be impossible to get successful changes in
b, and the algorithm failed to converge. However, the mo-
dified cost functional (4.15) forces the control variables
to act, since the additional term otherwise would contri-
bute too much to the cost. Theoretically, the optimal so-
lution of (4.15) can be forced to saﬁisfy ¢y = 0 by letting
c tend to infinity. However, this would create new nuwneri-
cal problems, and thus ¢ = 1 was chosen since this provad
to be sufficient to make the algOrithm converge.
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Since the algorithm is based on a second order Taylor se-
rles expansion of the Hamilton - Jacobi - Bellman equation
[4], it is necessary to have analytic expressions for the
first and second order partial derivatives of fi {(4.5) with
respect to both x and u. It turned out to be necessary to
provide 53 non-zero different analytic expressions for the
derivatives involved, and since many of them are very com-
plex it was more or less a principal problem to avoid er-
rors. This problem had to be solved by checking the analy-
tic expressions against numerical differentiation, which
was included in the DDP program so that also punching er-
rors could be detected and eliminated. In fact, some er-
rors with a critical influence on the performance of the
algorithm were discovered in this way.

4.2. Change of State Variables and Further Modifications
of the Cost Functional.

i e i Akl Mk i R g i e RS e Y Bh e D s e N e 2l At SO T M S R

A straightforward application of the DDP algorithm to the
problem stated in the previous section proved for various
reasons to be unsuccessful. One major problem was that the
adjoint variables Vx(t) had a tendency to explode as t ap-
proached zero. This problem could not be overcome by any
of the modifications given above, but is in fact inherent
in the problem, as can be seen from equation (2.6). Thas
it was natural to consider (2.7) instead, that is

L

dt v v

- 3 : -
i{[sza 1/l g-tnlf =By s KA (111 -101) % 1us0;1818 18 (4.17)
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with the boundary condition

{[SA']/([LIO-[L])}t=t0 = %{rL}t=t0

We thus define the new state variables

21 T %1
2 T %
z5 = 1000x4/ ([L],-%,)

(The factor 1000 was introduced to get the state variables
of approximately the same magnitude.) Substituting x, = z;,
X, = z, and Xy = z,([L],-2,)/1000 into £, (x,u), £, (x,0),
(4.4) and (4.17), we then get

l ~
- = f.(z,u)
dt L
dzz - :
4 - fz(z'u) (4.18)
dt
dz, ) L3 29-1
j;E'z - 19?0 k4fl(z,u) + 1000 k3u1 ([L]O-Zl) ' 5.

2 -4 . 2
10711y, () ey, (0] 1L

e [ p(z,0)]
The initial conditions for zq and z, are obviously the same
as fo: Xq and Ko and to determine the boundary condition

for z4, wWe notice that

z L] -%
%y = 3 (B157%, ) (4.19)

1000
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Differentiating (4.19) for t = 0, we get

x4 _ dz, [[L]O-xl] i dx, -2, L dx, z,
dt dt 1000 dt 1000 4t 1000
since xl(O) = [L}o. But for t = 0, dx,/dt = - k4fl(x,u),
and thus
23(0)
1000

which, since £, # 0 for t = 0, implies that

z5(0) = kg - 1000

5
This redefinition of the state variables proved to be suc-
cessful, and at least close to the optimal solution the
explosion tendency of the adjoint variables was elimina~
ted. However, it turned out that for other reasons there
could be explosions in Vx(t). This is illustrated below.
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Although the redefinition of the state variables highly
improved the situation around the optimal solution, an-
other difficult problem remained, namely to get the algo-
rithm to converge. This proved to be almost impossible,
even after all the modifications given above. The reason
for this obviously is the strong nonlinearity of the prob-
lem, that is the second order Taylor expansions (41 are
valid only in a very small neighbourhood of the optimal
gsolution.
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A possibility to handle this difficulty proved to be to
successively modify the cost functional and to solve a
sequence of optimization problems. We thus introduce the
new cost functional

t
f
3= xpleg) + [ (e0-2.0)" + J [e) (u-ap)? +

+ sz(uz-az)z]dt (4.20)

where si(a 0) and a; are constants that have to be speci-
fied. Obviously, the original problem corresponds to g; = 0.
Now suppose that we minimize (4.20) for some parameters aj
and for a large value of the parameters g,. Then the opti-
mal control variables will generally not differ so very

much from ay and a and thus ul(t) = a; and uz(t) = a,

’
should be a good iiitial guess when the ¢;:s are large.v
When the optimal solution is found, the €;:8 are decreased
and the latest optimal solution is used as the initial guess
for the new problem. Repeating this procedure, the succes-
sive optimal solutions will approach the optimal solution
of the original problem, and finally the €38 can be set
equal to zero. However, it turned out to be important not
to reduce the €,:s too fast, since the differences between
the initial guesses and the optimal solution otherwise could
become too large.

It was found that when €, decreased, u, approached the up-
MAX

per bound Uy, e To simplify the computations, u, was then
fixed to its upper bound while &, was successively reduced.
Having computed the optimal control ui(t) for this problem,

ul(t) = ui(t) and uz(t) = ugAx were used as the initial
guess for the original problem, and it was found that it

in fact was the optimal solution.
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The importance of having sufficiently close initial gues-
ses is illustrated in Figs. 4.5 and 4.6. u, is fixed to
its upper bound and the parameters are: g = 0.5, a; =

= 0.95. The full lines show the optimal solution of (4.20).
The dashed lines in Fig. 4.5 correspond to the initial
guess u, (t) = 0.98 and to the adjoint variables Vzi%%) in
the first iteration. The dotted lines correspcend to ul(t)
after one iteration and to the adjoint variables in the
sacond iteration. As can be seen, Vzg(t) explode as t ap-
proaches zero, and thus it was impossible to reach the op-
timal solution with this particular initial guess. In Fig.
4.6 the optimal control for ¢ = 2.0 (dotted line) is used
as the initial guess for ¢ = 0.7. The optimal solution
then corresponds to the dashed line. With this as the ini-
tial guess for ¢ = 0.5, the optimal solution (full line)
was found without any convergence problems.

The convergence problems are due to many facts. In parti-
cular, it was found that J was a very flat functional in
the neighbourhood of the optimal solution. This is illust-
rated in Fig. 4.7. The full line is the optimal solution
for tf
The dashed line, although considerably different from the
optimal solution, yields J = - 11.35.

= 12.0, and the corresponding cost is J = - 11.36.
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5 10t

Fig. 4.5 - Convergence problems for ¢ = 0.5. Full line -
optimal solution for ¢ = 0.5, dashed line -
initial guess of ul(t) and adjoint variables
in the first iteration, dotted line - ul(t)
after one iteration and adjoint variables in

the second iteration.
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Fig. 4.6 - Successive optimal solutions for & = 2.0 (dot-

ted line), ¢ = 0.7 (dashed lines), and ¢ = 0.5
(full lines).
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~

Fig. 4.7 - Illustration of the insensitivity of J around
the optimal solution. Full line (optimal con-
trol) yields J = =-11.36 while dashed line
yields J = ~11.35.
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4.3, Optimal Solutions.
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Applying the modifications and the techniques described

in the previous sections, the optimal solutions for the
problem could finally be determined. It then turned out that
the optimal contrel uz(t) attained its upper bound u%Ax
(= 10 bars) over the whole time interval [O,tf]. The com=-
puted optimal temperature strategy is shown in Figs. 4.8
and 4.9 for the terminal times tg = 12, 10, 8 and 6 hours.
Notice, that T is determined by ul(t) = exp(~1/T). The
corresponding optimal trajectories zl(t) (Lignin) and

z,(t) (hemicellulose) are also shown.

In Fig. 4.10, the maximum hemicellulose vields zz(tf) is
given as a function of the cooking time tg. This function
should allow for a rational trade-off between the cooking
time and the outcome of the process. The point A repre-
sents the hemicellulose content when the control strate-

gy in Fig. 4.1 is applied to the process.
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The optimal solutions shown in Figs. 4.8 and 4.9 were com-
puted with the smoothing parameter K = 2 (4.11). It is thus
natural to ask if this approximation had a crucial influ-
ence on the computed solutions, and if for example K = 10
would result in a considerably different optimal solution.

To investigate the influence of K, we have thus computed
the optimal solution for XK = 10 (using 500 integration
steps), and the solutioms for K = 10 and K = 2 are shown
in Fig. 4.11. The full lines represent the optimal control
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for K = 10 and the corresponding lignin and hemicellulose
trajectories., The dashed line represents the optimal tem-
perature strategy for X = 2, and it can be seen that it

is very close to the solution for K = 10. In fact, no con-
siderable difference can be noticed in the corresponding
lignin and hemicellulose trajectories, and it was thus con-
cluded that K = 2 was accurate enough.
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Fig. 4.8 - Computed optimal temperature strategy and the

corresponding lignin and hemicellulose trajec-
tories for te = 12 and te = 10 hours. The op-
timal pressure strategy i uz(t) = const. = 10
bars.
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Fig. 4.10 - Optimal hemicellulose yield as a function of

the cooking time tf. The point A represents
the yield for the strategy given in Fig. 4.1.
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5. OPTIMAL CONTROL OF MODEL I.
CONSTRAINED CONTROL CHANGE RATES.

In the previous section we tacitly neglected the fact that
there in practice are further constraints on the control
variables. Thus, it is not likely that the temperature and
the pressure can be changed instantaneously from room tem-
perature and room pressure to the optimal temperature and
pressure at t = 0. In this section we will include these
constraints in the problem. We will also consider the pos-
sibility to decrease the temperature of the process at the
terminal time te, since this in practice is considered as

a possibility to improve the quality of the pulp.

The introduction of the new constraints makes it necessary
to redefine the state and the control variables of the pro-
cess. Thus, in Section 5.1 we reformulate the problem, de-
fine the state and the control variables, give the new ma-
thematical model and specify the constraints and the cost
functional. It then turns out that our new problem is a
singular problem with state variable constraints, and wa
briefly discuss the available solution methods for this
class of problems. In Section 5.2 the computed optimal so-

lutions are given.

5.1. Preparations.
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Since the temperature and pressure change rates now will
be constrained, it is necessary to redefine the state and
the control variables to be able to apply the optimal con-
trol theory outlined in Section 3. We thus introduce

uy () =& (1)

dt
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and

a
u,(t) =—p
2 at 59

Notice that u, is chosen as the time derivative of the par-
tial pressure pgo, and not as the time derivative of the
total pressure P. The reason for this is that the total
pressure is in practice controlled by the partial pressure
of the sulphur dioxide, and the change rate of PSOZ‘iS for

technological reasons constrained.

The state variables are defined as follows (compare Sec-
tion 4.1}:

Xl = [L] (%)

Xy = [cl (%)

xq = [8A71/ (L] ~[L1)#1000 ([SA7] in moles/litre) (5.1)
x, = 10% . exp(-3500/T) (T in °K)

X5 = Pgo, (bar)

To abbreviate the notations, we also define

2i5,(x) = Kpso (T)
2
r,(x) = [HS03] = ([Na"}-[8A7])/2 +
+\/([Na+]-[SA 1) /4 + K, Pgg =
50, 2

H

(N = x3([L]O~xl]]/2 +

)2 )
+\/%N = 0001, ([LI =) | /4 + xghyp (%)



£y (x) = [H'] = Ko, Pso,/[H503) = gy, ()/ £y ()

2

The system equations then are

dx £, (%) 2, (%) L (%)
Lo E ) = - kg xt Ty 0]
dt
Lg (%)
[ rz (x)]
ax 4 & L
2 277 8
—£ = F ({x,u) = - k,%x, %, [ ©,(x)]
at 2% 274 72 2
dx [} £,=1
B _ 3 _ 9
i;: = f3(x,u) = k4fl(x,u) - k3x4 ([L]0 xl)
£ 2
[r 01 Prr,e1 M
dx4 o 4 2
:;: = f,(x,u) = x4[ log (10 /x4)] u, /3500
de
—_= = f.(x,u) = u
dt 5 2

The initigl conditions are:

x (0) = 28 =y

x2(0) = 32.

x3(0) =kg

x,(0) = 10%exp(-3500/293)  (T(0) = 293°K)

xs(O) = 0

47.

(5.2)

(5.3)
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As before, the parameters kqy Lys L40 Lg and L, are func-

tions
those

kl(x)

2l(x)

24(x)

% & (x)

£6(x)

of Xq s but some of the numerical walues differ from

U v

i

1
g st —— PR S
= =
Lol S =)
i ]

L

L
6

in Section 4. Thus

0.4845 . 10 '16-4-12495/3500)

0.1464 . 10(16-4:12506/3500)

12485/3500

12506/3500

0.6463

l.6212

0.8186

0.7646

0.7053

0.7794

[/ tA A

LAY

»
= —w

= 12.42

X

The numerical values of the other parameters are (compare

4.8):

P -
[#2] > (V5
i it I !

0.4541
(0.2824/v)
- 2.584/v
97.03/v

. 10(15-4-14031/3500)

10(19—4-15715/3500)

(5.5)
(Contd. p.49)
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%, = 14031/3500 (5.5)
£y = 15715/3500 (Contd.)
Ly = 2.5420

Lg = 0.7069

g = 2.3991

Lig = 1.5287

L91 = 0.6903

N = 0.3750

v - £ 4.5

The equilibrium constant KPSOz(T) is given by

101609 & (T) = 2665/T - 10.208
Pso2

and thus
Ylog 1, = ¢, + ¢,°log x, (5.6)

where

cy = (4+2665/3500)%1log 10 - 10.208

and

cy == 2665/3500
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The cost functional is the same as in Section 4.1, i.e.
J = = x2(tf)

where te is the 3 priori fixed terminal time. The termi-

nal constraint

vix(tg)) = 2 (tg) - 2.0 =0 (5.7)

is also unchanged, and for the reasons given above, we
will thus consider the modified cost functional

2
T = = kaxy(te) + k(% (t£g) = 2.0) (5.8)

where the parameters ka and ky, have been introduced to
increase the flexibility of J. However, the control va-
riables are not the same as in Section 4, and thus we get
a new set of control variable constraints. Formally, they
are the same as (4.10), i.e.

MIN
uy <€ ul(t) $ uy

vV t E[O,tf] (5.9)

MIN MAX
u, < uz(t) $ U,

but the numerical values of u?IN and uTAX, i.e. the upper

and lower bounds of the possible temperature and pressure
change rates, are not the same. We thus assume that

up = - 40.0 (degrees Kelvin/hour)
u?AX = 40.0 (degrees Kelvin/hour)

. (5.10)
u% = ~ 100.0 {bars/hour)

M

u%AX 7.0 (bars/hour)
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Finally, we must also consider the fact that the tempera-
ture and the pressure are bounded. From the definition
(5.1) of the state variables then follows that we will
now also have constraints of the type S(x;t) < 0. Thus

MIN

p MAX

< pH20 + xe (t) ¢ P

and

-1
IV - 3500[%10g(1074x,) 1 T ¢ TF

where PMIN, PMAX, TMIN and TMAX are given in 4.1.2. How-

ever, it turns out that the temperature constraints will
never be active (compare Section 4) and also that the
pressure never tends to decrease below PMIN. Thus, the

only constraint we have to consider is

MAX
Py,o * ¥s() <P (5.11)

where PH,O the partial pressure of water,is given by

10509 P o = 5.882 - 2198/T

Expressing T as a function of 41 We then finally get the
state variable constraint

d
. 2
S(xit) = xg + dyx,° - pMAX g (5.12)
where
(5.882-4d,)
d, = 10

1
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and

d, = 2198 - ©log 10/3500
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Since the system eguations (5.2) are linear in the control
variables, the optimal solution either has singular sub-
arcs or is of bang-bang character. However, for physical
reasons the bang-bang character is very unlikely (compare
Section 4), and to compute the numerical solution 1t is
thus necessary to be able toc handle the singular subarcs.

The characteristic property of singular problems is that
the condition Hu = 0 does not determine the optimal con-
trol variables. Besides, in this case we have Huu = 0, and
thus the second order DDP algorithm referred to in Section
3 is not directly applicable. Different methods to over-
come these difficulties by limit methods have been sugges-
ted [2]. The basic idea of these methods is to solve a se-
guence of regular problems whose solutions tend to the so-
lution of the singular problem. In this section we will
briefly outline a method given in [2], and it is also
shown how this method was modified to improve the conver-
gence rate close to the optimal solution.

A. e~o(¢) algorithm.

In the e-a(-) algorithm, the cost functional of the ori-~
ginal problem is modified through addition of the guad-

ratic term
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e 2
g Tey (ug () = ay (£)) at

where the functions ai(t) and the parameters £y have
to be chosen as follows:

T .k
d) Set £y : £y
lution ui(t), t € {O,tf], i=1,...,m. Set ai(t)
= ﬁi(t), i=1,...,n.

> 0 and gquess an initial nominal so-

il

(11) Minimize J(¢X) and let u?(t), £ =1,...,m, be
the minimizing control strategy.

(iii} Choose s?+1 such that 0 < s?+l < e? and set
- k
ui(t} = ai(t) = ui(t), i=1,...,m Return to
(i) .

Generally, numerical instability occurs when the €, :s
tend to zero, that is. when the optimal solution of
J(ek) tends to the optimal solution of the singular
problem. However, it was proved in [2] that the algo-
rithm under suitable assumptions about the problem con-
verges to the optimal solution even for fixed values

of the parameters ¢,. In that case, the magnitude of
the Ei:s will determine the convergence rate, and the
smaller the e :s are, the faster will the algorithm

converge.

B. Modified ¢-a(+) algorithm.

The modification of the cost functional and the initial
choice of the functions ai(t) are the same as above.
However, we now keep €, fixed and minimize J(g) with
the second order DDP algorithm. After each successful
iteration we then change the functions ai(t), so that
Gi(t) = ui(t), i=1,...,n, where ui(t) is the new no-
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minal cecntrol variables. This modification proved to
increase the convergence rate close to the optimal
singular solution, and was thus used when an approxi-
mative solution had been obtained with the e-a (.) al-
gorithm.

5.1.4. Computational method for_ the_state_variable

— e o o g G — - - = e e —

constraint.

— A 2 —— G

e T e T - — e —— G e W T W R T

The state variable constraint

a
S(x;t) = xg + dlx42 - pMBX 4

was handled with the constraining hyperplane technique
[4]. Since S is of first order, we thus replaced S with

the mixed state-~control variable constraint

g--s—-(x,u;t) i Als(x;t) £ 0 A, >0 (5.13)
dt

Differentiating S with respect to t, we get

as dx5 d,-1 dx4 dz-l
— = —2 + d,d,%, — = u, + &;d,x, £4(x,0)
dt dt dat

and thus the mixed state-control variable constraint (5.13)
becomes

d,~1 d
2 2 . MAX
Uy + dld2x4 f4(x,u) + Al(x5+dlx4 -P ) < 0 (5.14)

The parameter A, was set equal to 10, which proved to give

a sufficiently accurate approximation of S(x;t) s 0.
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By converting the problem into a singular problem, the
minimization of the Hamiltonian is considerably simpli-
fied compared to Section 4. With the ¢-a(:) algorithm we
have

2 2
H(x,u,V,5t) = €9(uy(e) = a;(t)) + ey(uyle) - ay(t)) +

5
+ J v, £ (x,u)
g2 X3 177

Thus, H is strictly convex in u, and the minimization
can be done analytically. In particular

o f
, 4
: " "‘"/291

. .
u, (t) = a,(t) =« V
1l 1l x4 aul

up(8) = ay(t) -V, /2,

when none of the control variable constraints are active.
When any of the constraints (5.9) or (5.14) is active,

the quadratic form of H implies that it is still possible
to give an explicit expression for the minimizing control
variables. Thus, the pxecution time for the minimization
of H is considerably reduéed, and the errors due to the
discretization of the admissible control region are elimi-
nated.
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5.,2. Optimal Solutions.

2:2.1. Optimal solution for t. = 10.0.

With the techniques outlined above, the optimal solution
was computed for the terminal time tg = 10.0. The following

parameters were used:

£, = 0.001
€4 = 0.01
ka = 10.0
k,, = 10.0

The computed optimal trajectories are shown in Fig. 5.1,
and the optimal control strategies together with the opti=~
mal termperature and pressure strategies are shown in Figs.
5.2 and 5.3. The optimal hemicellulose yield was Xy (te) =
= 6.97%, and comparing with Fig. 4.10 it can be seen that
this is only slightly less than the optimal yield for the
case when the control change rates are unconstrained. It
should also be noticed that the pressure control strategy
is similar in both cases. Further computational aspects
are discussed in [5], where also other cost functionals are
considered.
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Most of the different quality aspects are very difficult
to include in a mathematical formulation of the problem.
However, it is known by experience that a reduction of
the temperature at the end of the ccok has a favourable
influence on the quality of the pulp. This aspect can be
included in the problem by adding the quadratic term
kcxﬁ(tf) to the cost functional. By choosing a large
value of the parameter k., the terminal optimal tempera-
ture will thus be reduced. However, this also implies
that the optimal yield xz(tf) is reduced, and thus in
practice the best choice of kc iez determined by a trade-

off between guality and yield.

In Fig. 5.4 the optimal temperature strategies and the
optimal yields are shown for different values of kc. Be-
sides, the optimal yield is shown as a function of the
temperature at the end of the cook. The corresponding op-
timal trajectories for kc = 50 are shown in Fig. 5.5.
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6. OPTIMAL CONTROL OF MODEL II.

We will in this section use a slightly different model
for the sulfite cooking process. The formation of strong
acids will be described by (2.8}, which is somewhat more
accurate in accounting for experimental data than (2.4).
Tt turns out, however, that the optimal control strate-
gies and corresponding trajectories (apart from the con-
centration of strong acids) are affected only to a small
extent by the change of model.

The constraints on control change rates and the terminal
constraints are in this section changed to values that
are commonly used in practice. Furthermore, the optimal
control strategies and optimal values of the cost func-
tional are studied as functions of various parameters.

The optimization problem posed in this section is very
similar to that of Section 5. Thus, it is singular and
it has state variable constraints as well as control va-
riable and terminal constraints. In fact, it turns out
that the posed problems are quite straightforwardly
solved applying the technique of the previous sections.

Therefore we will here just give a mathematical formula-
tion of the new optimization problem (Section 6.1) and
show the optimal control strategies and corresponding
trajectories (Section 6.2).
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6.1. Preparations.
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The formation of strong acids, [SA ] is described by (2.8):

a _ o . a _ b + C
En[SA ] = {kSA exp(~ESA/T)/v}[SA ] [HSO3] [H ]
t

The values of the constants are given in (2.9). The other

equations remain unaltered from Section 5.1.

Introduce the state variables

X = {L) (%) cf. Section 4.1.1
%, = [C] ()

x4 = [SA7] . 100 ([SA™ ] in moles/1lit.)
x, = 10% . exp(-3500/T) (T in °K) ’
Xy = pso2 {bar)

The coefficients in the definition of X and Xy have been
chosen to make all state variables vary in the same range.

As control variables are chosen

ul = jl T
dt

and

w, =Lp
dt

(Notice that u, is the derivative of the total pressure

and not as in Section 5 of the partial pressure P50, - This
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is since it is more natural to have limits on the change

rate of the total pressure, when the pressure is decreased.

In this section we will have terminal constraints for the

pressure.)

The system equations then are
dx 24 (X) 2, {x) Le (X)
L f = - kg x,t kgt Lr G
dt
Lg (%)
[ x(x)]

dx 2, 4 L

2
— = £y = - Ky 2%, Lrp ()1 0 (6.1)

t
dx4 13 %14 Y15 %16
-g;- = fa(x,u) = kgx,"Txg7 [ rq(x)] [r,{x)]
dx4 ~ 4 2
:;: = £,(x,u) = x4[elog(10 /x4)] u, /3500
dt
The initial conditions are
x2(0) = 32,
x3(0) = 0.0001
x,(0) = 10%exp(-3500/333)  (T(0) = 333°K)

x5 (0)

1.80883 (p(0) = 2 bar)
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The variables rl(x) and rz(x) are defined in Section
5.1-1.

The numerical values of the constants are given in (5.4),
(5.%5) and (5.6).

In addition

kg = [0.98815 . 1012/(v—1032i)] . 1001-4296

Ky = 105+ 882-4kg

kg = 2198 log(10)/3500

byy = 10484/3500 (6.2)
Ry, = ~0.4296

Rys = 0.6298

Ry = 0.5537
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The cost functional is the same as before, i.e.
J = - xz(tf)
where tg is the a priori fixed terminal time.

The terminal constraints are

vy (x(tp)) = x (kg) - 2.0 =0
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as before. It will now also be added

k

| 8
bp(xtp)] =Xk, (% (€g) + kyx,(tg) - 2.5) =0

2
which corresponds to P(tf) = 2.5 bar.

Also the terminal temperature must satisfy T(tf) < 373°k.
Therefore a constraint

4

vy (x(tg)) = k¢3[x4(tf) - 10° exp(~3500/373)] =0

is introduced in case the unconstrained optimal solution
gives a terminal temperature greater than 3739K.

The coefficients sz and k¢3 are chosen as

k = 0.25

=
t

o

v

to attain proper accuracies in the test ilwll < n,
The control variables have to satisfy

MIN MAX
uy S ul(t) ES uy

for all t € [O,tf]

u%IN £ uz(t) < u?Ax

with, unless otherwise stated,

U¥IN = - 30 u?Ax = 30 (degrees Kelvin/hour)
MIN _

MAX
u

Uy 2 = 8 (bar/hour)



68.

Finally, as in Section 5.1.2 we have the following state
variable constraints

lsPsPMAx

MIN MAX

e T L
T < - 3509[ log{10 x4)} s T

It turns out that the second constraint is never active
and can be omitted. The first one gives

k, .
S(x,t) = Xg + k7x48 - PMAX < 0
, MAYX .,
Unless otherwise stated P will be 7 bar.

As in Section 5.1 the cost functional will in view of the
singularity of the problem, and because of the terminal
constraints be modified to

te 2

J = - kaxz(tf) +0I {[‘sl(‘ul(t) = al(t)) +

2 2
+ ez(uz(t) - a,(t)) ]dt & kb(xl(tf) -2) +

k 2
-~ 2.5] +

+ kc[x5(tf) + k7x4(tf)
4 2
+ kd[x4(tf) - 10 exp(»3500/373)]

where kd is nonzero only in case ¢4 is active.
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6.2. Optimal Solutions.

With the technigue outlined in Sections 4 and 5 optimal
control strategies were computed for a number of cases.

The optimal solution for the values of the parameters gi-
ven above and terminal time tf = 7 hours is shown in Fig.
6.1. Here also a simulation of a control strategy usually

applied in practice is shown.

The decrease of the cost functional obtained when using
the optimal control is indeed very small. Tpis obviously
is due to the fact that the constraints are-active most
of the time.

From this standard cook of Pig. 6.1 then a number of pa-
rameters have been varied, one at a time. These parame-
ters are N (the concentration of Na® ions), v (liguor to

MAX MAX ,MIN

wood ratio), P e xl(tf), tf and uy

In Fig. 6.2 is shown optimal solutions for various values

of PMAX.

Finally, in Fig. 6.3 the optimal value of the cost func-
tional (i.e. xz(tf))is shown as a function of the afore-
mentioned parameters.
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