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ON THE CONSISTENCY OF PREDICTION ERROR IDENTIFICATION METHODS

*
Lennart Ljung

ABSTRACT.

The consistency properties for a class of identifica-
“tion methods, that includes the maximum likelihood
method are investigated. A general way of proving con-
sistency is suggested and sets into which the parame-
ters converge w.p.1 are detcrﬂlned vector difference
equations and state space models are used as spec1fic
examples, but the results are valid for genexral systems.
No assumptions about ergodicity of the input and output
processes are introduced and the systems may be governed
by general feedback regulators.

* i .
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1. INTRODUCTION ' 1

The problem of identification is to determine a model that
describes input-output data obtained from a certain system.

The choice of model is as a rule made using some criterion
of closeness to the data, see e.G. Rstrbm-Eykhoff (1871},
Soudack et al (1971). In putput error methods the discre-
pancy between the model output and the measured output is
minimized. The common model-reference methods are of this
type, see e.g. Liiders-Narendra (1974). Equation error met-
hods minimize the disérepancy in the input-output equation
describing the model. Mendel (1973) has given a quite detai-
ted treatment of these methods.

Qutput- and equation error methods are originally designed
for noiseless data and detrministic systems. If they are
applied to noisy data or stochastic systems they will give
biased parameter estimates, unless the noise charaéteristics
either are known or are of a very special kind.

A natural extension of these methods is to take the noise
characterisfics into account and compare the predicted out-
put of the model with the output signal of the -
system. Minimization of criteria based on this discrepancy
leads to the class of prediction error identificatioh methods.
This class contains under suitable conditions the maximum
1ikelihood method.

The maximum likelihood method (ML method) was first in-
troduced by Fisher (1912) as a general method for statis-
tical parameter estimation. The problem of consistency
for this method has been investigated by e.g. Wald (1949)
and Cramdr (1246) under the assumption that the obtained
observations are independent. The first application.of
the ML method to system identification is due to.%strém—
~-Bohlin (1965), who considered single input singlé out-
put systems of difference equation form. In this case the
mentioned consistency results are not applicable. Astrim-
-Bohlin (1965) showed one possibility to relax the assump-
tion on independent observations.



ML identification using state space models have been

cons idered by e.g. Caines {1970), Woo (1970), Aoki-Yue’
(1970), and Spain (1971). Caines-Rissanen (1974) have
discussed vector difference equations. All these authors
consider consistency with probability one (strong con-
sistency). Tse-Anton (1972) have proved consistency in
probability for more general models. Balakrishnan has
treated ML identification in a number of papers, see e.qd.
Balakrishnan (1968).

In the papers dealing with strong consistency, one main
tool usually is an ergodic theorem. To be able to apply
such a result, significant idealization of the identifi-
cation experiment conditions must be introduced. The
possibilities to treat input signals that are partly
determined as feedback are limited, and an indispensable
condition is that the likelihood function must converge
w.p.l. To achieve this usually strict stationarity of
the output is assumed. These conditions exclude many
practical jdentification situztions. For example, to
identify unstable systems some kind of stabilizinglfeed~
back must be used. Other examples are processes that in-
herently are under time—vérying feedback, like many eco-
nomic systems.

In this paper strong consistency for general prediction
error methods, including the ML method is considered.
The results are valid for general process models, linear
as well as non linear. Also quite general feedback is
allowed.

A general model for stochastic dynamic systems is dis-
cussed in Section 2. There also the identification method
is described.

Different identifiability concepts are introduced in Sec~

tion3, where a procedure to prove consistency is outlired.



Tn Section 4 consistency igs shown for a general system structure

ns well as for linear systems. The application of the results to

1inear time-invatriant systems is discusced in Section 5.



2. SYSTEMS, MODELS AND PREDICTION ERROR IDENTIFICATION
METHODS . |

2.1. System Description.

A causal discrete time, deterministic system, denoted
by 8, can be described by a rule to cdmpute future out-

puts of the systems from inputs and previous outputs:
y(t+1) = fs[t;y(t),y(t-1)f-,-,y(1);u(t),».-,u(1);V0] (2.1)

where Vo, "the initial conditions”, represents the ne-

cessary information to compute y(1)}.

Often y(t+1) is not expressed as an explicit function
of old variables, but some recursive way to calculate
v (t+1) is'pfeferred. Linear difference equations and
state space models are well-known examples. The advan-
tage with such a description is that only a finite and

fixed number of old values are involved in each step.

For a stochastic system future outputs cannot be exactly
determined by previous data as in (2.1). Instead the condi-
tional probability distribution of y(t+1) given ali previous
data should be considered. It turns out to be convenient to
subtract out the contitional mean and consider an innovations
representation of the form

yit+1) = E[y(e+1) 1Y, 8] + e{t+1,Y.,S) (2.2)

where E[y{t+1)lyt,3)]is the conditional mean given all

previous cutputs and inputs,

E[Y(t+’!)[yt,3] = gs[t,y(t),...,y(ﬂ,u(t),..-,u(ﬂ;VO] (2.3)

. Here Vt denotes the o-algebra generated by



'{y(t),..e,y(1);u(t),‘..,u(1);VO}, and ¥y, "the initial
condition", represents the information available at time.

t = 0 about the previous behaviour of the system.

The sequence'{s(t+?,yk,s)} is a sequence of random va-

riables for which holds

E[e{t+1,Vt,SJth,S}= 0

It consists of the innovations, see Kailath (1970).

The conditicnal mean E[y(t+1)lyt,3] will also be called
the prediction of y{t+1) based on Vt. Since it will fre-

guently occuxr in this report a simpler notation

Q(t+1i3) = E[y(t+1)iyt,S]

will be used.

Remark. It should be remarked that the description (2.2) to
some extent depends on yO' Two cases of choice of VG will be
discussed here. The most natural choice is of course yO = the
actual a priori information about previous behaviour known

to the "model-builder". A disadvantage with this choice is
that in general E(y(t+1)|yt13) will be time varying even

if the system allows a time-invariant description. This point
is further clarified below. A second choice is Yo = 70 =

the information equivalent (from the viewpoint of prediction)
to knowing all previous y(t), u{t), t <0. This choice gives
simpler representations E[y(t+1)]vt,s), but has the disad-
vantage that 70 is often not not by the person performing

the identification procedure. Both choices will be discussed
in more detail for linear systems below.



General stochastic systems can be described by (2.2),
just as (2.1) is a general description of deterministic
systems. The main results of this paper : wil} be formu-~
lated for this general system description (2.2). ’

For practical reavons, in the usual system descriptions
the output is not g:ven expllcxﬂyr as in (2. 2) Various
recursive ways to calculate_y(t+1) are used instead.

Examples are given below.

Example 2.1 - Linear systems in state space representation.

State space representations are a common and convenient way
of describing linear, time-varying systems. The input output
relation for the system S is then defined by

x(t+1) = Agx(t) + Bgu(t) + elt)

(2.4)

it

y(t). Csx(t) + v{t)

where {e(t)} znd {v(t)} are sequences of. lndOpandent gaUSSLan

random -vectors WLth zero mean values and Ee(t)e {t}
Rs(t) . E e(t)v(t) = S(t) and E v(t)v(t) = Qs(t). The
system matrices may very well be time-varying but the time
argument is suppressed.

The function

E{y(t+1) 1Y, ,S) = y(t+11$)

N

where Y, is the o-algebra gensrated by {y(t),...,y{1),

u(t),...,U(1),VO} is obtained as follows:
g (£+118) = CgR(E+11S) | (2.5)

where the state estimate x is thained from standard

‘Kalman filtering:



S(E+118) = AgR(EIS) + Bgule) + Kg(t) {y() = Cer(£lS)) (2.6:2)

Ks(t) is the Kalman gain matrix,_determined from AS'

c
BS’ CS’ RS’ RS’ and Qsas

Ko(t) =[ASPS(t)cg + RE)[CSPS(t)Cg * QS)'l
{2.6b)

-1 T
Ks(t) + Rg

- 7 ' P
?s(t+l) - ’%ASPS(t)AS - Ks(t) [CSPS(t)CS + Qs)

The information VO is translated into an estimate of the
initial value X{o0lS) with corresponding covariance RS(O).
Then (2.6) can be solved recursively from t=0. The repre-
sentation {2.6) then holds for any VG’ and in this case it
js convenient to let VO be the actual a priori knowledge
about the previous behaviour of the system. Notice that if
the system matrices and covariance matrices all are t ime
jvariant and V0'='70, then also Kg will be time invariant.

A continuous time state representation'can be chosen in-
stead of (2.4). In e.g. Astrdm-Killstrdm (1973) and Mehra-
Tyler (1373) it is shown how E[y(t+1)|Vt,S], where ¥, is
as before, can be calculated. The procedure is analogous

to the one described above for sampled models.
a



Example 2.2 - General linear, time~-invariant systems.

A linear time-invariant system can be described as
_ -1 ' -1
y(£+1) = Ggla™b) u(t) + Hgla™™) e(t+1) (2.7)

where q_l is the backward shift operatof: q_l u{t) = u{t-1) and
Gs(z) and Hs(z) are matrix functions of z ( z replaces q_l). The
variables {e(t)}form a sequence of independent random variables
with zero mean values and covariance matrices E e(t)e(t)T = AS
{which actually ma& be time-varying). It will be assumed that
GS(Z) and HS A .
entries and that Héo) = I, The latter assumption implies that

(z) are matrices with rational functions of 2z as

e(t) has the same dimension as y(t)}, but this is no loss of gene-
rality. Furthermore, assume that det Hs(z) has no zeroes on or

inside the unit circle. This is no serious restriction, ¢f the

-1 -1y

spectral factorization theorem. Then Hg (q is' a well defined

exponentially stable linear filter, which is straightforwardly

obtained by inverting Hs(z).

To rewrite (2.7) on the form (2.2) requires some caution regard-
ing the initial values. If VO does not contain .enough informa-
tion the representation (2.2) will be time varying, even though

(2.7) is time-invariant. In such & case a state space represen-

tation can be used. A simpler approach is to assumé that VO =

Vb = the information equivalent to knowing all previous y(t),

u(t), t <0. Tt will follow from the analysis in the following
sections that this assumption is guite relevant for identification

problems.

From (2.7) we have

"1y y(e+1) = Hg (7Y GglaTh) wlt) + e(t41)

q S(q

and

Ta™hy y(e1) # BGH@TNegla™T) ult) + eft+1)  (2.8)

y<t+l) = {I = HS



9.

Since Hgl(o) = I, the right hand side of (2.8) contains y(s) an
u(s) only up to time t. The term e{t+1) is independent of these
variables, also in the case u is determined from output feedback.

Hence, if VO = VO’

B(y(t+1)]Y,.8) = (1 - 13t (a™ ol

- 1 =1

)} y(e+1) + Hg ) Ggla ) u(t) (2.9)
Now, linear systems are often not modelled directly in terms of

the impulse response functions GS and HS' A frequently used re-

presentation is the vector difference eguation (VDE):

— -1 -, =] — -1
E (™) y(t) = Bgla™) ult) + Tgla™™) elt) (2.10)
Another common representation is the state space form (in the

time-invariant innovations form):

x{t+1l) = AS x(t) + BS u(t) + Kg el(t)

y{t) = Cg x{t) + e(t)

(2.11)

It is easily seen that these two representations correspond to

Gylz) = Kgl(z) Bolz) H(z) = Bt (z) Tglz) | (2.12)
and
GS(Z) = CS {1 - ZAS)_l BS HS(Z) = zCS(I = ZAS)-lKS + I (2.13

respectively.In these two cases Gs(z) and Hs(z) will be matrices

with rational functions as entries.

Inserting {2.12) into (2.9) it is seen that E(y(t+1)| ¥.,S)
§(t+l|$) is found as the solution of

cla™) Fle+1]s) = fegla™) - Agla™) ) y(s41) + Bgla™) ule) (220

for the case of a VDE model. Solving {2.14) requires knowledge of
y(O),...,y(—n),u(O),...,u(—n),y(O]S),...,y(—nIS). This informa-

tion is contained in the information 76.
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~

For the state space model (2.11) y(t+l|3) is found from

x(t+1) = Asi(t) + Bsu(t) + sty(t) - csi(t)}
(2.14 b)
F(t+1]S) = cok(t+1)

where the initial condition %(0) is obtained from VO.

Notice that there is a parameter redundancy in the represen-
tations (2.10) and (2.11). All matrix polynomials A, , §S’ and Eé
and 211 matrices Ag, Bg, Cgs Kg that satisfy (2.12) and (2.13)
respectively, correspond to the same system (2.7).

These examples cover linear, possibly time varying sys-
tems. Clearly, also non-linear systems can be represen-

ted by (2.3). A simple example is
y(t+1) = £(y(t),ult)) + oly(t))e(t+1)

1t should, however, be remarked that it is in general

no easy problem to transform a non linear system to the
form (2.2). This is, in fact, equivalent to solving the
non-linear filter problem. It is therefore advantageous
to directly model the non-linear system on the forxrm (2.2),

if possible.

2.2. Models.

In many cases the system characteristics, i.e. the func-

tion g. in (2.2) and the properties of {s(t+l,yt,3)}are not

S
known a priori. Une possibility to obtain a model of

the system is to use input output data to determine the
characteristics. In this report we will concentrate on

the problem how the function gg can be found.
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Naturally, it is impossible to find a general function
gs(t;y(t),...,y(1);u(t),...,u(1);V0]. Therefore the class
of functions among which g is sought must be restricted.
We will call this set of functions the model set or-the
model structure. Let it be dencted by M and let the ele-
ments of the model set be indexed by a parameter vector
6. The set over which 6 varies will be denoted by Dy« A
certain element of M will be called a model and be de-

noted by M(e) or written as
Bly (t+1) 1Y . H(8)] =
= gM(d)[t;Y(t),...,y(ﬂ); u(t),...,u;1);_yo)‘

Hence
M= {M(8) ]GEDM}

A complete model of the system also models the sequence
{s(t+1,yt,3)} so that it is described by

y(t+1) = Bly (t+1) 1y, H(e)] + e (t+1,¥ ,M(0))

where {s(t+1,Vt,M(a)]} is a sequence of random variables

ith conditiomsl distribution that depends on M(8)
For brevity, the notation

Cy(e+11e) = E[y(e+1) 1y, , (e} ]

is also used for the prediction.
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The model structures can be chosen in a completely ar-
bitrary way. For example, g can be expanded into ortho-
gonal function systems: '

Such choices are discussed by e.g. Lampard (1955). If
there is no natural parametrization of the model, such
an expansion may be advantageous. Tsypkin (13973) has
discussed models of this type in connection with iden-
tification of non-linear systems. However, the usual
choice is to take one of the models in Example 2.1 or

2.2 and introduce unknown elements 85 into the system
matrices. '

% vector difference eguation model, e.g., is then

described by

. 1 -1 T T
Byoy (@ DY(E) = By lq dule) + Cy eyl yeltsHce))
where

n(a)
AM(G)(Z) = I + A1KM(8)Z + oee. + An(e),M(e)

etce,.

{e(t;M(8)}} is a sequence of independent random variables
with zerc mean values and Es(t,M(e})g(t,M(e)]T = AM(G)'
The unknown elements may enter quite arbitrarily in the
matrices Ai,M(B)' Some elements may be kno?n from basic
physical laws, or a priori fixed. Other elements may be
related to each other etc. Generally speaking, M can be
described by the way the parameter vector & enters in

the matrices: the model parameterization.
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Thus, for time-invariant linear systems the choice of model type,
(vector difference equation, state space representation etc)
and parameters can be understoocd as a way of parametrizing G

and H in (2.8): %A(e) and HM(S) via (2.12) or (2.13).

Remark. Like for the system description, also the model descrip~
tion depends on the initial conditions VO. It would be mosti
sensible to choose % as the actual a priori knowledge, but as
remarked previously, this gives more complex algorithms for com-
puting the prediction. For time—-invariant systems it will there-
fore be assumed in the sequel that VO ='70 = knowledge of all
previous history. Since % is in general not known it has to be
included in the model:V0 =-70(8). Often it is sufficient to
take ¥ ( Yy = 0 all ® , i.

Zero 1n1t1al conditions in (2.14) and (2. 14b)

e. u{t)=y(t¥0,t <0, corresponding to

2.3.'Identification Criteria.

The purpose of the identification is to find a model
M(®) that in some sense suitably describes the measured
input and output data. '

The prediction of y(t+1) plays an important role for
control. In, e.g., linear guadratic control theory, the-
_optimal input shall be chosen so that E[y (£+1) 1V, ,8] has
desired behaviour. This is the separation theorem, see
e.g. Astrém (1870)}.

Therefore, it is very natural to choose a model that

L



1.

gives the best possible prediction.- That is, some func~ .
tion of the prediction error

y(t+1) = E{y.(t+1) iyt,h{(e)j_

should be minimized with réspect to 9.

We will consider the following class of criteria. In-

+roduce the matrix

N

oyl = MR (r(6) - y(x]e)) VREDEe) - F(e]0))3" 2.

Its dimension is.nyxny, where ny is the number of out-
puts. {R{t)} is a sequence of positive definite matri-
ces. It is assumed that {IR(t)|} is bounded. The selec—
tion of the matrices naturally effects the relative im-
portance given to the cémponents of the prediction. A
special choice of weighting matrices is discussed in
Section 2.4. '

2 scalar function, h[QN[M(e)]}, of the matrix of predic-
tion errors will be minimized with respect to 8. For the
minimization to make sense, some simple properties of
the function h must be introduced.

Properties of h. Let h be a continuous function with n_xn -,

symmetric matrices as domain. Assume that
h{xa) = g{n)h(a), r,g(r) scalars and g(x} > 0 for x > 0 (2.
Let 6T < A < 1/81 be a symmetfic positive definite mat-

rix, and let B be symmetric, positive semidefinite and

non zero. Assume that then
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h(A+BHC,) > h(A) + p(8)tr B where p(5) > 0 (2.16b

for tr CECE < &4 where €q depends only on & and tr B.

8]
Tf h satisfies (2.16}, it defines a well posed identi-
fication criterion by
Ty (8) = nlog(M(e)) )
or _ (2.17)

VN(Q) = h[% QN(M(e)]]

in partiéular, h{pA) will be taken as tr A, which clear-
1y satisfies (2.76). This criterion is brobably the
easiest one to handle, theoretically as well as compu-
fationally. Then ‘

- 7 N i 5
tr Qg (M(e)) = % \y(t) - y(£1e) [R ety

where [X[E(t):m XTR(E) X.

Another possible choice is n{a) = det(d), which is of
interest because of its relation to the likelihood
function, c¢f. Section 2.4.

Lemma 2.1. h{a) = det(A) satisfies (2.16).
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Proof. Condition {2.16a) is trivially satisfied.

1/2 _

it

det At/ 2get (T + A'1/2(B+ce)A"V2) det A

det(A+B+CC)

bed

Y
det o 11 (1+di)
i=1 .

i

where d; are the eigenvalues of A_1/2(B+CG)A-1/2.

Let X be the largest eigenvalue of B. Then A > tx B/ny.

Also, A“1/EBA*1/2 has one eigenvalue that is larger or

~1/ZBA~1/2 -1/2

equal to A8. {Consider A %, whexe A X is an

elgenvector to B with eigenvalue A.) Now, adding Cs to
B can distort the eigenvalues at most €/6 vwhere €= HCEH,
the operator norm of Cg’ and

n -1 |

n
1 Y

1} (1+di) > m (1-¢/8)] (1+6r-£/8) =

i=1 i=1

n_&
> {:_FX_][1 + 5B - 0/5} > 1 + L trs

& . 2
ny k ny,
for € < {i te B - = J;S.
2n {~K + tr 5] 
Yl g

which concludes the proof.

In this chapter we will consider the limiting properties of tt
estimate 6 that minimizes (2.17) as N tends to infinity. Of
particular interest is of course whether the limiting values c¢

§ gives models M(g) that properly describe 8. This is the pro-

blem of consistency of prediction error identification methods
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So far we have only discussed how the function Bly (£+1) )
iyt,S] can be estimated. The properties of {e(t+1,Y ,S8)}

can then be estimated from the residuals
y{e+1) = E{y{t+1}!¥t,M(a*)] = s(t+1;vt,M(ef))

where 8" is the minimizing value. In particular, if
{;(t+1fyt,3}} = {e{t+1)} is a stationary segquence of
independent random variables with zero mean values and

we are only interested in the second order moment pro;
perties then A = Ee(t)e?(t} can be estimated as % QN[M(s*))_
where QN is defined by (2.15) with R(t) = I.

2.4. Connection with Maximum Likelihood Estimation.

It is well known that prediction error criteria arxe in-
timately connected with maximum likelihood estimates.
This section contains a brief discussion of how the

formal relations can be established.
Consider the model

y(t+1) = E(y(e+1) 1y, H{s)) + e (t+1 4 {0)) (2.1



18.
with ==
Ee (tiM(8)) et (E5M0)) = A(E)

Let ﬁhe innovations'{c(t,M(e)]} be assumed to be inde-
pendent and normally distributed. The probability den-
sity of y(t+1) given Y. and given that (2.18') is true
then is

) 1 :
f(x. .1y} = i
5 /I det TTEFTT .

sy lxpq ~ 7110 1T (4 ) [xyy = v(E+110) T
. | £+l

Here £(xl1Y,) = F'(x|y,) where F(x1¥,) = P(y(t+1) < xIV).

Using Bayes' rule the joint probability density of y(t+1}
and y(t) given V -4 can be expressed as
£i{x

!Vt_1)'= f[xt+1|y(t) = Xy t 1)f(x

e+ g Veaq) =
= flx g Y Ex Y ) =

[2rn det A(t+1)det K{t)]“1/2

. exp{-%[xt+1 - yrerr16) T ey
[Xpq y(t+1le)]} .
o 7= e, !
. exp{ﬂa[xt - yi{tle) ] a A(t)[xt = y(tie)j}
where y(t) in y(t+118) should be replaced by X.. In

case E{y(t+1lyt,M(e))} does not depend linearly on y(t),
the distribution of (y(t+1),y(t)] is not jointly normal.
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Tteration directly gives thé joint probability density
of y{t+1),v(t),...,y{(1) given VO‘ The logarithm of the
likelihood function, given VO, then is obtained as

log £{y(t+1),...,y(1)1Y,y) =

[y(s+1) - v(s+118) ]TA Het1) [y(s+1) = y(s+1le)]-
0

:----1é
S

I g ot

- % log 2n - [ log det A{s+1)

iy}

ol
f o~ 1t

The maximum likelihood estimate {(MLE) of & therefore is

ocbtained as the element that minimizes

t

b oly(s+1) - v (s+118) ]T;r?(s-ﬁﬂ{y(s-%‘l) - §(s‘+1 ()] +
S::’E » S

t _
+ 1} log det A{s+1)
s=1

If the matrices R(t) are known, the MLE is consequently
obtained as the minimizing point of the loss function
(2.17) with h(A) = tr(A) and R{t) = A ' (t).

When K(t} are unknown, the minimization should be per-
formed also with respect to fA{s)}. In case A(t) does
not depend on t, the minimization with respect toji can
be performed analytically, Eaton (1967), yielding the
problem to minimize det[QN(M(e)}] giving 8(N) [whefe
R(t) = I in Qy(#(e))] and then take

b= Jﬁ QN(M[e(N))}
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Summing up, the loss function {identification criterion)
(2.17) which per se has good physical interpretation,
also corresponds to the log likelihood function in the
case of independent and normally distributed innovations.
In the analysis, however, this will not be exploited.
The results are therefore valid for general distribu-

tions of the innovations.
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3. CONSISTENCY AND IDENTIFIABILITY.

The question of identifiability concerns the possibili-

ty to determine the characteristics of a system using

input output data. This gquestion is obviously closely
related to the problem of consistency of the parameter
estimate g. A way to connect the two concepts is introduced in
this section. The definitions given here are consistent with
those of Ljung-Gustavsson-3oderstrdm (107h).

The consistency of the parameter estimate 6 depends on

a variety of conditions, such as nolse structure, choice

of input signal, model parametrization etc. One specific
problem is that there usually is parameter redundancy

in the models. It was demonstrated in Examples 2.1 and

2.2 that several sets of matrices give -the same input
output relationships, and hence cannot be distinguished

from each other from measurements of inputs and outputs.

Introduce the set

n
I : ,
D, (S,#) = {efeeD, lim ! (B(y(t+1)Y, . Yo>8) = E(v(s+1]y, ,v (8),i(e)}’

N=aoo

AB(y(er1) |V .Y, 8) - E(y(e+|y, .Y (e),M(e))} = 0 all v}
(3.1)

The set DT(S,M) consists of all parameters in D,, which give

models that describe the system without error ig the mean square
sense. There might be differences between S and M{8), GEDT(S,M}
due to initial conditions and discrepances at certain time in-
stances, but on the whole they are indistingﬁishable from in-

put cutput data only.

For the case of linear, time-invariant systems it is easy to
> ) ¥

see that DT(S,M) can be described as

D, (S,M) = {8]eeDy, GM(B)(Z) = Ggl2) HM(B)(ZJ (z) a.e.z} (3.2)

g
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Clearly, it is not meaningful to consider consistency
if DT(S,H) is empty. Therefore, unless otherwise stated
it will be assumed that M is such that DT(S,M) is non
empty. Naturally, this is a very strong assumption in
practice, since it implies that the actual process can
be modelied exactly. However, the theory of consisten-
cy does not concern approximation of systems, but con-

vergence to "true" values.

The estimate based on N data, ¢(N}, naturally depénds
on S and M and on the identification methed used, 1. It
also depends on the experimental conditions, like the
choice of input signals, possible feedback structures
etc. The experimental conditions will be denoted by X.
When needed, these dependences will be given as argu-
ments.

Suppose now that

B(N) -~ DT(S,M} w.p.1 as N - o (3.2)

Remark. By this is meant that

inf |le(N) - 8'| » 0 with probability one as N - =
8'€DT i

It does not imply that the estimate converges.
]

Then the models that are obtained from the identifica-~
tion all give the same input cutput characteristics as

the true system. If we understand a system basically as
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an input output relation, it is natural to say that we
have identified the system if (3.2) holds:

‘Definition 3.1. A system § is said to be System Identi-
fiable (SI(M,1,X)) under given M, I, and X, if 6(N) -
-—p DT(S’!’{) w.p-1 as N -~ COe

If the objective of the identification is to obtain a
model that can be used to design control laws, the con-
cept of SI is quite adequate. Since all elements in
DT(S,M) give the same input output relation, they also

give equivalent feedback laws.

When minimizing the criterion funetion, it may however lead
to numerical difficulties 1f there is a non-unigque minimum.
If the objective is to deermine some parameters that have phy-

sical significance snother concept is more natural:

Definition 3.2. A system S is said to be Parameter Iden-
tifiable (PI(H,1,X)) under given M, I, and X, if it is
SL{M,1,X} and DT(S,M) consists of only one point.

Remark. Parameter identifiability is the normal identi-
fiability concept, and it has been used by several au-
thors, see e.g. Astrom-Bohlin (1965), Balakrishnan (1968),
Bellman-Astrdm (1970), Tse-Anton (1972) and Glover-Wil-
lems (1973). Usually the system matrices are assumed to

¢ for the given

correspond to a certain parameter value 8
model parametrization. In such a case the parameter eO'
is said to be identifiable w.p.1 {or in probability) if
there exists a sequence of estimates that tends to 80
w.p.1 {or in probability). Now, the sequence of esti-
nates converges to 60 w.p.1 if and only if it is PI(H,

1,X) according to Def. 3.2 ahd‘DT(S,M) ='{80}. Therefore
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the definition just cited is a special case of the De-
finition 3.2 above.

Clearly, a system § can be PI(M,T,X) only if DT(s,M) =
z'{eo}. This means that there exists a one to one cor-
respondence between the transfer function and the para-

neter vector ¢ 0

. This one to one correspondence can
hold globally or locally around a given value. The terms
global and local identifiability have been used for the
two cases, see e.9g. Bellman and Astrém (1970} . Defini-
tion 3.2 clearly corresponds to global parameter iden-

tifiability.

The problem to obtain such a one to one corraespondence
for linear systems . i8 related to ! canonical repre-
sentation of transfer functions. This is a field that
has received much attention. The special questions re-
lated to canonical forms for identification have been
treated by e.g. Astrdm-Eykhoff (1971), Caines (1971},
Mayne (1972) and Rissanen (197%).

From the above discussion we conclude that the problem
of consistency and identifiability can be treated as
three different problems:
I. First determine a set DI(S,M,I,X) such that
8 (N} -~ DI(SJM.vIrX) W-p-1 as N - =
This is a statistical problem. To find such 'a set,
certain conditions, mainly on the noise structure
of the system, must be imposed.

IT. Then demand that

DT(S,M) S DI(S,M,I,X)
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i.e. that § is SI(M,7,X). This introduces reqﬁire;
ments on the experimental conditions, X, choice

.of input signal, feedback structures etc.
ITI. If so desired, require that
D, (S, ) = (6%
Y

This is a.condition ,on the model structure only,

“and for linear systems it is of algebraic nature.

In.Lemma 4.1 and in Theorems 4.1 and 4.2 of the following section
the set DI is determined for general model structures {(2a8),

and linear systems respectively.

Problem IT is discussed in Section 5 for iinear time-invariant
systems. In Custavsson-Ljung-Sdderstrém (19T4) problem II is

extensively treated for vector difference equations.

Problem III is, as mehtioned, the problem of canonical
representation and can be treated separately from the
identification'problem. It will not be discussed in this
paper. .

Rémark. In the following, the arguments S, M, 1T, X in-

Dy D/ SI and PI will be suppressed when there is no
risk of ambiguity. '
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Y. CONSISTENCY FOR GENERAL MODEL STRUCTURES.

The problem to determine a set DI is, as menticned above, a
statistical problem. The approach used in most works is to app-
1y an ergodicity result to the criterion function {2.17) ana

then show that DI is the set of global minima of the limit of
the criterion function. However, to assume ergodicity of the
involved processes introduces rather limiting conditions on

the system, possible feedback structure and on the input sig-
nal. Furthermore, uniform (in ® ) inequalities for the loss
functions must be established. This is a fairly difficult prob-
lem, which in fact has been overlooked in many of the previous

works.

The set into which the estimates converge will here be shown

to be

DI = {QIGEDM 3 1lim inf%‘ |§'(t+lis) - ff(t*‘l}e)lg(t) = 0} (h'l)

R

[l Sart =

The reason for using limit inferior is that, under some cir-

kXumstances, the limit may fail to exist.

Tt should aslso be noted that DI may depend on the realization @,

p.(®w), although in most applications it does not {(s.e), see

1l
Section 5. For adaptive regulators it is, however, sometimes

useful to consider DI as a function of W,

If convergence into a set that does not depend on w is

desired, this can be achieved by showing that

bI"(w) e Bi w.p.1 or bI {w) < Bi' wW.p.1 (h12)

Then 6{N) - 51 " w.p.1 as N o oo,
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4,1 Main result.

Lemma 4.l. Consider the system

y(t+1) = B(y(s+1)]V,.8) + e(t+1,Y,,S)
where E(Ie(t+l v S)]hly ] < O
,t, .t -
Considef a set of models, M, such that Di(S,M) igs non-empty.

Let 6(N) minimize the identification criterion (2.17),

-
VN(B) = hix Q (M(e)ﬁ , where h satisies (2.16), over a compact

!N N =
set DM' Let DI(m) be defined by (4.1). Suppose that
z{t) = sup max %E &tl)(t|6) ((i) denotes i:th row)

D! 1<i<
6e M 1H__1_ny
where Dﬁ is an open set containing DM’ satisfies the follow-

ing condition

1 N 2
lim sup ¥ } o z(t)° <«  w.p.l (4.3)
N»roo 1

Assume further that

l1im sup “tr % QN( M(B)]<m w.p.1l for any fixed GEDM (4.4)
N> . .
and that

B(e(t+1,¥,,8)e(t+1,Y, ,8) |y, J261 all t (n.5)
(for h = tr this assumption (4s5) is not necessary).’

Then the estimate
6(N,w) + DI(m} a.e. as N+

The proof of the lemma is given in the appendix.
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To apply Lemma L.l conditions (4.3) and {(4.4) have to be checked.

This requires some analysis of the model structures.

Remark. If the search is restricted to a finite number of mo-
dels, conditions (%.3) and (4.4) can be removed and as the set

DI the smaller set

{ 8] 8¢D |y (t+1]s) - 9(t+1|e)|§(t);< 2

M

pe~18

can be chosen, see Ljung’ (197h).

4.2 Linear systems.

For the linear, time-invariant model described in Example 2.2
it is relatively easy to find the variable z{t) defined in
Lemma 4.1. If the search for models is restricted to those
corresponding to stable predictors, (4.3) will be satisfied if
the input and output are subject to similar conditions. This

is shown in Theorem L.1.

Theorem 4.1 {({Linear, time-invariant systems)

Consider the system {(2.7)
~1 -1 .
y(t+1) = Gs(q ) u(e) + Hs(q ) e(t+1)

where Ele(tﬁh<c (and,if the general criterion {2.17) is used
E e(t)e(t)T »8I ), and let the model set be described by

(™) e(t+1) s eD

(a"1) u(s) + H }

y(t+1) = GM(

9 ) Mo

where Dy is compact and GM(S)(Z) and HM(S)(Z) are matrices

with raticnal functions ag entries. Assume

‘o for VDE—parametrizations (2.12), that det CM(B)(Z) has all

seros outside the unit cirecle for eeDM.
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o for state space realizations (2.13), that AM(G) - KM(GXCM(ed

has all eigenvalues inside the unit cirecle for BEDM.
o for the general case, that det HM(S)(Z) as well as the least
common denominator to the denominator polynomials in GM(G)(Z)

and H (z) have all zeros outside the unit circle for 8eDy.

M(e)
Suppose also that DT(S,M) (defined in (3.2)) is non-empty.

Any feedbadirelationships between u and y may exist, but assume

that

I TR .
lim sup § ) ( y(t)" y{t) + u(t) u(t)] < @ w.p.l {(L4.7)
N> 1

_ Then the identification estimate 6(N) converges into DI w.p.1

as N tends to infinity. In this case D_ can be expressed as

I
' S iy o . RS |
py = {o] oeDy; ﬁii inf I :ZL |(HM(B) L oHG )y (t+1) 4
-1, -1 2 _
+ (Hg g = Hylg) GM(e)] uf(t)|® =01}

n

The proof is given in the appendix. It uses the fact that if
det HM(G)(Z) has all zeros outside the unit ecircle, then the
linear filters that determine g(tle) and %E #{t|6)from u and

y are exponentially stable.

For the time-varying model described in Example 2.1 it is known
that the Kalman filter (see e.g. Jazwinski (1970), thecrem T.h4)

is exponentially steble if the pair (A(t),c(t))is completely
uniforﬁly observéble and the pair [A(t}; /ﬁTE?] is cqmpletely
uniformly controllable. Furthermore, the basis for the exponen-
tial depends only on the bounds on the observability and control-

lability Gramians. Hence we have the following theorem:
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Theorem 4.2 (Time-varying linear systems on state space form).

(onsider the linear system described in Example 2.1 and suppose
that the covariance matrices are uniformly bounded from above.
(For the general criterion (2.17) assume also that

Co(t) Polt) Cs(t)T + g(t) >6T.) Let the set of models be de-

S
fined by

x(t+1) = A (t) x{(t) + BM(G)(t) ult) + e{t)

M{8)
GEDM

y(t) = CM(e)“”) z{t) + wit)

where [e{%)} and {w{t)} are sequences of independent gaussian
random variables with zero mean values and E c(t) e(t) = RM(S)(t)’
T
it { =
E e{t) wit) RM(e
pact set such that D (S,M) defined by (3.1 ) is non- empty and

)(b) and E w(t) w(t) = QM(S)(t)' is a com-

such that (A,C) is unformly (in t and in egD ) completely obser-
vable and (A,VE) is uniformly (in t and in 8¢ D ) completely con-

trollable.

Any feedback relationships between u and y may exist but assume
that {(4.7) is satisfied. Then the identification estimate 6 (N)

converges into DI with probability one as N tends to infinity.

Theorems 4.1 and 4.2 determine the set DI under quite general and
weak conditions. Actually, the imposed conditions: bounded fourth
moments of the innovations, model search over stable predictors
and the condition on the overall systenm pehaviour (4.7) are be-

lieved to be satisfied in almost all conceivable applications.

For sctual applications it is of interest to study DI more closely:
When is it possible to find a set Dg satisfying (4.2 ) and what
additional assumtions on the input generation must be imposed

in order to assure DICIDT , i.e. system identifiability. These

gquestions are discussed in the next section.
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5, IDENTIFIABILITY RESULTS.

As outlined in Sectiocn 3, the identifiability and consistency
questions can be separated into three problems. The first pro-
blem, to determine a set DI was solved in the previous section,
The second problem, investigation of the set DI and in particular

the relation DICI DT will be the subject of the present section.

5.1 A deterministic set DI;

DI as defined in (4.1) is a random variable. However in most

applications

DI = DI W.P-1 (5.1}
where

— 1 N 2

D. = {6] 8eD,, 1lim inf =7 Elg(e+2]S) - gle+rje) )5,y = 0} (5.2)
I M e L R(t)

where the expectation is with respect to the sequence of innoc-

vaticns. This deterministic set EI may be easier to handle.

For linear systems the relation (5.1) will hold if the system 1s
in open loop and is stable, or contains linear feedback which
makes the closed loop system exponentially stable. To include

also non-linear feedback terms, which makes the closed loop system
non-linear, the concept of exponential atability has to be exten-—

ded to stochastic, non-linear systems.

Definition 5.1. Consider the linear system

v{t+1) = Egyff+1§}y£;§}+_e(t+1)

where e(t) are independentlrandom variables, and where
part of the input u{t) is determined as (non linear) out-
put feedback. Let the system and regulator be started up
at time t-N, with zero initial conditions, yielding at
time t the outputs and inputs, yg(t) and ug(t) respec~

tively. Suppose that

0
vy - yOeer| < ey, [ute) - upte)] < Cey W



some ) < 1, where C{Vt_ﬁ) is a scalar function of Y. o

such that EC(Vt_N) < C.

Then the closed loop system is said to be‘exponential;y

stable. -
— = o
For linear feedbaCk this definition 1s consistent with that

the closed loop poles be inside the unit circle.

Tt turnans out that exponential stability essures not only (5.1}

but also (4.7). Hence we have the following lemma:

Lemma 5.1. Consider the linear systems of example 2.1 or examp-

1e 2.2.Let the input have the general form
u(t) = ft(y(t),-¢~-,y(O);u(t—l),---,u(O)) + u (t) + w(t)

vhere ur(t) ijs a - signal : that is independent of y(s),u(s),s< t

and such that

1im sup %I—-Ilur(t)l2 < w,

N+

{w(t)} is a sequence of disturbances of a filtered white noise

character,say, which is independent of {e{t)} and such that

E Iw(t)}h< ¢. The function f, may be unknown to the experiment

designer. Assume that the input is such that the closed 1ocp'

gystem 1is exponentially stabl¢ (Def 5.1) and that DM satisfies

the assumptions of theorem L.2 or 4.1 respectively. Suppose that
e(t) , y(t) and u(t) have uniformly bounded fourth moments.

Then (4.7) and (5.1) hold.

Proof. The proof is based on the following theorem due to Cramer

and Leadbetter (1967):

sp + tp
1f Jcov( £ls), E(t))|< X 0 < 2p < q < 1
hl q = (5.3)
1+ Jt-s|
then
N
1im = E ( E(s) - E E(s)) = 0 with probability one.

N> i sE1
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ft follows by straightforward calculations from the assump:

tions on exponential stability and omn DM that

1t

() = |9(6]S) - F(ele)|5yy ond

13

De) = lye)]? ¢ jule)}?

satisfy (5.3). (For details, see Lijung(1974), Lemma 5,2.) This

proves the lemma.

5.2 Linesal Time-invariant Systems

L,et us now study in more detail linear time—invariant systems as
treated in Example 2.2 and Theorem L.1. Since this class in-
cludes any parametrizatiqn of vector difference equations or
state space realizations or any other parametrization of a linear
time-invariant system, it is believed that such analysis is

sufficient for most applications.

Prom Theorem 4.1 and Lemma 5.1 it follows that the estimates tend
to the set

]
ace - L} " -« .p :_l__ '-1 _ —l y
D; = {o] 1im inf m§ E'[ﬁM(e) Hg )y(t+1) -

Koo

+(Hg O “HQ%G)GM(B))u(t)lz F 0

This set clearly depends on the input signal. If the input is

not sufficiently general, the set may contain parameters cor-
responding to mnodels that describe the system well for the used
input, but fail to describe it for other inputs. This is the case
if the input contains too few fregquences OY if it has certain
relationships with the output. Then EI is not contained in DT

and the system is not Systen Tdentifiable for this input (ex-

periment condition).

The set 51 has been analysed in Ljung—Gustavssonmgodersﬁrom(19Th)
in detail for the case of time-varying feedback. Here we will
consider a case with linear feedabck and an extra input signal

{or noise).
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Let the input be
_ -1
u(t) = Fla™7) y{t) + ugls)
where {u {t)} is a sequence that does not depend on {e(t)}.

Suppose that F(z) is a matrix with rational functions as en-

tries, such that the closed loop system is stable.

The closed loop system is
. -1 -1 -1,y-1 -1
ylt+1) = (I - a76g(a™") Fla™)) 77 Hgla™) elt+1) +

ST - 0 Yeg(a™h) F(aTH) T eg(aTh) uglt)

Introduce

¥(s+1) = (1 - a7log(aT) F(a™h)) 7t Hgla™) e(t+1)
Yoe) = (1 - tegla™) F@h) T agla™) ug(t)

Kg(a™) = Hptgy (™) = HgH(a™)

L(a7h) = H5H (@ egla™) = Hyrgy (87 )Gyqqy (a7 1)

Then

D, = {e] :I\Llii inf —1 | K, (q™1) (8(t+1) + up(t))

- Ly (a7h) (FlaTh) E(ee1) + p(a™) Ho(t) + ug()) % =0 3

Since g is independent of ﬁR and Ups the expectation can be

written
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(K, (a7h) = L o(aTHF(TIN ()T 4

+ E| (K (a7) - By (a IF(QTH))Hp(s) + Lola T up(e)]?

Tr E el(t)e(t) > 6T , then it follows that

=1 -1 -1 .
Ke(q ) - Le(q JF(q ) = 0 for @eD; {(5.4)
since the first term has to be arbitrarily close to zero infi-

netely often for QEBI.
This in turn implies that

1im inf e

IL (q_l)u (t)|2 = G for 6¢eD._.
6 ‘R
N+m

I.

=|
~1=

IT ug is persistenly exciting (see e.g. Mayne(1972)} of suffi-

ciently high order then this implies that

-1, = .
) } = 0 for GsDI

which, via (5.4) implies that

= 0 for esﬁl.

Remark. Let UM(t) = col (uR(t), T ,uR(t-M)).
Then it is sufficient to assume that

T
)

5T < % < % I 3 N> N (5.5}

(ol e =1

UM(t)UM(t

The 1limit of the sum does not have to exist, as in the defini-

tion of persistent excitation in Mayne(1972).

The number M for which (5.5) has to be satisfied depends on §
and on the parametrization of j.For state space representations
M can be related to the orders of the system and model, see

e.g. Mayne(1l972}.
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For the unspecified models, which we deal with here, we can

require that {5.5) holds for any M.

Summing up this discussion, Lemma 5.1 and Theoren L.1, we have

the following theoremn.

Theorem 5.1. Consider the system (2.7),S,

y(t+1) = 6gla™) uls) + Hgla™) e(t+1)

where {e(t)} is a sequence of independent random variables such

that Ele(t)lh < ¢ and E e(tye{t)T > &I
The input is
. -1 7
ult) = Fla ") y(t) + ug(t)
where {u (t)} is independent of {e{t)} and satisfies (5.5) for
any M. Assume tkHat F is ‘such +ndt the closed  loop bystem 1s

exponetially stable.

Let the model set,M , be described by
v(t+1) = Gy, (@ h) uw(t) + H,, \(a"P) e(t+1) ; @eD
Mie) M{e) M
where DM_is compact and such that HM(G)(Z) satisfies the same con-~
ditions as in Theorem klTor 6eDy. Assume that DT(S’M) is non-
empty. Let 8{N) be the estimate of 6 based on N data points, ob-
tained by minimizing the general criterion (2.17). Then
a(N) - DT(S,M) with probability one as No>o
where

DT(S,M) = {B'GS(Z) = GM(G)(Z) 5 Hs(z) = HM(G)(Z) é.e. z.}

mThat is, § is System Identifiable.
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Remark. Notice that, when evaluating the criterion (2.17),
the predictor ?(t|e) does not have to be based on the true
junitial data. As remarked several times above, it is most

suitably chosen as the time-invariant,steady state prédictor
(2.9) initialized with zero initial state.
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6. CONCLUSIONS.

In this c&ntrlbution consistency and ijdentifiability properties
of prediction error identification methods have been investi-
gated. A separation of the problem into three different tasks has
been introduced, and results of varying generality and on vary-
ing levels have been given. The results can be used as a kit for
"doing-your-own consistency theorem"” in a specifie application.
They also solve the {dentifiability and consistency problem for
linear, time-invariant systems under guite generai assumptions,

as shown in theoren 5.1,

The hard part in consistency theorems 1is believed to be to
determine the set into which the estimates converge {Problem I
in the formulation of Section 3). This has been solved for
gquite general {Lemma ¥.1) as well as for linear systems (Theo-
rems 4.1 and 4.2). Due to the very weak conditions imposed,
these results are applicable to adaptive systems of almost any
kind, in addition to the more straightforward cases treated in

Section 5.

The difficult and vital problem of choosing a parametrization
(model set ) that gives identifiable parameters and consistent
parameter estimates has not been considered here. However, this -
problem is most conveniently treated as a problem of its own,

and it does not depend on the identification method chosen.



39.
APPENDIX. o

A.1 Proof of Lemma 4.1

The idea of the proof is to show that
iﬁfv(9)>v('é’) for N>N(6xpm)
N N 0 o

where the infimum is taken over an Open sphere around waith redgius p ,
and vhere 8eD,. Then the minimizing point € (N) cannot belong to this
sphere for N > NO(BX, p,w). This result is then extended to hold for the
complement of any open region coqtaining DI’ by applying the Heine~Borel

theorenm.

Let without loss of generality R(t) = I. Introduce, for short,

et} = e(6,Y, .8) = y() - ¥(£[$)

t-1?

and consider

. T
Q(8) = 1 eltlelt)
1

Let E[e(t)e(t)TIV£_1] = S, . According to the assumptions

Sf > 8T for all t.

Each element of the matrix

= T
z(t) = Jlelklelk)” -~ 8 J/k
1

clearly is a martingale with bounded variance, from which
followus that

“1'Q __11}‘] ’
N N “ﬁ% S, » 0~ W.pe 1 ag N+e



do,

and

where P(Ql)=1

1

: 1
2/ 6 -2% Qéﬂ _._,:%- 1 for n > N () , wed

where &' = min{5,1/C}.

(The argument w will as a rule be suppressed in the variables y.,e, ; ete,

but used explicitly in bounds. )

Introduce also

a(t) = $(£|S) = y(t]e™)

Then it follows from (4.4) and {A.1l) that

OIS c (w6 nge(ex) ,P(Qe(ex))=l. (A.2)

[ =1

1
N
Now take a fixed element gEDT and consider
' N 2 ny | . vy T
Q®) = § (v(s) - y(t]&)] (v(t) - y(£][&))
§ .
Introduce
alt) = F5|8) - ¥(&]¥)
Then
| n T T : T
0 (¥) = qy(s) + T (e(tlale)” +altlelt)” alt)al(t)” )
il | ; -
Since ggDT, by definition

a(t)Ta(t) > 0 w.p:1l as Now

[l e 1

1
N

and



hi.

N » N .
117 ewate) +atwe®® P u(F ] le®]® - § T el %)
1 1 L

But from (A.1)

N
EX ) |e(t)}2 <2n /8 for N> N (w) (n, = number of outputs)
N 1 ¥ 1 i )

Hence

QN(E) - QN(S) + 0 w.p.1 as Moo

and, since h is continuous,

Vy(8) < Vy(S) + e for N> N, (w,e) and wefly, P(a3)=1 - (a3)
Now consider QN(B) and decompose
yw)-ﬂﬂwéy&)-ﬂﬂ9+§&w)—ﬂﬂ¥)+ﬂﬂfi-ﬂﬂm

where 87Dy is a fixed point and 8eB(6 ,p) ={0| 8 - 67 |<o }

Introduce for short

Y(£) = y(s}6") - y(t]o)

From the mean value theorem

[y(£)] < o 2(%) | (A.%)
if p is sufficiently small. Then

: T L T . f : T
Qg (8) = qu(s) + [ s(t)le)” + ¥ oy(t)y(e) + I [ efw)ple)” + Blt)e(t) ]+
i 1 1 ' 1

¥ ) N
e T ey s ywe® o+ 1 st )y ()T + v(t)8(e)T ) (4.5)
1 1
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We will first show that each element of the matrix

N
1,1 g%y = & _ T T
Ty (8) = %(e(t)s(t) + B(t)e(t)”)
tends to zero w.p.l as N tends to infinity:
+ 5 ' .
Let r{t) = max{t, ) Bi(k) ) ( B; = i:th component of 8)
1
It is easy to see that

m = ej(t)Bi(t)/ r(t)

| e St =1

is a martingale with respect to {VN}.

Furthermore, :
2
N N ¢ B(t)
2 2,05 e 2 =
sag=2 ) SHOIANEE O ORI ) = ¢©

Hence m, converges with probability one (for
maﬂh(ax), P(Qu(ex))=1) according to the martingale convergence theorem,
Doob{1953). It now follows from Kronecker's lemma (see e.g. Chung(1968))

that, since r(N)»w,

N
1 x
() § ej(t) Bi(t) +0 as N>~ for wsgh(e )

But 1 < r(N)/N 5_cl(m,ex) for we, according to {A.2}. Hence

N
§ ej(t) Bi(t) > 0 as M for msﬂh(ex)f}ﬂg

=

and so
o Ll e) o) < o for wiy(e,0,07) end wen, N 9,(67)  (A.6)

From (A.4),(A.1), (A.2} and (4.3) it follows that

o 2 ol®0,0%) Lol (0,6 < CyluneT) e (A7)
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where

o{?) (6,6 = b v @) + eom®)® + Y(bets)® + BT+ V(eI (e)
1 : :

Property (2.16) can now be applied to (A.5) with

J “ :
~lo(® , B=: LB end ¢, = 2P (e + 2ofPe,0%

]

LY
First introduce a countable subset DM of DM that is dense in DM .

X
Also introduce & subsetf of the sample space

= QN 2,(0 1 o, N n nh(e )
6 EDM e EDM

Clearly, P{9*) = 1. Consider from now on a fixed reali-
zation @ € 0* and introduce the set

’Dm(s,m) = {6]8 € DM' inf le - e'l > g}‘
8'€D (w). -

Choose e* € D¥(e,w) N BH-’

.

(Tf this set is empty for any e > 0, the assertion of the

theorem is trivially true.}.

SinceexiDI,
or B = - L Te)TRx)> 6,(6) for N> N (W
N A 2 IR
According to (2. 16) there is an €, = 0(trB 8 ) =i O(6 {© ) 8 ).

Choose N > No(e ¥ w) = max { Nh (w), N, (e /g,w, o N, (v, p(d8) ¢ (6 )/2ﬂ

and choose
X b4 X
p < 06 = gy /20, (1, 8)

Then
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va=h[§%w)+§ se)pte)T + 2ot (0) + 2o{8(0,6%) ) 2

1

ni (& q (8)) * B(6) 8,(6%) = Vy(S) + p(8)8,(87) > v (8) + p(6)s,(07)/2

« Xy v
for N > No(ex,m) and 6 eB(8 ,p (8 )).

Hence
inf v (0) > v (3) + p(8) ae(ex)/z for N > No(ex,m) (A.g)
GEB(GX apx)

The family of open sets
{‘B(a.*rp*(é*)f]r 9* E D (5((0) n B }

clearly covers the compact set Dj i (e,0) . According to
the Heine Borel theorem there exists a finite set

{B[ailp*(ei))l i = 1'---’K}
that covers Dﬁ(e.w). Let

Ny lw,e) = max O(Bi'p*(ei),my
1<i<K

It then follows from (A.8) that

inf VvV, (8) > W teo) for N > N,{(w,e}
N N 0
D*(a,w)

which méans that the minimizing.element €(N} cannot be-
long to D (s,w) for N > M, {w,e), 1.e.

o) = py| <& for N > Nj(w,e)

which, gince € is an arbitrary small number, is the con-
clusion of the theorem.
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A.2 Proof of Theorem k4.1

The theorem follows from Lemma 4.1 if (4.3) and (4.4) can be shown to be

satisfied.

We will consider the general ¢ase, and let uM(e)(z) be the least common
denominator to the denominator polynomials in GM(G)(Z) and HM(G)(Z);
Tntroduce the matrix polymomisgls '

Cice)(2) = (o) (@) Hycey(2)

it

B

M(B)(Z) GM(S)(Z) GM(EV)(Z)

Due to the assumptions, det CM(S)(Z) has all zeroes outside the unit circle
for eeDM,ri.e. C&%B)(Z) 55 an exponentially stable filter. (There are
several pole-zero cancellations between o znd det H. Therefore the require-
ment that o has all zeros outside the unit circle is sufficient, but not

necessary. Stability of C&l is the only thing that matters.)

From (2.14)

l)l' a

- -1 -1
. . .
and, with C'(q 30 CM(B)(q *) etc, and suppressed 4
d -~ ] B )
= g(t{a)= (C' - af { + B! -1) ~ C? ] i
CM(e) ao F(e[)= (¢' - o' T) y(t) + B' uft-1) - C y(t]e) (A.10)

From (A.9) and (A.10) it follows that

(8) ult-k) + hif;_(e) F(t-k]0))



he.

Since C&%G)(q_l) is exponentially stable for all GER‘, and qu is compact

k

sup Ihiti(e)l < Cl;ll

6 ED‘“
1<1<5

and hence

A t
sup |yl < o 1 AT vl + fuGe-mD

QEDM k=0

and

1

BE:DM k=0

ILet C and A 3 A<l, be such that

k k N
Cl()\l + k)\l ‘ )< C A

k

Introduce for brevity the notation
a(t) = cliyeyt + tute)ll]
and define

n ok
z{(t) = ;_1 n (t-k)

Then z{t) < Z(t) and
Y(e+1) = AZ(t) 4n(t) Z(0) = 0

or .

yesn)? = 22202 + o) ? ¢ 2aF(E)ale)

a 15 k k ' :
sup | y(iled < ¢ 1 (g ¥ ¥y My (t-1) ]+ [ult-k)|}

{A.11)

{A.11)

(A.12)
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Sum over t = 0,...,N and divide by N:’

'

- | . N

N N ,
Litm? Ly 2w’ +3ﬁg ntt) +
1 1
1 N
+ 22 N g z (t) n(t)

or

1/2
N N N N
1-25Hk ] 3er? < & ) nte)? + 2;{%% nie)? - 4 ! %’(t)z}

According to the assumptions of the lemma,

N -
g nlt)”

=Zi-

is bounded w.p.1, from which directly follows that .

(£) 2

ne

¥
N3

is bounded w.p.1. Since z(t} < E(t) this concludes the
proof of (L4.3). Condition (4.%) forlows from (A.12) and (4.7), in the same

way since

r 3

L ly(s) - §r(t16)|§(t) < &

i
=
12
|l e -1

N .
v (edlag) * 5 §|y(tle)|§(t)
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