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RECURSIVE FORMULAS FOR THE EVALUATION OF CERTAIN COMPLEX INTEGRALS

by K-J Astrdm

Abstract

This paper presents recursive formulas which admits simultaneous
test of stability and evaluation of quadratic lossfunctions for
linear discrete time dynamical systems. The method admits a sig-
nificant reduction of the number of computations in comparison

with previously known methods.

1. Introduction

We will consider the evaluation of integrals of the type

-1
I = 1 § B(z) B(Z-l) , dz (1)
2wl A(z) A(z )

where A and B are polynomials with real coefficients
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and f- denotes the integral along the unit circle in the positive

direction.

Integrals such as (1) occur in many control and communication
problems. The sum of squares of the values of the impulse res-
ponse of a dynamical system with the pulse transfer function
B(z)/A(z) is e.g. given by (1). Evaluation of quadratic loss-
functions, generation of gquadratic Lyapunov functions for linear
systems and investigation of the accuracy of parameter estimation

in linear systems also lead to integrals of type (1), see e.g.
[1] and [3].

Closed form solutions of (1) for polynomials of low order are
available in literature. See e.g. Jury [3, p. 298-299 1.
For large n, say .n x 4, the closed form solutions are, however,
very cumbersome to use. It is also wellknown that aOI, where I
is bhe integral defined by (1) can be obtained as the first com-
ponent of the vector x which satisfies the following linear

equation.
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See e.g. [3, p. 168-172 ]

In this paper we present recursive equations for the integral
which leads to considerably fewer computations than a direct
solution of (3). The recursive equations are derived using ele-
mentary results from the theory of analytic functions. The re-
cursive equations can be conveniently used both for hand- and
machine computation. Analogous results for continuous time sys-

tems have been obtained by Nekolni and BeneS [4].
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2. Preliminaries and notations

We first observe that the integral (1) will always exist if the
polynomial A(z) has all its zeros inside the unit circle. In
such a case we can always find a stable dynamical system with
the pulse transfer function B(z)/A(z) and the integral (1) is
then simply the sum of squares of the ordinates of the impulse

response of the system.
If A(z) has zeros on the unit circle the integral diverges.

If A(z) has zeros both inside and outside the unit circle but
not on the ‘unit circle, the integral (1) still exists. In such
a case we can always find a polynomial A“(z) with all its zeros
inside the unit circle such that

1 1

A(z) A(z ") = A7(z) A"(z ™)

and the integral then represents the sum of squares of the im-
pulse response of a stable dynamical system whose pulse trans-

fer function is B(z)/A " (z).

In many practical cases, however, we obtain the integral as a
result of an analysis of a dynamical system whose pulse trans-
fer function is B(z)/A(z). In such a case it is naturally of
great importance to test that A(z) has all its zeros inside the
unit circle because when this is not the case the dynamical sys-

tem will be unstable although the integral (1) exists.

In order to present the result in a simple form we will first

introduce some notations. Let A" denote the polynomial defined

by

e _ .n -1, _ n
A (z) = zA(z 7) = aj tajz+ ... +az (u)
Further introduce the polynomials
k k k_k- k
Ak(z) = a z + a,2 Ly v oAy (5)
k k k k-1 k
= + + +
Bk(z) bOZ blZ Y bk (6)

which are defined recursively by



A 1(2) = 27 HA (2) - o AT (2)} (7)

B ,(2) = 2 1(B (2) - B_A ()} (8)

where

o = ai/ag (9)
R P <

Bk = bk/ao (10)

and

A (2) = Az) (11)

B (z) = B(z) (12)

If these equations should have a meaning we must naturally re-
gquire that all aﬁ are different from zero. To see the implica-

tions of this we will make use of the following theorem.

Theorem 1

The polynomial A(z) has all its zeros inside the unit circle if

and only if éﬁ > 0 for all k.

This theorem is essentially the Schur-Cohn stability criterion
for linear discrete time dynamical systems. See e.g. [2] R
[3, p 126], [6] . We also have the following result which will

be used in the proof of our main result.

Theorem 2

Let the polynomial Ak(z) have all its zeros inside the unit circ-

le, then Ak_l(z) also has all its zeros inside the unit circle.

This theorem is also given by Schur [6]. A simple proof is given
by RGZ18ka [5].

We thus find that the polynomials Ak(z) can always be find if the
original polynomial has all its zeros inside the unit circle. If
this is not the case we will always get ag £ 0 at same step in
the reduction. The equations (7) and (8) can thus be profitable

exploited as a stability criterion.




3. The main result

We will now show that the integral (1) can be computed recursively.
For this purpose we introduce the integrals Ty defined by

-1
B, (z) B, (z ™)
1 k k . dz (13)

I =
k 2ﬁi§Ak(z) Akcz‘l) .

It follows from (1) that I = In' We now have

Theorem 3

Let the polynomial A(z) have all its zeros inside the unit circle.
The integrals T defined by (13) then satisfies the following re-

cursive equations

2 2
{1 - oy }Ik—l = Ik - Bk (14)
2
Io = B, (15)
Proof

As A(z) has all its zeros inside the unit circle it follows from
Theorem 1 that all ai are different from zero. It thus follows
from (9) and (10) that all polynomials Ak and B, can be defined.
Furthermore it follows from Theorem 2 that all polynomials Ak
have all zeros inside the unit circle., All integrals Ik thus

exist.

To prove the theorem we will make use of the theory of analytic
functions. The integral (13) equals the sum of residues at the
poles of the function Bk(z) Bk(z_l)/{z Ak(z) Ak(z_l)} inside the
unit circle. As the integral is invariant under the change of
variables z + 1/z, we also find that the integral equals the sum

of residues of the poles outside the unit circle.

Now consider

Bk_l(z) B (Z_l)

L= f k-1  dz
k-1 ~ . S -1,
Ak_l(z) Ak 1(Z ) Z




The poles of the integrand inside the unit circle are z = 0 and
the zeros z. of the polynomial Ak_l(z). It follows from (7) and
(4) that

_ % _ k =1
Ak (zi) = akAk(zi) = gz Ak(zi )
i -1 x -1
Ak_l(z ) = zi{Ak(zi ) - akAk(zi )1
Hence
-1, _ -1 -k
Ak—l(z ) = zi{Ak(zi ) - 4 Zs Ak(zi)}

1

1

) -
(1 - ock)zi Ak(zi )

Further 1t follows from (4) and (7) that

na
5

Ay 1(2) = A (2) - oA (2)
Hence
Ay 1(0) = AO) - oA (0) = & - aal = a1 - al)
The functions
B 1(2) B (2D B (@) B, (2) 1
Ay _q(2) Ak_l(z_l) . A1 (2) Ai_l(z) z
and
B () B G B () B ()
A (D (zA-aDa DYz A (DDA (D)) =

have the same poles inside the unit circle and the same

residues at these poles. Hence

-1
el g B2 B (2T
=l ae? 2 A _1(2) Az g7
1 i Ba(2) By (27D
= —ts $ — dz (16)
Loy 2mi Ak(Z) Ak_l(z )

where the second equality is obtained by making the variable

substitution z ~ z_l. The integrand has poles at the zeros of



Ak(z). It follows, however, from (7) that

“1y3

z—kAk(z)}
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Z{Ak(z K

Hence for z, such that Ak(zi) = 0 we get

-1 -1
Ak—l(z )

The functions

)y = ZiAk(Zi
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thus have the same poles inside the unit circle and the same
residues at these poles. The integral of these functions around

the unit circle are thus the same. The equation (16) now gives

-1
1 1 Bk_l(z) Bk-l(z ) dz
L1 = 7 § ) —
l—ak 2mi Ak(z) Ak(z ) z
Now introduce (8) and we find
b _1 pid _l
9 1 {Bk(z) - BkAk(z)}{Bk(z ) - BkAk(z )1} dz
(l—oak)Ik_l = f —T ==
21l Ak(Z) A (z ™) z
B, (z) B, (z™1) B B, (z) A (z 1)
.1 § k k . dz Tk § . B4
2ni 7 A (2) Ak(z_l) 2nid A (2) A (27 Ly ¢
6 Ac(z) B (z71) 82 . a(z) Az
A k(%) By cdz B¢ B LAz g
27l Ak(Z) Ak(zﬁl) z 27l k(Z) A (z~ ) z

The first integral equals I . The second integral can be reduced

as follows




bl Il
Eli }{ Bk(z) Ak(z ) L dz k 9{ Bk(z) A (z) L dz _
2ni 7oA (z) A (27D 2vi” A (2) A “(2)
i EE Bk(z) dz _ : Bk(O) - Eﬁ ) 62
- omd f. " T P X B L
mi Ak(z) z Ak(D) a,

Where the first equality follows from (4), the third from the
residues theorem and the fifth from (10). Similarly we find that
the third integral of the right number also equals Bi.

Using (4) the fourth term of the right member of (17) can be

reduced as follows
2 +1d “ _l 2
] -1 - T Pk
271 Ak(z) Ak(z

) =z 27l z

Summarizing we find (14%). When k = 0 we get from (13)

bO

I = L Jﬁ ( 2 y2dz _ 2
o] . (6]
211 a
@]

which completes the proof os the theorem.



4., The algorithm

Having obtained the recursive formula (14%) we will now develop

a computer algorithm for the evaluation of (1). We first observe
that if we carry out the reduction of the polynomials Ak and B
given by the equations (7) and (8), we obtain o, and B, in des-
cending order whereas a direct evaluation of (14) requires the
coefficients in ascending order. A direct application of (7),
(8) and (14) will thus require temporary storage of Ay and Bl ®
To avoid this we observe that (14) is a linear difference equa-

tion. The solution can thus be written as

Ik 2 CkIn + Dk (18)
where
C
_ k
Co1 = T . gl (19)
%k
2
D, - B
.k k
Py T2 (20)
%%
and
Cn = 1 (21)
Dn =0 (22)

For k = 0 we get

I =CTI +0D = g
O on (@] O
Hence
2
B~ - D (23)
_ _ O (@]
=1 =-2—2



The integral (1) can now be computed recursively as follows

1. Set k =n, C_ =1 and D_ = 0
n n
2. Test if A(z) is stable by checking az > 0. Stop compu-
tation if unstable otherwise proceed.
34 Compute o, and 8, from (9) and (10) and a?_l and bi—l

from (7) and (8).

L. Compute C;, ; and D, _, from (19) and (20).
53 Repeat steps 23 3 and 4 until k = 1
G Compute T = I from (23)

The number of algebraic operations required to compute I by
this procedure is shown in table la.As seen by this we obtain
a considerable saving in comparison with a straight forward

solution of (3) for Xq using gaussian reduction.

For comparison we show in table 1b the number of operations
required for a straight forward solution of (3) for xq using

gaussian reduction.

Table la - Number of arithmetic operations required to com-

pute T using the recursive formulas

Order of system | Add/Subtract |Multiply Divide

2 13 11 10

5 46 41 22

10 141 131 42
2 2

n n“+in+l n-+3nt+l Un+2




Table 1b -

pute the integral form (3) using gaussian reduc-

tion

Number of arithmetic operations required to com-

Order of system Add/Subtract Multiply Divide
2 9 13 4
5 82 81 16
10 476 461 66
. un®+15n°420n+12(9) |2n’+6n%+16n+6 | n’+n+2
12 6 2
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