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RECURSIVE FORMULAS FOR THE EVALUATTON OF CERTAIN COMPLEX INTEGRALS

by K-J Astr.örn

Abstract

This paper pnesents recunsive formulas which admits simul-taneous

test of stability and evaluation of quadnatic lossfunctions for
linear discrete time dynamical systems. The method admits a sig-
nificant neduction of the number of computations in compa::ison

with previousÌy known methods.

I. Int::oduction

I¡,le wil-l consider the evaluation of integnals of the type
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and f denotes the integral along the unit cincle in the positive
direction.

Integnals such as (1) occun in many controf and communication

pr.oblems. The sum of squaues of the values of the impulse nes-
ponse of a dynamical system wittr the pulse tnansfer function
B(ù/A(z) is ê.8. given by (f ). Evaluation of quadratic foss-
functions, genenation of quadnatic Lyapunov functions for' linear
systems and investigation of the accuracy of parameter estimation
in linear systems also lead to integnals of type (1)e see e.g.
tr I and tgl .

Closed fonm solutions of (f) for polynomials of low oirder ane

available in litenatune. See e.g. Juny Is, p. 2gT-2gg ] .

For la::ge n, say.n >, 4) the cl-osed form solutions are, however,

very cumbersome to use. It is also wellknown that "oI, where I
is tlne integr.al defined by (1) can be obtained as the first com-

ponent of the vector. x which satisfies the following linean
equation.
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In this papen \^7e pnesent necunsive equations fon the integnal
which leads to considenably fewen computations than a dinect
solution of (3). The necu::sive equations are denived using ele-
mentary results fnom the theony of analytic functions. The ne-
cunsive equations can be conveniently used both fon hand- and

machine computation. Analogous nesults fon continuous time sys-
tems have been obtained by Nekolnf and Beneã [+].



2, P::etiminanies and notations

\,rle finst obsenve that the integnal (1) will always exist if the
polynomial A(z) has al-l- its zet'os inside the unit cincle. In
such a case r¡re can always find a stable dynamical system with
the pulse tnansfe:: function B(z)/A(z) and the integral (1) is
then simply the sum of squanes of the o:rdinates of the impulse
nesponse of the system.

If A(z) has zeros on the unit cir-cle the integnal divenges.

If A(z) has ze?os both inside and outside the unit cincle but
not on the'unit cincl-e: the integr-al (1) sti1l exists. In such
a case h7e can always find a polynomial A'(z) with al-l- its zeros
inside the unit circl-e such that

A(z) e(z-l) = A'(z) A'(z-r)
and the integnal then repnesents the sum of squares of the im-
pulse r?esponse of a stable dynamical system whose pulse tnans-
fen function is B(z) /A'(z) .

In many pnactical cases , howeve::, \^re obtain the integnal as a
result of an analysis of a dynamical system whose pulse tnans-
fen function is B(z) / A(z) , In such a case it is natunally of
great importance to test that A(z) has all its zeros inside the
unit ci::cle because when this is not the case the dynamical sys-
tern witl be unstable although the integr-al (1) exists.

In orden to pnesent the nesult
intnoduce some ¡:otations. Let A

by

a simple form we will finst
denote the polynomial defined
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which are defined recunsively by

(6)
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If these equations should have a meaning \nre must natunally ne-
vqui::e that all ai ane diffenent fnom zene. To see the irnplica-

tions of this we will make use of the following theor.em.

Theonem I

The polynomial A(z) has all- its zeros inside the unit circle if
and only if -.k > o fon al-l k.o

This theonem is essentially the Schun-Cohn stability cnitenion
fon l-inean discrete time dynamical systems. See ê.g. IZ] )

[g, p 126], [ol . lfe also have the following nesult which will
be used in the pnoof of our main result.

Theorem 2

Let the polynomial AO(z) have all- its zeros inside the unit cinc-
Ie, then AO_r(z) al-so has all its zeros inside the unit cincle.

This theonem is also givqn by Schun [6]. A simple pr.oof is given
ny nüãiðra [s].

i¡/e thus find that the polynomials AO(z) can always be find if the
oniginal polynornial- has all- its zeros inside the unit cincl-e. Tf

S no \^7 l- a ways ge a s at same step j-n
o

the neduction. The equations (7) and (B) can thus be pnofitable
exploited as a stability critenion.



3. The main nesult

I,rle will- now show that the integnal (f) can be computed necu::sively.
Fon this purapose \^re intnoduce the integnal* Ik defined by

tr
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(13)
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KK )z

It follows from (1) that f = T . I,r/e now haven

Theonem 3

Let the polynomial A(z) have all its zeros inside the unit cincle.
The integnal" Ik defined by (13) then satisfies the following ne-
cunsive equations
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Pnoof

As A(z) has al-l its zeros inside the unit cincle it follows fnom
Theonem 1 that al-l "I are diffenent fnom zero. ït thus follows

U

fnom (9) and (10) that al-l- polynomials At and Bt can be defined.
Funthenmone it follows fnom Theonem 2 that all polynomials At
have all- zeros inside the unit cincle. All integrals In thus
exist.

To pnove the theonem we will make use of the theony of analytic
functions. The integral (13) equals the sum of nesidues at the

_1 _'tpoles of the function Bn(z) BO(z -)/{z AO(z) AO(z -)} inside the
unit cincle. As the integral is invaniant unden the change of
va::iables z + L/2, \^re also find that the integnal equals the sum

of nesidues of the poles outside the unit ci::cl-e.

Now considen
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The poles of the integnand inside the unit cincle are z = 0 and

the zeros z. of the pol-ynomial AO_r(z). ft follows from (7) and
(4 ) that
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residues at these poles. Hence
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where the second equality is obtained by making the variable
substitution , * ,-I. The integnand has poles at the zeros of
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AO(z).
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thus have the same poles inside the unit cincle and the same

nesidues at these poles. The integnal of these functions anound
the unit circle ane thus the same. The equation (16) now gives
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The first integnal equals Ik. The second integnal can be neduced

as follows



Õ

-1
ß BO(z) Ao(z dz f Bo(z) Ao(z)) ß kk

2
ljk

f

f

,g=
-1

¡1,
K

2

2ni Ao(z) AO(z )z2rí Ao(z)

dz

(z) z

kß

2ni f
B. (z)
KOZ BL(o)

aå--"k euro>

t.k
K-r

ao

-.T-

A. (z)
K

ß ß kk

I,r/here the finst equality follows fnom ( 4 ) , the thi:rd fnom the
residues theonem and the fifth fnom (10 ) . Similanly we find that
the thind integnal of the right numben also equals ß1.

using (4) the fou::th tenm of the night memben of (17) can be
neduced as follows

t 2AO(z) A (z dz k
Ao(z) At(z-L) z 2tri

ß f2ni

Summarizing we find (14).
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which completes the pnoof os the theonem.
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4. The alsorithm

Having obtained the necunsive fonmula (f4) we will now develop
a computer algor.ithm fon the evaluation of (f ). Ide first obsenve

that if we carry out the reduction of the polynomials At and Bt
given by the equations (7) and (B), Ide obtain oO and ßk in des-
cending onder wheneas a direct evaluation of (14) nequires the
coefficients in ascending onder. A dinect application of (7),
(B) and (14) will thus nequire temporany sto::age of oO and ßk.

To avoid this we obse:rve that (14) is a linean difference equa-

tion. The solution can thus be wnitten as

k
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,

integnal (1) can now be computed recursively as follows

Setk=fl:cr,=landDn=o

Test if A(z) is stable by checking ": 
> 0. Stop compu-

tation if unstable othenwise pnoceed.

Compute oO and ßk fnom (9) and (10) and a
from (7) and (B).

Compute Ct_t and DO-, fnom (f9) and (20).

Repeat steps 2; 3 and 4 until k = f

Compute I = I' from (23)

J

k-1 k-1
iand b

l-

4

5

6

The number of algebnaic
this procedure is shown

a considerable saving
sol-ution of (3) for x

oper.ations required to compute I by

in table 1a.As seen by this we obtain
in companison with a stnaight forward
using gaussian neduction.I

For. compa:rison we show in table
r.equined for a stnaight forwand
gaussian redu.iiott

Table la Number

pute I

lb the number of oPerations
solution of (3) for xr using

of ar.ithmetic operations required to com-

using the recunsive formulas

Or-der of system Add/Subtract Multiply Divide

10

22

42

4n+2

2

E.

t0

n

T3

46

r4l

n2 * 4r,* I

f1
4I

131

n2+ 3n+f



Table 1b

1I

Number- of ar.ithmetic operations nequined to com-

pute the integr-al fo::m (3) using gaussian neduc-
tion

Onden of system Add/Subtnact Multiply Divide

2

EJ

l_0

n

I

B2

476

3*1sr,2+2on+12(g)4n

L2

t3

B1

461

3*0r,2*l-6n+62n

6

4

16

66

n2 *n*2
2



Irl

L2

5. Refenences

lz)

Aström, K.J. rrOn the achievable accuracy in identification
problemsr', Paper t.B in IFAC Congness on Identifica-
tion in Automatic Contnol- Systems Pr:ag 1967.

Cohn, A. ttüben die Anzahl der \,tlunzeln in einer Kreisett,
Math. Zeitschrift 14 (r922) 110-148.

Ig] Ju:ry, E.f . ltTheony and Application of the z-transform
Methodrt , \,r/iley, New York 19 6 4 .

Nekolnf , J. and BeneÉ, J. rrsimultaneous Control of Stabi-
lity and Quality of Adjustment-Application of Statis-
tical- Dynamicstt, in Coales et.al . trAutomatic and Re-

mote Control" (Proceedings of the finst IFAC Congness

Moscow f 960 ) , Butter.woirths , London t9 61 ,, VoI. 2 ,

p 734-744.

[+]

Is] ðka, J. 'tAlgebraická kritér.ia stability inpulsnich
soustavrr, (Algebraic c::iteria fon stability of samp-

led data systems), Strojnicky ðasopis XIIf, ó 5.
395-403.

Kuz l-

Io] Schun, ,J. ttUben Potenzneihen die im fnnenn
kneises beschränkt sindtt, Journal für'
angewandte Mathematik, L47 (1917) pp.
(1918) pp. L22-14s.

des Einheits-
die neine und

205-232, 149


