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1. INLEDNING

IFAC (International Federation of Automatic Control) &r den
internationella sammanslutningen fdr reglertekniker. Kongressen
arrangeras vart tredje 8r. Den &r mycket omfattande och har

ambitionen att tdcka alla aspekter av reglertekniken.

2. INTRYCK

Kongressen var mycket valorganiserad. Alla féredrag fanns till-
gangliga i preprints (13 kg). Proceedings &r under utgivning.

En intressant nyhet var ett datorsystem d&ér deltagarnas intresse-
profiler hade lagrats. Adaptiv reglering L8g hdgst upp p§ listan.
Jag féljde fbredragen i special sessionerna om adaptiv reglering.
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Jamsides med det formella programmet visades ocks§ filmer om ro-

botforskning i Japan.
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kan knyta. Jag hade goda tillfallen att férnya m8nga gamla kon-
takter( Liksom att knyta nya kontakter. Detta kommer att p8verka

inriktningen av den framtida forskningen p8 institutionen.



3. PLENARFORELASNINGEN

THEDRY AND APPLICATIONS OF ADAPTIVE CONTROL

K. J. Astrdm

Department of Automatic Caontroly Lund Institute of Technology:s

Box 725y S-220 07 Lunds Sweden

Abstract.
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gain scheduling»
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self-tuning
stochastic

control theoryi dual contrali autotuning.

1. INTRODUCTION

Research on adaptive control was very
active in " the early fifties. It was
motivated by design of autopilots for
high performance aircrafts. The wark
was characterized by a lot of
enthusiasm»y bad hardware» and”
nonexisting theory. A presentation of
the results are found in Gregory

(1959) . Interest in the area
diminished due to lack of fundamental
insight and disaster in a flight
test.

In the sixties there wera many
contributions to control theory:s
which were fundamental far the
develapment of adaptive control.

State space and stability theory were
develaped. There were also important
results in stochastic control theovy.
Dynamic pragraminings introduced by
Bellman (1961) and dual cantrol
theory introduced by Feldbauim (1965)
increased the understanding of
adaptive processes. Fundamental
contributions were alsao made by
Tsypkin (1973)» who showed, that many

of the schemnes for learning and
adaptive cantrol could be described
in a comman framewark and that
certain recursive equations of the

stochastic approximatian
a fundamental vole. There
majar developments in

type played
were also
system

identification and in
estimation.

parameter

The interest in adaptive control was
ranewed in the seventies. The
praogress in control theory during the

sixties contributed to an improved
understanding of adaptive control.
The rapid and revolutionary progress
in microelectronics has made it
possible to implement adaptive

regulators simply and
is now a vigorous
field both
industry.

cheaply. There
development of the
at universities and in

This paper gives an overview of
theory and applications af adaptive
contraol. Particular emphasis is given
to those techniques which are used in
current applications.

2. APPRQACHES TO ADAPTIVE CONTROL

Three schemes for parameter adaptive
control: gain _scheduling» madel
reference control and self-tuning
regulators are described in a common
framework. The starting point is an
ordinary feedback contraol loop with a
pracess and a regulataor with
adjustable parameters. The key
prablem is to find a convenient way
of changing the regulator parameters
in response ta changes in process and

P’S-28
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disturbance dynamics. The schemes regulator
differ only in the way the parameters porameters 9 gain
of the regulator are adjusted. schadule
command auxiliary
Gain_scheduling signai measurements
o] e
It is sometimes possible to find regulator process measured
auxiliary process variablesy which : oulout v
caorrelate well with the changes 1in
process dynamics. It° is then possible
to aeliminate the influences of
parameter variations by changing the Fig. 1. Block diagram of a system with gain
parameters of the regulataor as scheduling.
functions of the auxiliary variables.
See Fig. 1. This approach is called model output ,,
gain_schedulingy because 'the system model
was originally used to accomodate
changes in process gain only. G;E:EED erond
Gain scheduling is an open loop regulator -
scheme camparable to feaedforward parametersy
compensation. There is no feedback to ﬂﬂmef-
anism
compensate for an incorrect schedule. r’
It has the  advantage that the il measured
parameters can be changed very signal output y
: . reguiator process
quickly in response to process controf
changes. signal u
There is a controversy in
nomenclature whether gain scheduling
should be considered as an adaptive Fig. 2. Block diagram of model reference
scheme or not because the parameters adaptive system (MRAS).
are changed in open loop.
Irrespective of this discussions gain
scheduling is a very useful technique
to reduce the effects of parameter used in the original MRAS:
variations. do
. -— = - k e grad e. 1)
Model reference_adaptive_systems_MRAS dt 9
Another way to adjust the parameters The number k is a parametery which
of the regulator 1is illustrated in determines the adjustment ratey e is
Fig. 2. This scheme was originally the model errory and the components
develaped for the servo problem. The of the wvector 3 are the adjustable
specifications are given 1in terins of parameters. Equation (1) represents
a reference madely which tells haow an adjustment mechanismy which is
the process output ideally should composed of three parts: a linear
respond to the command signal. Notice filter for computing the sensitivity
that the reference model is part of derivatives from process inputs and
the contraol system. The regulator can outputsy a multiplier, and ah
be thought of as consisting of two integrator. This canfiguration is
loops. The inner loop is an ordinary typical for many adaptive systems.
control laop composed of the process
and the regulator. The parameters of The MIT-vule will adapt slowly but
the regulator are adjusted by the otherwise parform well, if the
outer loopy in such a way that the parameter k 1s small. The allowable
evrror e between the model output y size depends an the magnitude of the
m reference signal. Caonsequently it is
and the process output y becomes not possible to give fixed limits,
small. The outer loop thus also looks which guarantee stability. The
like a regulator loop. The key MIT-rule can thus give an unstable
prablem is to determine the closed loop system. Madified
adjustment mechanism so that a stable adjustment rules can be aobtained
systemy which brings the error to using stability theory. These rules
zeror is obtained. This prablemn is are similar to the MIT-rule. The
haontrivial. It 1is easy to show that sensitivity derivatives in (1) will
it can not be solved with a simple be replaced by other functions. This
linear feedback from the error to the is discussed further in Section 3.

caontroller parameters.

The MRAS was originally proposed by
The following parameter adjustment Whitaker (1958). Further work was
mechanismy called the "MIT-rule's was done by -Parks (1966) Monopoli

1’S-29
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(1974)y and
Landau ¢1979)

Landau (1974).
gives a

The book
comprehensive

treatment of work up to 1977. It also
includes many references. Recent
cantributiaons are discussed in
Section 4.

Self-tuning_regulators_STR

A third way aof adjusting the

parameters is to use the self-tuning
regulator. Such a system is shownh in
Fig. 3. The regulator can be thought
of as composed of two loops. The
inner loop consists of the process
and an ardinary linear feedback
regulator. The parameters of the
regulator are adjusted by the outer
loopy which is composed of a
recursive parameter estimator and a
design calculation.

Notice that the self-tuner in Fig. 3

includes an on-line solution to a
design problem for a system with
known parameters. This is called the
uhderlying design_problem.

The self-tuning regulator is very
flexible with respect to the design
method. Virtually any design
technique can be accomodated. So far
self-tuners based an phase and

amplitude margins» pole-placemeaent
minimum variance caontrals and linear
quadratic gaussian control have been
considered. Many different parameter
estimation schemes may be used, far
example stochastic approximation,
least squares: extended and
generalized least squares:
instrumental variablesy extended
Kalman filtering and the maximum
likelihood method. See Astrém (1980)
and Kuvz et al (1980).

The regulator shown in Fig. 3 can
also be derived from the MRAS
approach if the parameter estimation
is done by updating a reference
madel. The schene is then called an
_____________ because the regulator
parameters are updated indirectly via
the design calculation. See Narendra
and Valavani (1979,

process
parameters

design parameter L
calculations estimation
regulator
parameters measured
output
command sgnal y

signal regulator process
control
signal u

Fig. 3. Block diagram of a self-tuning re-

gulator (STR).

PS-30

was
who

The self-tuning regulator

originally proposed by Kalmany
built a special purpose computer to
implement the regulator. The
self-tuning regulator has recently
received considerable attention,
because it . is flexible and easy to
understand. See Peterka (1970
Astrdm and Wittenmark (1973)y Kurz et

al (1980)sy Clarke and Gawthrop
(1973 1979y Wellstead et al (1979),
Astrom et al 1977y Astrdm and

Wittenmark (1980).

The self-tuner shown in Fig.
called an explicit_ SIR or an
based on estimation of an explicit
process model. It is sometimes
passible to reparameterize the
process so  that it can be expressed
in terms of the regulator parameters.
This gives a significant
simplification of the algorithm,
because the design calculations are
eliminated. Such a self-tuner is
_________ because it is
af an implicit
algorithm is
direct MRAS.
MRAS and STR
in Egardt
(1979 and

I is
STR

based
process model.
closely related
The relations between
are further discussed
(1979+1980) Landau
Astrdm (1980).

The
to the

3. AN EXAMPLE

The different approaches to adaptive
control are illustrated by an
example. Some formalism needed to
discuss theory are also introduced.

A pole-placement design
taken as the starting
will include many of
schemes. Consider a
single-output system

method is
point. This
the propased
single-input

Ay Bu» (2)
where u is the control signal
the output signal. The
B denote polynomials in the forward
shift operator. Assume that it is
desired to find a regulater such that
the transfer function fram command

signal to output signal is given by

and y
symbols A and

= R/P» -

G 3
m

where Q and P are polynomials in the
forward shift operator. The solution
to the desigh problem is well knaown.
See e.g. Astrdm (1979). The regulator
is given by
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Ru = Ty — Sy, 4)
c
where y is the command signal and R»
c

S and T are polynomials. To determine
the regulator the polynomial B is

+
factored into a stable polynomial B

and an unstable polynomial B . The

design praoblem has a solutiaon if A

and B are coprimey if B

and if

divides Q»

deg P - deg Q@ } deg A - deg B.

Let T1 be the observer polynomial.

Solve the diophantine equation

+ = 5)
ARl B S PT1 _ (

with respect to R1 and 5. The desired

feedback is given by (4) with
R=RB and T= TIQ/E_. (&)

The equation (S) is abtained from the
requirement that the system (2) with
the feedback <(4) has the transfer
function (3).

The explicit self-tuner can be
expressed as follaws.

ALGORITHM 1

Step 1: Estimate the coefficients of
the polynomials A and B in
(2.

Step 2: Substitute A and B by the
estimates obtained in step 1
and solve the equation (5)
for R1 and S. 3

Step JI: Calculate the control signal
from (4).

The steps 1y 2y and 3 are repeated at

each sampling period.
o

An implicit self-tuner may be derived
as follows. It follows fram (5) that

PT.y = ARy + B Sy = Bélu + B Sy

= B [Ru + Syl, (7>
where the second equality follows
fram (2) and the third from (6).

PS-31

Rstrom

Notice that equation (7) can be
interpreted as a process modely which

in B R and 5. An

estimation of the parameters of the
model (7 gives the regulataor
parameters directly. Notice also that
the model «(7) is linear in the

is parameterized

parameters only if B = 1. The

implicit algorithm can be
as follaws.

expressed

ALGORITHM 2

Step 1: Estimate the coefficients of
the polynamials Ry 8 and B
in (7).

Step 2@ Calculate the control signal

from (4)y where R and S are
substituted by the estimates
obtained in Step 1.

The cantrol law will not be causal if
the leading coefficient of the
estimnate of the palynamial R is zero.
Minor modifications are required to
avoid this difficulty. See Astrom and
Wittenmark (1973)y Goodwin et al
(1980)1+ Goodwin and Sin (1980).
The steps 1 and 2 are repeated each
sampling period.

o

The parameter estimators for models
like (2) and (4), which are linear in
the parameters, are all very similar.
Caonsider for example estimation of
the coefficients of the polynomials R
and S in (4). Several estimations
methods can be described by

6(t) = o(t-Di+aCtIMBIptIe(t)y (8)

where

A A T
g = Ple—Ru—Sy = Ple—w 6. (9

The elements of the vector ¢ are
delayed values of the input u and the
output ys» and @ is a vector of the
unknown parameters. The variable M
depends on the particular estimation
technique. It is a constant in MRAS.
In stochastic approximation it is the
scalar )

MCE) = t [Zg' (kogekrl L, €10)

In the least squares method it is the
matrix

-1
MCt) = t [Zm(k)wT(k)J ke (11)
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4. THEORY

The closed loop systems obtained with
adaptive cantrol are naonlinear. This

makes analysis difficult,
particularly if there are random
disturbances. Progress in theary has

therefore been slow and painstaking.

Current theory gives insight into
some special problems. Much work
still remains before a reasohably

complete theory is available.

Analysis of stability. convergences
and perfarmance are key prablems.
Since parameter estimation is an
essential part of the systemsy it is
also of interest to khnow how the
parameter estimates behave. It would
also be desirable to have ‘theory,

which tells if control structures
like those in Sectian 2 are
reasonabley or if there are better
ways to do adaptive control.
Stability

Stability analysis has not been
applied to systems with gain

scheduling. This is surprising»
because such systems are simpler than
MRAS and STR.

The stability theories
and Popov have been
applied to adaptive

of Lyapunov
extensively
cantrol. The

major developments of MRAS were all
inspired by the desire to canstruct
adjustment mechanismsy which would

give stable solutions. Parks (1964)
applied Lyapunov theory to the
general MRAS problem for systems with
state feedback and also output
feedback for systems,
functions are strictly positive real.
Landau (1979) applied hyperstability
to a wide variety of MRAS
configurations. The key observation
in all these works is that the closed
loop system can be represented as
shown in Fig. 4.

The system can thus be viewed as
camposed of a linear system and a
nonlinear passive system. If the

-—|._| Gfs) EI &

&

[¢

Fig. 4. Block diagram representation of a
MRAS. e is the (filtered) model erron,
@ is a vector of regression variables,
8 is the adjustable parameters and
80 their true values.

whose transfer

linear system is strictly positive
realy it follows fraom the passivity
theorem that the error e goes to
zera. See e.g. Desoer and Vidyasagar
(1975).

Ta obtain the desired representation
it is necessary to parameterize the
madel so that it is lipear_in__the
parameters. This requirement strangly
limits the algorithms that can be

considered.

Problems with output feedback poses
additional problemss because it is
nat possible to aobtain the desired
representation by filtering the model
error. Monopoli (1974) showed that it
is necessary ta augment the error by
adding additional signals. For
systems with output feedback the
variable @ in Fig. 4 should thus be
the augmented error.

There are some important details in
the stability proofs based on Fig. 4.
To ensure stability it wmust be shown
that the vector ¢ is bounded. This is
easy for systems which anly has a
variable gain» because ¢ is simply
the command signal. The camponhents of
the vector ¢ ares however, in general
functions of the process inputs and
outputs. It is then a nontrivial
problem to ensure that ¢ is bounded.
It should also be noticed that it
fallows from the passivity thearem
that € goes to zero. The parameter
errar will not go to zero unless the

T
matrix Zpg /t is always larger than a

positive definite matrix.

For the case of output feedback there

is an additional difficulty because
the signal € is the augmented error.
It thus vremains to show that the

model error also goes to zero.

Several of these difficulties
remained unnoticed for several years.
The difficulties were pointed out in
Morgan and Narendra (1977), Feuer and
Morse (1978). Complete stability
proofs were given recently by Egardt

(1979)y Fuchs (1979)y Goodwin et al
(1980), de Larminat (1979)» Movrse
(1980) and Narendra et al (1980).
The following result is due to

Goodwin et al (1980).
THEQREM 1

Let the
the adaptive Algarithm 2 with PT1=zm-

system (2) be cantrolled by

B =1 and

approximation estimation. Assume that

modified stachastic

(A1) the pole excess d = deg A —
- deg B is known

PS-32
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(A2) the estimated model is at least
of the same arder as the process
the polynomial B has all zeros

inside the unit disc.

(A3)

The signals u and y are then bounded

and y goes to the command signal as
time goes to infinity.

. a
The proof is not based an
hyperstability theory. It is an

particular
Notice that
the

analysis based an the
structure of the problem.
the theorem does not say that
parameter estimates canverge.

Theorem 1 is importants because it is
a simple and rigorous stability proof
for a reasonable adaptive problem.
The assuinptions required are haowever
very restrictive.

The assumption Al means far discrete
systems that the time delay is known
with a precisiony which caorrespands
to a sampling period. This is not
unreasonhable. For cantinuous time
systems the assumption means that the
slope of the high frequency asymptote
of the Bode diagram is known. If this
is the casey it is possible to desigh
a robust high gain regulator for the

problem. See Horowitz (1963).

restrictive,
the estimated
least as complex as

Assumption A2 is very
since it implies that
madel must be at

the true system» which may be
nonlinear with distributed
parameters. Alinost all control

systems ave in fact designed based on
strongly simplified models. High
fraquency dynamics is often neglected
in the simplified models. It is
therefore very important that a
design method can cope with model
uncertainty at high frequencies.
Compare Horowitz (19463).

Assumption A3 is also crucial. It
arises fraom the necessity to have a
model which |is linear in the
parameters. It follows from (8) that

this 1is possible only if B =1. 1In
aother words the underlying design
method 1is based on cancellation of

all process zeros. Such a design will
not work even for systems with knhown
constant parameters if the system is
nanminimum phase.

Also notice that the theorem applies
only to the tuning cases i.e. when
the estimator gain goes to zero as
time increases. It 1is a nontrivial
extension to consider tracking as is
discussed in Section 4.

there
results

Theorem 1 also requires that
are no disturbances. Similar

PS
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Rstrém

el

for bounded disturbances are given by

Egardt (1980 ashy. Ta obtain
stability under disturbances the
estimation algorithm isy hawevenr,

modified. A saturationy which limits

the parameter estimates:, is
introduced. Alternatively a dead zone
is introduceds which keeps the

estimates constant when the residuals
are small. It is not known whether
these assumptians are technicalities
or necessities. -Egardt also gives
results for continuous time systems.

The essential probleins of cohvergence
analysis are to investigate if the
parameter estimates ' converge and to
determine the convergence rate.

For explicit algorithms the problem
is equivalent to analysing the
convergence of the recursive
parameter estimator. This problem is
dealt with extensively in
identification theory. There are
complications in the adaptive case»
since the process input is generated
by feedback. -

The excitation of the process depends
on the process disturbances. When
developing the theory it is commanly
assumed that the system is driven by
random disturbances. It is then
possible to use ergodic theovry and
martingale theory.

A very general proof for convergence
of the least squares algorithm was
given by Sternby (1977) by applying a

martingale caonvergence theorem. An
extension of this result can be
applied to shaow caonvergence of

adaptive systems. See Sternby (1981).

A convergence theaorem for the simple
self—-tuner based on madified
stochastic approximation estimatiaons

eq. (8) with a(t) = aO/tv and minimum
variance controly i.e. Algorithm 2
with PT =z"s B =1 and d=1 was given
by Goaodwin et al ((1981). They
investigated a system described by
the maodel

Ay = Bu + Ce» 12)
where e is white noise.
Under assumptions Alsy AZy and A3 of
Thearem 1y with a pole excess equal
to oney it was shown that the input
and the output are mean square
boundeds and that the variance of the

output will converge to the minimum

variance if the functiaon
G(z) =

Cez) - ao/2 13>
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is strictly positive real.
Various extensions
excess and different
the least squares estimation have
been given. See Goodwin and Sin
(1980)s where convergence proaofs for
many variations of the algorithm are

to larger pole
madifications of

given. A convergence proof for the
general Algorittm 2 with least
squares estimation is» howevery still
not available.

The_method_of averaging

The algorithms in Section 2 are
motivated by the assumption that the
parameters change slawer than the
other variables in the system. It is
then natural to try to describe the
pavramters appraoximatively by
approximating Pgs in (83 by its
average. For estimataors» whose gain
does not go to =zeroy the estimates
may then be approximated by the

solution to the difference equatiaon,
obtained by taking averages of (8). A
better approximation is obtained by
adding a stochastic terms which
approximates the fluctuations around
the mean value. Such approximations
have bheen investigated in great
detail by Kushner (1977).

For the tuning problem the gain a of
the estimator (8) will go to zero. To
apply the method of averages» it is
useful to transform the time scale.
Consider faor example the stochastic

approximation method. Introduce the
transformed time defined by
T =m I a(k)y (14>
o
where mD is the limit of (10).
Using the method of averages Ljung
(1977a) showed that the estimates
will approximatively be described by
the solutions to the ardinary
differential equation
——= = £(0), (13
dxt
where
f(6) = Ege
and the wmean wvalue is calculated
under the assumption that the

parameter 6 is constant.

Liung also showed that the estimates
will converge to the solution of (15)
as time increases.

The method of averages is useful,
because it makes it possible to
investigate convergence rates for
special problems. It also makes it

PS-34

possible to determine if equilibrium
values for the parameters are stable.

A drawback with the method aof
averages is that it is based aon the
assumption that the signals are
bounded. . To use the method
boundedness must be determined by
other techniques.

Under the assumption of bounded

signals Ljung (1977b) showed that the

self-tunery based on least squares
estimation  and minimum variance
controly converges to the minimum
variance solutiaon under assumptions
Aly A2 and A3 of Thearem 1y if the
functian

H(z) = C(z) - 1/2 (16)

is strictly positive real.

Using the wmethod of
(1979) showed
locally stable

Holst
algorithm is
function C(z)

averages:
that the
if the

is positive at the =zeros of B(z). If
€C is negative at a zero of B, Ljyung
and Wittenmark (1974) have

constructed exampless which show that
(15) is wunstable and that the
parameter estimates do not converge.

In this example the equation (15) has
a limit cycle. Because of the
transformation (14) the estimates

will oscillate with ever increasing

period.

Since the convergence of the
parameters -depend on the polynomial
Cy» it 1is clear that convergence can
be lost by changes of the
disturbances.
Stochastic_control_theory

Regulator structures like MRAS and

STR are based on heuristic arguments.
It would be appealing to obtain the
regulators fram a unified theoretical
framework. This can be done using
nonlinear stochastic econtral theory.
The system and its environment are
then described by a stochastic model.
The criterion is formulated as to
minimnize the expected value of a lass
functiony which is a scalar functiaon
of states and cantrols.

The problem of finding a control,
which minimizes the expected loss
function, is difficult. Conditions

for existence of optimal controls are
not known. Under’ the assumptian that
a solution existsy a functional
equation for the optimal loss
function can be derived using dynamic
programming. This equationy which is
called the can be
solved numerically in very
simple cases. The structure of the
optimal regulator obtained is shown
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in Fig. S. The controller can be
thought of as composed of two parts:
an estimator and a feedback
regulator. The estimator generates
the conditional probability
distribution of the state from the
measurements. This distributiaon is
The feedback regulator is a nonlinear
functions which maps the hyperstate
into the space of control variables.

The structural simplicity of the
salution is obtained at the prize of
introducing the hyperstates which is

a quantity of very high dimension.
Notice that the structure of the
regulator is similar tao the STR in
Fig. 3. There isy however, no
distinction between parameters and
other state variables.

The optimal control law has an
interasting property. .The control

will not only try to drive the output

to its desired value. When the
parameters are uncertain, the
regulator also introduces

perturbationsy which will improve the
estimates and the futura cantrols.
The optimal control gives the correct

balance between maintaining small
control and estimation ewrrors. This
praoperty is called dual_control. See

Feldbaum (19465)y Jacobs and Patchell

(1972)» and Bar-Shalom and Tse
(1974). Optimal stochastic control
theory also offers other
possibilities to obtain sophisticated
adaptive algorithms. GSee Saridis
(1977>.

EXAMPLE

A simple example is used for
illustratiaon. Consider a system

described by

y(t+1) = y(t) + bult) + e(t)y

where u is the controls y the outputs
e white noisey and b is’ a constant
parameter or a Wiener process. Let
the criterion be to minimize the mean
square deviatiaon of the output y.

control

signal v
command measured
signal - l output y
nanllr_»ear process
function
computation
of
hyperstat
hyperstate w ppersiore
Fig. 5. Block diagram of an adaptive regu-

lator obtained from stochastic con-
trol theory.

1’S-35
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If the parameter b
prior distributiony it follows that
the conditional distribution of b,
given inputs and outputs up to time

has a gaussian

A
mean b(t) and

a(t). The
be characterized

t» with

standard deviation
hyperstate can then

is gaussian

A
by the triple (y(t) »b(t)raltd).
euations for updating

The
the hyperstate

are the same as the ordinary Kalman
filtering equations. See Astrdm
(1970). The dual control law can be
simplified:y because the scaled

A
ub/y depends

contral wvariable v =
A
only on the variables y and b/d. A
graphical representation of  the
control law is given in Fig. 6.
Some approximations to the optimal
control law are also illustrated in
Fig. 6. The  certainty _eguivalence
gontrol
A

ult) = — y(ti/b

is obtained simply by solving the

control problem in the case of known
paramneters and substituting the known
parameters with their estimates. The
self-tuning regulatar can be
interpreted as a certainty
equivalence caontrol.

The contral law

b
udt) = - ———— NS (t>

A A2

b(t) b (t)+o (t)
is anaother approximationy which is
called cautious__contrels because it
hedges and uses lower gain when the
estimates are uncertain.
Notice that the scaled control
variable v is equal to one for

I OV
AN

!
1;2/“;2' 0'2/

Fig. 6. Optimal dual control law for the
integrator plants. The graph shows
the level curves for the scaled
control variable. v = ub/o.
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certainty equivalence cantrol and
A2 A2 A2

that v ="b /(b +¢ ) for cautious

control. The different control laws

can  thus easily be compared in

Fig. 6. There are only small

differences between all control laws

A
if b)) 20. Below the the

dual control will always give larger
control variables than the certainty
equivalence contraol. In this region
the certainty equivalence control is
a much better approximation than
cautious control.

curve v=1

S. APPLICATIONS

There are many ways to use adaptive

techniques. A few possibilities are
discussed 1in this section. Since
there is ho reasohably complete
theory for adaptive controlsy. there
are many problemsy which must be
solved intuitively with support of
simulation when adaptive contral is

applied. The situation is not unique

for adaptive controliy problems of
this type also occur when
implementing special features in
simple regulators. A particular
problems estimator windup» is

discussed in some detail. An overview
of the status of the applications is
also given.

Bath the MRAS and the STR
constant gain feedback
estimated parameters arve
The adaptive loop can thus be used as
a tuner for a control loop. In such
applications the adaptation loop is
simply switched an and run until the
performance is satisfactory. The
adaptation loop is then discaonnected
and the system is left running with
fixed regulator parameters.

reduces to
if the
constant.

Automatic tuning can
simple PID controllers as well as to
more complicated regulators. It is
particularly useful when combined
with diagnostic tools far checking
the performance of the control loops.
For minimum variance cantrol the
performance evaluation can be done
simply by monitoring the covariances

be applied to

of the inputs and the outputs. The
tuning can be initiated manually
whenever the diagnhostics indicate

that the loops are out of tune.

Autamatic tuning can be {nccrporated
into a DDC-package. One tuning
algorithm can then serve many loops.
Autotuning can also be included in
single loop regulators. For examnple:
it is possible to design regulators
where the mode switch has three
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pasitians manual,

tuning.

automatic and

The adaptive control loop may also be
used to build_a__gain_schedule The
parameters obtained when the system
is running.in one operating condition
are then stored in a table. The gain
schedule is abtained when the process
has operated at a range of operating
conditionszy which covers the
operating range.

There are also other
gain scheduling with
gain schedule can be
get the parameters into the correct
region. The adaptive loop can then be
used for fine tuning.

ways to combine
adaptation. A
used to quickly

Adaptive_ regulators

The adaptive techniques may of course
also be used for genuine adaptive
control of systems with timevarying
parameters. There are many ways in
which this can be done. The aperatar
interface is important, since
adaptive regulators also have
parametersy which must be chosen.

When applying adaptive techniques it
is often desired to have the absolute
black box having a blank front panel
with no dials. It has been my
experience that such regulators can
be designed for very specific
applicationss where the purpose of
cantrol can be stated a priori.

isy hawever: nat

the purpose of
It is at least

the regulator what
to do. This can be
introducing dials that give
of the closed
dials are called
erformance__related. New types af
regulators can be designed using this
caoncept. For example it is possible
to have a reqgulator with aoane dial,
which is labeled the desired claosed
loop bandwidth. Another paossibility
would be ta have a regulator with a
dialy which is labeled with the
weighting between state deviation and
control action in a LGG problem. A
third possibility would be to have a
dial 1labeled phase or amplitude
margin. '

In many cases it
possible to specify
control & priori.
hecessary to tell
it 1is expected
done by
the desired properties
loop system. Such

.

Since the key feature of an adaptive
regulator 1is 1its ability ¢to track
variations in process dynamicsy the
performance of the parameter
estimator is crucial.

of
is

result
theory

A fundamental
identification

system
that the
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input signal to the process must be

rich of crder n
nh parameters.
the input

in order to estimate
In the adaptive systems
signal 1is generated by
feedback. Under such circumstances
there is no guarantee that the
process will be properly excited. On
the contraryy with good regulation
the excitation can be expected to be
poor. Consequently there are inherent
limitations unless extra perturbation
signals are introducedy as is
suggested by dual control theory.

To track parameter variations it is
necessary to discount old data. This
will invalve compromizes. I1f data is
discounted too fast the estimates
will be uncertain even if the true
parameters are constant. If old data
is discounted slowly the estimates of
constant parameters will be good. The
estimator willy howevers be unable to
track rapid variations.

If there
process:

the
expanential
discounting of past data will waork
very well. 1In the 1least squares
estimation algorithm this means that
the gain a in (8) is constant and
that the matrix M in (11).is changed
to

is good excitation of
a simple

17>

- T -1
Mty = 2 AT Kpaoe a0,

a discounting___factor. If the
excitation of the process is poorsy it
is seen from (17) that the matrix M
will grow exponentially. This is
called estimator windup in analogy
with integrator windup in simple
requlators. When the gain is

sufficiently large the estimator will
be wunstable. Small residuals will
then lead to very large changes in
the parametersy and the closed loop
system may become unstable. The
process will then be well excited,
and the parameter estinates will
quickly achieve good values. Looking
at the process output there will be
periods of good regulation followed
by bursts.

avoid
Since
caused

There are many ways  to
covariance windup and bursts.
the prablem 1is fundamentally
by poor excitation of the processs
one possibility is to monitor the
excitation condition and to introduce
extra perturbations when the
excitation is poor. Such a salution
is clearly in the spirit suggested by
dual control theory.

cases it is not feasible to
extra perturbations to
excitation. Covariance
then be avoided by

In some

introduce
obtain good
windup can

12
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discounting old data
is proper excitation.

anly when there

There are also several
procedures proposed to

ad hoe
avoid bursts.

One possibility is to use wvariable
forgetting factors as proposed by
Fortescue €t al (1981). It has also
been proposed to switch off the
parameter updating under certain
conditions, or to introduce
limitations on the covariances and
the estimator gains. See Irving
(1979).

Laboratory experiments

Over the past 10 years there have
been extensive laboratory experiments
with adaptive cantraol mostly in
universities but also to an
increasing extent in companies.

Schemnes like MRAS and STR have been
explored extensively. The goal of the
experiments has been to understand
the algorithms and to investigate

many of the factorsy which are not
properly covered by theory.
Industrial feasibility studies

There have been a number of
industrial feasibility studies of

adaptive caontrol. The
cavers some of the
have been studied.

following list
processes that

raw material blending

cement grinding mills

rolling mills

distillation columns

chemical reactors

steam generators

electrical generators

power systems

electrical drives

positioning systems
papermachines

pH control

autopilots for aircrafts and ships
machine taools

heat exchangers

heating and ventilation systems
glass manufacturing

The recent publications on
applications of adaptive controly
Narendra and Monopoli (1980) and

Unbehauen (1980)y contain details and

many references.
The feasibility studies have shown
that there are indeed casesy where

adaptive control is very useful.
have also shown that

They
there are cases

where the benefits are mavrginal.
Since adaptive caontrol is more
comwplicated than constant gain
feedbackr it is always wuseful to try
the siinple things first. The
feasibility studies have alsa shown
that it is not easy to judge the need
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far adaptive cantrol from the
variations in open loop dynamics.

similar to the ones
this paper have also

applications in the
communications field. Among the
problems considered we can mention
adaptive speech coding and adaptive
noise cancellatian. Adaptive echo
cancellations based ohn VLSI
technalogy with adjustment of over
100 parametersy is e.g. beginning to
be introduced in telephone systems. A
survey of these applications are
given in Falconer (1980).

Algorithms
discussed in
found extensive

Adaptive control is now also finding
its way into industrial products.
There appears to be many different
ways of using adaptive techniques.

Gain scheduling is the

technique for design of
far high performance aircrafts. 1In
the industry it is cansidered as a
well established standard technology.

predominant
autopilots

There are also products based on the
STR and the MRAS. There are
commercial adaptive regulators for
motor drivesy rolling millsy cement
millss paper machiness and autopilots
far ships. There are also general
purpose self-tuners incorporated in
DDC packages.

6. CONCLUSIONS

The adaptive technique is slawly
emerging after 25 years of research
and experimentation. Important
theoretical results on stability and
structure have recently been
established. Much theoretical work
still remains to be dane. The advent
of micro processors has been a strong
driving force for the applicatiaons.
Laboratory experiments and industrial
feasibility studies have contributed

to a better understanding af the
practical aspects of adaptive
control. There are also a humber of

adaptive regulators appearing on the

market.

My research in adaptive
for many years been

control has
supported by the

Swedish Board of Technical
Develapment (STU). The writing of
this paper was made ynder the

cantract 78-3763. This support is
gratefully acknowledged. Over the
years I have also learned much from

discussions with many colleagues.
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