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1. Introduction

This report describes the algorithms and software developed during the
doctor’s project Larsson (1992). It contains descriptions of the data struc-
tures developed in G2 for constructing MFM models, of the rulebases
which implement the diagnostic algorithms, and some details about the
software.

The implementation consists of definitions of data structures and
graphics for building MFM graphs, a set of rule bases that perform the
diagnostic reasoning tasks, and a set of flow sheets and equations used
for simulation of two example processes. In total, the program contains
the following:

o Definitions of a class hierarchy of the objects in MFM models.

o  Rule bases for syntax control of MFM models, measurement valida-
tion, alarm analysis, consequence propagation, and fault diagnosis.

o  Definitions of class hierarchies of the components in the example pro-
cesses.

o Generic simulation equations for the physical components.

The user may define his own components and construct a topological sim-
ulation model, which is the standard way of using G2. He then builds
an MFM model using the toolbox definitions, and when that model is
ready, he immediately has available the diagnostic algorithms described
in Larsson (1992), instead of having to construct a rule base for the spe-
cific process. Thus, the general ideas is to replace the construction of a
rule-based expert system with the building of an MFM model using the
toolbox, see Figure 1. Of course, it is also possible to use the toolbox as a
general tool for exploring MFM models.

MFM Model + Toolbox = Expert System

Figure 1. With the help of the toolbox, it is possible to replace the large effort
of building a rule base for an expert system with the construction of an MFM
model.

This report will describe the implemented toolbox, going through the data
structures and rule bases, together with some practical advice on how to
use them. To begin with, the expert system tool G2 will be overviewed.

2. G2

The MFM toolbox has been implemented in G2. A short description of G2
itself will now be given. The following part is based on Nilsson (1991);
see also Larsson (1992).



The expert system tool G2 has been developed by Gensym Corpo-
ration, and is probably the most advanced real-time expert system tool
currently available, see Moore et al (1987, 1991). It is implemented in
Common Lisp, which is automatically translated to C, and it runs on
many different computers. A Sun Sparcstation 2 was used in the doctor’s
project. G2 consists of several main parts:

o A knowledge database

o A real-time inference engine

o A procedure language interpreter

o A simulator

o A development environment

o An operator interface

o Optional interfaces to external on-line data servers

Classes and Objects

G2 is an object-oriented programming environment. All G2 components,
including rules, procedures, graphs, buttons, objects, etc., are items, and
organized into a class hierarchy with single inheritance. All items have
a graphical representation through which they may be manipulated by
mouse and menu operations. Operations exist for moving an item, cloning
it, changingits size and color, etc. The user defined items are called objects
in G2.

Objects are used to represent the different concepts needed in a spe-
cific application. The object definition defines the attributes specific to the
class and the look of the icon. Attributes of many types are supported,
such as constants, variables, parameters, lists, arrays, and G2 objects.
The constants, variables, and parameters may be quantitative, (integer
or real), symbolical, logical, or text strings.

Objects are either static, i.e., they are explicitly created by the devel-
oper, or dynamic, i.e., created and deleted dynamically during runtime.
G2 contains operations for moving and rotating an object, and changing
its color. With these facilities, simple animations can be created. Each
G2 object may have an associated subworkspace. Here arbitrary items
may be positioned, and thus the internal structure of an object may be
represented on its subworkspace.

Relations Between Objects

G2 has different ways of defining relations between objects. One way
is to have lists containing other objects as attributes. Another way is
to use connections, which have a graphical representation and may have
attributes. Connections can be used in G2 expressions for reasoning about
interconnected objects in a variety of ways.
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A third way of relating objects is to use relations. These may only be
created at runtime and have no graphical representation. They have no
corresponding relation hierarchy and cannot have attributes. Relations
are used in G2 expressions in the same way as connections.

The Inference Engine

G2 rules can be used to encapsulate an expert’s heuristic knowledge of
what to conclude from conditions and how to respond to them. Five dif-
ferent types of rules exist:

o Ifrules

o When rules

o Initially rules

o  Unconditionally rules
o  Whenever rules

If rules my be invoked by forward and backward chaining, by scanning
at a specified time interval, and by explicit invoking. When rules are a
variant of If rules that may not be invoked through forward chaining or
cause backward chaining. Initially rules are executed at initialization
time only. Unconditionally rules are equivalent to If rules with a true
premiss. Whenever rules trigger when a variable receives a new value,
fails to receive a value within a specified time-out interval, when an object
is moved, or when a relation is established or deleted, i.e., they acts as
demons.

The rules contain references to objects and their attributes in a natu-
ral language style syntax. Objects may be referenced through connections
with other objects, thus utilizing the connection structure of the objects
instead of explicit names. G2 supports generic rules that apply to all
instances of a class.

In addition to forward and backward chaining, rules may be invoked
explicitly in several ways. A rule may be scanned at even time intervals.
A focus statement invokes all rules associated with a certain focal class
or object. An invoke statement triggers all rules belonging to a specified
rule category.

Internally the G2 inference engine is based on an agenda of actions to
be performed by the system. After execution, scanned rules are inserted
into the agenda queue at the time slot of their next execution. Focus and
invoke statements causes the invoked rules to be inserted in the agenda
at the current time slot.

Procedures

G2 contains a Pascal-style procedural programming language. The proce-
dures are started by rule actions, they are reentrant and each invocation
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executes as a separate task, and they may have input parameters and
return one or several values.

The set of procedure statements include all rule actions, assignment,
branching, (if-then-else and case), iteration, (repeat and for), exit if to exit
loops, the infamous go to, call to call a procedure and wait for its result,
and start to call a procedure without waiting. The for loops may be either
numeric or generic for a class, i.e., they execute a statement or set of
statements once for each instance of the class.

Simulation

G2 has a built-in simulator which can provide simulated values for vari-
ables. The simulator is intended to be used both during development for
testing the knowledge base, and in parallel during on-line operation. It
allows for differential, difference, and algebraic equations on explicit form.
These may be specific to a certain variable of apply to all instances of a
variable class. Each first-order differential equation is integrated individ-
ually with an individual, user defined stepsize. The numeric integration
algorithms available are a simple Forward Euler algorithm and a fourth
order Runge-Kutta, both with fixed stepsize.

3. The MFM Data Structures

MFM models have a strong graphical nature and consist of objects con-
nected together and collected in different networks. Diagnostic algorithms
using MFM will use information about these objects and how they are in-
terconnected. Thus, G2 is ideally suited for implementing the basic MFM
data structures, as well as the diagnostic algorithms. The MFM concepts
have the corresponding implementations shown in Table 1.

Goals and flow functions G2 objects

Relations and links G2 connections
The “inside” relation Subworkspaces
Diagnostic methods Rules and procedures

Table 1. MFM concepts and the corresponding G2 concepts used to implement
them. The “inside” relation refers to the case when a path of flow functions
resides in a network or manager function.

The animation facilities of G2 have been used to present results of the
algorithm. For example, the primary and secondary failure states from
the alarm analysis are shown in red and bright red, and a quick glance
will give the operator a good idea of the total failure state of the process.

The time efficiency has not posed any problem during the project. As
all the algorithms themselves are linear in effort, the main obstacle to
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overcome when scaling up the size of the knowledge database is the inter-
nal G2 representation. However, the G2 inference engine uses static links,
and no decrease in efficiency has been observed when tackling somewhat
larger processes as Steritherm.

All in all, it can be concluded that G2 is a very good programming
tool, provided it is used to solve a fitting problem, and MFM is one such
problem.

source balance ink trensport starage borler  obscrvardecisionmaker actor  condition goal  network memger

Figure 2. The MFM class hierarchy, which is a part of the G2 object hierarchy.
Thus, the superior class of MFM object is the G2 object.

The Data Structure and Class Hierarchy of Objects

The MFM objects lend themselves to be put in a class hierarchy with
single inheritance, see Lind (1990 b). This is easily done in G2, and the
resulting classes are shown in Figure 2. Actually, it would be quite natural
to use multiple inheritance to express that each flow function is either of
type mass, energy, or information, but this is not supported in G2.

Rules

The different algorithms are easily implemented with G2 rules. As an
example, consider once again, connected source and transport, see Figure

3.
Oaa
R

Figure 3. A connected source and transport. In the alarm analysis algorithm,
this connection is treated with three rules.

In Larsson (1992) the following rules to find out the failure state of the
source were presented:

o A transport hiflow alarm may cause a connected source to have a
locap alarm.

o An alarmin a network will force a function depending on this network
to fail.



Taking the normal situation into consideration also, three rules for the
failure state of a source may be formulated.

o If a source has a locap alarm and any connected transport does not
have a hiflow alarm, then the alarm of the source is primary.

o If a source has a locap alarm and any connected transport has a
hiflow alarm and there is no alarm in the network that the source
may depend on, then the alarm of the source may be secondary.

o If a source is not alarmed, its failure state is working.

1F the alarm-atate of any source § 1s locap
and the alarm-state of any transport
connected te 8 is not hiflow

then conclude that the failure-state of § is
primary-failed

Figure 4. A rule from the alarm analysis rule set, as it looks in the G2 imple-
mentation. It handles the case when there is a primary failure in the source,
and it is quite similar to the text version of the same rule, presented earlier.

ExampiE 1

These rules are surprisingly easily implemented in G2. The possibility to
reason about objects and their connections make the G2 rules look very
much like the textual rules above. For example, the G2 rule corresponding
to the first rule is shown in Figure 4. O

i1f the alarm-state of any source § is locap
and the alarm-state of any transport
connected to § 1s hiflow and not (there
exlsts a condition C connected to §
such that (the alarm-state of C is
alarmed) )

than conclude that the failure-state of S is
secondary-failed

Figure 5. Another rule from the alarm analysis rule set. It corresponds to
the second rule above, and treats the case when the source has a primary or
secondary failure.

ExampLE 2

The G2 version of the second rule is shown in Figure 5. Note that the locap

alarm is secondary only if there is no fault in the supporting network, i.e.,

a fact from the second rule. This test must be included in the G2 rule, as

otherwise two rules could be in conflict and trigger each other infinitely.
O



EXaMPIE 3

If the source should be in a normal state, (i.e., not alarmed), the failure
state must be set to working. This is handled by a more general rule,
valid for all flow functions, see Figure 6. O

if the alarm-state of any mfm-object M is
normal

then conclude that the failure-state of M is
working

Figure 6. A third rule from the alarm analysis rule set. This rule is valid for
any MFM object and shows the use of the “any” construction allowed in G2 rules.
This enables the writing of rules that apply to whole classes of objects. The rule
is used to set all MFM objects which are not alarmed to the working state.

Procedures

Parts of the algorithms are more easily expressed with procedures than
rules. This is the case especially in the fault diagnosis.

TREAT-0K, a procedure

Notes OK

User restrictlons none

Tracing and breakpoints default

Default procedure priority 6

treat-ok (b: class action-butt, w : class g2-
window)

F : class flow-Ffunction = the flow-function
named by current-object:

begin
focus on F;
conclude that the explain of F is false;
conclude that current-object 1is none;
hide the subworkspace of explanation-—
subws;

end

Figure 7. A procedure from the fault diagnosis algorithm. This specific pro-
cedure is called when an explanation or remedy has been shown and the user
clicks the OK button. Then the explain attribute is set to false, so that the
explanation will not be activated again, the search variable current objectis
set to none so that the search may go on to look for more explanations, and the
subworkspace upon which the explanation was given is hidden.

ExXaMPLE 4

A short procedure from the fault diagnosis algorithm is shown in Figure
7. This particular procedure treats the case when the user has been given
an explanation or remedy and clicks the OK button. |



4. The Rulebases

The algorithms described in Larsson (1992) have been implemented in
G2. The MFM graph structure is built with G2 graphical objects and
connections, thus giving both a graphical presentation and an underlying
data structure on which the G2 rules and procedures can operate. The
construction of the flow models is simple and user friendly, as it uses G2’s
possibilities of graphical editing, creation, and cloning of objects, etc.

There are several groups of rules and procedures, each implementing
one or a part of an algorithm. Thus, the main contribution in the imple-
mentation is to be found in these rule groups. It should be noted that G2’s
rules and procedures can be mixed and work well together. Thus, a rule
set may really be a set of rules and procedures. The different rule sets
will now be described.

Syntax Control

There are many rules of syntax that say how the MFM objects may or
may not be connected. These have been stated in Larsson (1992). The
G2 connections cannot be mixed, and therefore mixing of flow types is
prohibited even from the initial design of the graphical structure. Within
a flow path, however, flow functions may only be connected according to
certain rules; for example, a source may only be connected to a transport.
A small rule set is used to check this part of the syntax. These rules must
be invoked by the user, however, and without doing so, it is possible to
violate the MFM syntax. It should also be noted that the rules do not
check the more unclear syntax rules that state that a node may not be
filled or emptied only, see Section 3.5 of Larsson (1992).

Measurement Validation

The measurement validation algorithm is implemented with five rule sets.
One handles the updating of group information, i.e., it keeps track of con-
sistent and inconsistent subgroups. Another rule set controls the flow
propagation. The flow values of the flow functions with no measurement
connected to them must be guessed, and known flow values are prop-
agated to them. Multiply supported flow values have precedence over
singularly supported ones, and downstream propagation has precedence
over upstream propagation.

A third rule set handles the recognition of subgroups and singular
inconsistent subgroups, which should be specially marked. If the single
group is surrounded by another, consistent group, its flow value is also
changed. A fourth group handles the validated flow values, which can be
different from the measured flows in case a single group is surrounded
by a consistent group. The fifth group handles dynamic color coding of
the information. Thus, the different inconsistent subgroups are shaded in
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different hues of gray, and the singular failures are marked with red.

Alarm Analysis

The alarm analysis rule set handles the recognition of the different alarm
situations and sets the failure states accordingly. These rules only look at
the flow functions two and two, or in some cases three and three. Thus,
they work locally and efficiently.

Consequence Propagation

The consequence propagation rules handle the guessing of alarm states of
flow functions which are not connected to physical alarm sensors. Similar
causation rules to those in the alarm analysis are used. This rule set
works locally and mixes with the alarm analysis rules.

Fault Diagnosis

The fault diagnosis algorithm performs a downward search in the MFM
graphs and uses a dialog of questions and answers. The dialog part has
had the consequence that most of the implementation is done with proce-
dures. Thus, rules handle the search and decisions about which subtrees
that need further investigation, while procedures handle the dialog and
setting of fault values. The implemented search is not strictly local, (the
diagnosis may skip parts of the graph altogether), but as the trees are
graphically represented, the geographical coordinate values are used to
make the search move in a left to right direction over the screen, and no
additional reasoning over global paths is needed.

5. How To Build an MFM Database

The MFM toolbox program contains all the data structures necessary to
build MFM models of a process, and once a model has been constructed,
the rule bases included will make the three diagnostic methods available
with no further work needed. The toolbox program is found in the file
toolbox.kb and the steps of building an MFM database are the following:

o  Make definitions for a topological model of the target process, includ-
ing simulation equations and rules, if needed.

o  Build a simulation model and flow sheet of the process.

o  Use the MFM definitions and build an MFM model of the process.

o  Connect the simulation of the process to the appropriate variables in

the MFM model. This can be done via relations, rule bases, etc., but
the toolbox does not provide any standard solution.

o  Build a user interface for the diagnostic algorithms, and connect the
result variables in the MFM model to this interface.



In the toolbox, two examples have been provided of how the MFM defini-
tions can be used. In the first example, the tanks process, there is a flow
sheet and a simulation, and a set of scanned rules are used to transfer
data to the MFM model. The results of the alarm analysis are presented
with the help of multicolored alarm icons in the flow sheet, while the
results of the measurement validation are shown on a special operator’s
panel.

In the second example, the Steritherm process, no simulation has
been implemented. Instead, the alarm analysis is performed so that the
variables in the MFM model are set directly via buttons on a special alarm
panel.

Input Parameters of the MFM Model

All input to the MFM model, and thereby to the diagnostic algorithms,
goes via the symbolic and quantitative variables in the MFM objects.
Thus, these variables must be set by some external action, e.g., scanned
rules. Once the values have been set, the algorithms react automatically,
and the results are made availablein other variables. These must then be
read out by some external actions. The following variables are concerned
with the different algorithms:

o The measurement validation needs to know the measured flow values
corresponding to every MFM object. If no such value is available, the
attribute measured should be false, which is the default; otherwise it
should be changed to true. This attribute controls whether the flow
propagation should perform guessing or not. The attribute flow of
any flow carrier should be set to the corresponding measured value.
Storages instead have two such attributes, inflow and outflow, and
two attributes to tell whether these are measured or not.

The output of the measurement validation is primarily the group
attribute, which is a cardinal telling which consistent subgroup the
flow function in question belongs to. The flow attribute will contain
the guessed value in case measured is false. Finally, the attribute
vilow contains the validated flow value of the flow function, i.e., the
flow value of a surrounding, consistent group in case of a single fault,
or otherwise the same value as flow.

o The alarm analysis algorithm needs to know the alarm state of the
flow functions. The attribute is named alarm-state and should be
set to normal, locap, loflow, hiflow, lovol, hivol, leak, fill or malfunc-
tion. It must be set by external actions, for example a scanned rule
group. The alarmed attribute tells whether there actually is a mea-
surement connected to the flow function in question, or whether the
consequence propagation should be allowed to guess alarm states.

The results of the alarm analysis algorithm are made availablein the
failure-state attributes of each flow function. The values can be
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either working, primary-failed, or secondary-failed, where the latter
is to be interpreted as primary or secondary.

o In order for the fault diagnosis to work, each flow function should be
given a question text string as the question attribute, and the ask
attribute should be set to true. Similarly, explanation should be set
to a text string with an explanation of the fault or a remedy for it, and
the explain attribute set to zrue. The questions should be phrased
so that if the answer is “yes” the function is available, while a “no”
means that it has failed.

Currently, all input to the fault diagnosis must go via the questions
in the flow functions, but it is also possible to use values set by other
actions. In this case, the value of the attribute alarm-state should
be set when the global variable current-object points to the flow
function in question, and the diagnose if the flow functions is true. It
is possible to use this conditions to give the fault diagnosis input from,
e.g., the simulator. Note that the fault diagnosis uses the alarm-
state attribute of the alarm analysis algorithm to store the status of
the flow functions. Thus the two algorithms mix with each other.

6. The Automatic Rule Generator

Most of the alarm analysis rules can be automatically generated, from a
set of general assumptions of flow function behavior, see Larsson (1992).
A small G2 database performs this by looping through all possible con-
nections of flow functions and testing whether the behavior combinations
should give rise to an alarm analysis rule. This automatic rule generator
is found in the file autogen.kb and it can be used to see how simple it
is to produce most of the alarm analysis rule automatically. It should be
noted that this program does not generate rules proper, but only messages.
Turning these messages into rules is a simple task, however.

7. Conclusions

The MFM toolbox program hopefully provides a good environment for
building and using MFM models. G2 gives the user ample opportunities
to construct flow sheets, simulations, and other things needed in a control
and supervisory system. This system may then easily be connected with
the MFM data structures and algorithms. Once the MFM model has been
built, then three algorithms described in Larsson (1992) are immediately
available, with no extra modeling work needed. So far, the MFM toolbox
is probably the most efficient MFM construction and experimentation tool
available.
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