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Abstract

A new method to improve the accuracy and efficiency of characteristic
mode (CM) decomposition for perfectly conducting bodies is presented. The
method uses the expansion of the Green dyadic in spherical vector waves. This
expansion is utilized in the method of moments (MoM) solution of the elec-
tric field integral equation (EFIE) to factorize the real part of the impedance
matrix. The factorization is then employed in the computation of CMs, which
improves the accuracy as well as the computational speed. An additional ben-
efit is a rapid computation of far fields. The method can easily be integrated
into existing MoM solvers. Several structures are investigated illustrating the
improved accuracy and performance of the new method.

1 Introduction
The method of moments (MoM) solution to electromagnetic field integral equations
was introduced by Harrington [22] and has prevailed as a standard in solving open
(radiating) electromagnetic problems [40]. While memory-demanding, MoM repre-
sents operators as matrices (notably the impedance matrix [22]) allowing for direct
inversion and modal decompositions [17]. The latter option is becoming increasingly
popular, mainly due to characteristic mode (CM) decomposition [25], a leading for-
malism in antenna shape and feeding synthesis [7, 48], determination of optimal
currents [8, 19], and performance evaluation [44].

Utilization of CM decomposition is especially efficient when dealing with elec-
trically small antennas [11], particularly if they are made solely of perfect electric
conductor (PEC), for which only a small number of modes are needed to describe
their radiation behavior. Yet, the real part of the impedance matrix is indefinite as
it is computed with finite precision [9, 24]. The aforementioned deficiency is resolved
in this paper by a two-step procedure. First, the real part of the impedance matrix is
constructed using spherical wave expansion of the dyadic Green function [30]. This
makes it possible to decompose the real part of the impedance matrix as a product
of a spherical modes projection matrix with its hermitian conjugate. The second
step consists of reformulating the modal decomposition so that only the standalone
spherical modes projection matrix is involved preserving the numerical dynamics1.

The proposed method significantly accelerates the computation of CMs as well
as of the real part of the impedance matrix. Moreover, it is possible to recover
CMs using lower precision floating point arithmetic, which reduces memory use
and speeds up arithmetic operations if hardware vectorization is exploited [17]. An
added benefit is the efficient computation of far field patterns using spherical vector
harmonics.

The projection on spherical waves in the proposed method introduces several
appealing properties. First is an easy monitoring of the numerical dynamics of the
matrix, since the different spherical waves occupy separate rows in the projection
matrix. Second is the possibility to compute a positive semidefinite impedance

1The numerical dynamic is defined as the largest characteristic eigenvalue.
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matrix which plays important role in an optimal design [18, 19]. A final benefit is
the superposition of modes. [7].

The paper is organized as follows. The construction of the impedance matrix us-
ing classical procedure is briefly reviewed in Section 2.1 and the proposed procedure
is presented in Section 2.2. Numerical aspects of evaluating the impedance matrix
are discussed in Section 2.3. In Section 3, the spherical modes projection matrix
is utilized to reformulate modal decomposition techniques, namely the evaluation
of radiation modes in Section 3.1 and CMs in Section 3.2. These two applications
cover both the standard and generalized eigenvalue problems. The advantages of
the proposed procedure are demonstrated on a series of practical examples in this
section. Various aspects of the proposed method are discussed in Section 4 and the
paper is concluded in Section 5.

2 Evaluation of Impedance Matrix
This paper investigates mode decompositions for PEC structures in free space. The
time-harmonic quantities under the convention J (r, t) = Re {J (r, ω) exp (jωt)},
with ω being the angular frequency, are used throughout the paper.

2.1 Method of Moments Implementation of the EFIE

Let us consider the electric field integral equation (EFIE) [22] for PEC bodies,
defined as

Z (J) = R (J) + jX (J) = n̂× (n̂×E) , (2.1)

with Z (J) being the impedance operator, E the incident electric field [23], J the
current density, j the imaginary unit, and n̂ the unit normal vector to the PEC
surface. The EFIE (2.1) is explicitly written as

n̂×E (r2) = jkZ0n̂×
∫

Ω

G (r1, r2) · J (r1) dA1, (2.2)

where r2 ∈ Ω, k is the wave number, Z0 the free space impedance, and G the dyadic
Green function for the electric field in free-space defined as [12, 30]

G (r1, r2) =

(
1 +

1

k2
∇∇

)
e−jk|r1−r2|

4π |r1 − r2|
. (2.3)

Here, 1 is the identity dyadic, and r1, r2 are the source and observation points.
The EFIE (2.2) is solved with the MoM by expanding the current density J (r) into
real-valued basis functions

{
ψp (r)

}
as

J (r) ≈
Nψ∑

p=1

Ipψp (r) (2.4)

and applying Galerkin testing procedure [12, 16]. The impedance operator Z (J)
is expressed as the impedance matrix Z = R + jX = [Zpq] ∈ CNψ×Nψ , where R is
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the resistance matrix, and X the reactance matrix. The elements of the impedance
matrix are

Zpq = jkZ0

∫

Ω

∫

Ω

ψp (r1) ·G (r1, r2) ·ψq (r2) dA1 dA2. (2.5)

2.2 Spherical Wave Expansion of the Green Dyadic

The Green dyadic (2.3) that is used to compute the impedance matrix Z can be
expanded in spherical vector waves as

G (r1, r2) = −jk
∑

α

u(1)
α (kr<) u(4)

α (kr>) , (2.6)

where r< = r1 and r> = r2 if |r1| < |r2|, and r< = r2 and r> = r1 if |r1| > |r2|.
The regular and outgoing spherical vector waves [21, 30, 32, 45] are u

(1)
α (kr) and

u
(4)
α (kr), see Appendix B. The mode index α for real-valued vector spherical har-

monics is [20, 21]

α (τ, σ,m, l) = 2
(
l2 + l − 1 + (−1)sm

)
+ τ (2.7)

with τ ∈ {1, 2}, m ∈ {0, . . . , l}, l ∈ {1, . . . , L}, s = 0 for even azimuth functions
(σ = e), and s = 1 for odd azimuth functions (σ = o). Inserting the expansion of
the Green dyadic (2.6) into (2.5), the impedance matrix Z becomes

Zpq = k2Z0

∑

α

∫

Ω

∫

Ω

ψp (r1) · u(1)
α (kr<) u(4)

α (kr>) · ψq (r2) dA1 dA2. (2.8)

For a PEC structure the resistive part of (2.8) can be factorized as

Rpq = k2Z0

∑

α

∫

Ω

ψp (r1) · u(1)
α (kr1) dA1

∫

Ω

u(1)
α (kr2) · ψq (r2) dA2, (2.9)

where u
(1)
α (kr) = Re{u(4)

α (kr)} is used. Reactance matrix, X, cannot be factorized
in a similar way as two separate spherical waves occur.

Resistance matrix can be written in matrix form as

R = STS, (2.10)

where T is the matrix transpose. Individual elements of the matrix S are

Sαp = k
√
Z0

∫

Ω

ψp (r) · u(1)
α (kr) dA (2.11)

and the size of the matrix S is Nα ×Nψ, where

Nα = 2L (L+ 2) (2.12)

is the number of spherical modes and L the highest order of spherical mode, see
Appendix B. For complex-valued vector spherical harmonics [21] the transpose T
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in (2.10) is replaced with the hermitian transpose H. The individual integrals in (2.8)
are in fact related to the T-matrix method [45, 46], where the incident and scattered
electric fields are expanded using regular and outgoing spherical vector waves, re-
spectively. The factorization (2.6) is also used in vector fast multipole algorithm [31].

The radiated far-field F (r̂) can conveniently be computed using spherical vector
harmonics

F (r̂) =
1

k

∑

α

jl−τ+2fαYα (r̂) , (2.13)

where Yα (r̂) are the spherical vector harmonics, see Appendix B. The expansion
coefficients fα are given by

[fα] = SI, (2.14)

where the column matrix I contains the current density coefficients Ip. The total
time-averaged radiated power of a lossless antenna can be expressed as a sum of
expansion coefficients

Pr ≈
1

2
IHRI =

1

2
|SI|2 =

1

2

∑

α

|fα|2. (2.15)

2.3 Numerical Considerations

The spectrum of the matrices R and X differ considerably [9, 19]. The eigenvalues
of the R matrix decrease exponentially and the number of eigenvalues are corrupted
by numerical noise, while this is not the case for the matrix X. As a result, if the
matrix R is used in an eigenvalue problem, only a few modes can be extracted. This
major limitation can be overcome with the use of the matrix S in (2.11), whose
elements vary several order of magnitude, as the result of the increased order of
spherical modes with increasing row number. If the matrix R is directly computed
with the matrix product (2.10) or equivalently from matrix produced by (2.5) small
values are truncated due to floating-point arithmetic2 [6, 49]. Subsequently, the
spectrum of the matrix R should be computed from the matrix S as presented in
Section 3.

The matrix S also provides a low-rank approximation of the matrix R, which
is the result of the rapid convergence of regular spherical waves. In this paper, the
number of used modes in (2.6) is truncated using a modified version of the expression
in [42]

L = dka+ 7
3
√
ka+ 3e, (2.16)

where L is the highest order of spherical mode, a is the radius of the sphere enclosing
the scatterer, and d.e is the ceiling function. The resulting accuracy in all treated
cases is satisfactory. The order of spherical modes can be modified to trade between
accuracy and computational efficiency, where increasing L improves the accuracy.
Fig. 1 shows the convergence of the matrix R for Example R2.

2As an example to the loss of significance in double precision arithmetic consider the sum
1.0 + 1× 10−30 = 1.0.
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Figure 1: Convergence of the matrix Rl = ST
l Sl to the matrix RL = ST

LSL on the
rectangular plate (Example R2) for different order of spherical modes l = {1, . . . , L}
and multiple electric sizes ka ∈ {0.5, 0.75, 1.5, 3.0}, with the highest spherical mode
order L = 12. The superscript F denotes the Frobenius norm. The convergence is
computed with quadruple precision using the mpmath Python library [29].

Substitution of the spherical vector waves, introduced in Section 2.2, sepa-
rates (2.5) into two separate surface integrals reducing computational complexity.
Table 1 presents computation times3 of different matrices4 Z, R, S, and STS for
the examples given in Table 2. As expected, the matrix Z requires the most com-
putational resources, as it includes both the matrix R and X. The computation of
the matrix R using MoM is faster than the matrix Z since the underlying integrals
are regular. The computation of the matrix R using (2.10) takes the least amount
of time for most of the examples. The computational gain is notable for structures
with more degrees-of-freedom (d-o-f), Nψ.

3 Modal Decomposition With the Matrix S

Modal decomposition using the matrix S is applied to two structures; a spherical
shell of radius a, and a rectangular plate of length L and width W = L/2 (App. D),
are presented in Table 2. Both structures are investigated for different number of
d-o-f, RWG functions [39] are used as the basis functions ψp. The matrices used
in modal decomposition have been computed using in-house solvers AToM [5] and
IDA [43], see Appendix A for details. Results from the commercial electromagnetic

3Computations are done on a workstation with i7-3770 CPU @ 3.4 GHz and 32 GB RAM,
operating under Windows 7.

4Computation time for the matrix X is omitted as it takes longer than the matrix R, due to
Green function singularity.
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Example Time to assemble matrices in IDA (s)

(see Table 2) Z R S R = STS

S1 2.58 0.09 0.009 0.011
S4 14.2 1.78 0.039 0.083
R3 11.1 1.11 0.035 0.068
H1 200 54.5 0.236 1.66

Table 1: Time to assemble matrices in IDA. Simulation setup for the examples in
Table 2, Nq = 3 and L = 10 (Nα = 240), matrix multiplication STS is performed
with dgemm from the Intel MKL library [26].

solver FEKO [2] are also presented for comparison. Computations that require
a higher precision than the double precision arithmetic are performed using the
mpmath Python library [29], and the Advanpix Matlab toolbox [1].

3.1 Radiation Modes

The eigenvalues for the radiation modes [41] are easily found using the eigenvalue
problem

RIn = ξnIn, (3.1)

where ξn are the eigenvalues of the matrix R, and In are the eigencurrents. The
indefiniteness of the matrix R poses a problem in the eigenvalue decomposition (3.1)
as illustrated in [9, 19]. In this paper we show that the indefiniteness caused by the
numerical noise can be bypassed using the matrix S. We start with the singular
value decomposition (SVD) of the matrix S

S = UΛVH, (3.2)

where U and V are unitary matrices, and Λ is a diagonal matrix containing singular
values of matrix S. Inserting (2.10), (3.2) into (3.1) and multiplying from the left
with VH yields

ΛHΛĨn = ξnĨn, (3.3)

where the eigenvectors are rewritten as Ĩn ≡ VHIn, and the eigenvalues are ξn = Λ2
nn.

A comparison of procedure (3.1) and (3.3) is shown in Table 3. For high order n, the
classical procedure (3.1) with double numerical precision yields in unphysical modes
with negative eigenvalues ξn (negative radiated power) or with incorrect current
profile (as compared to the use of quadruple precision). Using double precision,
the number of modes which resemble physical reality (called “properly calculated
modes” in Table 3) is much higher5 for the new procedure (3.3). It is also worth
mentioning that the new procedure, by design, always gives positive eigenvalues ξn.

5Quantitatively, the proper modes in Table 3 are defined as those having less than 5% deviation
in eigenvalue ξn as compared to the computation with quadruple precision.
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Structure Example ka Nψ Nα

S1 1/2 750 240
S2 1/2 750 880

Spherical shell S3 3/2 750 880
Fig. 9 S4 1/2 3330 240

S5 1/2 3330 880

Rectangular plate R1 1/2 199 510
Fig. 10 R2 1/2 655 510

(L/W = 2) R3 1/2 2657 240
R4 1/2 2657 1920

Helicopter H1 1/2 18898 240
H2 7 18898 720

Table 2: Summary of examples used throughout the paper, ka is the electrical size,
Nψ is the number of basis functions (2.4), and Nα is number of spherical modes
calculated as (2.12). The order of the symmetric quadrature rule used to compute
the non-singular integrals in (2.5) is Nq = 3 [14].

Number of properly calculated modes

Example RI = ξnIn XIn = λnRIn

(see Table 2) (3.1) (3.3) (3.4) R = STS (3.8)
S2 59 284 70 (5) 96 (6) 284 (11)
S3 96 364 105 (6) 197 (9) 389 (13)
S5 59 311 70 (5) 96 (6) 306 (11)

R1 31 109 29 35 37
R2 29 117 26 33 98
R4 28 116 22 26 98

Table 3: Comparison of the number of modes correctly found by the classical and the
novel methods for examples listed in Table 2. Columns 2–3 summarize the radiation
modes and columns 4–6 summarize the CMs. Values in parentheses depicts the
number of non-degenerated TM and TE modes found on spherical shell. The main
outcome of the table, comparison of the CMs is highlighted by bold type.
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3.2 Characteristic Modes (CMs)

The generalized eigenvalue problem (GEP) with the matrix R on the right hand
side, i.e., serving as a weighting operator [47], is much more involved as the problem
cannot be completely substituted by the SVD. Yet, the SVD of the matrix S in (3.2)
plays an important role in CM decomposition.

The CM decomposition is defined as

XIn = λnRIn, (3.4)

which is known to suffer from the indefiniteness of the matrix R [9], therefore deliv-
ering only a limited number of modes. The first step is to represent the solution in
a basis of singular vectors V by substituting the matrix R in (3.4) as (2.10), with
(3.2) and multiplying (3.4) from the left by the matrix VH

VHXVVHIn = λnΛ
HΛVHIn. (3.5)

Formulation (3.5) can formally be expressed as a GEP with an already diagonalized
right hand side [4]

X̃Ĩn = λnR̃Ĩn, (3.6)

i.e., X̃ ≡ VHXV, R̃ ≡ ΛHΛ, and Ĩn ≡ VHIn.
Since the matrix S is in general rectangular, it is crucial to take into account

cases where Nα < Nψ, (2.12). This is equivalent to a situation in which there are
limited number of spherical projections to recover the CMs. Consequently, only
limited number of singular values Λnn exist. In such a case, the procedure similar
to the one used in [24] should be undertaken by partitioning (3.6) into two linear
systems

X̃Ĩ =

(
X̃11 X̃12

X̃21 X̃22

)(
Ĩ1n

Ĩ2n

)
=

(
λ1nR̃11Ĩ1n

0

)
, (3.7)

where Ĩ1n ∈ CNα , Ĩ2n ∈ CNψ−Nα , and Nα < Nψ. The Schur complement is obtained
by substituting the second row of (3.7) into the first row

(
X̃11 − X̃12X̃

−1
22 X̃21

)
Ĩ1n = λ1nR̃11Ĩ1n (3.8)

with expansion coefficients of CMs defined as

Ĩn =

(
Ĩ1n

−X̃−1
22 X̃21Ĩ1n

)
. (3.9)

As far as the matrices U and V in (3.2) are unitary, the decomposition (3.6) yields
CMs implicitly normalized to

ĨH
n R̃Ĩm = δnm, (3.10)

which is crucial since the standard normalization cannot be used without decreas-
ing the number of significant digits. In order to demonstrate the use of (3.8),
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Figure 2: The absolute values of the CMs of spherical shell with electrical size
ka = 0.5 (Example S2). Data calculated with classical procedure (3.4) are compared
with techniques from this paper, (3.5), (3.8), and with the analytical results valid
for the spherical shell [9].

various examples from Table 2 are calculated and compared with the conventional
approach (3.4).

The CMs of the spherical shell from Example S2 are calculated and shown as
absolute values in logarithmic scale in Fig. 2. It is shown that the number of the
CMs calculated by classical procedure (FEKO, AToM) is limited to the lower modes,
especially considering the degeneracy 2l + 1 of the CMs on the spherical shell [9].
The number of properly found CMs is significantly higher when using (3.8) than
the conventional approach (3.4) and the numerical dynamic is doubled. Notice that,
even (3.4) where the matrix R calculated from (2.10) yields slightly better results
than the conventional procedure. This fact is confirmed in Fig. 3 dealing with
Example R2, where the multiprecision package Advanpix is used as a reference. The
same calculation illustrates that the matrix R contains all information to recover
the same number of modes as (3.8), but this can be done only at the expense of
higher computation time6.

While (3.8) preserves the numerical dynamics, the computational efficiency is
not improved due to the matrix multiplications to calculate the X̃ term in (3.7).
An alternative formulation that improves the computational speed is derived by
replacing the matrix R with (2.10) in (3.4)

XIn = λnS
TSIn, (3.11)

6For Example S2 the computation time of CMs with quadruple precision is approximately
15 hours.
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Figure 3: The absolute values of the CMs of rectangular plate (Example R2). Since
unknown analytical results, the multiprecision package Advanpix has been used in-
stead to calculate the first 150 modes from impedance matrix in quadruple precision.

and multiplying from the left with SX−1

SIn = λnSX−1STSIn. (3.12)

The formulation (3.12) is a standard eigenvalue problem and can be written as

SX−1STÎn = X̂În = ξnÎn, (3.13)

where X̂ = SX−1ST, În = SI, and ξn = 1/λn. As an intermediary step, the ma-
trix XS = X−1ST is computed, which is later used to calculate the characteristic
eigenvectors In = λnXSÎn. The eigenvalue problem (3.13) is solved in the basis of
spherical vector waves, În = SI, that results in a matrix X̂ ∈ CNα×Nα . For prob-
lems with Nα � Nψ the eigenvalue problem is solved rapidly compared with (3.4)
and (3.8). The computation times for various examples are presented in Table 4 for
all three formulations where a different number of CMs are compared. For Exam-
ple H1 the computation time is investigated for the first 20 and 100 modes. The
acceleration using (3.13) is approximately 4.7 and 14 times when compared with
the conventional method (3.4). The first characteristic mode of Example H1 is
illustrated in Fig. 4.

Two tests proposed in [9] are performed to validate the conformity of character-
istic current densities and the characteristic far fields with the analytically known
values. The results of the former test are depicted in Fig. 5 for Example S2 and S5
that are spherical shells with two different d-o-f. Similarity coefficients χτn are
depicted both for the CMs using the matrix R (3.4) and for the CMs calculated
by (3.8). The number of valid modes correlates well with Table 3 and the same
dependence on the quality and size of the mesh grid as in [9] is observed.



11

Example Time to calculate Nλ CMs (s)

(see Table 2) Nλ (3.4) (3.8) (3.13)
S1 10 0.36 0.18 0.12
S2 300 3.3 2.0 1.1
S4 10 2.8 2.5 0.78
S4 100 13 2.1 0.72

R1 100 0.29 0.28 0.42
R3 50 7.2 1.3 0.49

H1 20 130 150 28
H1 100 500 150 35
H2 100 350 160 35

Table 4: Comparison of computation time required by various methods capable to
calculate first Nλ CMs. The calculations were done on Windows Server 2012 with
2×Xeon E5-2665 CPU @ 2.4 GHz and 72 GB RAM.

Figure 4: Current density of the first characteristic mode of a helicopter at ka = 7
(Example H2), mesh grid has been taken from [2].
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Figure 5: Similarity of numerically evaluated characteristic currents for a spherical
shell of two different discretizations (Example S2 and S5) and the analytically known
currents [9]. The coefficients χτn were calculated according to [9], top panel depicts
results for the conventional procedure (3.4), bottom panel for the procedure from
this paper (3.8).

Qualitatively the same behavior is also observed in the latter test, depicted in
Fig. 6, where similarity of characteristic far fields is expressed by coefficient ζτn [9].
These coefficients read

ζτn = max
l

∑

σm

∣∣∣f̃τσmln
∣∣∣
2

, (3.14)

where f̃τσmln has been evaluated using (2.14). The results for characteristic far
fields computed from the conventional procedure (3.4) and the procedure presented
in this paper (3.8) are illustrated in Fig. 6.

Lastly, the improved accuracy of using (3.8) over (3.4), is demonstrated in the
Fig. 7 which shows current profiles, corresponding to a rectangular plate (Exam-
ple R2), of a collection of the first 30 modes. It can be seen that for modes with
high eigenvalues (numerically saturated regions in Fig. 3) the surface current den-
sity in left panel, calculated via (3.4), shows numerical noise, while the evaluation
via (3.8) still yields a correct current profile.

3.3 Restriction to TM/TE modes

Matrix S, described in Section 2.2, contains projections onto TE and TM spherical
waves in its odd (τ = 1) and even rows (τ = 2), respectively. The separation of
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Figure 6: Similarity of numerically and analytically evaluated characteristic far fields
for a spherical shell of two different discretizations (Example S2 and S5) and ana-
lytically known far fields [9]. The coefficients ζτn were calculated by (3.14) , see [9]
for more details. Top panel depicts results for the conventional procedure (3.4),
bottom panel for the procedure from this paper (3.8).

TE and TM spherical waves can be used to construct resistance matrices RTE and
RTM, where only odd and even rows of matrix S are used to evaluate (2.10).

Matrices RTM and RTE can be used in optimization, e.g., in such a case when
the antennas have to radiate TM-modes only [10]. With this feature, character-
istic modes consisting of only TM (or TE) modes can easily be found. This is
shown in Fig. 8, in which the spherical shell (Example S2) and rectangular plate
(Example R2) are used to find only TM (capacitive) and TE (inductive) modes,
respectively. In case of a spherical shell this separation could have been done during
the post-processing. For a generally shaped body this separation however represents
a unique feature of the proposed method.

4 Discussion
Important aspects of the utilization of the matrix S are discussed under the headings
implementation aspects, computational aspects and potential improvements.
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Figure 7: Comparison of the higher-order CMs of the rectangular plate (Ex-
ample R2) with the most similar characteristic number, left panel: conventional
procedure (3.4), right panel: procedure from this paper (3.8).
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Figure 8: Left pane: the absolute values of the CMs of a spherical shell (Example S2)
if only odd rows of the matrix S were kept. Right pane: the absolute values of the
CMs of a rectangular plate (Example R2) if only even rows of the matrix S were
kept.
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4.1 Implementation Aspects

Unlike the reactance matrix X, the resistance matrix R suffers from high condition
number. Therefore, the combined approach to evaluate the impedance matrix (ma-
trix R using matrix S, matrix X using conventional Green function technique with
double integration) takes advantage of both methods and is optimal for, e.g., modal
decomposition techniques dealing with the matrix R (radiation modes [41], CMs,
energy modes [28, 41], and solution of optimization problems [10]). Evaluation and
the SVD of the matrix S are also used to estimate number of modes, cf. number of
modes of the matrix S found by (3.2) and number of CMs found by (3.8) in Table 3.

4.2 Computational Aspects

Computational gains of the proposed method are seen in Table 1 for the matrix
R and Table 4 for the CMs. The formulation (3.13) significantly accelerates CMs
computation when compared with the classical GEP formulation (3.4). Moreover, it
is possible to employ lower precision floating point arithmetic, e.g. float, to compute
as many modes as the conventional method that employs higher precision floating
point arithmetic, e.g. double. In modern hardware, this can provide additional
performance boosts if vectorization is used.

An advantage of the proposed method is that the matrix S is rectangular for
Nα < Nψ, allowing independent selection of the parameters Nψ and Nα. While the
parameter Nψ controls the details in the model, the parameter Nα (or alternatively
L) controls the convergence of the matrix S and the number of modes to be found.
In this paper (2.16) is used to determine the highest spherical wave order L for a
given electrical size ka. The parameter L can be increased for improved accuracy
or decreased for computational gain depending on the requirements of the problem.
Notice that the parameter Nα is limited from below by the convergence and the
number of desired modes, but also from above since the spherical Bessel function
in u

(1)
α (kr) decays rapidly with l as

jl (ka) ≈ 2ll!

(2l + 1)!
(ka)l , ka� l. (4.1)

The rapid decay can be observed in Fig. 1, where the convergence of the matrix R
to double precision for ka = 3 requires only L = 12 while (16) gives a conservative
number of L = 17.

4.3 Potential Improvements

Even though the numerical dynamic is increased, it is strictly limited and it presents
an inevitable, thus fundamental, bottleneck of all modal methods involving radiation
properties. The true technical limitation is, in fact, the SVD of the matrix S. A
possible remedy is the use of high-precision packages that come at the expense of
markedly longer computation times and the necessity of performing all subsequent
operations in the same package to preserve high numerical precision.
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The second potential improvement relies on higher-order basis functions, which
can compensate a poor-meshing scheme (that is sometimes unavoidable for complex
or electrically large models). It can also reduce the number of basis function Nψ so
that the evaluation of CMs is further accelerated.

5 Conclusion
Evaluation of the discretized form of the EFIE impedance operator, the impedance
matrix, has been reformulated using projection of vector spherical harmonics onto
a set of basis functions. The key feature of the proposed method is the fact that the
real part of the impedance matrix can be written as a multiplication of the spherical
modes projection matrix with itself. This feature accelerates modal decomposition
techniques and doubles the achievable numerical dynamics. The results obtained by
the method can also be used as a reference for validation and benchmarking.

It has been shown that the method has notable advantages, namely the number
of available modes can be estimated prior to the decomposition and the convergence
can be controlled via the number of basis functions and the number of projections.
The normalization of generalized eigenvalue problems with respect to the product
of the spherical modes projection matrix on the right hand side are implicitly done.
The presented procedure finds its use in various optimization techniques as well.
It allows for example to prescribe the radiation pattern of optimized current by
restricting the set of the spherical harmonics used for construction of the matrix.

The method can be straightforwardly implemented into both in-house and com-
mercial solvers, improving thus their performance and providing antenna designers
with more accurate and larger sets of modes.

Appendix A Used Computational Electromagnetics
Packages

A.1 FEKO

FEKO (ver. 14.0-273612, [2]) has been used with a mesh structure that was imported
in NASTRAN file format [33]: CMs and far fields were chosen from the model tree
under requests for the FEKO solver. Data from FEKO were acquired using *.out,
*.os, *.mat and *.ffe files. The impedance matrices were imported using an in-house
wrapper [43]. Double precision was enabled for data storage in solver settings.

A.2 AToM

AToM (pre-product ver., CTU in Prague, [5]) has been used with a mesh grid that
was imported in NASTRAN file format [33], and simulation parameters were set
to comply with the data in Table 2. AToM uses RWG basis functions with the
Galerkin procedure [39]. The Gaussian quadrature is implemented according to [14]
and singularity treatment is implemented from [15]. Built-in Matlab functions are
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utilized for matrix inversion and decomposition. Multiprecision package Advanpix
[1] is used for comparison purposes.

A.3 IDA

IDA (in-house, Lund University, [43]) has been used with the NASTRAN mesh and
processed with the IDA geometry interpreter. IDA solver is a Galerkin type MoM
implementation. RWG basis functions are used for the current densities. Numerical
integrals are performed using Gaussian quadrature [14] for non-singular terms and
the DEMCEM library [35, 36, 37, 38] for singular terms. Intel MKL library [26] is
used for linear algebra routines. The matrix computation routines are parallelized
using OpenMP 2.0 [13]. Multiprecision computations were done with the mpmath
Python library [29].

Appendix B Spherical Vector Waves
General expression of the (scalar) spherical modes is [30]

u
(p)
σml(kr) = z

(p)
l (kr)Yσml (r̂) , (B.1)

with r̂ = r/|r| and k being the wavenumber. The indices arem ∈ {0, . . . , l}, σ ∈ {e, o}
and l ∈ {1, . . . , L} [20, 21]. For regular waves z

(1)
l = jl is a spherical Bessel function of

order l, irregular waves z
(2)
l = nl is a spherical Neumann function, and z

(3,4)
l = h

(1,2)
l

are spherical Hankel functions for the ingoing and outgoing waves, respectively.
Spherical harmonics are defined as [30]

Yσml (r̂) =

√
εm
2π
P̃m
l (cosϑ)

{
cosmϕ
sinmϕ

}
, σ =

{
e
o

}
(B.2)

with εm = 2 − δm0 the Neumann factor, δij the Kronecker delta function and
P̃m
l (cosϑ) the normalized associated Legendre functions [34].
The spherical vector waves are [21, 30]

u
(p)
1σml (kr) = R

(p)
1l (kr) Y1σml (r̂) , (B.3a)

u
(p)
2σml (kr) = R

(p)
2l (kr) Y2σml (r̂) + R

(p)
3l (kr) Yσml (r̂) r̂, (B.3b)

where R
(p)
τl (kr) are the radial function of order l defined as

R
(p)
τl (κ) =





z
(p)
l (κ), τ = 1, (B.4a)

1

κ

∂

∂κ

(
κz

(p)
l (κ)

)
, τ = 2, (B.4b)

bl
κ

z
(p)
l (κ), τ = 3, (B.4c)



18

with bl =
√
l (l + 1) and Yτσml (r̂) denotes the real-valued vector spherical harmon-

ics defined as

Y1σml (r̂) =
1

bl
∇× (rYσml (r̂)) , (B.5a)

Y2σml (r̂) = r̂ ×Y1σml (r̂) , (B.5b)

where Yσml denotes the ordinary spherical harmonics [30]. The radial functions can
be seperated into real and imaginary parts as

R
(3)
τl (κ) = R

(1)
τl (κ) + jR

(2)
τl (κ) , (B.6)

R
(4)
τl (κ) = R

(1)
τl (κ)− jR

(2)
τl (κ) . (B.7)

Appendix C Associated Legendre Polynomials
The associated Legendre functions are defined [27] as

Pm
l (x) =

(
1− x2

)m/2 dm

dxm
Pl(x), l ≥ m ≥ 0, (C.1)

with

Pl (x) =
1

2ll!

dl

dxl
(
x2 − 1

)l (C.2)

being the associated Legendre polynomials of degree l and x ∈ [−1, 1]. One useful
limit when computing the vector spherical harmonics is [30]

lim
x→1

Pm
l (x)√
1− x2

= δm1
l (l + 1)

2
. (C.3)

The normalized associated Legendre function P̃m
l , is defined as follows

P̃m
l (x) =

√
2l + 1

2

(l −m)!

(l +m)!
Pm
l (x) . (C.4)

The derivative of the normalized associated Legendre function is required when
computing the spherical harmonics, and is given by the following recursion relation

∂

∂ϑ
P̃m
l (cosϑ) =

1

2

√
(l +m)(l −m+ 1)P̃m−1

l (cosϑ)

− 1

2

√
(l −m)(l +m+ 1)P̃m+1

l (cosϑ) (C.5)

where x ≡ cosϑ, ϑ ∈ [0, π].

Appendix D Spherical Shell and Rectangular Plate
Meshes for the spherical shell of radius a = 1m with Nψ = 750 and Nψ = 3330
d-o-f are depicted in Fig. 9. The meshes for the rectangular plate of aspect ratio
L/W = 2 with Nψ = 199 , Nψ = 655, and Nψ = 2657 d-o-f are presented in Fig. 10.
[!htb]
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Figure 9: Spherical shell mesh with 500 triangles (left) and 2220 triangles (right)
with 750 (left) and 3330 (right) RWG basis functions, respectively. The same mesh
grids are used in [9] to make the results comparable.

Appendix E Radiation Modes
Eigenvalues of the radiation modes for Example S2 and R2 are presented in Fig. 11
and Fig. 12. The eigenvalues are computed using both the conventional (3.1) and
the proposed (3.3) method. It can be seen that the number of modes computed
using (3.3) is significantly higher compared to (3.1) for both examples. Eigenvalues
calculated using quadruple precision SVD of the matrix S are also included. The
number of correct radiation modes is shown in Table 3.

If eigenvalues ξn of the different mesh grids are to be compared the MoM
matrices must be normalized. The normalized matrices are R̂ = LRL, ξ̂ = LξL,
Ŝ = SL, În = L−1In, where L is the diagonal matrix of basis functions’ reciprocal
edge lengths, i.e., Lpp = 1/lp.
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