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INCOMPATIBILITY ALLELES;, CHARACTERISTICS OF A 1-LOCUS SYSTEM.

P. Hagander and L. Johansson

ABSTRACT

tuations from one generation to the other are demonstrated.

A mathematical state model is deduced for arbitrary numbers

of alleles in the population, and jtg steady state behaviour

and stability is discussed. The eigenvalues of the linearized
models as well as simulations show that the large éystems react
slowly on disturbances, while the three allele system oscillates
around its equilibrium,



INTRODUCTION

Nature has created several differvent methods

to prevent self~fertilir thet is +o prevent
. Y It

from pollen ang €ggs of the same plant, One of
effective ways to achieve this uges # specific hereditary
factor. This factor ig given by the molecular structure

of the se called S-locus, a certain segment of the chrome-
somes, and it is inp one of a number of different states,
called allelieo states,

P

Two chromosomes with different molecular structure of thea
o

S-locus, i.e.with the hereditary factep .n different gta-
tes, are said +o have differant S-alleles., The posgsible

states are labelled 3,-allele, S,-allele up to Spwailele,

where n is +re riambe

In most cells of a Plant the chromosomes ippear in paips,
except in pollen and eggeells, where they are single and

half as many. Thus the actualipair of chromosomes in a

cell has two alleles, say 81 ahd"Sg, and the plant is

called Slz-plant. Pollen frem a Sl?wplant}containing elthey
a Sl—allele or a Szuallele, is called Sl~pollen or Sz~pollen
and likewise for the €fgfs. A plant From Sl—pollen and Szm@ggs
is identical to one from Sz—pollen and Sfegg;-so the nota-
tion S12 i8 consistent,

The pistil contains normal cells which have two S-alleles,
Pollen with its S-allele identical to any of these will in~
teract with the Pistil in such a way that fertilization cap-
not take place. A]l]l other pollen can fertilize the eges of
that pistil, |

Thus all self-fertilization is impossible! As many plants
have identical alleles, some crogss-fertilization will be
bPrevented too,



The system for such inoompatibility is called a multi-
allelic 1-locus system with gametophytie determination
of the pollen specificities, where the S-alleles have

an independent fenotypic effect,

An example of such a system is the red clover (Trifolium
bPratense L.), which has many, maybe more than 30, different
S-alleles, There exists also 2-loci 8ystems, for instance
in some grasses (2],

The model usually assumed for the allele fluctuations
from one feneration to another in a bopulation with 1-
locus incompatibility, is in this bPaper desecribed in
mathematical terms, Some characteristics of low order
Systems are discussed, The steady state behaviour and the
stability ig analysed, and the equations are linearized,

tion of the nonlinear systenm,



THE MODEL

Introduce the notation S;s for the quotient between the number
of sij~plants and the total number Of”plants of the population.
Since Sij“ and Sji—plants{are identical in respect to incom-
patibility, the numbers Sij will only be used for i<j. Notice

the characterigtics:

[«] T
] £ uij £ 4
b3t Sij =1
143
i<j

The system for reproduction determines the evolution of the
Population, i.e. peoy the numbers Si' change generation after
generation. If the number of different alleles in the popula-
tion is N, then the n(n-13)/2 numbers Sii constitute the state
of the system. The different Sij (t+1):s could he expressed ag
functions of the Sij(t):s:

ca(t+l) = ¥ = S5 () p.a/(p ."P, ~P.:) + & - S, (t)pi/
1] k=l 2 Ki ToTret Tl FAT T pie 5 ik
k]

i-1 n
_ 1
(ptot P;~Pp) + i:l » Skj(t) Pi/(ptot—pk“pj) + §=i+1
k#i \

Sjk(t)

Ny {4

1]

" Pi/(Peqr=ps=py) i=2,...,n (1)



where p; is the pProportion of 5.-pollen,

and

Prot

Regard the first term of (1): Half of the number of eggs
produced hy Skivplants are Si~eggs, which togetheé.with
Sj-pollen form new Sijfplants. However, these Si—eggs can
be fertilizedq by any pOllen except Sk-pollen and Si-pollen,
80 just the part pjf(ptot*pk"Pi) of the S;-eggs will mature
to new Sij—plants. The rest of the terms are formed simi-
larily, It is thus also assumed that if x 3 of the plants
carry a Si-alléle, X % of the pollen will too. Furthermore
all types of pollen have the same chance to performe fer-
tilization,

It can usually be assumed that pollen exists in excess, so
that the variable that limits the next generation is the
number of eggs, Thig means that the terms for the Si-eggs
from all Ski-plants and the Sj»eggs from all Skjwplants could
be added as in egq (1),

This assumption may be wrong. If, in actual pPractice, there
is a shortage of inseets, this can cause a deficiency of pol~-
len. Thus in the Other extreme there are eggs in excess and
termes from the pocllen could be added,

Both these models could he simulated on a digital computer



(See below and [11), and the differences are smalil. The sys-

tem with eggs in excess is gomewhat glowenr than the one with
pollen in excess,

Probably a real system will be somewhat in between, As the
differences are small, the model with abundance of pollen
could be representative,

Once the primary model ig formulated, it isg easy to struc-
ture the effects of a change in an assumption or of an added

restriciton, such as pPollen with a certain allele being more
vital (17,

The system described by (1) is complicated. Tt is non-
linear. The right hand side contains multiplications asg

well as divisions of state variables, The number of terms
increases with the number of alleles, The time behaviour

is difficult to realize from the equations. In order to get
some insight, the two Systems of lowest order are Presented,

For a 3-allele System, the equation (1) is very simple

{ 812(t+l) = 1/2 Slg(t) + 1/2 823<t)
]

4 813(t+1) = 1/2 SlQ(t) + 1/2 Sza(t)
\823(t+1) = 1/2 Slz(t) + 1/2 Sla(t)

Or using matrix notion

0 1/2 1/27
S(t+1l) = 172 ¢ 1/9 S(t)

1172 172 ¢ J

This system is Jinearp and oscillates around the mean value
(=1/3) as sheown in Fig.1l. The plant frequencies always ap-
proach 1/3, which is an equilibirum with global stability,



Fraction of the population
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Fig 1. - Simulation of 4 3-allele population,

For a 4-aljeie S8ystem, the equation (1) isg quite diffepent
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and analogously for the Other allele combinations, Thisg

system ig nonlinear, and i+ usually does not oscillate, When
simulated on a computer the plant frequencies always approached
1/6, which is a stable equilibrium, probably the only equili-
brium,



EQUILIBRTA

Since the alleles are assumed to be equal, there should be
an equilibrium

= = = /
819574 ceeeSiiy gy TN

where n is the number of alleles, and N = n(n-1)/2 is the
number of different plantg,

It is easily shown that this is the only steady state soly-
tion to the 3-allele system: From (1)

' N 2 .

| 512 = (814+8,,)/2 (a)

{ S13 % (S9,48,,)/2 (b)
823 = (812+813)/2 {c)

(a) and (b) give

Or equivalently

Q = ¢
“13 g23

and again using (a)

S12 % 815 (=5,



which also satisfies (e¢)

That Sjj = 1/N 4is an equilibrium (probably the only onej,
could be proven fop all n:

Sjj(t) = *"*""3'*"*“'" \"!Isj
- nin-~1)
p;(t) = 1/n Yi

Thus, according to (L), Sjj(t+l) is a sum of 2(n-2) equal
terms V

i}

12 1 ? :
Si;(t+l)= 2{n=2 3y - ~.+/n — 2 G ()
- 2 nln+1) 1-1/n~1/n nin-1)



STABILITY

In the 3-allele system Sij = 1/3 is an equilibrium with
global stability, '

)
/2 1/2]

Sl =1, 1/2

172 12 g

S(t)

©r when deviations fron the equilibrium are considered

P T
88 =is) | - 13
Spp 1173
o /2 177]
A S(t+1) P

1/2;A8(t) = 0AS(t)

/2 1/2 ¢ |
5 = |

11/2 0o
|

L

The eigenvalues of ¢ are A = 1, -1/2 and -1/2, and the
eigenvectors ape [1:1 1]T, connected to A = 1 and fa b CIT
a+b+c=0, connected to A = -1/2,

The value 1=1 ig an implication of & Sii being constant,
equal to one. <37

The evolution of the state is thus in fact restricted to a
subspace of dimension N-1, but it is favorable ot ¢ solve
this dependence, It makes the expression (1) simpler and more
symmetric,

Since the other +two eigenvalues are within the unitecircle the
3-allele system jig stable, and the negative sign of them shows



104

the oseillatory behavicur.

The global stability ha

8 not been shown £
Systems with u

or the nonlinear
O mope alleles, byt Some calculations o

an
be done,



ll.

LINEARIZATTON

In order to fing out if Sij = 1/N is a stable solution
of (1), small changes are considered and the equation
linearized around the equilibrium.

g [ued
A3, ,(t+1) %1085, ,(t) + %y 88, (t) +.“+cen_19n Aon*l,n(t)
where
a 5 n-3
12 7 el ) (23

(n=2)"-(n-3) _ -
(n=1)(n-2)% '

- 2(n-3)
7 7 %3g
(n=1)(n=72)

n
1]
!
i
Q
]
L]
=3

“34

A 5q45(t+1), ASiq(t+l) and so on could be expressed by the
Shme factors a, but permuted., Thus

AS(t+1l) = ¢ AS(t)

The matrix ¢ ig symmetric and contains the three different
elements %5 %y, and @3, SPread out in g regular pattern.
The  matrix for the Y-allele system is shown as an example.
The expressions (2) - ¢u) give'with n =y

alz = 1/6
aBH = =1/6

and the pattern isg



1z2.

(11 12 1 1 a)
6 4 7 1 7 %
11 1 1 3
4 6 1 71 %5 3
1111 1
4 1 6 6 % 73
1 11 1 1 3
t+ 7T 6 5 7 3
o= (111 1 1 1
4 6 % 4 5 71
111110
| 8 7 7 7 7 %

1.1
n = 3 1 -2 2
TR T R
n o= i 3 3 3 2 2
'l '7 7 ."l "lo--uuno
L_Té ]2 ooanua:o . 3 3 ;
no o= 5 4" 5
l I --!- —l..-.ivn
n =g 1 Tﬁ" Tb"-..-..-; ) 4 4 )
5—*1’“‘ 9
n = 8§ ) ]
]7 .1.?. . - e e s et
] .é-f 2] a5 ee ) . 6 "6 5 ~
7" 20

Because the eigenvalues are inside the uniteirecle the
steady state solution of a7] these systems are stable,

The negative eigenvalues corresponding to oscillating

terms become less accentuated as n increases, while the
growing positive eigenvaluesg indicate that the distrubances
only very slowly Penetrates g large system, The overshoots,
typical for a 3~allele Population, ocecur ip a hk-gllele system
for the Special case when the allele frequencies are almost

€qual but the plant frequencies differ. The start



13,

12 “3y

13 T °1u 23 2y

of eq (1) gives the fluctuations jin Fig. 2,

0.5+ e
51253y,

Fraction of the population

Generation number

Fig 2. - A special starting value giving an oscillatineg
b allele bPopulation,

For larger Systems, overshoots are rare, as shown by the
simulations in Fig 3 and Fig u,
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Figure 4. ~ A spall amount of & new allele (s ) en~
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Figure 3, - 4 normal starting value giving a damped
h-allele population.
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CONCLUSIONS

The incompatibility system with one locus and several
possible alleles has been described, The behaviour of
populations with few alleles is not relevent for large
5ystems, The recovery after g disturbance cccurs very
slowly and (without) overshoots, The same happens whenAa
small amount of a new allele enters a population, The
Symmetry and the structure of the system give nice pat-
terns in the linearized systems,

It is difficult to predict the result of a crossine ex-
Periment or an elite multiplication, and it would be valy-
able to compute the expected values from a model of the
population. The caosts fop an experiment and a simulation
differ by several orders of magnitude,

An estimate of the randomness in the system, [11, indicates
that it would be Possible to check the model against a field
experiment of a foup allele population, Such experiment will
be conducted by Doc. Thore Denward, Balsgdrd, Sweden, The
starting values will be

(s
\

i
s
1

S

12 13 = 8

11 i/3

S23 = Sy

S3M =0

beaehiﬁg:tﬁé equilibrium point Sii = 1/6 in the next generation,
A corresponding 3 allele system would behave otherwise with
Oscillations:

- Q i
(312 = Sy, = 1/2

S

i
o

23

i

]

1
~
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gives in the next generation

ff““ = S_ = 1/4

/

2\

The differencies could alsoc be seen in the allele frequencies,
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