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" A DESIGN EXAMPLE OF A SAMPLED DATA BYSTEM

B. Wittenmark

ABSTRACT

This report illustrates some design methods for sampled data
systems. A second order continucus time system with a time
delay is considered. The discussed design methods are based
on pole placement in different ways and results from simula-
tions are shown. The pole placement methods together with si-
mulations are shown to be a successful approaah to the design
of sampled data systems.




-
i

TABLE OF CONTENTS

[ [ ad
- -

L]

3
4.
5.
6.
7

»

Formulation of the problem

Pole placement using state Ffeedback

Pole placement using output feedback 1
Pole placement using output feedback 2
Combined feedback and feedforward control
Summary

References

Appendix

il
15
22
26
27

28




l. FORMULATION OF THE PROBLEM

The problem of designing digital regulators will be illustra-
ted on a simple example. The process is a very simplified mo-
del of a control system on a turbojet motor. This process has
been discussed in a master thesis, [4], done at Volvo Flygmo-
tor, Trollh3ttan, in cooperation with the Department of Auto-
matic Control, ILund.

The Process.,

Consider the block diagram given in Figure 1.1, The process is
a simplified model of the system for the control of the outlet
area of an after-burner of a turbojet motor. The outlet area is
controlled in order to get a specified pressure in the after-
burner.

The numerical values used in this report are
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 q£gg5§_£;l =~ & simple model of the area control loop of an
! after-burner of a turbojet motor.




Introduce the state variables xl(t) and xz(t) as in Figure
l.1. Neglecting the time delay a state space representation

is given by
1 K
ol Ty
x(t) = x(t) + u(t)
1 0 0

The discrete time representation when using the sampling in~
terval T is

-T/T
a 1 0 l -~ e

% (t+T) = ~r/m, x(t) + K -y u(t)
T, (1 - e } 1 T - Tl(l - e Y1

The sampling time used in this study is T = 0.0ls. The output
from the system is equal to X, {t} delayed 0.02s = 2T, Intro-
ducing two state variables x5 () = xz(t-T) and x4(t) = x3(t~T)
gives the discrete time representation of the system,

[0.513 0 0 ¢ " [29.196]
0.007 1 0 0 0.162 -
%{t+0.01) = x(t)y + u(t)
0 10  of 0
L0 0 1 0 0 | _ (1.1)

The pulse transfer function from the input to the output is gi=-
ven by o '

0.162g % (1+0.801g™7) u(t) (1.2)
(1—q“1)(1—o.513q'1)

y{t) =

1 is the backward shift operator.

where q—




gpeclifications.
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The problem is to find a digital requlator which gives a smooth
control of the outlet area of the after-burner. The following

specification can be used:
a. The output should reach its steady state value 0.15 - 0.30s
{i.e. 15 - 30 sampling intervals) after a change in the re-

ference signal or after a disturbance.

b, The steady state value should be reached without or with a
small overshoot (less than 5%).

Design Methods.

The design methods used in the following sections are based on
pole placement and time domain analysis. There also exist de-
sign methods based on frequency domain analysis, see e.g. Tou

161.

The aim of this report is to show that pole placement methods
together with a good simulation package can be very useful for

the design of sampled data regulators.

The methods discussed in the repoxrt are:

o Pole placement using state feedback.
0 Pole placement using output feedback.
o Combined feedback and feedforward control.

For a controllable system it is always possible to place the
poles of the closed loop system at desired locations. This is
illustrated in Section 2 where state feedback control laws are

discussed.

In Section 3 a cascade controller is discussed which only uses




the exror between the reference value and the output signal.
With a proper cascade controller it ig possible to get a de-
sired characteristic polynomial of the closed loop system.

The controller in Section 4 is also based on output feedback
but the control scheme is more flexible. Tt is for instance
possible to make a separation between the sexvoproblem (fol-
low a reference signal) and the regulator problem (eliminate
a disturbance).

A still more complex controller is discussed in Section 5.
Thls controller also separates the servo and the regulator
problems. The controller can be regarded as a combination of
feedforward from the reference signal and feedback from the

output signal,




2. POLE PLACEMENT USING STATE FEEDBACK.

If a system is controllable it is always possible to place
the poles at desired locations by using a state feedback con-
trol law

ult) = yr(t) - Lx(t) (2.1)

This requires that all state variables are measurable. In the
discussed physical system, eq. (1.1), it is not possible to
measure all the states. The state feedback method will, how-
ever, be discussed for the sake of completeness.

The control law (2.1) gives in general a steady state error

if yr(t)_is the desired reference value. The process in Figure
1.1 contains an integrator and it should be possible to follow
a constant reference value by using a proper feedback law. One
way to eliminate the steady state error is to use the control
scheme in Figure 2.1.

v | 016247 {1+0801g™") X, [T 1% 51 %
! (-7 (1-0.513q7)

X,

~L

Figure 2.1 - Modified state feedback control law

ult) = K, (v, (t) - Lx(t))




The control law is now .

ult) = Kje(t) = Ky (v () - Lx(t)) (2.2)

A new parameter, the gain Kl’ is introduced. This gives an ext-

ra degree of freedom for the choice of L. From {1.1) it ig found
that if steady state is reached, then Xy = 0 and Xg = Xg = X, =

= y. If L is chosen such that

£2 f 23 + 24 = 1
where the £i:s are the elements of L, then ¢ = 0 in steady state.
The characteristic polynomial can, however, still be chosen ar-

bitrarily thanks to the extra parameter K.

The system (1.1) is controllable and using the control law (2.2)
gives the characteristic polynomial

2o (29.196K, £, + 0.162K; 2, - 1,513) 2> +

+ (= 29.196K £y + 0.130K; 2, + 0.162K £, + 0.513) A% +

+ (0.130K1£3 + 0.162K1£4)A + 0.130K1£4 = 0

If the desired characteristic polynomial is

F() =,A4 + plA3<+ 92A2 T pahtp, =0 ' (2,3)

then by straightforﬁard calculations it is found that the para-
meters in (2.2) are given by:

- Ky = (1 + Py * Py * Py ¥+ p#)/0.292
. ‘Kifé = p&/0.130
] K &y = (py - 0.162K,£,)/0.130

Kydy ="(py + py + 1 ~ 0.162K,£,)/0.292

Klﬂl = (pl + )L.513 - 0.162Kl£2)/29.196




where to place the poles?

One probklem is now to determine the desired characteristic
polynomial (2.3). This problem arises since the specifications
are not given in terms of poles but as specifications on the
step response.

. Figure 2.2 can be useful in order to get a feeling for the re-
~lations between the poles of a continuous and a sémpled data
system. The figure shows the transformation of curves with con-
stant damping ratio and constant real part when sampling a sys-—
© tem with the sampling time T.

- The transient of the sampled data system can now be determined
by chosing an appropriate damping factor and a radius in the
Z-plane.

To determine the duration of the transient a rule of thumb can
be given. Consider the first order system

z(£+T) = gz{t) z{(0) = a
The solution is given by
z(nT) = ag’ '

The transient is reduced to 0.1 &f its initial value when

o® = 0.1 which gives:

- £n 0.1 %‘ 2
£n o 1 -~-a

n (2.4)

Using Figure 2.2 and equation (2.4)'it is thus possible to get
a good starting point for the choice of the characteristic po-
lynomial. The final choice must, however, be done by using the
rules of thumb as well as simulations.. This means that the syn- .
thesis is highly facilitated if a good simulation package is

avatlable.




Figure 2.2 - The transformation of curvés with constant damp-
ing, &, and real part, R = fw, when sampling with
a sampling time of T seconds.

Simulaticns.

The specifications given in Section 1 implies that the transient
should vanish after 15 - 30 samples. The poles of the characte-
ristic polynomial should thus be placed within the arxea in Fi-
gure 2,2 bounded by £ = 0.8 and a circle with radius less than
= 0.8 - 0.9, '

The system has been simulated using a simulaéions program, SIM-
NON, available at the Department of Automatic Control [51. A
listing of the system descriptions are given in Appendix. Fox
the state feedback case the simulation is defined by specifying
the subsystems:

PROC -~ continuous system describing the process
STFB - discrete system for the control law (2.2)

CONl ~ a connecting system which connects the subsystems into
a closed loop system.




figure 2.3 shows the step responses for three different cha-
racteristic pelynomials:

l(q“l) = (1 - 0.75¢ 1% - 0.5¢7Y)
Fola ) = (1 - 1.5g7% + 0.5727¢7%) (1 - 0.5¢"Y)
Folg h) = (1 - 1.5q" % + 0.6497%) (1 - 0.5¢7)
1
G . t ' .
0 02 04 S

Figure 2.3 - Step responses using state feedback when the de-
sired characteristic polynomial has been chosen
to be Fi: Fy and F, respectively.

The real parts of the poles are the same in the three cases but
the imaginary parts are varied. Fy gives a fairly good response
but the solution time might be somewhat too long. F3 gives a too.
high overshoot, since the imaginary parts of the complex poles
are too large. The second polynomial, For gives a good response
which satisfies the specifications in Section 1.




10'

‘Figure 2.4 again shows the step response for the characteris~
itic polynomial F, this time together with the control signal.
Figure 2.5 shows the transient after an initial value distur-
‘bance xz{O) = x3(0) = x4(0) = 0.25.

- Using the rules of thumb given above together with a good si-
mulation package makes 1t easy to determine a characteristic
polynomial which makes the system fulfil the specifications.

0 0,2 7 O.‘t S

Figure 2.4 - Step response and control signal when state feed-

back is used to get the characteristic polynomial

Fz!

~0.5 — :

5 02 04 S

Figure 2.5 ~ Output and control signal after an initial value dis-
turbance when the characteristic polynomial is F,.
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3, POLE PLACEMENT USING OUTPUT FEEDBACK 1.

This section will show how 1t is possible to make pole place-
‘ment by just using the output from the process. This method can
be suitable if it is not necessary to make a reconstruction of

‘the state.

Consider the control scheme in Figure 3.1. The closed loop sys-
tem has the pulse transfer function

-k
4 B_i v, (£) (3.1)
AS + g "BR

y(t) =

Assume that it is desired that the closed loop system has the

characteristic polynomial F(q-l) = (. The problem of pole place-

ment is now reduced to £ind the polynomials R(g *) and S(qnl)
which satisfies the algebraic egquation
Flg ) = ag™hs@ ™ + o FBHre™ (3.2)

This equation always has a solution if R and 8 have sufficient-
ly high orders and if A and B have no common factor.

qu") u(t) q"kaiq'*} yit)
S(g™) AlgT)

Figure 3.1 - Control scheme using only output feedback.

For the discussed system the order of A and B are two and one
respectively and k = 3. If R and 8 are of order one and three
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respectively then equation (3.2) will give five equations which
can be used to determine the five unknown parameterxs in R and 8.

Assume that

a_(q'l) =1+ alq"l + azq_z

Blg h) = by + blq“l |

R(q-l) = Iy + rlq“l

S(q"l) =1+ slq-l -+ qu~2 + 53q$3

Flg™ ) =1 + flq”l - fzq"‘?‘ . qu"’3 v £,07 Y ¢ £.970

The unknown parameters are now obtained from the system of equa-
tions.

10 0 0 07[sy] [ 3]

ay 1 ] 0 ¥ So | fgmaz
s ay 1 bo 0 53 = f3
0 a, aq b1 ba Xy f4

0 0 a, 0 by l_rl_ £,

The 545 matrix on the left hand side is invertable if there is
no common factor in.the A and B polynomials [3]. The output
feedback has been simulated using the subsystem OFBl and CONZ,
" which are listed in Appendix. ’

Subsgystem QFBl accepts the coefficients of the desired charac-
teristic polynomial and determines the parameters in the poly-
nomials R and S.

By making a couple of simulations it was found that the same
characteristic polynomial as in Section 2 gives the system a
satisfactory behaviour, i.e.
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2 3

rig ) =1 - 2g7t + 1.3225¢7% - 0.28625¢" (3.3)
The closed loop transfer functions arxe, however, not the same.
One extra zero is introduced in this case due to the R polyno-

mial, see equation (3.1}.

Figure 3.2 shows the output and the control signal at a set
point change.

Figure 3.3 shows the output and the control signal after an
initial wvalue disturbance in Xos

- i

0.2 0.4 S

Figure 3.2 - Output and control signal whén using output feed-
back to give the closed loop system the characte-~
.rized polynomial (3.3).
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| |
0 02 | 04S

Figure 3,3 - Output and control signal after an initial value

disturbance, xz(O) = 0.25 when using output feed-
back.
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4. POLE PLACEMENT USING OUTPUT FEEDBACK 2.

With the design method in the previous section it was possikle
to get desired locations of the poles of the close loop system.
Cne drawback 1is, however, that extra zeroes mugt be introduced,
see eg (3.1). These zeroces are depending on the location of the
desired poles and on the system and is not in the hands of the
designer. In this section a modification will be done which
makes it possible tolget control of the introduced zeroes.
Further this method can be used to separate the servoproblem
(the problem of following a reference signal) and the regulator

problem {(the problem of eliminating a disturbance).

Consider the control scheme in Figure 4.1. P, R, 8§ and C are po-

=1

lynomials in the backward shift operator;, ¢ ~. A disturbance,

Y

e(t), which can be stochastic or deterministic, is alsoc intro-
duced.

yit)

> P

-R

Figure 4.1 - Control scheme for the design method based on out-
.put feedback.

The contrel law is thus

u(t) = (Py.(t) - Ry(t)]/s

The closed loop system is given hy
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R ,
y(e) = —3 ?ﬁ; y.(t) + ”“‘“55%3;“~ e(t) (4.1)
AS + g “BR AS + g *BR

Compare eq. (3.1). As in the previous section it is possible
to get a desired characteristic @olynomial, ¥, by solving the
algyebraic eguation

F = AS + q‘kBR

In contrast to the method in Section 3 it is now possible to
arbitrarily specify where the introduced zerces should be lo-
cated. For instance it might not be desired to introduce any

extra zeroes.

In ordéer to get a correct steady state value the following
equality must be satisfied

P(1}B(1) = A(1)s(1) + B(L)R(L)

If the open loop system contains an integrator then A{L)S(L) = 0
and a correct steady state value will be obtained if

P{1l) = R(1)}

When using the design metheod scetched in this section it is thus
possible to obtain the same transfer function from Y. to y as
when state feedback is used. The oxder of the closed loop system
is, however, increased by the order of the S-polynomial. This
design methoé uses conly the output which means that it can be
used instead of state feedback when all states are not measur-
able. It can in fact be shown that the structure in Figure 4.1
is equivalent to using a minimum order observer combined with

a state feedback.
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The Servo-Problem.

If only the servo-problem is considered, i.e. e(t) = 0, then
the system (4.1} can be given almost an arbitrarily pulse trans-
fer function. It is only the time delay and the zeroes origina-
ting from the open loop system that cannot be influenced. How-
ever, if the system is minimum phase then F can be chosen in
such a way that it cancels the undesired zerves from the B-po-
lynomial. Extra zeroes can then be introduced by using the P-
polynomial. It is, as in the continuous time case, more diffi-
cult to determine the effect of a zero than that of a pole. Fi-
gure 4.2 can he of some help to determine if a zero will give

a lead or lag effect.

Lead
g+a
g-b
#h
g
o g

Figure 4.2 - Pole-zero constellations for first order lead and

lag networks, from Tou [6].

The Combined Servo and Regulator Problem.

Using the control scheme in Figure 4.1 it is posgible to sepa-
rate the servo and the requlator problems. The regulator prob-
lem can first be solved by choosing the R and S polynomials. The
P-polynomial can then be used to .give the system a desired re-~
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sponse at set point changes.

If e(t) is white nolse it can be desired to use a minimum va-
riance reqgulator [2]. In that case

8§ = BF
R=G

where the F-and G-polynomials are determined from the identity

C = aF + q %G

The closed loop system will then be

...k .
y(t) = Fy (t) + Fe(t)
C

When e(t}) is a stochastic process it can be assumed that the
C-polynomial has all its zeroes inside the unit cilrcle [2]. The
P-polynomial can now be used to give the system a good response
ffom set point changes. If P is chosen as

P(gh) = clg e @)

then the system will have a finite memory for reference value
changes. In some cases it can be aavantageous to replace P by
P(q /Q(q ) in order to get a smoother step response. This
will be further discussed in Section 5.

" Simulations.

The regulator structure in Filgure 4.1 is simulated using the
SIMNON system OFB2 and the total system is defined by CON3, see
Appendix. By chooéing the same characteristic polynomial as in
Section 2, i.e. |
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Flg b =1 - 2¢”% + 1.3225¢7% - 0.28625¢"°

it is verified that the same transfer function from ¥y, toy
can be obtained, see Figure 4.3, P is chosen to be a constant
equal to R(1l)} in order to get a correct steady state value.
The response for initial value disturbancesg is not the same

as can be seen in Figure 4.4. The response is, however, satis-
factory.

In order to illustrate the influence of the polynomial P a si-
mulation has been done when the characteristic polynomial ig

Flg ¥ =1 - 0.8q" "

The result is shown in Figure 4.5 when two different P polyno-
mials are used

Pl(q“l)

H

0.681 - (4.2)

1

il

0.081 + 0.15g © + 0.20q" % + 0.25q 3 (4.3)
In order to get the correct steady state Pl(lj = P, (1) = R(1) =
# 0.68l. The step response is more smooth when P2 is used com-~
pared to the case when Pl‘is used. By using a P-polynomial of
higher order or by replacing P by P(éml)/g(qwl) it is possible
to get a smooth response at reference value changes and still
having a system which quickly eliminates disturbances.
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045

Figure 4.3 -~ Step response when the control scheme in
Figure 4.1 1s used.

0.5

‘ ] i .
0 ‘ 0.2 048
Figure 4.4 - The transient after an initial wvalue disturbance
when the control scheme in Figure 4.1 is used.

The dashed line is the output when the state feed-
back law (2.2) is used, compare Figure 2.5,
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<

0 0.2 , 0.4 S

Figure 4.5 - Step responses when the control law {(4.1) is used

for two different P-polynomials, (4.2) and (4.3),

when F = 1 - G.Sqmla




22,

5. COMBINED FEEDBACK AND FEEDFORWARD CONTROL.
There are several ways to solve the combined servo and regula-
tor problem. One way was shown in Section 4, in this section an

other way will be discussed.

Consider the control scheme in Figure 5.1.

R/S = ékg

-

Figure 5.1 - A general feedback and feedforward scheme.

For this structure the design problem is separated into two
parts:

0 Feedforward from the reference éignal. The block PA/GB

will take care of reference value changes.

o A feedback regulator R/S which takes ¢are of the distur-

bances acting on the process.

The pulse transfer function from'yr to y is given by

~ el
g kp (B8 % + ¢ “BR)
y(t) = . ¥, (&)
Q AS + g TBR
If A = A and ﬁ = B then




23,

ok
yir). = =2y (v)
0

The model M = quP/Q thus gives the desired behaviour at set
point changes and the regulator R/S can be designed in order
to eliminate disturbances and alsc to take care of errors due
to incomplete knowledge of the process, i.e. if A % A and B $
# B. The feedforward block Pi/Qﬁ can be interpreted as a con~
bination of a model and an estimated inverse of the process.

Simulations.

The model M was first determined. Models of different orders
and with different locations of the poles were used. Figure
5.2 shows the step responses for the models.

Ml(q-l) 0.25 .
1 - 0.75¢q
Mz(th) = EiO?ZS -
1 - 1.5 ©~ + 0.5725¢
- .03625
My(@ ) = S 02803 =3
1 - 2q + 1.3225¢g - 0.28625q

When using the model My the control signals were large and the
output had a tendency to ripple between the sampling points.
By increasing the ordexr of the model it was possible to get a
good step‘response. Also when the order of the model was in-
creased the amplitude of the control signals was decreased.

The regulator R/S can be determined in different ways. One spe-
cial type of regulators is the so-calléd dead-beat regulators.
These will bring the output back to zero in as Ffew steps as pos-—,

sible after a disturbance. For the discussed process the dead-
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5 0.2 | 04 S

Figure 5.2 - The step response for three different models Mg,
M, and M3 when the control scheme in Figure 5.1

was used.

beat regulateor is

~ 11,804 ~ 5.625q (5.1)

R
S 1+ 2.3 % + 2.988q % + 1.423q 0

Figure 5.3 shows the ocutput when the dead-beat regulator is
used to eliminate an initial value disturbance.

0 | 02 ' 048

Figure 5.3 = The output after an initial value disturbance, %4 (0)
= 0,25, when using the dead-~beat regulatoxr (5.1).
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At the sampling points the output will be equal to zero after
just a few steps, but between the sampling points the output
oscillates. This depends on the severe specification that the
output at the sampling time should be equal to zero as guickly
as possible. To meet this specification the input signal has
to be large and this starts up the oscillation,

Another way to determine the regulator is to use a lead network.
One possible net is obtained by eliminating one zero and one
pole in the process i.e. to use

1
2

1 - 0.513q
1+ 0.80lg

(5.2)

B.:::K
3

Using Figure 4.2 it can be seen that this regulator has a lead
effect. Flgure 5.4 shows the output after an initial value dis-~
turbance for different values of K in (5.2).

0.5
0
~0.54— r S i} |
0 0.2 - 0.4 S

Pigure 5.4 ~ Output signal after an initial value disturbance
when using the lead network (5.2) for different
values of K.
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6. SUMMARY

The purpose with this report has been to illustrate some dif-
ferent design methods for sampled data systems. The design me-
thods have been based on pole placement. In Section 2 rules of
thumb are given which can be useful when determining the desired
locations of the poles.

The use of the discussed design methods are highly facilitated
i1f a good simulation package is available. All the simulations
in this report are done using SIMNON [5].

For the discussed example it has been easy to find regulators
which make it possible to fulfil the given specifications. Also
by changing the numerical values of the parameters in the pro-
cess (K,T1 and 1) it was found that the discussed design schemes,
at least for this example, was insensitive to parameter changes.

There are also other design methods for sampled data systems,

see e.g. [1] and [6]. One important method is linear gquadratic
control theory (LQC). Using LQC it is possible to introduce a
weighting between the allowed magnitude of the control signals
and the state variables. Instead of specifying the poleé of the
closed loop system a loss function has to be specified. In most
cases the design of regulatoxs usingkLQC is also iterative in

the same way as the degign methods discussed in this report since

different loss functions have to be tried.
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APPENDIX

The Appendix contains SIMNON listings of the systems used for
the simulations. Also figures are given which specifies the no-
tations used in the connecting systems.

The subsystem DELAY is a standard system in SIMNON for simulating
time delays. The process is defined by the subsystem PROC.

CONT INUQUS SYSTEM PROC
STATE X1 X2

DER DX1 DX2

INPUT U

QUTPUT ¥ DX

INiTIAL
K160
Ti:10,015
XL iM111.8

QUTRUT
X=X2
DX=X1

DYNAMICS
PX1={-X1+K*U)/T1
pDXx2=1F ABS(X1)<XLIM THEN X1 FLSE SIGN{X1)=XLIH

END
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STATE FEEDBACK

- T XsU1 \
YREF f crep [UksU PROC 3 pELay 1Y [DELAY]

Tu TR, P

Note: The states Xj and XU are computed
in STFB

DISCRETE SYSTEM 8TFB
STATE X3 X4

NEW NX3 Nx4

INPUT X1 X2

QUTPUT YL

TIME 1

TSAMP T8

IniTiaL
YREF 11

PLSD

Peig

Pstl

P4:Q

K= (14P1+P2+P3+P4) /0,292
L4=P4/0.130
LS$=2(P3-0,162%#1L4)/0.130
L2={P1+P2+1~0,162+L.3)/0,292 .
L1={PLl+1.513-0.162#0.2)/29,196 ;
Diig,ut

DUTPUT
UL=KL#YREF LT #X1~L24X2-L3%X3~LduX4
T8=T+071

DYNAMICS
NX3=X2
NX4=X3

Eal

i T i, S B T T T

CONNECTING SYSTEM COng
TIME T

TULIDELAY 1=T~TAU
TaUi0,02
XLISTFyl=X1[PROC)
X2[{STFBl=X2{PROC)
UIPRAC) =ULISTFB]
UL[DELAY)=X{PROC)
DULIDELAY)=DX(PROC]
END '
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QUTPUT FEEDBACK 1

Xe gt f——
YREF v\ E ;loFat |ulorBl:U [ proc DELAY LY]

0X=DU
-k

DISCRETE SYSTEM OFfi
STATE UM UMM UMMM EM
NEW NUM NUMM NUMMM NEM
INPUT &

DUTPUT U

TIME T

TSAMP TS

ENETTAL

F1:0

Fzi

F$:0

F4:0

Foig

BMOto,162

BrM1:0.1298

AM13‘11513

AMRI0,513

Si=Fi~Ang

SZ=F2=AM2~AM1%S1
KL=BMO-AMI#EBML/AMZ+BME «BML /8MU/AMD

SLeF 4+ 5+ {RM1/BMO/AMZ-ANT /AN ) - A2 G2
K2zSL~F3#BMi/BMO+BM1/BM0» (AMI*52+¢ANM2881)
Ri=K2/K{Y
RUS(FE=FS/AM2Z~AML#S2~AM2% 31 +BMI1#R1/7AM2 ) /BMG
S3=iF5-8M1*R1L ) /AMD

DY1:0.0%

QUTPUT
UsRO#E+RI4FM-S1#UM=82eUMM=-S3 4 UMMM
TS=T+DT ‘

DYNAMIGS
NUMMM= UMM
NUMM=UM
NUM=U
NeMsE

END
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CUNNECT NG SYSTEM CONZ
TIME T

TB1{DELAY 12T-TAU
Taurp.02

YHEF11
EIOFB1I=YREF-Y1IDELAY]
UIPROCI=ULOFBYL]
U1rbELAY 1=XPROC)
DULIDELAY Y =BXPROC)
END

OQUTPUT FEEDBACK 2

uloFs2l- Xe U

YREF=YR J cgs .M “oeLay |1
' : DX=DUt"

Note: If the swich ISW>0.5 then the user has
to specify the polynomials P, R and S,
Tf ISW & 0.5 then the R and S5 polynomials
are determined in the program such that
the characteristic polynomial of the closed
loop system is F and such that P(1)=R(1).

DISCRETE SYSTEM QFRZ
STATE UML UM2 UM3 YRML YRM2 YRM3 YH1 YHZ
NEW NUML NUMZ2 NUM3 NYRML NYRMZ NYRMS NYME WNYMZ

INPUT YR Y
QUTPUT U
TiME T
TSAMP 18 |

INTTHAL
S1:0
5210
S$:0
R1:0
RZ210
RS:0
Pi:0
Peto
PS:Q
P41t0
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Fi19
F2:0
RS0
F4:0
Feig
Bri:i0.162
BM1:0.1298
AMii-1,513
AMZI0.513
Di=Fi-AM1l
D2uF2-AM2-AM1+D1
KizBMU-AM1#BML/ANZ+BMI#BML/BMO /AN
S5812F4+FS* {BM1/BHMU/AMZ~AN1/AMZ ) =AM22D2
K2z851-F348M1/BMO+8ML/BM0 (AML=D2+AM2%D1)
CizK2/K1 '
CUs(F3=FO/AMZ-AML#U2~-AMZ=01+BM12C1/AM2 ) /BME
Dé={F5-8BH1*C1)/AM2
Brio.o1
L
SHiz IF [S4W>0.5 THEN $1 ELSE 1
SRZ= {F |SW>XD.5 THEN $2 ELSE b2
SR3I= {F tSHY0 .5 THEN $3 ELSE D3
RRi= {f I8SW»0.5% THEN R1 ELSE (O
"RR2= {F [SWX0.% THEN R2 ELSE €1
. BR3s 1F 1SW>MD,5 THEN H3 ELSE U

QUTPUT

UloPleaYRePIaYRML+P I YRMZ4P42YRM3
Ue=-RR1*Y~RH22YH]~RR3I=YMN2
US=~SR1#UM1~SR2#UM2~SR3I#UNM3Z
U4ds(RR1L+RR2+RR3 )1 &YR

Uz IF 15H>0,5 THEN UL+UZ+U3 ELSE ud:U2+U3
TE8=T7+DT

DYNAMICS

NuM1=l

NUMZ2=UML

MNUHS=UM2

NYRM1=YR )
NYRMZ=YRM1 .
NYRMIsYRHZ

NYyMi=sy

NYM2=YM1

END

CONNECT ING SYSTEM CON3

TIME T

TULIDELAY)=T-TAU

TAUI0,02

YREF 31 - '
YR{UFB2 ]2 YREF :
Y{OFB21=Y1{DELAY)
UIPROCI=U{OFB2]

ULIDELAY}=X {PROC]
DUL(DELAY)=UX(PROC)

END
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COMBINED FEEDBACK AND FEEDFORWARD

A=DUY

3l PROC DELAY (Y
ST T i T
DX=DW

MOD

DISCRETE SYSTEM MOU
STATE YM4 YM2 YM3 YRML YRMZ YRM3
NEW NYHL NYM2 HYM3 NYRMI NYRHMZ NYRRM3

INPUT Y
QUTPUT YR
TiMe 1
TSAMP T8

PNt AL -
AMl:"'ltS

AMZ2i0 .7

AM3ED

D1+0.01

ouTPUI -
YR:(1+AM1+AM2+AM5)%¥M3—AH1§YRM1=Aﬁ2*YHM2*AM5#YHﬁ3
TS=T+DT .

DYNAMICS .
NYMI=YHMZ

NYMZ=YM]

NYMizY

NYRMI=YRMZ

NYRMZ=YRM]L

NYRM1=zYR

- mh m e wm e wm b wm e e TS - wm me w wm — wm W S

DISCRETE SYSTEM MPIN

STATE MFM1 MPM2 YM1 YMZ2 MPM3 MPMA4

NEW NMPML HMPM2 NYML NYMZ NMPHM3 NMPM4
INPUT Y

OUTPUT YMP

TIME T

TSAMP TS
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FNTTIAL

AMLI-1.5

AMZ2310.7

AM3:O
BOo=(1+AML+ANZ+AN3I /0. 162
Bi=-1,513
B2=0,514
Al=AM1+0,801
A2=AM1%0,801+AMZ
ASzAMZ#],801+AM3
A4=0,801+%AMS3
prig.o1

QUTPUT
YMP2BO# (Y+B1eYML+B2RYM2) AL #MPML-AL#MPM2~AS#HPHS~AG$HP M4
TS=T+UT -

DYNAMICS
NMPHMA=MPM3
NMPMI=MPMZ2
NMPM2zMPMY,
NMPMLi=YMP
NYMPzYMI
NYMi=Y

END

DISCRETE SYSTEM REG
STATE UM1 UMZ2 UMS EMI
NEW NUML NUM2 NUM3 NEMI
INPUT E

QUTPUT UREG

TiME T

TSAMP TS

INITLAL
B1:i11.8037
B21-5,6247
Ali2.314
AZ212.9881
Adi1.4227
Dit0.01

GUTPUT .
UREGsBI#E+R2#EM~AL#UMLI~AZ*UNE~AS#UMNS
Is=T7+07 -

DYNAMICS
NUMI=UMZ
NUOMZ=UM]
NUML=UREG
NeMl=k

END




T S A

CONNECTING SYSTEM CON4
TIME T

TOLi{DELAY]I=T«TAU
TaUtg, 02

YREF 1

YEMQD ) =YREF

Y{MPINI=YREF
E(REGISYRIMUDI-YL1{DELAY]
UIPROCISUREGIREGI+YMP [MPIN]
ULEDELAYI=X[PROC]
DULEDELAY I=NXIPROC)

END :
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