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ABSTRACT

The purpose of this paper is to give a survey

of some results from stochastic control theory and
to discuss their application to industrial control
problems. The intention is to state the results,
discuss them from the point of view of applica-
tions and to give some experiences from practical
use. The review is not comprehensive,

1. INTRODUCTION

The paper is limited to discrete time systems. The
motivation is that digital computers are used to
implement the control algorithms. Mathematically
the theory becomes much simpler. Some formulas
will, however, formally be more complicated than
in the continuous time case. Several important
problems, like the selection of the sampling inter—
val, are also neglected by this assumption.

The paper is organized as follows. Control of
linear systems with a quadratic criterion is dis-
cussed in Section 2. The standard problem is for-
mulated and the solution stated. An important
special case of the linear theory, which leads to
the so-called minimum variance strategy, is also
discussed. The linear theory results in a regula-
tor which is a linear, dynamical system. This is
a convenient regulator in several practical prob-
lems. The major difficulty in applying the

linear theory is to obtain suitable models for the
process dynamics and the disturbances. Such models
can be obtained from plant experiments using sys-—
tem identification techniques. Some applications
of the linear theory are also given in Section 3.

A review of nonlinear theory is given in Section 4.
By assuming that the process and its environment
can be characterized as Markov processes, the opti-
mal strategies are given by the Bellman equation
obtained by Dynamic Programming. The equation is
unfortunately unpleasant both analytically and
numerically. The main obstacle is dimensionality.
To carry out the analysis it is necessary to intro-
duce a hyperstate, which is a probability distri-
bution on the original state space of the problem.
For this reason it has not yet been possible to
solve any realistic problems using these methods.
A few problems have, however, been solved numeri-
cally.

One particular problem, namely control of a linear
system with constant but unknown parameters, is
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discussed in Section 4. In this case the nonlinear
theory gives dual control strategies in the sense
of Feldbaum. The insight obtained from the nonlin-
ear theory can be exploited to construct suboptimal
strategies which can be implemented. One class of
suboptimal regulators, the so-called self-tuning
regulators, are discussed in Section 5. These regu-
lators can be used to control a linear system with
constant but unknown parameters and will thus make
it possible to compensate for lack of process know-
ledge by more sophisticated control algorithms. As
indicated by the nonlinear theory, the regulators
will have some limitations. One drawback is that
they are not dual controls. This is discussed in
connection with some applications of the regulators
in Section 5. Some concluding remarks on the appli-
cability of stochastic control theory are finally
given in Section 6.

2. LINEAR THEORY

The well-known linear stochastic control theory
deals with control of a system which can be de-
scribed by the stochastic difference equation

x(t+1) = A x(t) + B u(t) + v(t)
(2.1)
y(t) = C x(t) + e(t)

where t€T = {...-1, 0, 1,...}, x(t) is a nx1 state
vector, u(t) a pxl vector of control variables and
y(t) a rxl vector of measured outputs. The stochas-
tic processes {v(t), t€T} and {e(t), t€T}, called
process disturbances and measurement errors respec-—
tively, are sequences of uncorrelated, random vari-
ables with zero mean values and the covariances

covlv(t), v(t)] = R1
cov[v(t), e(t)] = R12
covle(t), e(t)] = R2

The initial state of (2.1) is assumed to be a ran-
dom variable with mean m and covariance Ro'

The performance of the control system is described
by the scalar loss function

N-1

ps FEQEM) + E [x(DQx(t) + ul(D)Q,u(e)]
t=1

(2.2)

where the matrices Qo’ Q and Q, are symmetric and
non-negative. Since & is a ran&om variable, the
criterion of the control is taken as to minimize the



expected loss.

The admissible strategies are such that u(t) 1is
measurable with respect to the sigma-algebra y,,
generated by {y(s), 0 € s ¢ t-1}, for each t€T.

The problem can be solved under two sets of assump-
tions. .In one case the controls are linear func-
tions of the measurements. It is then sufficient
to assume second order properties of the random
processes. ILf the random processes are assumed to
be jointly gaussian, it is no longer necessary Lo
assume that the controls are linear. The solution
is formally the same in both cases. It is given
by the separation theorem, which says that the op-
timal control is

u(t) = -L x(t]e-1)

where x(t|t—l) is the best estimate of the state
x(t) given y(t), y(t-1),... . The estimate is
given by the Kalman filter

x(t+l|t) = A ;(tlt-l) + b u(et) + Kly(t) - x(t|t-1)]
x(0) = m

The matrices K and L are obtained from solutions

of Riccati equations. The formulas first derived
by Kalman are standard textbook material. See e.g.
Kwakernaak and Sivan (1972) and Astrém (1970),
where references to original work as well as inter-
pretations are given. A critical review of the
linear problem is found in Witsenhausen (1971). A
special issue of IEEE transactions, Athans (1971),
is also devoted to the linear, quadratic problem.
This issue contains many valuable papers covering
both theory and applications.

There are several trivial but useful extensions
that can be made. The process disturbance and the
measurement errors may have unknown mean values.
This is taken care of by augmenting the state vec-—
tor with the vector z = E v(t) with the associated
state equation

z(t+l) = z(t)

Correlated disturbances with rational spectral den-
sities can be handled in a similar way by state
augmentation.

The solution of the linear, stochastic control
problem thus gives a regulator in terms of a linear,
dynamical system. The dynamics of the regulator
arises from the Kalman filter.

Linear control theory is attractive for control
engineers because it gives a regulator which is a
linear, dynamical system; a structure which has
been known to be useful for a long time. The com-
plexity of the regulator directly reflects the
complexity of the model and the criterion. The
matrices K and L will in general be time varying.
However, if the system has constant parameters and
if N - =, the matrices K and L will become con=
stant matrices under reasonable conditions. This
solution, referred to as steady state control, is
frequently used in applicationms.

Minimum Variance Control

The special case of linear control theory, obtained
when the output is a scalar and there is no penalty
on the control, is particularly simple. By choos=
ing an innovation's representation of the distur-
bances and changing the basis in the state space
the model (2.1) can be transformed into

Fa, 1 0 ... 0 _bl_} _kl—‘

-a, 0 1...0 b2 k2
x(t+1)= x(t)+ u(t)+ e(t)

¥n-1 L n-1 kn—l

-a 0 0...0 b {F

L_n =] | o | n ]
y(£) = x(t) + e(t) (2.1)

Elimination of the state variables gives the follow-
ing input output relation

y(t) + aly(t—l)+...+any(t—n) = blu)t-l)+...+bnu(t-n)

+ e(t) + cle(t—l)+...+cne(t—n)

By introducing the polynomials

A(z) = 2"+ alzn._l + oo *ag
B(z) = blzn_l + ool * bn
c(z) = 2+ clzn—L + .. c,

and the forward shift operator ¢ the model can also
be written as

A(g)y(t) = b(qu(r) + C(q)e(t) (2,2)
The control law which minimizes the variance of the
output i.e. the criterion

(2.3)

2, =E yz(t)

1
can of course easily be found from the general the-
ory. The strategy can, however, also be found di-
rectly by a very simple argument as shown in Astrdm

(1970). If the polynomial B(z) has no zeros outside
the unit circle, the optimal strategy is
A(q) - €C(q) .
t = _J.———— t N
u(t) IC)) y{t) (2.4)

Notice that the strategy is obtained without solving
a Riccati equation or without spectral factorization.
When the polynomial B(z) has zeros outside the unit
circle, the Riccati equation will have several so-
lutions. One solution corresponds to (2.4).

The control strategy which minimizes %y will also
minimize
(2.5)

. y2 ()]

[ R e =

1
2 = Elg

AL



Notice that the strategy which minimizes the cri-
terion

2 2
2y = Ely*(£) + Qu(D)]
is also very easy to calculate. This strategy is,
however, not the same as the strategy which mini-
mizes

=z

L, = E

N
n : [y%(6) + QuuP(e)]

It is easy to find cases where the strategy which
minimizes 13 gives an unstable, closed loop sys-
tem.

The following simple example will be used.
Example 3.1

The minimum variance strategy for the system

y(t+1) + a y(t) = Db u(t) + e(t+l) + c e(t) (3.6)

is given by

u(e) =2 ; € y(t) 2.7

Review of Assumptions

The fundamental assumptions made in the linear
theory are

o the process dynamics is linear

o the disturbances are stochastic processes,
which are gaussian or of second order

o the criterion is to minimize a quadratic func-
tion

[¢] the wodels for the process and the disturban-
ces are known.

The assumption of linearity is quite reasonable
when steady state control of industrial processes
are considered. The purpose of the control is to
maintain the process variables close to steady
state values. It is difficult to verify the
assumption on the disturbances. When attempts to
model disturbances are made, it is frequently
found that a stochastic process model is adequate
provided that the model allows for drifting dis-
turbances. Such processes can be modeled by inte-
grators driven by processes with rational spectral
densities, for example the ARIMA process intro-
duced by Box and Jenkins (1970). In practice it
is also necessary to take into account that there
may occasionally be big disturbances.

The quadratic criterion is often controversial. In
the special case when Q, = 0 and Q, = 1 the crite-
rion (2.2) is simply the minimizatlon of the vari-~
ance of the output. This can be justified as a
criterion for steady state control using the fol-
lowing argument. Through general trade rules, li-
mits are imposed on important quality variables.
The customer accepts a batch if his quality con-
trol procedures show that the limits are exceeded
by a given fraction of the product. Due to the

fluctuations in the process the manufacturer selects
the set points of the regulators for the quality
variables inside the test limits to ensure that his
product is accepted. By reducing the variations in
the quality variables it is possible to move the

set points closer to the limits without changing

the probability for acceptance. By doing this there
is a gain which can be exploited in many ways as
increased production, reduction of raw material or
energy consumption. The reduction of fluctuations
in quality variables is also of value by itself. It
is, however, often very difficult to express this
in monetary terms.

In some cases the more general quadratic criterion
can be motivated from physical arguments. One good
example is in the design of autopilots for ships
where the average breaking force due to rudder ac-
tions and angle of attack can be given approxima-
tively as a quadratic form. See Koyama (1967). 1In
most cases it is, however, difficult to assign
penalties to different combinations of state and
control variables. The criterion (2.2) is therefore
not always realistic.

The assumption that models for the process and the
disturbances are available is frequently the major
difficulty in applications. Even if a reasonable
model for the process dynamics is available, the

characteristics of the disturbances are seldom known.

To apply the linear theory it is therefore a neces-—
sity to have methods to determine the desired mo-
dels from process experiments using system identifi-
cation techniques. This presents little difficulty
for single output systems. In this case a canoni-
cal form for the model can easily be given, and the
parameters of this model can then be estimated. See
Rstroém and Eykhoff (1971) and Eykhoff (1974). The
problem is more difficult because of the lack of
unique canonical forms. If the observability indi-
ces or the controllability indices are kmown, it is
straightforward to obtain a canonical form. Lack-
ing information about the indices there are however
many alternatives to explore. See e.g. Kalman
(1972) and Mayne (1974).

In many cases the difficulties mentioned above can
be overcome; and the linear stochastic control
theory, in combination with suitable system identi-
fication techniques, is a useful tool for the con-
trol engineer. This is clearly witnessed by the in-
creasing number of applications. See Athans (1971).

There are several applications of minimum variance
control which have covered all steps from process
experiments to on-line control. Applications to
paper machine control are given in Rstrom (1967) and
Fjeld and Grimmes (1974). Control of interior cli-
mate is discussed in Jensen (1974). An application
to design of autopilots for super tankers is done

by Kdllstrdm (1973). Control of a pilot distillation
plant is described in Binder and Calvillo (1974).
The experience from all these applications have
been that closed loop performance can be predicted
very accurately from the models obtained from plant
experiments and system identification. The plant
experiments and the system identification are quite
time consuming, and they will also require skilled
personnel.

(!



3. NONLINEAR THEORY

The obvious nonlinear extension of the linear prob-—
lem discussed in the previous section is obtained
by replacing the linear difference equation (2.1)
by the nonlinear equation

x(t41) = £(x(8), u(e), v(£) &

y(t) = g(x(t), u(t), e(t))

and by replacing the quadratic loss (2.2) by the
general loss function

q = (3.2)

Z| =

N
T h(x(t), u(T))
1

If it is assumed that the disturbances are such
that the stochastic process {x(t), y(t); t€T} is a
Markov process, the control problem can be formu-
lated precisely and existence theorems can be given
in some cases. The theory is often formulated by
giving the transition probabilities of the process
directly instead of giving the nonlinear equations.
The theory is presented in the Dynamic Programming
framework. To do this the hyperstate

p (&) = P{x(t)€A|y,) (3.3)

where Y, is the sigma-algebra generated by {y(s),

1 ¢ s £ t}. By introducing the function
N

Vt(p) =min E{ I h(x(t), u(t)] yt} (3.4)
k=t

the following functional equation for Vt is obtained

by standard Dynamic Programming arguments

V() = min{[h(x,u)p (dx) + E[V (P, ]y Y 3.5

This equation, which is called the Bellman equation
after Bellman (1961), is the starting point for
many investigations. To have the right hand side
of (3.5) well defined it is necessary to have an
equation for updating the conditional probability
distribution (3.3). Such equations were given by
Stratonovich (1960), Kushner (1967) and Wonham
(1964). Updating the conditional distribution is
equivalent to a nonlinear filtering problem, which
has been studied extensively. Numerical aspects

of this problem are recently given by Levieux
(1974). The functional equation (3.5) has been in-
vestigated in Florentin (1962), Astrdm (1964),
Mortensen (1966), and Stratonovich (1963).

The numerical solution of the functional equation
(3.5) is very difficult because of the dimensiona-
lity of state. For example, when x€ER3, the hyper-—
state p is a probability distribution ‘over R~. The
conceptually simple problem of storing the function
V thus becomes a major difficulty. This difficulty
is the main reason why the intensive interest in
nonlinear stochastic control in the sixties ended
in dispair. The situation is expressively stated
in Wonham (1968):

"To summarize: the only cure for dynamic distur-—
bances is tight feedback (high rates of information
processing) and large control forces. With fixed

constraints on computation capacity and control
force, little more can be achieved by subtle chang-
es in control logic."

The nonlinear theory has thus not had any practical
applications. 1In spite of this it will be shown in
the next section that the nonlinear theory will
give some insight which indirectly may be of some
practical significance.

4. LINEAR SYSTEMS WITH CONSTANT BUT UNKNOWN PARA-
METERS

When the linear theory was discussed in Section 2,
it was remarked that it was a severe restriction
from the practical point of view to assume that the
parameters of the models for the process dynamics
and the disturbances were known. The lacking know-
ledge had to be supplied by a combination of expe-
rimentation and statistics. An alternative to this
would be to formulate the problem in such a way
that the lacking knowledge of the process parameters
becomes part of the problem statement. The linear
quadratic problem discussed in Section 2 will thus
be considered, but the parameters of the models are
assumed to be unknown.

This problem can be regarded as a special case of
the nonlinear problem by introducing the unknown
parameters as new state variables. If the parame-
ters are constants, the associated state equations
are simply given by

8(t+l) = a(t)

It turns out that the analysis to follow can equal-
ly well be performed when the parameters are given
by

p(t+l) = D 6(t) + w(t) (4.1)
where 8 1s a vector of unknown parameters, D is a
known matrix and {w(t), t€T} a white noise process.
When D equals the identity matrix, the parameters
are simply Wiener processes. If in addition w = 0
the parameters are constants. The model (4.1) is
therefore somewhat inconsistently referred to as
the case of 'drifting parameters'.

The assumption (4.1) is not particularly appealing
from the point of view of applications because it
means that the model has randomly varying parameters,
but that the statistical properties of the parame-
ters are known. This is of course not a very real-
istic situation.

From the theoretical point of view it is, however,
interesting to observe that the case of constant
parameters is as difficult as the case of "drifting
parameters'.

It will now be discussed how far the nonlinear the-
ory can be exploited in this particular case. To
use Dynamic Programming and the functional equation
(3.5) it is necessary to introduce a hyperstate
which is a probability distribution over a space
whose dimension-is the sum of-n-in (2.1)-or (3.1)
and the number of unknown parameters. It is clear
that even a numerical solution of the functional
equation (3.5) is out of the question for any



problem of reasonable size. It is therefore of
interest to consider further simplifications which
will make it possible to reduce the dimension of
the hyperstate. Two examples of such simplifica-
tions are given below.

Example 4.1

Consider the model (2.1) with C = I and e = 0. All
state variables are thus measurable without error.
Furthermore assume that the unknown parameters are
parameters of the matrices A and B and that the
stochastic process {w(t), t€T} is gaussian. The
conditional distribution of the parameters given
the sigma-algebra generated by {y(s), 1 < s 5 t}
is then gaussian and can be characterized by the
conditional mean and two conditional covariances.
See Farison (1967).

s}

Example 4.2

Consider the model (3.1). Assume that the para-
meters c; are all zero, that the unknown parame-
ters are a;, ag, ..., ap, bl’ by, ..., b, and that
{e(t), t€T} are gaussian. Then the conditional
distribution of the parameters is gaussian. See
Mayne (1963).

o

The second example, which corresponds to minimum
variance control, will now be explored in some
detail. The analysis follows Astrdm and Witten-
mark (1971).

Introduce the notations
e(t)=col[a1(t)a2(t)...an(t) bl(t)bZ(t)"'bn(t)]

e(t-1)=[-y(t-1) -y(t-2)...~y(t—n)u(t-1)u(t-2)...
oou(t-n) ]

wo(t“1)=[-y(t-l) -y (t=2)...~y(t-n) O u(t-2)...
.oou(t-n) ]

The process model

y(t) + a; (t=1)y(t-1)+...+a (t-n)y(t-n) =

= bl(t—l)u(t—l)+...+bn(t-1)u(t—n) + e(t) (4.2)
can then be written as

y(e+l) = o(t)e(t) + e(t) = b(tlult) +

+ (po(t)e(t) + e(t) (4.2)

where the parameters are assumed given by (4.1).
Recall that the case of unknown but constant para-—
meters corresponds to D = I and v = 0. To apply
the nonlinear theory the hyperstate (3.3) should
first be determined. This appears difficult be-
cause the stochastic process {y(t), t€T} is not
gaussian. It was, however, observed by Mayne
(1963) that the hyperstate (3.3) is gaussian. See
also Bohlin (1970). This means a tremendous
reduction of the dimensionality of the problem
because the hyperstate can be represented by the
conditional mean and the conditional covariance

8 (t)

E{e(t) |y}

P(t)

E([6(£)-0(£) L6 (6)-6(£)1" ]y}

where Yy _ 1s the sigma-algebra generated by y(t),
y(t-1),...

One-Step and Certainty Equivalence Control

Having obtained the hyperstate it is not straight-
forward to do the minimization. Since

B y2(e+1) = E E{y*(e+1) |y, } = E E{[b u(c) +

+ o (0)6(8) + e(©)1%]y) (4.3)

is a quadratic function of u(t), it is straightfor-
ward to show that the optimal control is

hq%@ * wopr

u(t) = - —3 (4.4)
b”* Pip

where

Pep = Ele=-61{b-b]

The control law (4.4) is called the one-step con—
trol because it minimizes the loss function (4.3),
which is the expected loss over one step only. It
is also called the cautious control.

Notice that if Prp = 0, then the control reduces to

¢}

u(t) = - —— () (4.5)
b

In the case of constant parameters the minimum

variance control is given by (2.4) i.e.

P 8
u(t) = - 5= (1)

Notice that C(z) = 1 in the model (4.2). The con-
trol (4.5) can be interpreted as the control ob-
tained by computing the optimal control under the
condition that the parameters are known and then
simply substituting the true parameters by their
estimates. The control (4.5) is therefore called
the certainty equivalence control,

Example 4.3

For the system (3.6) of Example 3.1 the one-step
control (4.3)

ab + p
b
a(t) = —= (4.6)
by * Py
and the certainty equivalence control (4.4) becomes
u(t) = & y(t) (4.7)
L o

The control laws (4.4) and (4.5) have empirically
been found to be useful, at least when they are



applied to non-minimum phase systems with constant
parameters. The controllers will, however, have
difficulties when they are applied to systems
where the parameter b changes its sign.. The con-
trol laws are very simi%ar when ppp << b“ but very
different when pp >> b%. In particular, the gain
of the certainty equivalence controller becomes
very large while the gain of the one-step control
becomes very small for small values of b. The
certainty equivalence controller will.thus give
very large control signals for small b. The one-
step controller will, on the other hand, exhibit
the so-called turn-off effect,which means that the
control signal will be zero for long periods of
time. Intuitively this can be explained as fol-
lows. When the estimate of b is poor i.e.

Ppp >> B then the gain of the regulator (4.4)
will be small. The control signal applied to the
plant will then also be small. The estimate of b
will at the same time be even worse, the gain
lower, etc. This phenomena was observed in Astrom
Wittenmark (1970). It is also discussed in Hughes
and Jacobs (1974).

Dual Control

When the parameters of the system (3.2) are known,
the control strategy (3.4) will minimize both the
criterion (3.3) and the criterion (3.5). - This 1is
unfortunately not true in the case of unknown pa-
rameters. While it is fairly simple to find the
one-step control for the system (4.2), it is a
much more difficult task to find the control which
minimizes the criterion (3.5). 1In principle the
solution is given by the functional equation (3.5).
Introducing

& N 2
V(e(t),P(t),0 (t),t) = Min E{ L (e+1) [y} (4.8)

k=t

The Bellman equation (3.5) then becomes
v(e(t),P(t)o_(t),t) =

gi(g){[co(wé(t)]z + Q(O)P(E)Q (8) + o

P 2
+ /—E—__'J V(e(t+1)’P(t+1)’(‘po(t"‘l),t‘?l)e_s /2 as}
s (4.9)
where

§(t+1) = D 6(t) + K(£) 02 + @(E)P(D)® (£) s

K(t) = D ()l (e)[o? + @()P()e ()17

0 . (t+1) = - @(D)B(E) + o + G(IP(DP (L) s

ol
woi(t+1) = wo(i—l)(t) i=2, ..., 2n (4.10)

See Astrdm and Wittemmark (1971). The functional
equation (4.9), which will give the optimal stra-
tegy, can be solved numerically if the number of
parameters is sufficiently small, say one or at
the most two parameters. Solutions for special
cases are given in Florentin (1962), Bohlin (1969);
Rstrdm and Wittenmark (1971). The controllers
obtained differ significantly from the one-step
control and the certainty equivalence control in
those cases where the parameter b in the process

model (4.2) changes its sign. The control given

by (4.9) is a dual control in Feldbaum's sense.
Simulations have shown that the dual controller
avoids the turn-off effect of the one-step control-
ler and also the very large control signals of the
certainty equivalence control. For any practical
problem of reasonable size the control given by
(4.9) can not be computed. It is therefore a good
research problem to find approximations which can
be computed. In Tse et.al. (1973) and Tse and Bar-
Shalom (1973) approximate solutions to the fune-
tional equation (3.5) are given for some examples
including interception and soft-landing. The simu—
lations show the superiority of the dual controllers
as compared with the certainty equivalence control=-
lers. The computing time for the approximate

dual controller is, however, 45 s on a UNIVAC 1108.
Other approximations of the dual controller are
given in the paper by Bar-Shalom et.al. (1974) at
this symposium and by Wittenmark (1974).

5. SELF-TUNING REGULATORS

The properties of the one-step controller and the
certainty equivalence controller will now be ex—
plored further in the case when the controllers are
applied to a system with constant but unknown para-
meters. It will thus be assumed that D = T and

v = 0 in the equation (4.1) which describes the pa-
rameter variation. Since the regulators were de-
rived under the assumption that the parameters c,,
Cpy +ees C in the model (3.2) are all zero, it can
be expecte& that the regulators will behave well
when applied to systems with this property. In this
case the parameter estimates will be unbiased. If
the closed loop system is stable, the parameter
estimates will then converge to the model parame-
ters as time tends to infinity. The control laws
obtained in the limit will be the same as the con-
trol laws which could be computed if the model pa-
rameters were known a priori. Regulators with this
property will be called self-tuning controllers.
Convergence conditions are given in the paper by
Ljung and Wittemmark (1974) at this symposium.
Notice that if the one-step controller and the cer-
tainty equivalence controller both converge, they
will converge to the same regulator because p,, - 0
as t + «. The transient behaviour of the algorithms
may however differ significantly.

In Rstrdm and Wittenmark (1973) it was shown that
both the one-step controller and the certainty
equivalence controller are self-tuning when applied
to a system described by the model (3.2). This is
somewhat surprising because the least squares esti-
mate is biased when the polynomial C(z) in (3.2) is
different from unity. The basic idea behind this
result can be illustrated by the following simple
example.

Example 5.1

Assume that the certainty equivalence controller
(4.7) is applied to the system described by the
equation (3.6). Let r (1) denote the sample cova-
riance of the input and"the output signals i.e.

y(Tu(t-1)
1

I ™t

_ 1
ryu(T) S = .




The conditional mean values of the parameters are
then given by

1) + a(t)r 0) = b(t)r 0
ryy( ) () yy( ) (t) yu( )
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Since the control signals were generated by the
control law (4.7), we get

t . ~ a "
by = - L3 [age)-b(0)a) /b1y @
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If the input and the output signals are bounded
and if the controller gain

a(t) = a(t)/b(t)

converges as t - «, it can be shown that the right
hand sides of (5.1) converge to zero as t > =.
Hence if the closed loop system obtained with a
certainty equivalence controller is stable and if
the controller gain converges as t - «, then the
closed loop system is such that

lim ryy(l)

= (5.2)
lim r__ (1)

t>o AL

The certainty equivalence controller thus attempts
to drive certain covariances of the input and the
output to zero. Assuming that the gain of the con-
troller converges as time increases i.e.

a(t) /b(t) + o

The closed loop system obtained in the limit then
becomes

y(t+l) + (a—ab)y(t) = e(t+l) + c e(t)

The condition (5.2) then gives

a — c

=0 =3 (5.3)
or

B _a-1/c
a =0, = —p

The second solution is impossible because it gives
an unstable, closed loop system. We thus find
that if the certainty equivalence controller con-—
verges it will converge to a regulator. which is
identical to the minimum variance regulator (3.7)
for the system (3.6).

Notice that the argument can also be extended to
the one-step controller.
o

In the example it is not necessary to assume that
the parameter estimates a(t) and b(t) converge; it
is only required that their ratior comverges.

In the particular case the normal equations which
give the estimates may be i11 conditioned, and dif-
ficulties may arise if care is not taken when solv-
ing them. See Nahorski (1974). The difficulty can
be avoided by using pseudo inverses or by giving
the parameter b a fixed value.

Extensive simulations of the certainty equivalence
controller and the one-step controller when applied
to a system with constant or slowly varying parame-
ters are given in Wieslander-Wittemmark (1971),
Wittenmark (1973) and Wouters (1974) in this sympo-
sium. Extensions of the algorithm to include penal-
ty on the control are given in Astrdm and Witten-
mark (1974) and to multivariable systems in Peterka
and Astrom (1973).

A self-tuning regulator will be an attractive solu-
tion for a linear stochastic control problem. It
substitutes the need for process identification by
a more complex control algorithm. The computational
requirements both for the one-step control and the
certainty equivalence control are very modest.

No practical control problem can be solved by theo-
ry alone. There will always be some elements of
subjective judgement involved. For the certainty
equivalence regulator the sampling interval, the
model complexity and the exponential forgetting must
be selected. Experience has whown that these fac—
tors are in many cases easily determined by engineer-
ing judgement. The certainty equivalence regulator
has therefore successfully been used in several ap-
plications. Applications in the paper industry are
described in Cegrell and Hedqvist (1973, 1974),
Borisson and Wittemmark (1974). Control of an ore
crusher was discussed at this symposium, Borisson
and Syding (1974).

It has also been used to control an enthalphy ex-
changer, Jensen (1974) and as an autopilot for a
super tanker, Kdllstrdm (1974). 1In all these appli-
cations the regulator bas been running on-line on a
real industrial process. The simulation study by
Wouters (1974) at this symposium also indicates the
feasibility as a regulator for a stirred tank reac-
tor. Similarly the paper by Vanacek (1974) at this
symposium indicates the applicability to air/fuel
controllers.

6. CONCLUSIONS

Many process engineers claim that most of the indus-
trial control problems (607 - 70%) are solved suf-
ficiently well using ordinary PID regulators. Even
if this statement is true, I believe that there are
control loops where more complex control algorithms
are profitable. Regulation of important quality
variables where there is a significant pay-off in
reduction of fluctuations is a typical example. One
possibility to obtain such control laws is to use
linear, stochastic control theory where the poten—
tial of modeling disturbances as random processes
are exploited. The major difficulty is to obtain
appropriate models for the process dynamics and the
disturbances. Such models can be obtained by sys-
tem identification. Linear stochastic control the-
ory in combination with system identification has
been successfylly applied to solve real industrial
problems.

o




The nonlinear stochastic control theory does not
yield strategies that are conveniently computed.
The theory gives, however, insight into nonlinear
problems. This insight can then be used to con-
struct control strategies heuristically. It can
also be used to understand the behaviour of con-
trol laws designed by other arguments. A typical
case is that of adaptive control where the non=
linear theory gives insight into the properties of
certain suboptimal regulators. In this way it is
possible to obtain self-tuning regulators and dual
controllers. Even if much theoretical work re-
mains before these problems are fully understood,
some useful applications of available results have
already been made.

In summary, while stochastic control theory is a
highly technical area, which often is considered
as a playground for academics, it is my belief
that there are some results that can be profitably
used to solve certain industrial control problems.
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