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STOCHASTIC CONTROL THEORY AND SOME OF ITS TNDUSTRIAL APPLTCATIONS

K. J. Âström

Department of Automatic Control, Lund Institute of Technology

5-220 07 Lund, Sweden

ABSTRACT

The purpose of this paper is to give a survey
of some results from stochastic control theory and
to discuss their application t.o industrial control
problems. The intention ís to state the results,
discuss them from the point of view of applica-
tions and to give some experiences from practical
use. The review is not comprehensive.

1. INTRODUCTION

The paper is limi.ted to discrete lime syslems. The
motivation is that digital computers are used Eo

implement the conËro1 algorithms. Mathematically
the theory becomes much simpler. Some formulas
will, however, formally be more complicated than
in the continuous time case. Several important
problems, like the selection of the sampling inter
val, are also neglected by this assumption.

The paper is organized as follows. Control of
linear sysEems with a quadraLic criterion is dis-
cussed in Section 2. The standard problem is for-
rnulated and the solution staEed. An important
special case of the linear theory, which leads to
the so-cal1ed minimum variance strategy, is also
discussed. The linear theory resulLs in a regula-
tor ¡vhich is a linear, dynamical system. This is
a convenient regulator in several practical prob-
lems. The major difficulty in applying the
l.inear theory is to obtain suitable models for the
process dynamics and the disturbances, Such models
can be obtained from plant experiments using sys-
tem identífication techniques. Some applícations
of the linear theory are also given in Section 3.

A review of nonlinear theory is given in Section 4.
By assuming that the process and its environment
can be characterized as Markov processes, the opti-
mal strategies are given by the Bellman equation
obtained by Dynamic Progranuning. The equaËion is
unfortunately unpleasant both analytically and
numerically. The maín obstacle is dimensionality.
To carry out the analysis it is necessary to intro-
duce a hyperstate, which is a probability distri-
bution on the original state space of the problem.
For this reason ít has not yet been possible to
solve any realistic problens usíng Lhese methods.
A few problems have, however, been solved numeri-

discussed in Section 4. In thís case the nonlinear
theory gives dual control strategies ín the sense
of Feldbaum. The ínsight obtained from the nonlin-
ear theory can be exploited to construct suboptimal
strategies r¡hich can be implemented. One class of
suboptimal regulators, the so-called self-tuning
regulators, are discussed in Section 5. These regu-
larors can be used to control a linear system with
constant but unknown parameters and will thus make
it possible to compensate for lack of proeess know-
ledge by rnore sophisticated control algorithms. As
indicated by the nonlinear theory, the regulators
will have some limitations. One drawback is that
they are not dual controls. This is discussed in
connection with some applications of the regulators
in Section 5. Some concluding remarks on the appli-
cability of stochastic control theory are finally
given in Section 6.

2. LINEAR THEORY

The well-known linear stochastic control theory
deals with control of a system which can be de-
scribed by the stochastic difference equation

x(t+l) =Ax(t) +Bu(t) +v(t)
(2.L)

y(t)=Cx(t)+e(t)

where t€T = {...-1, 0, 1,...}, x(t) is a nxl state
vecEor, u(t) a pxl vector of control variables and
y(t) a rxl vector of measured outputs. The stochas-
Eic processes {v(t), t€Ti and {e(t), t€T}, called
process disturbances and measurement errors respec-
tively, are sequences of uncorrelated, random vari-
ables with zero mean values and the covariances

cov[v(t), v(t)] = Rf

cov[v(t), e(t)] = RfZ

covIe(t), e(t)] = RZ

The initial state of (2.1) is assumed to be a ran-
dom variable with mean m and covariance Ro.

The performance of the control system is described
by the scalar loss function

N-1
T

t=l
l = fo*rtnloox(N) + ¡*r1t¡qr*1r¡ + ,rrlt¡qrr,1t¡ J

(2.2)
cal ly .

One particular problem, namely control of a linear
system r^¡ith consLant but unknown parameters, is

where the matrices Q^, Q. and Q. are symmetric and
non-negative. Since"l iå a ranáom variable, the
criËerion of the cootrol is taken as to minimize tle
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exPected loss.

The admissible strategies are such that u(t) is
measurable with respect to the sígma-algebra /¡t
generated by {y(s), 0 ( s < t-1}, for each t€T'

The problem can be solved under two sets of assump-

tions. In one case the controls are linear func-
tions of the measurements. It is then sufficient
to assume second order properties of the random

Drocesses. If the random processes are assumed to
ie jointly gaussían, it is no longer necessary to
."rir*" thât the controls are linear' The solution
is formally the same in both câses ' It is given
bv the seDaration theorem, which says thal the op-

timal control is

u(t) = -r, *ltlt-r¡
rh"t" i(tlt-f) is the best estimate of lhe state
*(a) gi""" y(t), y(t-l),... . The esEimate is
given bY the Kalman filter

*{t*rlt) = e x(tlt-r) + b u(t) + K[v(t) - x(tlt-r)]

x(0) = m

The matrices K and L are obtained from solutions
of Riccati equations. The formulas first derived
by Kalman are standard texËboolt rnaterial' See e'g'
Kíakernaak and sivan (L972) and Âström (1970) 

'
where references to original work as well as inter-
pretations are given. A critical review of the
iirr""t problem is found in trrritsenhausen (1971) ' A

special issue of IEEE transactions, Athans (f971)'
is also devoted to the linear, quadratic problem'
This issue contains many valuable papers covering
both theory and aPPlications.

There are several trivial but useful extensions
thât can be made. The process disturbance and the
measurement errors rnay have unknown mean values '
This is taken care of by augmenting the state vec-
tor with Ehe vector z = E v(t) with the associated
state equation

z(t+1) = z(t)

Correlated disturbances with rational sPecËral den-

sities can be handled in a similar way by state
augmentation.

The solution of the linear, stochastic control
problem thus gives a regulator in terms of a lineæ,
äynamical system. The dynamics of the regulator
arises from the Kalman filter.

Linear control theory is attractive for control
engineers because it gives a regulalor which ís a

liiear, dynamical system; a structure which has

been known to be useful for a long tin\e' The com-

plexity of the regulator directly reflects the
complexity of the model and the criterion' The

matiices i< and L will in general be time varying'
Hor^rever, if the system has constant parameters and

if N + æ, the matrices K and L will become con-
stant matrices under reasonable conditions' This

The special case of linear control theory, obtainêd
rfr"" 'aft" output is a scalar and there is no penalty
on the 

"o.rttãl, 
is particularly simpl-e' By choos-

ing an innovat.ionts representation of the distur-
bances and changing the basis in the state space

the model (2.1) can be transformed into

Minimum Variance Control

x ( t+t) u(t)+ e(r)

0

01

1

0

b-I
bz

kt

2
kz

k.,-1

kn

x(t)+

1

nn

0 0 ...1
0 0 ... 0

n-1b

b

y(r)=x(t)+e(t)

Elimination of the state variables gives the follovr
ing inpuL output relation

v('L) + a'v('c-')+ 
' .".ili .'";.,:-l;;.1.;"".,:-1, 

"'

By introducing the PolYnomials

n n-lA(z) = z" + ãlz - + ... * t'
--1B(z)= bl""' *...*bn

c(z) = "n 
* 

"!"n-L 
+ ... + cn

and the forward shift operator q the model can also
be written as

A(q)y(t) = b(c)u(t) + c(q)e(t) Q,2)

The conlrol law which minimizes the variance of the
output i.e. the criterion

)e.r=Ey¿G) Q'3)

can of course easily be found from the general the-
ory. The strategy can, however, also be found di-
reätty by a very-simple argument as shovm in Åströrn
(1970). rf the polynornial B(z) has no zeros outside
the unit circle, the optirnal strategy is

u(r) =ffiQrt.> Q.4)

Notice that the stlategy is obtained without solving
a Riccati equation or without spectral factorization'
Llhen the poiynomial B(z) has zeros outside the unit
circle, the Riccati equation will have several so-
lutions, One solution corresponds to (Z '4) '

The control strategy which minimi.zes 9', will also
minimize

N^

(2.1)

solution, referred Eo as steacly scaEe corlEror,
frequently used in aPPlícations.

12 = Eti x
t=1

IS ,'1t) J \2.5)
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Not.ice that the strategy whích minimizes the cri-
terion

n')
03=Ely'(t)+qru'(t)J

is also very easy Eo calculate' This strateBY is'
howevur, ,roi th"- same as the strategy which mini-
mizes

tv2(.) + qr,r2{t)J

It is easy to find cases where the strategy which

mínimizes f,, Bives an unstable, closed loop sys-

fluctuations ín the process the manufacEurer selects
the set points of the regulators for the quality
variables inside the tesi limits to ensure that his
p;;ã;;¿ is accepted. Bv reducing the variations in
'the quality variables it is possible to move the

set points closer to the limits without changing 
.

tie prot.tility for acceptance' By doing this there

is a gain which can be exploited in many rrtays as

i""t"ãt"¿ production, reduction of raw-material or

;;;;;-;.;umption. rhe reduction of f luctuations
i"-qiäritv .rtii"bl.t is also of value by itself' rt
is,'howevlr, often very difficult to express this
in monetary terns.

In some cases the more general quadratic criterion
can ¡e motivated from physical argurnents' One good

uxample is in the design of autopilots for ships
wherl the average breaking force due to rudder ac-
lions and angle of attack can be given approxima-
ii""rv as a f,uadratic form' See Koyama (1967) ' rn
*ã"a ä"tut ii is, however, difficult to assign

fenalties to different combinations of state and

"orrttol 
variables. The criterion (2'2) i-s therefcre

not always realistic'

The assumption that models for the process and the

disturbances are available is frequently the major

difficulty in applications. Even if a reasonable
model for the process dynamics is a"'ailable, the
characteristics of the disturbances are seldom kmwn'

To apply the linear theory it is Eherefore a neces-

sity'io-have methods to determine the desired mo-

dels from process experiments using.system identifi-
cation tecirníques. ttt:-t presents little difficulty
for single output systems. In this case â canoni-
cal form for the model can easily be given, and the
parameters of this model can then be estimated' See

itströo, and Eykhoff (1971) and Evkhoff (I974) ' The

problem is more difficult because of the lack of
,rrriqrru canonical forms. If the observability indi-
ces or the controllability indices are known, it is
straightfotward to obLain a canonical form' Lack-

ing iiformation about the indices Èhere are however

maiy alternatives to explore. See e'g' Kalman

(1972) and MaYne (1974).

In many cases the difficulties mentioned above can

be oveicome; and the linear stochastic control
ai"oty, in áombination with suitable syètem identi-
fication techniques, is a useful tool for the con-
trol engineer. This is clearly wítnessed by the in-
cre"sinj number of apþlications. See Athans (1971) '

There are several applications of minimum variance
control which have covered all steps from process
experiments to on-line control. Applications to
paier rnaehine control are given in Åström (1967) and

i'¡äfa "na Grimnes (1974). Control of interior cli-
mãte is discussed in Jensen (1974). An application
to design of autopilots for super tankers is done

by Källãtröm (1973). control of a pilot distillation
piant is described in Binder and Calvillo (L974)'
The experience from all these applications have
been that closed loop performânce can be predicted
very accurately from the models obtained' from plant
a-narimpnrs nn¡1 swstem identification. The plant

tem.

The following simple example v¡ill be used'

Exarnple 3.1

The minímun variance strategy for the system

y(t+l) + a y(t) = b u(t) + e(t+l) + c e(t) (3'6)

is given by

u(t)="o"t{t) (2'7)

Review of As

The fundamental assumptions made in the linear
theory are

o the process dYnamics is linear
o the disturbances are stochasLic processes,

which are gaussian or of second order
o the. críterion is to minimize a quadratic func-

tion
o the urodels for the Process and the disturban-

ces are known.

The assumptíon of linearity is quite reasonable
\^7hen steady state control of industrial processes
are considLred. The purpose of the control is to
maintain the process variables close to steady
state values. It is difficult to verify the
assumption on the disturbances. lühen attempts to
model disturbances are made, it is frequently
found that a stochastic process rnodel is adequate
provided that the model allows for drifting dis-
iurbances. Such processes can be modeled by ínte-
grators driven by processes with rational spectral
ãensities, for example the ARIMA process intro-
duced by Box and Jenkins (1970). In practice it
is also necessary to take into âccount that there
may occasionally be big disturbances'.

The quadratic criterion is often controvetsial' In
the special case when Qr = 0 and Q, = 1 the crite-
ríor '(2,2) is simply thÉ minirnizatton of the vari-
ance of the outPut. This can be justified as a

criterion for steady state control using the fol-
'lowínB ârsument. Throueh general trade rules, li-
mits are imposed on important quality variables '
The custoner accePts a batch if his quality con-
trol procedures show that the linits are exceeded

by a given fraction of the product. Due to the

experiments and the system identifícation are quite
time consuming, and they will also require skilled
personnel.



r=*ih(x(t),u(r))

3. NONLINEAR THEORY

The obvious nonlinear extension of the linear prob-
lem discussed in the previous section is obtained
by replacing the linear difference equation (2.1)
by the nonlinear equation

x(t+l) = f(x(t), u(t), v(t)) (r.tl

i(tl = c(x(t), u(t), e(t))

and by replacing the quadratic loss (2.2) by the
general loss function

(3.2)

Tf it is assumed that the disturbances are such
that the stochastic process {x(t), y(t); t€T} is a

Markov process, the control problem can be formu-
lated precisely and existence theorems can be given
in some cases. The theory is often formulated by
giving the transition probabilities of Ehe process
directly instead of giving the nonlinear equations.
The theory is presented in the Dvnamic Programming
framework. To do this the hyperstate

p.(A) = P{x(t)€Al Øt} (3.3)

igma-algebra generaled by {y(s) 'ntroducing the function

4.

constraints on computation capacity and control
force, little more can be achieved by subtle chang-
es in control logic."

The nonlinear theory has thus not had any Practical
applications. In spite of this it will be shown.in
the next section that the nonlinear theory will
give some insight which indirectly may be of some

practical signif icance.

4. LTNEAR SYSTEMS WITH CONSTANT BUT UNKNOI,IN PARA-
METERS

L7hen the linear theory was discussed in Section 2,
it was remarked that it hTas a severe restriction
from the practical point of view to assume that the
parameters of the models for the process dynamics
and the disturbances were known. The lacking know-
ledge had to be supplied by a combination of expe-
rimentation and statistics. An alternative to this
would be to formulate the problem in such a way
that the lacking knorvledge of the process pârameters
becomes part of the problem statement. The linear
quadratic problem discussed in Section 2 will thus
be considered, but the parameters of the models are
assumed to be unknol^rn.

This problem can be regarded as a special case of
the nonlinear problem by introducing the unknown
parameters as nevT state variables. If the parame-
ters are constants, the associated state equations
are simply given by

(3.4) 0(t+l) = 0(t)

It lurns out that the analysis to follol^¡ can equal-
ly well be performed when the parameters are given
by

where /
1<s<

the
By'. i:

s
i
N
tv. (n) h(x(t), u(t) | 4.)

the following funclional equaEion for V,- is obtairpd
by standard Dynamic Programming argumenEs

vr(p) = min{lh(x,u)r.(dx) + Elvr+l (n.*r)l cEJ} ß.5)

This equation, which is called the Bellman equation
after Bellman (1961), is the starting point for
many investigations. To have the right hand side
of (3.5) well defined it is necessary Lo have an
equation for updating the conditional probability
distribution (3.3). Such equaLions were given by
Stratonovich (1960), Kushner (L967) and trrlonham
(L964). Updating the conditional distribution is
equivalent to a nonlinear filtering problem, which
has been studied extensively. Numerical aspects
of this problem are recently given by Levieux
(L974). The functional equation (3.5) has been in-
vestigated in Florentin (1962), Åström (1964),
Mortensen (f966), and Stratonovich (1963) .

The numerical solution of the functional equation
(3.5) is very difficult because of the dimensíona-
lity of state. For example, when "E¡3, 

the hyp.t-
state p is a probability distribution'over RJ. The

conceplually simple problem of storing the function
V thus becomes a major difficulty. This difficulty
is the maín reason why the intensive interest in
nonlinear stochåstic control in the sixties ended
in dispair. The situation is expressively staled
in l^lonham (1968):

where 0 is a vector of unknown parameters, D is a
known matrix and tw(t), t€T] a white noise process
irlhen D equals the identity matrix, the parameters
are simply üIiener processes. If in addition r^¡ = 0
the parameters are constants. The model (4.1) is
therefore somer¡hat inconsistently referred to as
the case of "drifting parameters".

The assumption (4.1) is not particularly appealing
from the point of view of applications because it
means that the model has randomly varying parameters,
but that Lhe statistical properties of the parame-
ters are known. This is of course not â very real-
istic situation.

From the theoretical point of view it is, however,
interesting to observe that the case of constant
parameteÍs is as difficult as the case of "drifting
parameters".

It will now be discussed how far Ëhe nonlinear the-
ory can be exploited in this particular case. To
use Dynamic Programming and the functional equation
(3.5) it is necessary to introduce a hyperstate
which.is a probability distribution over a space

= min E{
k=t

0(t+t)=¡ s(r)+w(t) (4.1)

"To summarize: the only cure for dynamic distur-
bances is tight feedback (high rates of information
processing) and large control forces. I^Iith fixed

and the number of unknown parameters. It is clear
that even a numerical solution of the functional
equation (3.5) is out of the question for any
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problem of reasonable size. It is therefore of
interest to consider further simplifications which
will make it possible to reduce the dimension of
the hyperstate. Two examples of such simplifiea-
tions are given below.

Exanple 4.1

Consider the model (2.1) with C = I and e = 0. All
state variables are thus measurable without error.
Furthermore assume that the unknown Parameters are
parameters of the matrices A and B and that the
stochastic process {w(t)' t€T} is gaussian. The

conditíona1 distribution of the parameters given
the sigma-algebra generated by {y(s), 1 < s ( t}
is then gaussian and can be characterized by the
conditional mean and two conditional covariances.
See Farison (1967).

tr

Example 4.2

Consider the model (3.f). Assume that the para-
meters ci are aII zero, that the unknown parame-
ters are ã1t â2t ...¡ ê¡¡ b1, b2r..., br and that
{e(t), t€T} are gaussian. Then the conditíonal
distribution of the parameters is gaussian. See

Mayne (1963).
tr

The second example, which corresponds to-minimum
variance control, will now be explored in some

detail. The analysis follovrs Ä,strörn and lrritten-
mark (1971).

Introduce the notations

o(r)=co1[ar(t)ar(t)...an(t) br(t)b2(t)...bn(t)]

e(t-1) =r-y(t-1) -y ( t-2) . . .-y (t-n)u,.:iìl 
Ii_iì ; 

.

ao(t-1)=[-y(t-l) -y(t-2)...-y(t-n) ..:llil];;:

o(r) = E{o(r)lør}

p(r) = at to<t>-ô(r) I te(tl-ô<t) lrl atj

where rJ- is the sigma-algebra generated by y(t),
y(t-l),i..

One-Step and Certainty Equivalence Control

I{aving obtained the hyperstate it is not straight-
forward to do the minimization. Since

e y2(t+1) = r n{y2(t+I)IUJ = E E{[¡ u(t) +

,* eo(r)e(t) + e(t)l'lqJ (4.3)

is a quadratic function of u(t), it is straightfor-
ward to show that the optimal control is

beoo + eopob
u\E,/ =

b_ + pbb
(4.4)

r^rhef e

P66 = Ele-oltb-bl

The control law (4.4) is called the one-steP con-
trol because it minimizes the loss function (4.3),
ffii-ch is the expected loss over one step only. It
is also called the cautious control.

Notice that if pbb = 0, then the control reduces to

u(r)=-S,r,
b

oe
u(r)=_ft.l

(4.s)

In the case of constant parameters the mÍnimum
variance control ís given by (2.4) i.e.

The process model

y(t) + ar(t-l)r(t-l)+...+arr(t-n)y(t-n) =

= br(t-l)u(t-1)+...+brr(t-l)u(t-n) + e(t)

can then be written as

y(t+t) = a(r)0(r) + e(r) = b(t)u(t) +

+ 9o(t)0(t) + e(t)

Notice that C(z) = I in the model (4.2). The con-
trol (4.5) can be interpreted as the control ob-
tained by computing the optimal control under the
condition that the parameters are known and then
sirnply substituting the true parameters by their
estimates. The control (4.5) is therefor.e ca1led
the certainty equivalence control.

Example 4.3

For the system (3.6) of Example 3.1 the one-step
control (4.3)

ab + p-.
u(t)=, o' (4.6)

b2 * Pbb

and the^certainty equivalence control (4.4) becomes

u(t) =*v(t) 
(4.7)

(4.2)

(4.2)

where the parameters are assumed given by (4.1).
Recall that the case of unknov¡n but constant para-
meters corresponds to D = I and v = 0. To apply
the nonlinear theory the hyperstate (3.3) should
first be determined. This appears difficult be-
cause the stochastic process {y(t), t€T} is not
gaussian. It \^ras, however, observed by Mayne
(1963) that the hyperstate (3.3) is gaussian. See

reduction of the dimensionality of the problem
because the hyperstaEe can be represented by the
conditíonal mean and the conditional covariance The control lar¡s (4.4) and (4.5) have empirically

been found to be useful, at least when they are



âpp1íed to non-minimum phase "Y9!"t.t 
with constant

pãiã*"t"tt. The controllers wil1, however' have

åífficulties when they are applied to systems

where the parameter b changes its sign'^rThe con-

trol la\ts are very sirnilar when p66 << b' but very
different when p65 " Ê2. In par"ticular, the gain

of the certainty équívalence controller becomes

very large while the gaín of the one-stÎ'p control
b..ämes iery small for small values of b' The

ããi..i"ay eiuivalence controller will^thus give
very large control signals for small b' The one-

,i"i "o"itoller 
will, on the other hand, exhibit

the so-called turn-off effectrwhich means that the

control signal will be zero for long periods of
time. rntiitively this can be explained as fo1-
lows. iolhen the estimate of b is poor i'e'
o.. tr 62, th"tt the gain of the regulator (4'4)
riÏf u" small. The control signal applied to the
plant will then also be small. The estimate of b

ríf f 
"a 

the same time be even r¡7orse' the gain
iorãt, "a"' 

This phenomena was observed in Åström-

wittenmark (1970). It is also discussed in Hughes

and Jàcobs (1974).

Dual Control

üIhen the parameters of the system (-3 '2) ate known'

the control stratègy (3.4) wiff minimize both the
criterion (3.3) and the criterion (3'5) ' -This is
unfortunately not true in the case of unknown pa-

rameters. While it is fairly simple to find the
one-step cont.rol for the system (4'2), it is a

much moie difficult task to find the control which
minimizes che criterion (3.5). In principle the
solution is given by the functional equation (3'5)'
Introducing

N

v<ô<t>,P(t),Qo(t),t) = Min n{ t
k=t

y2 1r+t¡lur\ (4.8)

The Bellman equation (3.5) then becomes

v(e (r) ,P(t)Qo(t) ,t) =

gipr{ tott)ô (t) l2 * a(t)P(È)ar(t)

2,^-s l¿

modet (4.2) changes its sign. The control given
¡v (4.d) is a duã1 control in Feldbaum's sense'
Simulations have shov¡n that the dual controller
ãvoids the turn-off effeet of the one-steP control-
ler and also the very large control signals of the

"årt.i"ty 
equivalencä control ' For any practical .

problem åf ieasonable size the control given by
(¿.g) 

"..t 
not be computed. It is therefore a good

research problem to find approximations which can

be computãd. In Tse et.al' (1973) and Tse and Bar-
Shalom (1973) approximate solutions to the func-
tional equation (3.5) are given for some examples

includini interception and soft-landing' The símu-

lations shor^t the superiority of the dual controllers
as compared with the certainty equivalence control-
lers. The computing time for the approximate
dual controller is, however, 45 s on a UNIVAC 1108'
Other approximaËions of the dual controller are
given in-the paper by Bar-Shalo* 9!:11: (I974) at
Ihir "ytpotium 

and by l^iittenmark (L974) '

6

SELF-TUNING REGULATORS

Example 5.1

Assume that the certainty equivalence controller
(4.7) is applied to the system described by the
equation (3.6). Let rv,i(t) denote the sample cova-
-t^-^^ ^r +l,a i--,,¡ ¡nàuthe ôrrtDut sisnats i.e.

a)

5

J vle {t+r),P (r+1),too (t+1), t+l) e

where

ô(t*r) = r ô(r) + r(t) s2 + p(t)P(t)çr(t) s

K(r) = o p(.)qr(.)[o2 + ç(t)p(t)çr(t)]-1

Qol (r+t) = - ç(t)ô(t) * o2 + ç(t)p(t)ar(t)

The properties of the one-step controller and the

cert;inly equivalence controller will now be ex-
plored further in the case when the controllers are

ãpplied to a system with constan! but unknown para-
rnài"tt. It will thus be assumed that D = T and

v = 0 in the equation (4.1) which describes the pa-

rameter variation. Since the regulators wete de-
rived under the assumption that the parameters c1t
c^- .... c in the model (3 '2) ate aLl zero, iE can

uÉ'"*p.át"å thaË the regulators will behave well
when ãpplied to systems with this property' rn this
case the parameter estimates will be unbiased' If
lhe closed loop system is stable, the parameter
estimates will then converge Ëo the model parame-

ters as time tends to infinity. The control laws

obtained in the limit will be the same as the con-
Erol laws which could be computed if the model pa-

rameters were known a priori. Regulators r¡ith this
property will be cal1ed self-tuning controllers'
äã""åteä""" conditions arefliven--ñ' the paper by

Ljung ãnd l^littenmark (1974) at this symposium'
f¡átiãe that if the one-step controller and the cer-
tainty equivalence controller both converge, they
will converge to the same regulaÈor because Pbb.-- 0
as t + ó. The transient behaviour of the algorlthms
may however differ sígníficantly'

In Âström and i,littenmark (1973) it was sho\'¡n that
both the one-step controller and the certainty
equívalence controller are self-tuning when applied
to a systern described by the model (3'2) ' This is
so*.whät surprising because the least squares esti-
mate is biased when the polynomial C(z) in (3'2) is
different from unity. The basic idea behind this
result can be illustrated by the following simple
example.

2+o

1

/ñ
+ dsÌ

(4.e)

s

eoi(t+l) =9o(i-1)(t) i -- 2, ..., 2t (4'10)

See Åström and i^Iittenmark (197f). The funcLional
equation (4.9), which will give the optimal stra-
tegy, can be solved numerically íf the number of
parameters is sufficiently small, say one or at
lh" *ott tno parameters. Solutions for special
cases ale g].ven rn IlorenLlrr \LJo¿,, r Dvrr¡rr¡ \Lzvr/,
A.ström and l,Iittenmark (1971). The controllers
obtained differ significantly from the one-step
control and the certainty equivalence control in
those cases where the parameter b in the process

r
1t

= + r y(r)u(r-r)
t k=lyu

(t)
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r

The conditional nean values of the pârameters are

then given bY

.yr(1) + å{t)rrr(0, = t{t)rr,, (0)

ty,r(l) + a(t)rru(o) = b(t)ruu(o)

Since the control signals r^7ere generated by the

control law (4.7), we get

fn the particular case the norrnal equations which
gi"" ahä estimates may be ill conditioned' and dif-
iiculties may arise if care is not taken hthen solv-
ing them. SLe Nahorski (I974) ' The difficulty can

Ue"avoi¿e¿ by using pseudo inverses or by giving
the parameter 6 a fixed value'

Extensive simulations of the certainty equivalence
controller and the one-step controller when applied
to a system hTith constant or slol4rly varying parame-

t"r" .r" given in l,Jieslander-ÍJittenmark (1971)t
i^Iittenmarl (1973) and i^Iouters (197 4) in this sympo-

sj.um. Extensions of the algorithm to include penal-
Ly on th" control are given.in Âström and llitten-
märk (1974) and to multivariable systems in Peterka
and .qstrijm (1973) .

A self-tuning regulator will be an attractive solu-
tion for a tineai stochastic control problern' It
substitutes the need for process identification by

a more complex control algorithm' The computational
reqr-rirum.nis both for the one-step control ând the

"eitainty 
equivalence control are very modest'

No practical control problem can be solved by theo-
ty àlott". There will always be some elements of
subjective judgement involved. For the certainty
equlvalence regulator the sampling interval, the
rod"l "omplexiiy 

and the exPonential forgetting must

be selectåd. Experience has whown that these fac-
tors are in many cases easily determined by engineer-
ing judgement. The certainty equivalence regulator
hai therefore successfully been used in several ap-
plications. Applications in the pâper industry are
äescribed in Cãgrell and Hedqvist (1973, 1974),
Borisson and l^Iittenmark (L974). Control of an ore
crusher was discussed at this syrnposium, Borisson
antl Syding (1974).

It has also been used to control an enthalphy ex-
change6 Jensen (I974\ and as an autopilot for a

srrpui t"rrk"r,Källström (1974). In all these appli-

"riiu.r, 
the regulator has been running on-line on a

real industrial proeess. The simulation study by

lJouters (1g74) at this symposium also indicates the
feasibility as a regulator for a stírred tank reac-
tãi. Simiiarly the paper by Vanacek (1974) at this
,yrnporiu* indicates ihe applicabílity to airlfue1

(1) - åu!r t;,',-û <tlâ <tl ¡¡tr'l lv2 tr'l
(s.1)

-t
= - ! r Ia(r)-b(r)a(k)/b(k)]v(k)u(k)tk=l

vv

(r)
yu

If the input and the output signals are bounded

and if the controller gain

a(t) = a(t)/b(t)

conveiges as t + -, it can be shown that the right
hand sides of (5.1) converge Eo zero as t + @'

Hence if the closed loop system obtained with a

certainÈy equivalence controller is stable and if
the controller gain converges âs t + ø, then the
closed loop system is such that

lim Í
!æ
1im r
t+æ

vv

yu

(i)

(1)

(5.2)

(s .3)

The certainty equivalence controller thus atEempts

to dríve certain covariances of the inpu! and the
output to zero. Assuming that the gain of the con-
troller converges as time increases i'e'

a(t) /b (t) + cr

The closed loop system obtained in the limit then
becomes

y(t+1) + (a-ob)y(t¡ = s(¡+1) + c e(t)

The condition (5.2) then gives controllers.

6. CONCLUSIONS* *l 
b

d = oz=

or
a-llc

b

The second solution is impossible because it gives
an unstable, closed looP system. l'Ie thus f ind
that if the certainty equivalence controller con-
veïges it r^till converge to a regulator' which is
ideãtical to the mínímum variance regulator (3'7)
for the system (3.6).

Notice that the argument can also be extended to
the one-steP controller. 

tr

Many process engineers claim that most of the índus-
triäl'co.,trol pioblems (607" - 707") axe solved suf-
ficiently well using ordinary PID regulators' Even

if this ,t.t"*.ttt is true, T belíeve that there are

control loops where more complex control algorithms
.r. ptotit.ifu. Regulation of important quality
variàbles where there is a significant pay-off in
reduction of fluctuations is a typical example' One

possibility to obtain such control laws is to use

iin""t, stochastic control theory where the poten-
tial of modeling dísturbances as random processes

ar" e*ptoited. The major difficulty is to obtain
.pptopii"t" models for the process dynamics and the

dì"t.rib"nce". Such models can be obtainêd by sys-
¡om irienlification. Linear stochascic control the-

In the example it is not^necessarl to assume that
the parameter estimates a(t) and b(t) converge; it
ís only required that their ratior converges.

ory in combination with system identification has

beån successfylly applied to solve real industrial
problems.
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