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Stress computations on perforated polygonal domains∗

Jonas Englund and Johan Helsing†

Numerical Analysis, Centre for Mathematical Sciences,

Lund University, Box 118, S-221 00 LUND, Sweden

June 14, 2002

Abstract

A high order accurate and fast algorithm is constructed for 2D stress problems on
multiply connected finite domains. The algorithm is based on a Fredholm integral
equation of the second kind with non-singular operators. The unknown quantity is
the limit of an analytic function. On polygonal domains there is a trade-off between
stability and rate of convergence. A moderate amount of precomputation in higher
precision arithmetic increases the stability in difficult situations. Results for a loaded
single edge notched specimen perforated with 1170 holes are presented. The general
usefulness of integral equation methods is discussed.

Key words: Multiply connected domain, V-notch, holes, notch stress intensity factor,
stress concentration factor, Fredholm integral equation, fast multipole method

1 Introduction

The problem of solving for stress in a loaded, linearly elastic body has received attention for
almost a century. Early work dealt with formulations of the governing equations. Integral
equations appeared as a natural tool both for analysis and for obtaining solutions. See the
textbooks of Mikhlin [40], Muskhelishvili [41], and Sokolnikoff [48]. Naturally, only very
simple setups can be solved by purely analytical methods.

Later work on stress problems has focused more on numerical techniques for particular
applications. See Refs [7, 9, 10, 14, 30, 38, 50, 52] for recent 2D examples involving a variety
of methods of which some are based on integral equations. Parallel to this development there
has been a steady improvement of commercial general purpose finite element packages, such
as ANSYS and ABAQUS. These codes can, among other things, solve for stress on multiply
connected 2D domains. In fact, in Ref. [29] we showed that for simple setups, involving a
few holes and cracks in finite domains, these commercial packages often perform better than
many specialized codes. Similar observations made by others has lead to a belief in the Solid
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Mechanics community that the finite element method will be the only numerical method in
the future. Once computer processors become fast enough, and computer memories become
large enough, the need for other numerical techniques will disappear.

In this paper we shall argue and demonstrate that integral equation methods are indeed
extremely competitive, that is, when they apply and if they are implemented carefully. We
ascribe their limited use in computational Solid Mechanics to insufficient work on good
equations for problems of interest. The paper is organized as follows: Section 2 discusses
advantages with and shortcomings of integral equation methods. Section 3 reviews a recently
derived and very efficient equation for multiply connected 2D domains [29]. Sections 4
and 5 contain the new material. Section 4 gives details on the present discretization of the
integral equation. Particular emphasis is given to the quadrature in corners. Our scheme
for resolving the stress field in corners, originally developed in [28], makes use of the analytic
properties of the unknown quantity, and should be seen as an alternative to the more general
scheme of Cheng, Yarvin and Rokhlin [12, 53]. New placement of discretization points
increases the stability. Higher order quadrature increases the convergence rate, compared
to the earlier implementation [28, 29]. Section 5 gives several numerical examples. Among
other things, we compute the notch stress intensity factor and the stress concentration
factor for a loaded single edge notched specimen perforated with 1170 circular holes.

2 Why are integral equation methods needed?

The chief advantage of integral equation methods over methods based on partial differential
equations has to do with stability. With stability, in this context, we mean that the trun-
cation error should decrease when the number of discretization points is increased while
the rounding error should stay bounded. The rounding error is not bounded for methods
that, upon discretization, lead to system matrices whose condition numbers diverge with
the number of discretization points.

Since many problems in linear fracture mechanics are well conditioned [39], a good nu-
merical method for these problems should result in discretized problems with low condition
numbers. Algorithms based on partial differential equation formulations do not have this
property. Differential operators are unbounded and when the discretization is refined, the
rounding error increases. These undesirable effects could, in theory, be offset by precondi-
tioners using techniques such as multigrid [24] or domain decomposition [4]. Still, for many
realistic problems and geometries it is often difficult to achieve optimal performance [15].
The total work tends to grow faster than linearly with the number of discretization points
N . The achievable accuracy decreases as the system size increases.

When a given problem can be formulated as a Fredholm integral equation of the second
kind it may happen that its condition number is preserved. And even if the condition
number is not exactly preserved, it does not depend on the number of discretization points
(see Theorem 4.1.2 of [3] and Theorem 4.7.11 of [25]). Iterative schemes then converge
rapidly and there is no need for preconditioners. The computing time grows linearly with
N , given that fast solvers are used. The accuracy can be controlled. It should be pointed out
that the preservation of condition number does not automatically follow from a Fredholm
equation formulation. Neither does it exist a general recipe for the derivation of integral
equations with this property. But for an increasing number of problems in science and
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engineering, usually formulated as partial differential equations, it has been possible to find
reformulations where the condition number is almost preserved.

Despite the advantages mentioned above, integral equation methods are not standard for
solving field problems. There are several reasons for this. One is historical. It was not until
about 15 years ago that fast iterative solvers for integral equations in 2D first appeared [5, 20,
45]. Efficient codes for 3D have been finalized in the last few years [13, 21]. Another reason,
particularly relevant for Solid Mechanics, has to do with the difficulties of finding good
integral equations for problems of interest. Sometimes, for simple geometries and linear
problems, there are several equations to choose between, many of which were developed
a long time ago and without numerical applications in mind. Comparative studies of the
performance of these equations seem to be lacking. Often, for more complicated geometries,
for problems with continuously varying material coefficients, and for non-linear problems,
there are no equations available at all. Researchers working with efficient algorithms for
large scale-problems do not always address these questions. They often concentrate on
the speed of their solvers and then apply their algorithms to idealized problems. See, for
example, Refs [16, 18, 19, 26, 54].

In other areas of scientific computing, such as scattering problems, integral equation
methods have had much more of a revival [22]. Here their advantages over other methods
are more easily exploited. Integral equations for problems of interest are available.

Other advantages with integral equations, often mentioned, but in our opinion less
important than the stability properties, have to do with economy of points and ease of mesh-
generation. For free-space problems and for problems involving piece-wise homogeneous
materials, integral equation methods often only require the discretization of the boundary.

It is clear, from above, that the present authors prefer to work with Fredholm integral
equations of the second kind for stability reasons. It should be emphasized that most
contemporary researchers working with integral equation solvers in Solid Mechanics use
other approaches. The reason is that integral equations of the second kind are often very
hard to find for a given problem. If one extends one’s search to Fredholm equations of
the first kind it is easier to find candidates. In fact, many popular integral equation used
for fracture mechanics problems [8, 37, 44] (hypersingular extensions of the Somigliana
identity [34], also known as standard BEM) are equations of this type. Schemes based
on first kind equations retain some of the advantages of second kind integral equation
schemes, such as ease of mesh-generation. Others are lost. Hypersingularity, which appears
when double layer potentials are differentiated in the dual boundary boundary element
method [8, 44], is in some sense similar to differentiation - compare the Cauchy integral
formula for an analytic function f(z) and z inside Γ

1

2πi

∫

Γ

f(τ) dτ

(τ − z)2
= f ′(z).

The properties of the hypersingular integral equation resemble those of a differential equa-
tion. In general, the condition number of system matrices that results from first kind
equations have condition numbers that grow like O(N) [6]. For simple problems, solved
with direct solvers, this is not a worry. For difficult problems and when iterative solvers are
needed, the high condition number might negatively affect the accuracy of the solution and
it may lead to unreasonably long execution times.
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Because of the unbounded condition numbers for matrices of discretized first kind equa-
tions, preconditioning might be needed. There are several approaches for integral equations.
Multigrid type preconditioners [43] and additive Schwarz preconditioners [1] are two exam-
ples which have successfully been used for finite element equations. A preconditioning
technique that is not an analogue to an existing finite element preconditioner, but takes
advantage of the inherent properties of the integral equation, can be found in Steinbach
and Wendland [49]. Here a discrete boundary integral operator of order −m is used to
precondition a boundary integral operator of order m. The idea is to mimic analytic left
regularization. Time will tell if schemes using preconditioned integral equations will be
competitive to differential equation based schemes such as the finite element method. The
experience with solving truly large-scale problems is still very minimal.

In summary: numerical methods based on integral equations of Fredholm’s second kind
can be extremely stable. Their advantages over methods based on partial differential equa-
tions are most pronounced for large and ill-conditioned problems. Therefore, we argue,
unless even more efficient numerical methods emerge [15], integral equation methods will
become increasingly appreciated as computers get more powerful and more difficult problems
are attacked. New integral equations need to be developed for Solid Mechanics problems.

3 Multiply connected finite 2D domains

In this Section we shall review an integral equation for stress problems on multiply con-
nected finite 2D domains. There are different opinions about what integral equation to
use for this problem. Classic authors [40, 41, 48] recommend an approach starting with
the Airy stress function and the Sherman–Lauricella representation. Another option is
to use “standard BEM”, derived from the Kelvin fundamental solution to the elastostatic
partial differential equation. Both these approaches, involving logarithmic kernels, have
been reported to generate system matrices whose condition numbers grow with the system
size [19, 35]. Preconditioners are needed. We shall instead use a recently derived [29] non-
singular Fredholm second kind equation which is free from this problem. Furthermore, the
unknown quantity Ω(z) in the integral equation is the limit of an analytic function. This
enables the use of high-order quadrature in the solution process also for polygonal domains.

3.1 The integral equation

A finite, linearly elastic, specimen occupies a domain D in the complex plane. The outer
boundary of the specimen is denoted Γ0 and is given positive (counter-clockwise) orientation.
The domain D is multiply connected. Inside D there are a number Nh of holes. The holes
have boundaries Γj , j = 1, 2, . . . , Nh, and are given positive orientations. The union of all
boundaries is Γ. The area of the region enclosed by contour Γj is Aj . Traction tpr = tpr

x +itpr
y ,

that is, stress on the boundary, is prescribed at Γ0. The holes are free of stress. The exterior
of the domain is denoted D′.

Our integral equation [29] reads

(I −M3 − 2iP0) Ω(z) =
1

2

(

I − n̄

n
M1

n

n̄

)

n̄tpr , z ∈ Γ0 , (1)
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(

I +M3 +
1

2
Pji (I +M1) + iz̄Qj

)

Ω(z) =
1

2

n̄

n
M1

n

n̄
n̄tpr , z ∈ Γj , j = 1, 2, . . . , Nh .

(2)
Here I is the identity and z is a point in the complex plane. The operator M3 can be

regarded as compact, see further Subsection 4.2. Its action on a function f(z) is given by

M3f(z) =
1

2πi

[

∫

Γ

f(τ) dτ

(τ − z)
+
n̄

n

∫

Γ

f(τ) dτ

(τ̄ − z̄)
+

∫

Γ

f(τ) dτ̄

(τ̄ − z̄)
+
n̄

n

∫

Γ

(τ − z)f(τ) dτ̄

(τ̄ − z̄)2

]

, z ∈ Γ ,

(3)
where n = nx + iny is the outward unit normal vector at z on Γ. The operator Pj is a
mapping from Γj to R, defined by

Pjf = − 1

2Aj
ℜe

{

∫

Γj

f(τ)τ̄ dτ

}

. (4)

The Cauchy singular operator M1, acting on a function f(z), is given by

M1f(z) =
1

πi

∫

Γ

f(τ) dτ

(τ − z)
, z ∈ Γ . (5)

The conjugate of M1 is denoted M1. The operator Qj is a mapping from Γj to C, defined
by

Qjf = − 1

2Aj

∫

Γj

f(τ) dτ . (6)

3.2 Extraction of useful quantities from the solution

Once the equations (1,2) are solved for Ω(z) several quantities of physical interest can be
extracted. For example, the components of the stress tensor are

σxx + σyy = 4ℜe{Φ(z)} , (7)

σyy − σxx − 2iσxy = 2
(

zΦ′(z) + Ψ(z)
)

, (8)

where Φ(z) and Ψ(z) are analytic functions in D ∪D′ given by

Φ(z) =
1

2πi

∫

Γ

Ω(τ) dτ

(τ − z)
, z ∈ D ∪D′ , (9)

and

Ψ(z) = − 1

2πi

∫

Γ

Ω(τ) dτ̄

(τ − z)
− 1

2πi

∫

Γ

τ̄Ω(τ) dτ

(τ − z)2
− 1

2πi

∫

Γ0

n̄tpr dτ

(τ − z)
, z ∈ D ∪D′ . (10)

A quantity of particular interest for perforated structures is the normalized tangential
stress σ̂t(z). One can define σ̂t(z), for a stress-free hole, as the ratio of the trace of the
stress tensor on the hole to the trace of the applied stress tensor. This quantity is easy
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Figure 1: A domain D with a traction-free notch. The included vertex angle is β. The notch
tip is at the origin. Traction is applied outside the notch.

to compute since Ω(z) is minus the outside limit of Φ(z) on the holes [29]. With external
uniform unit traction applied in the y-direction we get

σ̂t(z) = −4ℜe{Ω(z)} , z ∈ Γ − Γ0 . (11)

A stress concentration factor Kt can be defined as the maximum absolute value of the
normalized tangential stress

Kt = max
z∈Γ−Γ0

|σ̂t(z)| . (12)

Should Γ0 contain notches, it could be of interest to compute so-called notch stress
intensity factors. The most common of these is the dimensionless mode I notch stress
intensity factor QI, defined in a Cartesian coordinate system, see Figure 1, as

QI ≡ lim
x→0+

√
2π
σyy

σref

( x

L

)1−λ1

, (13)

where L is a characteristic length scale, σref is a reference stress, and the limit is taken
along the x-axis. For a single edge notched specimen under uniform uniaxial load, such as
the one depicted in Figure 2, a common choice is to take L as the width w of the specimen
and σref as the magnitude of the prescribed traction. The exponent λ1 in (13) is the first
exponent in a local Williams series expansion [28, 51] of the field Φ(z) in the notch (the
re-entrant corner E of Figure 2)

Φ(z) =
∑

n

fnz
λn−1
∗ + f̄nz

λ̄n−1
∗ + gnz

µn−1
∗ − ḡnz

µ̄n−1
∗ , (14)

where fn and gn are real or complex coefficients [28, 51] and z∗ is the position in a local
coordinate system with origin at the notch and oriented as in Figure 1. The symmetric and
anti-symmetric exponents λn and µn are given by the infinite number of solutions to the
trigonometric equations

λ sin (β) + sin (λβ) = 0 , (15)

µ sin (β) − sin (µβ) = 0 . (16)
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Figure 2: A generic single edge notched specimen of length 2h and width w. The notch depth
is a. The included vertex angle is β. Uniform uniaxial traction tpr

y is prescribed.

In Section 4, below, we shall discretize equations (1,2) according to a Nyström scheme
with composite quadrature. The corners will be symmetrically included in corner panels,
each with two legs of length lcp. If the expansion of (14) is done in a local coordinate system
where the corner legs have length unity, the notch stress intensity factor QI of (13) can be
computed as

QI =
f1

σref
2
√

2π(λ1 + 1)

(

lcp
w

)1−λ1
[

1 − cos ((λ1 − 1)β/2)

cos ((λ1 + 1)β/2)

]

. (17)

There also exists a possibility to evaluate the notch stress intensity factor of (13) as a
path-independent integral which encloses the notch [2, 50]. An advantage with this post-
processor is that it is less sensitive to the quality of the solution Ω(z) close to the notch
than the formula (17). In fact, it can give reasonable estimates even if the solution at a few
discretization points close to the notch-tip is completely wrong [50]. A drawback with the
path-independent integral is that it is difficult to implement in an automated fashion. Since
our scheme gives a rather accurate solution Ω(z) also close to the notch, see Subsection 4.4,
we prefer the much simpler formula (17).

4 Implementation

In this section we present details on our numerical algorithm for solving equations (1,2).
We try to be brief, yet detailed enough so that the general ideas will come through clearly.
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Figure 3: The boundary of the single edge notched specimen of Figure 2 is divided into quadra-
ture panels. First all panels are given approximately the same lengths. Then, panels neighboring
to corner panels are subdivided twice.

4.1 The mesh

The integral equations (1,2) are to be discretized according to a Nyström scheme with com-
posite quadrature. First, the boundary Γ is divided into quadrature panels of approximately
equal lengths. The panels are placed in such a way that whenever a panel contains a corner,
the corner must be at the center of the panel. Corners containing panels are called corner
panels. The two halves of the corner panels are called legs. The remaining panels are called
regular panels. The solution Ω(z) will be singular on corner panels and smooth on regular
panels. We intend to use polynomial quadrature on regular panels and a quadrature which
takes the singular nature of the solution into account on corner panels. There is an extra
need for resolution on regular panels neighboring to corner panels. Therefore these panels
are subdivided twice. See Figure 3 for an example where panels are placed on the boundary
of the specimen in Figure 2.

We intend to use Gauss-Legendre quadrature on the regular panels. The discretization
points zj are placed accordingly. On the corner panels we intend to use a quadrature
based on the expansion (14) and extra resolution of the kernels of M1 and M3, see further
Subsection 4.3 below. The number of discretization points for Ω(z) on a corner panel is
related to how many terms that are used in the expansion (14). The mapping from pointwise
complex values of Ω(z) at the discretization points on a corner panel to the coefficients fn

and gn preceding the basis functions zλn−1
∗j , zλ̄n−1

∗j , zµn−1
∗j , zµ̄n−1

∗j of (14) is given by inverting
the relation

Ω(zj) =

Np/2+m1
∑

n=1

ℜe{fn}(zλn−1
∗j + zλ̄n−1

∗j ) +

Np/2+m2−m1
∑

n=1+m2

iℑm{fn}(zλn−1
∗j − zλ̄n−1

∗j )
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+

Np/2+m4−m3
∑

n=1+m4

ℜe{gn}(zµn−1
∗j −zµ̄n−1

∗j )+

Np/2+m3
∑

n=1

iℑm{gn}(zµn−1
∗j +zµ̄n−1

∗j ) , j = 1, 2, . . . , Np ,

(18)
where Np is the number of discretization points on the corner panel and the exponents
λn and µn are, for traction-free corners, the solutions to (15,16). For corners that are not
traction-free, but loaded with a uniform traction, the series λn need to be completed with
the exponent λ = 1. The integers m2 and m4 in (18) denote the number of exponents λn

and µn which are real valued. The numbers m1 and m3 are chosen so that 2m1 ≈ m2

and 2m3 ≈ m4, that is, so that the series for real and imaginary parts of fn and gn are
truncated after approximately the same number of terms. The number Np will be chosen
as an even number large enough so that the first omitted term in the series for λn and µn

is approximately equal for all corners. When the exponents λn and µn lie widely spaced,
we complete these series with integer exponents 1, 2, 3, . . . so that we get at least Np = 8
points on all corner panels.

4.2 Avoiding singular operators

Each of the four integrals appearing in the expression (3) for M3 are singular and should
be interpreted in Cauchy principal value sense. Fortunately, no Cauchy principal values
need to be computed in the evaluation of M3Ω(z). This is so since the sum of the kernels
in the first and in the second integral of M3 have the same (finite) left- and right limits as
τ → z, at least for twice continuously differentiable curves, see also Remark 4.1. Similarly,
the sum of the kernels in the third and in the fourth integral of M3 have the same (finite)
left- and right limits as τ → z. No discretization points are placed in corners. Therefore the
kernel of the operator M3 can be regarded as continuous and the operator is compact. The
limiting values of the kernel, when τ = z, are calculated analytically. The only problem
with evaluating the kernel of M3 occurs when τ is close to z. Then some cancellation will
take place.

The kernel of M1 in (5) is clearly singular if z and τ are on the same quadrature panel.
If z and τ are on different panels the kernel is smooth and the operator is compact. The
operator M1 appears in three places in (1,2) – twice on the right hand side and once on the
left hand side. In this paper, for simplicity and reasons of accuracy, we shall avoid numerical
evaluation of M1 acting on Ω(z) when M1 is singular. (In earlier work we implemented M1

numerically [28, 29]). This is achieved as follows: the action ofM1 on the piece-wise constant
traction tpr on the right hand side of the equations is evaluated analytically. The action of
M1 on Ω(z) on the left hand side of (2) followed by application of Pj , when τ and z are on
the same hole, is evaluated by changing the order of integration

−ℜe

{

∫

Γj

τ̄ dτ

π

∫

Γj

Ω(z) dz

z − τ

}

= ℜe

{

∫

Γj

Ω(z) dz

π

∫

Γj

τ̄ dτ

τ − z

}

. (19)

The last integral on the right hand side of (19) will be evaluated analytically for circular
holes. For holes of arbitrary shapes it needs to be evaluated numerically. It is an easier
task to evaluate the action of singular integral operators accurately on functions which are
known everywhere, than on functions which are known only at a set of nodes.
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    =−1s,t 

    =1s,t 

y

x

β/2

Figure 4: Left, a regular quadrature panel. Right, a corner quadrature panel with two legs. The
dots symbolize points where the solution Ω(z) has support.

Remark 4.1 Equation (1) was originally derived under the assumption of a smooth Γ0

and for the more regular potential φ(z), see paragraph 98 of Muskhelishvili [41]. The
operator M3 is compact under the smoothness assumption. In corners the boundary Γ0

is merely continuous. As a consequence, the potential Φ(z) of (9) has a limiting value on
Γ0 from the inside (the unknown quantity Ω(z) in (1)) which in corners may not even be
finite. Fortunately, interpreted in a suitably generalized sense, equation (1), also holds for
domains with corners, see paragraph 99 and 100 of Muskhelishvili [41]. More precisely,
the corner points should be excluded from the domain of validity and integrals for which
bounded primitive functions exist should be interpreted as generalized Riemann integrals.

4.3 Quadrature

This Subsection describes the quadrature used in our discretization scheme. We discuss the
quadrature in the context of the integral operator M3 acting on Ω(z). The operator M1

poses no extra difficulties, see Subsection 4.2.
A Nyström scheme means that Ω(z) is represented by pointwise values on Γ, and

that (1,2) should be satisfied at those same discretization points. We adopt the term source

points for the discretization points where Ω(z) has support, and the term target points for
the discretization points where (1,2) should be satisfied. Obviously, source points and tar-
get points are the same points in a Nyström scheme. Still, it helps to distinguish between
the two uses of the points when discussing quadrature techniques. We will use the variable
τ when we emphasize the source point aspect, and the variable z when we emphasize the
target point aspect of a point. The kernel of M3 will be referred to as M(z, τ).

On regular panels, the density Ω(τ) and the kernel M(z, τ) are smooth functions of τ .
They can be well approximated with polynomials. We use 10-point Gauss-Legendre quadra-
ture for the discretization of M3Ω(z), and we place the discretization points accordingly,
see the left image of Figure 4.

On the corner panels, the density Ω(τ) is singular. The nature of M(z, τ) depends
strongly on whether the target point z is on, close to, or far removed from the corner panel.
The basic strategy is to switch representation for Ω(τ) from Np complex pointwise values
to 2Np real and imaginary parts of coefficients in the expansion (18). Then we evaluate the
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integrals M3φn(z), where φn(τ) are the 2Np basis functions in (18). Finally, we multiply
the coefficients with the corresponding integrals.

When a target point z is far away from a corner panel and the source points τ are on a
leg of a corner panel, M(z, τ) is a smooth function of τ . For the evaluation of M3φn(z) we
use simple 16-point quadrature, based on the values of M(z, τ) and φn(τ) at 16 temporary
points on each corner leg. As for the placement of these temporary points, the Gauss-
Legendre points seems as a reasonable choice.

When target points z are close to, or on, a corner panel and the source points τ are
on a corner panel, M(z, τ) is not a smooth function of τ . We use adaptive quadrature
and evaluate a number of integrals of which we give one particular example. We introduce
a parameterization t for the local coordinate τ∗, and a parameterization s for the local
coordinate z∗, see the right image of Figure 4. Now τ∗ and z∗ (on the corner panel) range
from eiβ/2 to e−iβ/2 as t and s range from −1 to 1. The action of M3 on the basis function
τλn−1
∗ for z on the first leg can be computed as

M3τ
λn−1
∗ (z) = e−iβ(λn−1)/2

[

(1 − n̄2
zn

2
τ )

2πi

∫ 1

0

tλn dt

(t2 + s2 − 2ℜe{n̄znτ}ts)

]

+eiβ(λ̄n−1)/2

[

(1 − n̄2
zn

2
τ )

2πi

∫ 1

0

tλ̄n dt

(t− n̄znτs)2

]

, s ≤ 0 . (20)

where nz = ieiβ/2, and nτ = −ie−iβ/2. Similarly, for a target point z on the second leg we
get

M3τ
λn−1
∗ (z) = −eiβ(λn−1)/2

[

(1 − n̄2
zn

2
τ )

2πi

∫ 1

0

tλn dt

(t2 + s2 + 2ℜe{n̄znτ}ts)

]

−e−iβ(λ̄n−1)/2

[

(1 − n̄2
zn

2
τ )

2πi

∫ 1

0

tλ̄n dt

(t+ n̄znτs)2

]

, 0 ≤ s , (21)

where now nz = −ie−iβ/2 and nτ = ieiβ/2. This example was also given in [28], along with
a more thorough derivation. Unfortunately, there was a misprint in [28], which is corrected
here.

4.4 Properties of the quadrature

In Subsection 4.3 we reviewed the quadrature techniques used. Here we will comment on
some of properties of the quadrature and discuss theoretical aspects.

The problem of solving for stress on a multiply connected polygonal domain is inherently
well conditioned. With this we mean that a small change in the applied load or in some
overall geometric descriptor, such as an included vertex angle, will lead to small changes
in most quantities computed from the solution, such as notch stress intensity factors [23]
and the pointwise stress-field inside the domain. The problem is, however, ill-conditioned
in the sense that a small relative perturbation of a local geometric descriptor, such as
the position of a discretization point close to a corner, can lead to a large change in the
solution close to that corner. Therefore, even with Fredholm integral equations of the
second kind, it is difficult to construct entirely stable algorithms. Great care must be taken
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to compute geometric quantities as accurately as possible. The dominant source of error,
in our algorithm, comes from the corner quadrature. Errors arise, for example, when we
invert the relation (18). The ill-conditioning of this operation increases with the number of
discretization points and terms that are included, and with the spacing of the exponents λn

and µn of (15,16). There is, thus, a trade-off between convergence and stability: the more
exponents that are included – the more rapid convergence but the lower achievable accuracy
in the solution close to corners. In this paper, we have decided to include exponents λn and
µn which have a real part less than approximately seven. For the problems studied in this
paper this means that Np will range from 8 to 12.

Let us now consider the placement of the Np discretization points on a corner panel.
For Gaussian quadrature, a correct placement of the nodes ensures the Gaussian property
that 2N basis functions are integrated exactly. For the quadrature described in Subsec-
tion 4.3, any distinct placement of Np discretization points on a corner panel will give 2Np

coefficients and enable exact integration of 2Np basis functions for Ω(τ). Unfortunately,
we are not interested in merely integrating Ω(τ), but the composition M3Ω(z). For this
we need to evaluate φn(τ) at other points than the discretization points, as described in
Subsection 4.3. Anyhow, the placement of the discretization points on a corner panel turns
into Np free parameters which could be chosen as to fine tune the algorithm. One option
would be to choose this freedom to minimize the error, in some appropriate norm, of the
approximation of Ω(τ) with a linear combination of 2Np basis functions φn(τ). Another
option would be to choose the placement of the Np points as to minimize the condition
number of the mapping (18). In this paper, lacking a good theory, we have chosen to place
the Np discretization points symmetrically on the corner panels. On each leg the nodes are
placed according to a Gauss-Lobatto quadrature rule for integrals of the type

∫ 1

0

f(x)√
x

dx ,

where f(x) is a smooth function, and the node x = 1 is fixed.
The determination of which target points z should be considered as being “far away”

from the corner panels must also be made. In the setups studied in this paper the kernel
M(z, τ) is sufficiently smooth as to be accurately evaluated with 16 points on each corner
leg when the point z is located a distance further than 4lcp away from the corner panel.

4.5 Precomputation and variable precision

Some quantities needed in the algorithm are precomputed in extended (Fortran REAL*16

and COMPLEX*32) precision. These quantities are then rounded to double (REAL*8 and
COMPLEX*16) precision and included in the main program. Precomputation of a limited
number of quantities is standard in integral equation based solvers [53]. This practice can
both save time and increase the stability of the code. Naturally, the more quantities that
are precomputed, the more stably the code will run. If we were to precompute all quantities
related to corner quadrature in extended precision, our problems with ill-conditioning would
go away. This would take time.

Precomputation in extended precision is equivalent to a special case of variable precision
arithmetic where all unknowns and most geometric quantities are declared in double pre-
cision, and a few geometric quantities and intermediary variables are declared in extended
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Figure 5: Computing time on a SunBlade 100 workstation for one matrix-vector multiplication
M3Ω(z) as a function of the number of uniformly (randomly) distributed points N in the
computational cell. The field M1Ω(z) is computed as a partial result in this process. Stars refer
to a requested relative precision of tol = 10−16 and p = 53 terms in multipole and local Taylor
expansions. Open circles refer to tol = 10−8 and p = 27.

precision. While, perhaps, unorthodox, variable precision coding could be a simplification
over regular precomputation. It eliminates the need for reading and writing on files. The
composition of matrices, declared in higher precision, does not need to be carried out explic-
itly. We believe that variable precision arithmetic could be efficient for particularly difficult
problems. Subsection 5.1, below, gives a few examples where extended precision is used
for the intermediary variables and geometric quantities appearing on the right hand side
of (18). In most numerical examples we use double precision throughout the main program
and only precompute, in extended precision, a few quantities such as Gaussian weights and
nodes, and inverses of small matrices.

4.6 Iterative solution and fast multipoles

We shall solve the discretized system (1,2) iteratively using the GMRES solver [46]. Com-
pensated summation [31, 36] is used whenever deemed beneficial, for example, when com-
puting inner products. The matrix-vector multiplications will be done in a direct way for
smaller systems, and with the use of the fast multipole method [5, 20, 45] for larger sys-
tems. The only part of the action of M3 on Ω(τ) which can not be computed with the fast
multipole method is the evaluation of M3φn(z), when z is close to, or on, a corner panel.
The computational work for these integrals scales linearly with the number of corners.

The fast multipole method has previously been used in 2D elastostatic contexts, involv-
ing operators similar to M1 and M3, see Refs [17, 18, 19, 26]. The basic strategy is to

13



compute the fields Φ(z) of (9) and Ψ(z) of (10) and then to combine the results as to get
M1Ω(z) and M3Ω(z). The computation of M3Ω(z) requires about 70 per cent more work
than the mere computation of M1Ω(z). In the present code, for simplicity, we use a non-
adaptive implementation based on the original scheme of Ref. [20] but which includes some
ideas of Ref. [32]. For example, the number of levels of refinement in the hierarchical mesh
is not L = log4N , where N is the number of discretization points, but is determined by
the condition that no box on the finest mesh level should contain more than p = − log2 tol
points, where tol is the requested relative precision. For a uniform distribution of points,
this reduces the complexity in precision from p2 to p, see Figure 5 and compare Step 1 of
Ref. [32]. Also, the costly conversions of multipole expansions into local Taylor expansions
for boxes in the interaction list of a box b are replaced by direct evaluation of multipole fields
at points in b if the number of such points is smaller than p/2, compare Step 5 of Ref. [32].
We refrain from giving more details since our code is not entirely optimal with respect to
the latest development in the field. More efficient and consequent implementations for some
kernels in 2D do exist [32, 15]. We speculate that speedups with a factor of five to ten are
possible for the problem sizes treated in this paper.

The number of GMRES iterations needed to solve the discretized system (1,2), to a
given relative precision in the residual, chiefly depends on the geometry and on the load. It
does not depend on the total number of discretization points. This is a consequence of (1,2)
being a Fredholm integral equation of the second kind. The number of GMRES iterations
needed does, however, depend mildly on the number of exponents λn and µn included
in the expansion (18). More exponents increase the ill-conditioning of the algorithm, see
Subsection 4.4.

4.7 Order of accuracy

In a Nyström scheme, the order of convergence of the unknown quantity is determined
by the (worst) quadrature used in the discretization of the integral equation. The order
of convergence of post-processed quantities may, of course, also depend on the order of
accuracy of the post-processor. In our scheme, the order of convergence for Ω(z) will,
asymptotically, be determined by the magnitude of the smallest exponent λn or µn omitted
in the expansion (18). The notch stress intensity factor QI of (17) is directly computed from
Ω(z) in the corners and will have the same order of convergence. The stress field inside D
is computed as integrals over Ω(z). The asymptotic order of convergence for the stress field
at a given point in D will be of the order one higher than for QI since the quadrature has
higher order on regular panels than on corner panels, and since the relative number of corner
panels decreases as the mesh is refined. The same holds true for the stress concentration
factor Kt of (12). We compute Kt in a post-processor using Newton’s method, safeguarded
with Golden Section Search. This procedure is, in itself, 9th order accurate.

5 Numerical examples

This section presents numerical examples. We start with some simple standard setups in
order to verify the properties of our algorithm, stated in Section 4, and to compare with
previous results. We end with a rather complex, large-scale computation.
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Figure 6: Convergence of the notch stress intensity factor QI of (17) for the setup in Figure 2.
The geometry is chosen so that h/w = 1, a/w = 0.5, and β = 3π/2. The reference value
is chosen as QI = 4.2958869676986369. DP refers to double precision arithmetic, VP to
variable precision arithmetic, and QP to quadruple precision arithmetic. Np is the number of
discretization points on the corner panel containing the notch.
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5.1 Some SENT specimens

The notch stress intensity factor QI of (13) of a single edge notched specimen under uniaxial
tension (SENT), such as the one in Figure 2, has been computed by numerous researchers
during the last 30 years. A common setup has a height to width ratio of h/w = 1, a relative
notch depth of a/w = 0.5 and an included vertex angle of β = 3π/2. A typical agreement
between the results of different authors is three digits, see Table 1 of [28]. The most accurate
computation, QI = 4.2959, was done by Strandberg [50].

We performed four sets of computations, presented in Figure 6. First we used Np = 8
points on all corner panels. The smallest exponent λn or µn not fully included in the
expansion of (18) was λ5 in the corner E of Figure 2. The real part of this exponent is
approximately 5.65, which correspond well with the slope of the line formed by the open
circles in Figure 6. Next, we increased the number of points on the corner panel at corner
E to Np = 10, while all other corner panels still have Np = 8. The smallest exponent
not fully included in the expansion of (18) is now λ6 in the corner E. The real part of
this exponent is approximately 6.98. The stars in Figure 6 show that the convergence now
is so rapid that we do not reach the asymptotic regime, in IEEE DP arithmetic, until
the instabilities in the algorithm start to pollute the result. Therefore we also performed
variable precision arithmetic computations, see Subsection 4.5, and full quadruple precision
computation, shown as triangles and diamonds in Figure 6, respectively. The asymptotic
regime is reached at about 3000 discretization points and at a relative precision in QI of
about 10−16. The number of GMRES iterations needed in all these computations was
around 40.

We also include results for some SENT specimens with a larger included vertex angle
β. These geometries are considered more difficult to treat [50]. The largest angle for which
we have found computations in the literature is β = 11π/6. We solve for a few setups
with β = 11π/6 using a number of Np = 12 points on the corner panel containing the
notch, and compare with previous results. Gross and Mendelson [23] report a value of
QI = 3.569 for a setup with a/w = 0.5 and h/w = 1.2. At about 1600 discretization points
our computations converge to a value of QI = 3.5696698583(19), where the two digits within
parenthesis are obtained using variable precision arithmetic. Strandberg [50] report a value
of QI = 3.5696 for a setup with a/w = 0.5 and h/w = 2. At about 2300 discretization
points our computations converge to a value of QI = 3.5696265724(35). Chen [11] report a
value of QI = 3.568 for a setup with a/w = 0.5 and h/w = 3. At about 3000 discretization
points our computations converge to a value of QI = 3.5696260183(43). The number of
GMRES iterations needed in all these computations was around 60.

5.2 A square with one hole

A very simple finite and multiply connected domain is the unit square with a circular hole
of radius R centered at the origin. The problem of determining the stress concentration
factor Kt of (12) for the hole, when a uniaxial stress is applied, has been treated by Isida
and Sato [33] and by Nisitani and Chen [42]. For a hole with radius R = 0.25 they report
the values Kt = 6.3887 and Kt = 6.38869, respectively. Our computations reproduce their
values. With 2000 discretization points we get convergence to Kt = 6.3886960194568.
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Figure 7: Left, two symmetrically placed holes of radius R separated a distance 2P in a
rectangular plate with height 2h and width w. Uniaxial stress tpr

y is prescribed at two opposing
sides. Right, convergence of the stress concentration factor Kt of (12). The geometry is
chosen so that h/w = 1, 2P = w, and R = w/4. The reference value is chosen as Kt =
5.0438755094142715. The computations are done in double precision arithmetic.

5.3 A rectangle with two holes

A rectangle with two holes is depicted in the left image of Figure 7. We choose the same
height to width ratio as for the first SENT specimen in Subsection 5.1, that is, h/w = 1. We
take the separation distance to be 2P = w and the radius to be R = w/4. Double precision
arithmetic is used throughout the code. A convergence study for the stress concentration
factor Kt of (12) is presented in the right image of Figure 7. Note that the problem is
well-conditioned and that we do not reach the asymptotic regime: the convergence rate is
dominated by the 9th order error in the optimization process, see Subsection 4.7.

5.4 A SENT specimen with two holes

We now combine the geometries of Figure 2 and Figure 7, left image, to get the perforated
SENT specimen of Figure 8. As before, we take h/w = 1, 2P = w, R = w/4, a/w = 0.5,
and β = 3π/2. We perform one set of computations for QI and Kt where the matrix-
vector multiplications are done in a direct way, see the left image of Figure 9, and one
set of computations where the matrix-vector multiplications are accelerated with the fast
multipole method, see the right image of Figure 9. Note that the direct computations give
a couple of extra correct digits. The direct computations, involving the actual construction
of the discretized matrix M3, converge better than the multipole accelerated computations
since we have taken advantage of that some of the entries in M3 can be expressed on
analytic form, and since we used compensated summation for the direct matrix-vector
multiplications.
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Figure 9: Convergence of the notch stress intensity factor QI of (17), shown as stars, and
the stress concentration factor Kt of (12), shown as open circles, for the setup in Figure 8.
Left, matrix-vector multiplications are computed in a direct manner. Right, matrix-vector mul-
tiplications are accelerated with the fast multipole method. Reference values are taken as
QI = 5.1691735817822 and Kt = 15.10033207977245.
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Figure 10: A number of 1170 equisized circular holes in the SENT specimen of Figure 2. The
holes are placed on a square grid. The radii of the holes are 3/8th of their separation distance.
Uniaxial stress tpr

y is prescribed at two opposing sides.
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Figure 11: Left, convergence of the notch stress intensity factor QI of (17), shown as stars, and
the stress concentration factor Kt of (12), shown as open circles, for the setup in Figure 10.
Reference values are taken as QI = 11.02821540165 and Kt = 55.06854533610. Right, a
GMRES iteration history for a computation with N = 756, 938 discretization points.
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5.5 A SENT specimen with 1170 holes

Lastly, in a large-scale example, we increase the number of holes in the SENT specimen
of Figure 8 substantially. Again we take h/w = 1, a/w = 0.5, and β = 3π/2. We then
construct a square grid on the specimen. The origin is at the notch-tip E. The grid points
are separated a distance d from their nearest neighbors and placed at coordinates given by
x = 0.5d + id and x = 0.5d + jd where i and j are integers. The separation distance d is
given by d = w/n where n is an even integer. Grid points on the boundary are removed.
Now we place a circular hole with radius R = 3d/8 at each grid point. There will be
7n2/4 − n/2 = 1170 such holes. We choose n = 26 and get 1170 holes, see Figure 10.
A convergence study of the quantities QI and Kt is given in the left image of Figure 11.
We refined the mesh until our workstation ran out of memory. The number of GMRES
iterations needed for full convergence was about 110 and independent of the number of
discretization points. See the right image of Figure 11 for an iteration history.

One could expect that the achievable accuracy of QI and Kt should be lower in the
present large-scale example than in the small-scale example of Subsection 5.4. After all,
a hundred times more discretization points and closer spacing between the points on the
boundary would lead to larger errors. One can see, by comparing the left image of Figure 11
with the right image of Figure 9, that the convergence in this large-scale example is almost
as stable as the convergence in the much smaller example . Our explanation for this is that
both the notch and the hole, for which the maximum in (12) occurs, are located close to
the origin where the relative accuracy of computed positions is higher than elsewhere in the
computational cell.

6 Conclusions and discussion

This paper presents numerical results for stress computations on multiply connected finite
polygonal domains. The algorithm is based on the second kind Fredholm integral equa-
tions (1,2) which are discretized using a Nyström scheme and composite quadrature. The
analytic properties of the unknown quantity enable the use of high order quadrature. Point-
wise representation enable easy incorporation of the fast multipole method into an iterative
solver. Computations of notch stress intensity factors and stress concentration factors are
obtained from the solution via simple post-processors. Convergence to high accuracy was
demonstrated for a single edge notched specimen under uniaxial tension perforated with
1170 circular holes.

Equations (1,2) hold for arbitrarily shaped domains with applied external traction. Our
algorithm specializes to polygonal domains, circular holes, and piecewise constant traction.
The reasons for restricting our focus are that these geometries are common in the engineer-
ing literature and that we want to establish benchmarks for simply reproducible setups. A
more general solver would require more work, as we now outline: Allowing for non-circular
holes and for non-constant tractions is simple. The circular property of the holes is used
in the analytic evaluation of the rightmost integral of Eq. (19). This integral only involves
known geometric quantities and it can be evaluated numerically almost without precision
loss for holes of arbitrary shapes. The situation is similar for the piece-wise constant prop-
erty of the applied traction, which is used for analytic evaluation of the right hand sides
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of (1,2). In Ref. [27] we have successfully tested a numerical implementation of the operator
M1 in this context. Allowing for curved corner boundaries is harder. Far away from corners,
no assumption about the shape of the boundary is made. Close to, or on, corner panels,
however, we use the property that the corner legs are straight – both in the analysis of
the stress field leading up to the expansion (14) and in the evaluation of the action on the
operator M3 on the basis functions in this series. The expansion (14) will hold, asymptoti-
cally, also for curved corner boundaries, but the extraction of the expansion coefficients will
become more difficult in the absence of symmetry. Furthermore, the integrals corresponding
to those in Eqs. (20,21) will be more involved and we can make less use of precomputation
when corner panels of different sizes are no longer congruent. These modifications are likely
to degrade the performance of the code and may force us to lower the order of the scheme.
Yet another extension is to allow for displacement boundary conditions. This requires the
replacement of the equations (1,2), based on the potentials Φ(z) and Ψ(z), with equally
efficient Fredholm equations for the displacement problem. This problem is open and its
solution could involve an analysis resembling that of Ref. [29] but based on the potentials
φ(z) and ψ(z), which are primitive functions of Φ(z) and Ψ(z). See also Sherman [47].

Disregarding the present restrictions in applicability, our algorithm is still not entirely
ideal. Its performance degrades for large included vertex angles. The use of a Galerkin
scheme, instead of a Nyström scheme, could, perhaps, eliminate some ill-conditioning related
to the change of representation on corner panels. Another worry is that a number of
parameters related to the quadrature on the corner panels are determined in an ad hoc

manner. More optimal, and theoretically derived, choices could make the scheme even
more efficient. If an effort in this direction is worthwhile or not depends on the need
for better stability and on the progress of alternative approaches. Work by Yarvin and
Rokhlin, involving generalized Gaussian quadrature and singular value decomposition of
integral operators on corners, is reported to be in preparation [53]. A more radical way to
go is to abandon the idea of solving integral equations completely, and instead compute the
solution to the stress problem directly, as a sum of reflected layer potentials. Promising
work on this type of fast direct solvers have been reported by Ethridge and Greengard for
Laplace’s and Poisson’s equations on the unit square, and extensions to complex geometry
are underway [15].

We have avoided giving explicit timings for our computations. The reason is that we
focused more on testing the stability of our scheme than on achieving the fastest possible
execution. All tolerances, for example in the fast multipole method and in the GMRES
iterative solver, have been set to approximately machine epsilon, corresponding to p = 53
terms in multipole and local Taylor expansions. Compensated summation has been used in
all direct matrix-vector multiplications. As for the large-scale example of Subsection 5.5,
we can say the following: Virtually all computational work takes place in the fast multipole
subroutine. The largest computation that we undertook, with 756, 938 discretization points
and 110 iterations in Subsection 5.5, required approximately 18 hours of computing time
on a SunBlade 100 workstation using the compiler option (-O4).
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