LUND UNIVERSITY

INTRAC, A Communication Module for Interactive Programs
Language Manual
Elmqvist, Hilding; Wieslander, Johan

1978

Document Version:
Publisher's PDF, also known as Version of record

Link to publication

Citation for published version (APA):
Elmqvist, H., & Wieslander, J. (1978). INTRAC, A Communication Module for Interactive Programs: Language
Manual. (Research Reports TFRT-3149). Department of Automatic Control, Lund Institute of Technology (LTH).

Total number of authors:
2

General rights

Unless other specific re-use rights are stated the following general rights apply:

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors
and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the
legal requirements associated with these rights.

» Users may download and print one copy of any publication from the public portal for the purpose of private study
or research.

* You may not further distribute the material or use it for any profit-making activity or commercial gain

* You may freely distribute the URL identifying the publication in the public portal

Read more about Creative commons licenses: https://creativecommons.org/licenses/

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove
access to the work immediately and investigate your claim.

LUND UNIVERSITY

PO Box 117
221 00 Lund
+46 46-222 00 00

https://portal.research.lu.se/en/publications/d8394e6a-51d2-4813-9b13-327f0a651912

H ELMQVIS

INTRAC -
A CommunicATION MODULE FOR
[NTERACTIVE PROGRAMS.,

LANGUAGE MANUAL.

JoHAN WIESLANDER.
Hriping ELmavIsT
3 T

PR
P | :

5i8-
DB

DOKUMENTDATABLAD enligt 515 62 10 12

?]ok_g?;amutgivare Dok_\y;nantnamn (quft/nmentbamckning
“fihd Institute of Technology OffitrD2/ (TFRT-3149)/14060/(1978)
Ha{n.cf!iiggam Utglvningsdatum ‘Arend-batocknlng
Jkak1-Johan Astrom 0AGG 1978 0676
Farfattara

Uddhan Wieslander

Hilding Elmgvist

1074

Dokumenttltel och undertitef
810

Fleferat (sammandrag)

INTRAC - A Communication Module for Interactive Programs, Language Manual

AT @enera] purpose communlcat10n module for use n 3nteract1ve programs is

contains features allowing 1nc1us1on_of normal program elements such as
loops, branches, I/0 statements, variables and procedures. It thus can

serve as a tool in generating prob1em—oriented'1nteraCtive'Tanguages.

Hm “met w.... IR —
’f’% z:ﬁ'lgﬁ]or

Férslag tiil ytterfigare nyckelord o
L4710

..krléssiflkatlonssystem och -klass(er) f
)() | ()

lndaxtermar (ange kélia)

J()lu f' ’

Ovriga bibl nograﬂska uppgiftar

rBOODages U £l

Sprék

sEng11sh

Sek ratessuppglf:ar ISSN] 1SBN
G010 B 100 o 1

Dokumantat kan erhailas ftén Mottagarens uppgifter

o pkBartment of Automatic Control 16?‘*
Lund Inst1tute of Techno?ogy, P 0 Box 725 §-220 07 Lund, Sweden

i Prls - I

i f)()l

Blankett LU 11 25 1976 07

oG -

UPPGIFTER I DOKUMENTDATABLADET

Nedanstaende uppgifter motsvaras av ledtext i blanketten. Beteckningarna bestar av radgangsnummer och ta-

buleringslige (T-lige). De anger startlige, dvs var textrad normalt skall borja.

04T0
DOKUMENTUTGIVARE
ISSUING ORGANIZATION

Fulistindigt namn for den organisation {mot-
sv) som atgivit dokumentet (uppgiften kan
vara fortryckt).
04T4, 04T6
DOKUMENTNAMN OCH -BETECKNING
DOCUMENT NAME AND REF.NO.

Dokumentnamn anger dokumentets typ och
sndamal och di dokumentet har ett doku-
mentnamn uisits detta (med versaler).
Exempel: PM, RAPPORT, KOMPENDIUM,
BESKRIVNING, INSTRUKTION, UTRED-
NING, ANBUD, STANDARD. Dokumeni-
pamnet foljs av en dokumentheteckning
som anger dokumentets plats i en serie, tex
rapportnummer, protokolinummer. Ar do-
kumentet i forsta hand framsiilit for sprid-
ning utanfdr den egna organisationen bor
beteckningen utformas si att utgivande in-
stitution kan identifieras med uppgift om
enbart dokumentbeteckningen.

Exempel hirpd #r rapportnumrering enligt
amerikansk nationeli standard (ANSI Z39-
23) och det av ISC tillimpade betecknings-
sysfemet fOor dokument i olika utvecklings-
skeden.

a6TO
HANDLAGGARE

Person som sakbearbetar firendet hos doku-
mentutgivaren.
06T4
UTGIVNINGSDATUM
DATE OF ISSUE

Dokumentbladet forses med dokumentets
utgivningsdatum. Datum skall anges enligt
SIS 01 02 11, dvs numeriskt i ordningen ér,
minad, dag (exempe! 1975-07-03) eller alfa-
numeriskt med de tre forsta bokstverna av
minadens namn {exempel Aug 1975).

06Ta

ARENDEBETECKNING
PROIECT NO. ETC

Exempel pi irendebeteckning #r diarienum-
mer, projektnummer, kontonummer, korf
sakord eller annan beteckning som hintér
sig till det i dokumentet behandlade drendet
{’sak’").
08TO
FORFATTARE
AUTHOR({S}/CORPORATE AUTHORS

[fézsta hand anges dokumentets forfattare.
Vid kollektivt forfattarskap (t ex kommitte)
anges for dokumentet ansvarigt organ. Aven
projektledare, redaktdr eller annan “hand-
liggare® kan anges, Namn bér anges i félj-
den (1) hela férnamn (2) efternamn. Titel
erfordras .
10T0
(RESERV)

Filtet (motsv v2 i standardiserad brevblan-
kett) kan utnyttjas da fiera fdrfattarsamn
forekommer, Faltet kan Hven anvindas for
namn och adress pd mottagate av dokument-
databladet, t ex dokumentationscentral.

10T4
ANSLAGSGIVARE
SPONSORING ORGANIZATION

Filtet {motsy h2 i standardiserad brevblan-
kett) bor reserveras for namn och postadress
pé anslagsgivare eller annan institution som i
egenskap av finansierande organ (for eit pro-
jekt) dberopas i dokumentet.
18TO
DOKUMENTTITEL OCH UNDERTITEL
DOCUMENT TITLE AND SUBTITLE

Fittet anvinds for dokumentels titel och
(ev) undertitel. Antalet bilagor anges inom
parentes efter den firsta titeluppgifien. Ti-
teluppgifterna far ej férkortas eller pd annat
sitt forindras, men de kan kompletieras
med exempelvis Sversitining till engelska.
T6TO
REFERAT (SAMMANDRAG)
ABSTRACT

Texten i filtet skall bestd av ett sammandrag
av dokumentets innehdll. Nyckelord skall
understrykas.

Det bdr uppmirksammas att sammandra-
get bor kunna iterges | reproduktion pd kort
i format AsL eller i frminskning. Detta mo-
tiverar att referatet skrivs med borjan i tabu-
leringsldget T2, {(Vid bdrjan i TO iaktias en
radlingd av hégst 125 mm). ~

Aam: ISO 214 -Documentation - Abstracts
ger ledning vid vtformning och redigering av
referat.

4270
REFERAT {(SAMMANDRAG)
SKRIVET AV
ABSTRACT WRITTEN BY

Det forutsiitts att sammandraget i forsta hand
skrivs av dokumentets forfattare, Hirvid an-
ges Vf6rf? { rutan, Om annan dn forfatiaren
#r ansvarig for referatet (sammandraget) kan
initial och efternamn .eltel‘ enbart initialer
anges. e
44T0
FORSLAG TILL (YTTERLIGARE)
3 NYCKELORD
KEY WORDS
F} F] g
Med nyckélofd avses ord som forfattaren fin-
ner bist karaktériserar innehillet i det refe-
rerade dokumentet. Antalet nyckelord bor

‘vara minst 5 och hdgst 15,

! 55TO
KLASSIFIKATIONSSYSTEM
OCH KLASS(ER)
CLASSIFICATION SYSTEM

. . IAND CLASS(ES)

1 faltet]anées beteckningar fo6r dokumentets
imnesinnehdll enligt nigot Kklassifikations-
system.
5270
INDEXTERMER
INDEX TERMS

Hirmed avses innehillsbeskrivande termer
om de hiimtats frdn en kontrollerande voka-
bulir {tesaurus). Indextermerna kan avvika
frAn nyckelorden (ifr 44T0) som kan frit{
viljas. Den tesaurus eller motsv frin vilken

indextermerna har himtats skall anges efter
sista indexterinen.

56T2
OVRIGA BIBLIOGRAFISKA UPPGIFTER

Uppgifterna kan avse impressum (férlagsort,
forlag, utgivningstid, tryckeri etc), upplaga,
serietitlhérighet och liknande.
56T0
OMFANG
NUMBER OF PAGES

Uppgiften anges med antal sidor i det refe-
rerade dokumentet inkl bilagor, forekom-
mande {sirpaginerade) bitagor.
58T0
SPRAK
LANGUAGE

Dokumentets sprik i det fall det dr annat &n
svenska.
6070
SEKRETESSUPPGIFTER
SECURITY CLASSIFICATION

Uppgift om begriinsad tiliganglighet hos do-
kumentet med hiinsyn titl sekretess och and-
ra av myndighel {genom lagstiftning eller pd
annat sitt) eller av dokumentutgivaren gjor-
da inskridrkningar.

60T4

ISSN

International Standard Seriat Number. Anges
endast for serier dsat ISSN.

6076

1SBN

Internationat Standard Book Number, Anges
endast fér dokument med dsatt ISBN.
62TO
DOKUMENTET KAN ERHALLAS FRAN
DISTRIBUTION BY

Namn och (om mbjligt) postadress pé distri-
butdr av det refererade dokumentet.
62T4
MOTTAGARENS UPPGIFTER
RECIPIENT’S NOTES

Fiilt som kan disponeras av mottagaren.
66TO
PRIS

Priset anges i svenska kronor sdvida ej doku-
mentets spridning motiverar annan valuta.

Fisr att mojliggbra maskinell lisning av text
i dokumentdatabladet har teckensnitt ORC-
B anviints vid ifylining av forlageblanketten.
Teckensnitiet behandlas i SIS 66 22 42 (un-
der arhete 1976).

Contents
Intfoduction T
Introduction to the Intrac language
Concepts of the Intrac languagesece
3.1 CommandsS «eeesossccssssssrnsnsssnssasa

3-2 MaCrOS O % 4 5 5 8 5 5 B 6 3 A NS ST S NG S LSS TS

3.3 Command mOdeS % 8 8 B K S B N HFEE A RN S E S

354 Variables B & ¥ & & & 5 8 8 8 & 8 & 8 E N NS4 e AN 4N

=
oy
(0]

Generation of macros (MACRO, FORMAL,

-

K N S N Y L
O O = S Ul e W

»

Output and Input (WRITE, READ) e ees
" Suspending a macro (SUSPEND, RESUME)
Switches in Intrac (SWITCH) ...ivavnn

-

Deallocation of global variables (FREE)
Stopping the program (STOP) .evececesns

Some different forms of interaction

5.1 Commonly used command sSequences ««...
5,2 Interaction for they infrequent user .
5.3 Simplified command £OLMS .eveivnerasss

5.4 Macros giving help and information ..
f‘ '

r

AcknowledgementsS cisesvessesssccncnsanncs
§< b,
Appendix ll...Ill'lIl‘.“ll:'llIII....I'II‘.I

Syntax for basic 1tems .iiisencecesnnass

statements of Intrac scessivavnesasssnnneas
END)
Assignment of variables (LET, DEFAULT) ..
Branching (LABEL, GOTO IF) .evecenccsace
Looping (FOR, NEXT) «sescecvsctnsaanensnn

+

summary of Intrac facilities .iecrseceaeaes

19

16
17
18
21
23

28
28
29
31
34
36
39
41
42
42

43
43
44
5@
51

57

58

58
59

1. INTRODUCTION

The introduction of the computer has meant a dramatic change
not only in business management and society in general but
also in the scientific field. A numeric solution has become
not only acceptable but as important as an analytic one. In
other words, what should be considered as a feasible method
has changed, which in turn has greatly influenced the
development of the theoretical advances in e.g. automatic
control. Some new problem areas have in the same time
emerged; one is how the computer should be applied in
problem solving, which is the scope of this report.

The task of using a computer to solve a problem consists of
two parts: one is to supply the computer with relevant data,
to specify constants, parameters, and maybe structural
details on the problem, the other being to do the same for
the solution method.

Describing the solution method could for instance mean to
write a program to do the job. A first step in facilitating
this operation would be to provide a subroutine library from
which the problem solver can take some ready-made routines
as “pfimitives" to build his own program. This approach
will give the user great freédom to design his own way to
gsolve a specific problem put) leaves him with the heavy
burden of implementing: &' main program with control of the
logic flow and I1/0 of problem-related data.

’

Ready-made programs fi /
e

1
The second step would be to provide a ready-made program
containing facilities applicable to a certain problem field.
The user (problem—-solver) would then have to interact with

the program in some way so as to achieve a solution to his

specific problem, The user might have different

requirements on the interaction viz.

~ The batch user

- The experienced user
~ The one-time user

- The beginner

- The assistant

The batch user can (and must) select in advance a sequence

of actions that the program is going to follow with a
preselected set of input data.

The experienced user, on the other hand, might be trying to

solve a new and complicated problem exercising his combined
prior knowledge, skill, intuition, and common sense. In
this situation he wants a maximum of freedom in the choice
of solution steps, and it is of great importance to be able
to communicate directly with the computer. It is then
possible to view the result as they become available and to
direct the future steps accordingly.

The one-time user could be a student solving a laboratory

exercise, e.g. in a course opfautomatic control. The task
would then be to use a programﬂﬁith a fairly rigid structure
solving a well-defined proplem. Being a one-time user, he
would not be interested ?in” anything but the elementary
facilities needed for his task and simplicity is a main

' T

consideration. ’,

.
The beginner is initiayﬁyﬁfin the same situation as the
one—-time user; simplicity is of importance to be able to get
started. The beginner has a desire to become an advanced
user some day, though. What he wants then is a facility for
rapid help and instruction.

The assistant finally is someone who eilther does not know
the fine details or is using them routinely as a part of an

investigation designed by the experienced user.

Naturally, the ideal type of interaction is quite different
for these users, but it is most important to realize that
the same program may have to meet these varying demands.
For instance, the student during his exercise may get stuck
and call the help of his supervisor. The -supervisor, being
an experienced user, would then prefer a more concise means

of interaction than would the student.

it is also worth noting that the experienced user, after a
few months disuse of a program may have forgotten some
details of its use, and thus for a while may be regarded as
a fast-learning beginner. Also, the experienced user may be

his own assistent, that is he does the routine work himself.

Programming philosophies

A natural and often used way of interaction is the guestion
and answer method. Here the oprogram puts gquestions
regarding parameter values and .other information on the
problem or its solution, which gre answered by the user. He
has also the possibility tp answer gquestions regarding the
future operation of the progfém, i.e. choose from a list of
available program moduies which one should be run next.
K

This method allows good duidance to the one-time user
together with a posszblilty of good security as the answers
may be tested in thejir éontext On the other hand, the
experienced user may feel himself locked into a winding

trail although he knows a more direct way to the goal.

Another way of interaction is by means of commands. The
user condenses his wishes into a command line, containing
keywords, flags, and values to indicate a specific action to
be taken. This is a much more concise method and leaves the
experienced user with all possible freedom. The one-—-time

user, however, is left on his own,

Intrac

intrac is a subroutine package designed so that it can be
easily combined with application modules to form an
interactive program. Intrac itself contains no application
dependent features so it can be used in any application
field.

An interactive program built around Intrac will in principle

have the structure shown in Fig.l.

There is a main program module which calls upon a number of
subroutines, here called action routines, and upon Intrac.
When Intrac is called it will (normally) read a command line
from the user's terminal and analyse it. The number of the
recieved command is computed from a command table sent to
Intrac from the main module and the rest of the command line
is processed and stored it memory. If the command recieved
is an application commanéf'Iﬁ¥rac returns to the main module
which in its turn uses the command number to select the
proper action routine tda céll. Thus each application
command generglly corregponés to a specific action routine.
It 1is possible for %beﬂ;selected action routine to call
Intrac too, in order to recieve commands to further specify

the required action. Such subcommands have to be fully

implemented within the corresponding action routine,

Mass

Main Program storage

INTRAC E
- _ [User’s
AR AR2 ARN | terminal
| | | | |
Fig. 1

Intrac has the possibility to ge@d the commands off mass
memory, this is the case'whgﬁ a macro is to. be executed.
Then a file of stored commands are read and acted upon, to
the user looking as if a gingle command was executed. Also
Intrac will recognize a number of general purpose commands
and process them within itself, thus they are never seen by

the main program module nor by application routines in the

subcommand case. 4 /
pe
. .

Intrac is basically command oriented but contains £features,
viz. the macro facility and the general purpose commands,
that allow e.g. help functions, batch operation, guestion

and answer dialogue etc. to be easily implemented. This

will be further explored and exemplified in later chapters.
As we shall see, it may be fruitful to look at Intrac as a
means of implementing a problem-solving language, geared by
the set of action routines towards a specific application
area. Chapter 2 will give an introduction to this idea
using a fictitious application; linear algebra. Chapter 3
will then give a description of the elements of the Intrac
language while Chapter 4 contains specifications on the
available general purpose commands. Chapter 5 finally will
give more extensive examples showing the various forms the
interaction will take, depending on which use is made of the
available facilities. A summary of notation, syntax and
facilities is given in the appendix.

How to construct an interactive program package based upon
Intrac is discussed in detail in Schonthal (1977) *). The
following problems are treated:

- Designing application routines and interfacing them to
Intrac.

- Calling and initializing Intrac.

- How to use Intrac's auxiliary routines for argument
decoding and data exchange between Intrac and application
routines.

- Display handling.

*) b

Tomas Schdnthal: INTRAC - Programmer's Guide, Department of
Automatic Control, Lund Institute of Technology, Lund 1977,
TFRT-7128.

i9

2, INTRODUCTION TO THE INTRAC LANGUAGE

In an application program, the programmer has built in a
(hopefully) natural structure in the available command line
formats. Intrac itself implements some commands of an
application independent nature, see Chapter 4. Together,
these form statements in a problem solving language,

designed for a specific application field.

In the normal or command mode of operation, actual
statements, or commands, are entered from the keyboard of
the users terminal. Intrac also provides the possibility of
stringing a sequence of commands together to form a macro

command. The command string is stored on mass MEMOrY.

This macro facility corresponds to what in ordinary
programming languages 1is called subroutines or procedures.
It is by such procedures in the command language the various
dialogue types mentioned in Chapter 1 can be constructed.,
This is discussed to some length in Chapter 5.

The Intrac language will be introduced by means of an

example. For that reason a completely fictitious

application program is defineﬁ, The treatment will be
concise for the benefit of the"computer language accustomed
reader. The beginner will, find notations and ideas

explained in later chapters’. ™

The application is a prograf té solve problems in linear
algebra. The following comiands are available:

MATRIX <matrix identifier> (<dimension 1><dimension 2>}

11

Declares a matrix. The elements are assigned values

via subcommands:

ROW {<row index>) {<number>}*
Undefined rows are zeroed. (Note that { }* means
repetition one or more times).

EXIT

Returns to the main command level.

LETME <matrix identifier> {(<index 1><index 2>) = <value>

Assigns a new value to a matrix element.

PRINT <matrix identifier>

Outputs a matrix to the terminal.

MATOP <matrix identifier> = <matrix expression>

Evaluates matrix expressions. The operands c¢an

be

scalars, vectors, matrices. The operands are + = * k&

Parantheses can be used in the usual way. The inverse

of a matrix is e.g. written A*¥*-1.,

EIGEN <matrix of eigenvalues><matrix of eigenvectors> =

<matrix identifier> L

aw

Computes eigenvalues and eigenvectors of a sguare

matrix. The matrixs; of , eigenvalues is an nx2 matrix

where the first columh’ cdhtains the real parts and

the

second column contains the imaginary parts. The matrix

0of eigenvectors is an #Axn matrix.
r

Allowing comments folloyingdthe character " we have

following commented example:

the

12

SMATRIX A (2 2) tpDefine a 2x2 matrix A.

S>ROW (1) -6 -5 "Jgse subcommands

SROW (2} 1 @ "to input elements.

>EXIT "Return to main level.
>EIGEN L X = A "Eigenvalues of A into L.
>PRINT L "print eigenvalues.

-5 @

-1 8

Dialogue 1

Now assume that we want to examine the change in eigenvalues
when we change elements in A. This could be done by issuing
the command seguence LETME, EIGEN, and PRINT a number of

times.

If this is to be done frequently, it may pay off to define a
macro-command as shown in Dialogue 2. Note the use of

formal arguments

SMACRO EIGALTER MAT I J V "pefinition of a macro.
SLETME MAT(I J) =V "Changé element.
SEIGEN L % = MAT L
SPRINT L
>END Vool

SEIGALTER A 1 2 -9 ’ "wyse the macro.
-3 B
-3 0 "

>EIGALTER A 1 2 =13 . "Use again.

-3 2 it
-3 =2 ’

! i

Dialogue 2

13

As already has been hinted at, Intrac contains commands to
control, among other things, the execution of a macro.
Dialogue 3 shows a macro with a FOR-NEXT loop automating the
reqular change in a matrix element. Note that this macro
calls the macro EIGALTER from Dialogue 2. Note also the
variable 1length argument list; if the formal argument PVEC
is given the value EIGVEC the eigenvectors are printed as
well as the eigenvalues.

>MACRO EIGITER KMIN KMAX KSTEP ; PVEC
>FOR K=KMIN TO KMAX STEP KSTEP
>LET AlZ2 = -5-K
>WRITE 'Parameter K= ' K
>WRITE 'Eigenvalues:'
>EIGALTER A 1 2 AiZ2
>IF PVEC NBE EIGVEC GOTO L
>WRITE 'Eigenvectors:'
>PRINT X
>LABEL L
>NEXT K
>END

Diaiocgue 3
% .
i 1’ v
The result of using this macro is shown in Dialogue 4. To
further illustrate the execution of a macro the switches
ECHO and TRACE have been used which cause a printout of the

i

commands as they are ex?éu#ed.
,4 n‘).4

>EIGITER 0 8 4
Parameter K=0
Eigenvalues:

-5 4]

-1 4]
Parameter K=4
Eidenvalues:
-3 7]

-3 8
Parameter K=8
Eigenvalues:
-3 2

-3 =2

>

>SWITCH ECHO ON

>EIGITER # 3 3 EIGVEC
Parameter K=§
Eigenvalues:

CLETME A(1 2) = -5
<EIGEN L X = A
<PRINT L
-5 9
-1 2
Eigenvectors:
<PRINT X

0.98058 -0.70711
-0.19612 0.70711
Parameter K=3
Eigenvalues:
<LETME A{l 2) = -8
<EIGEN L X = A
<PRINT L
-4 0
-2 0

——
a2

Now,

ECHO ON

14

Eigenvectors:
<PRINT X
-0.97014 0.89443
0.24254 -0.44721
>SWITCH TRACE ON " Now,
>EIGITER @& 1 2
<{MACRO EIGITER KMIN KMAX KSTEP
<FOR K=KMIN TO KMAX STEP KSTEP
<LET AlZ = -5-K
<WRITE 'Parameter K= ' K
Parameter K=8
{WRITE 'Eigenvalues:'
Eigenvalues:
{EIGALTER A 1 2 -5
<{MACRO EIGALTER MAT I J V
<LETME A(1l 2) = -5
<BEIGEN L X = A
<{PRINT L
-5 @
-1 @
<END
<IF PVEC NE BIGVEC GOTO L
<LABEL L

<NEXT K e

<END

Dialogue 4

TRACE ON

.
!

PVEC

15

16

3. CONCEPTS OF THE INTRAC LANGUAGE

The user of an interactive program based on Intrac interacts
with the program via a terminal and expresses wishes
concerning the solution of his problem in the form of

commands or answers to questions.

The commands can be divided into different categories. ©Some

general purpose cémmands {or Intrac statements) are handled

by Intrac itself, while others, application commands, are

analyzed by Intrac and then passed on to the main program
module which selects the appropriate action routine to
handle them. In some cases the action routines may need or
offer further interaction in order to carry out the desired

actions. This is then accomplished by means of subcommands,

i.e. commands received through Intrac but with a different
command table, depending on the specific action routine.

Another facility supported by Intrac is the use of macro
commands, i.e. calls to previously defined command
seguences on Mmass Memory. Technically, when Intrac
recognizes a reference to such a command segquence, it starts
reading commands from a mass memory file, rather than £from
the user's terminal. A macro,ggrresponds to subroutines or
procedures in ordinary programming languages.
LI

Actually, a program built bvound Intrac may be regarded as
an interpreter for an interactive problem solving language
with the same type of faciliities as found in many other
languages for interactiée programming. An important
difference is, however,f&hét here we are aiming towards a
specific problem area,’byﬁthe inclusion of special problem
oriented action routines / commands. Macros (subroutines /
procedures) in this problem oriented language can be used to
implement common subproblem solutions, give user guidance or

implement guestion / answer dialogue. 1In this way many of

17

the demands mentioned in Chapter 1 can be met.

A detailed discussion on the elements of the Intrac language
will now follow. Appendix 1 describes the syntax notation
used.

3.1 Commands

A command has the generic form:
<command identifier><argument list>

There are three types of commands: Intrac-statements,
application commands and macro calls. The legality of
commands depends on the context in which they are called, as

described later.

Following the <command identifier> are the arguments of the
command (if any), which convey information on the problem or
its solution.

&
<argument list>::=[<argument>]

Pt

where
3 i
<argument>::=<integer>7<féal>/<identifier>/<de1imiter>/
<variable>
K
Spaces are not allowed within an <argument>. One or more
spaces must separate ééaﬁgument>s if ambiguity otherwise

would arise. .

The character " is interpreted as a line terminator for
Intrac. Thus the characters following a " are never scanned
and can thus be used as comments. Empty 1lines and hence

18

lines only containing a " followed by a comment are legal.

{integer> and <real> arguments need no further comments,
they pass numbers to the action routines. <delimiter>s are
used to give structure to the command line. This can be
used to separate an input side from an output gide in an
argument list, to enclose flags within parentheses etc. The
following line illustrates this:

>ML {SC) MODEL = DATA 2

To summarize, <delimiter>s are used to make the argument
list easy to decode unambiguously, to allow arguments to be
optional, to allow precise error diagnostics, and to make
the command format natural and easy to memorize, i.e. as
"gyntactic sugar".

An <identifier> may be used in several ways, one 1s to
signify a <variable>. This is treated in section 3.4. The
other is as a literal, i.e. it represents itself as a
character string. This string can be used as a file name,
the name of an internal data area, as a flag etc., depending

on the application routine.

o

In the example above, MODEL and DATA are file names, while
SC is a flag indicating that the user wants to use

*

subcommands. s

3.2 Macros

A macro consists of a séqheﬁce of Intrac-statements, macro
calls and application commands. They are stored on a text

file on mass storage.

19

The first line in the macroe should be a MACRO-statement
which has the following form.

MACRO <macro identifier> [<formal argument>/<delimiter>/

*
<{termination marker>]

The <macro identifier> has to be the same as the file name.
The statement declares the formal arguments of the macro.
The use of <delimiter> and the <termination marker> is
explained later.

The 1list of formal arguments can be extended by
FORMAL-statements. They must follow immediately after the
MACRO-statement and have the form:

FORMAL {<formal argument>/<delimiter>/

. ' ®
<termination marker>}

After the MACRO-statement and optional FORMAL-statements
follows a sequence of Intrac-statements, macro calls and
application commands. The last line in the macro should
contain an END-statement:

END
Example %
Three examples of macros are given below.

i r

MACRO MACl ALPHA BETA

LN —'\.4

——

29

MACRO MAC2 Al, AZ, A3
FORMAL / A4, A5
FORMAL (A6)

MACRC MAC3 Al=A2 ; Bl=B2 ; Cl=C2

The MACRO-, FORMAL- and END-statements are not only used in
the macros. They are also used from the terminal to
generate new macros., This is described in Section 4.1.

Macro call

A macro is called by giving its name followed by actual

arguments in the same way as a command.

If the <termination marker> is not used then the number of
actual arguments should be egual to the total number of
formal arguments in the MACRO- and FORMAL-statements, The
delimiters appearing among the formal arguments should be
given at corresponding positigns in the call.
;” ! ! e

The <termination marker> is used when a variable number of
actual arguments should be-é}ldwed.

<termination marker>

‘
It indicates that the formal arguments and delimiters
appearing following the symbolineed not have corresponding
actual arguments. If the <termination marker> is used

21

several -times in the macro then it gives alternative places
where the call can be terminated. The formal arguments
which have no corresponding actual arguments will be
'unassigned', see Section 3.4,

Examgle

Alternative calls to the macros in the previous example are

given below.

>MAC1 18.5 2
>MAC]1 DATA1l DATAZ

>MAC2 1,2,3 /4,5 (6)
>MAC3 P1=5 P2=7 P3=9

>MAC3 INDATA=FILEl

3.3 Command modes

intrac reads commands either from the keyboard on the user's
terminal or from a macro, i.e. a file. When a command is
awaited from the terminal a prompting character (e.g. >) is
output. Three special cases of terminal input can be
recognized. The program starts.in direct mode. When the
‘MACRO-statement is entetdd “the program goes to generation

mode. The subsequently entered commands will be stored on a
macro file as described in/'section 4.1. The execution of a
macro is temporarily interrubted, i.e. suspended, e.qg. if
an erroneous comman@f for the SUSPEND statement is
encountered. In such a case Intrac enters suspended mode
and accepts commands from the terminal. These commands are
interpreted in the environment of the suspended macro. The
execution of the macro is resumed by the RESUME-statement or
by a GOTO to some label in the macro.

22

The application commands may be arranged hierarchically.
Some commands may require a more detailed specification than
the one given in the command line. This may pbe so because
the command line otherwise would be impractically long, or
that some arguments are needed only in special cases or that
the proper setting of parameters is apparent only after an

initial examination.

In such cases, a subcommand sequence is entered. This 1is
indicated by the prompting character appearing indented. In
a subcommand sequence, Intrac commands are still available.
Available application commands, however, are now a function
of the "parent command" within which they are implemented.

There is always a subcommand to leave the subcommand mode.

Table 1 shows how the validity of the Intrac statements, the
macro calls and the application commands depend on the
command mode.

Table 1. Command modes and validity.

direct macro generation suspended

MACRO X X X
FORMAL X
END X X X
LET X X X X
DEFAULT X X X X
LABEL X x1)
GOTO X x+) X
IF X x1)
FOR X X
NEXT X x1)
WRITE X X X
READ X X 4 X
SUSPEND X x1)
RESUME X
SWITCH X X X
FREE X X
STOP X
Macro call X Xl) X
Application X X X

command

1) Legal but not executed
';f

P
’

3.4 Variables do
.

A variable can be of thgéegdifferent types:
’ 41' f‘

<variable>::=<formal argument>/<local variabled>/
<global variable>’
where

24

<formal argument>::=<identifier>
<local variable>::=<identifier>
<global variable>::=<identifier>.[<identifier>]

The value of a variable can be either an integer number, a
real number, an identifier or a delimiter. A variable can
also be unassigned.

During the processing of the argument 1list of a command,
Intrac will for every occurance of an <identifier> check if
it represents a <variable>, by looking through its internal
tables of the three <variable> types. If not found it is
treated as a literal.

If, on the other hand, Intrac finds it to be a <variable> of
any of the types above, the <identifier> in the argument
jist is substituted by Intrac to its actual value according

to the internal tables maintained by Intrac.
The substitution rule does not always apply to

Intrac—-statements. The items which can be substituted are

underlined in the syntax for the Intrac-statements.

Formal arguments

Formal arguments exist when’a%macro is being executed and
are those arguments listed in the definition of the macro,
cf. the commands MACRO and' FORMAL.
'

When the macro is calledg A corresponding 1list of actual
argument values shopld’be specified. The substitution rule
is then applied so that every occurence of a formal argument
in the macro is replaced by its value before the command

arguments are passed on to the proper routine.

25

The value of a formal argument may be altered inside the
macro. Note though, that no value can be returned from the
macro Eto the caller using formal arguments., This
corresponds to call by value in modern programming
languages.

Local variables

A local variable has the same form as a formal argument and
it is in fact treated in very much the same fashion. It is
local to the macro level and is defined when it is first
given a value in a READ, FOR, LET, or DEFAULT statement.

Formal arguments and local variables can only be referenced
in the macro where they are declared. When a macro is left
via the END statement then all its formal arguments and

local variables become unaccessible,

Formal arguments and local variables can have the same
identifiers in different macros,

The user has to be careful when choosing identifiers for
local variables and formal arguments so that they do not
coincide with identifiers which are values in commands.

! [

. Fl 4
s s

Global variables

' '
¢

A global variable is distinguished by a dot following the
identifier. ffiﬂ

/e .
A <global variable> 1is always accessible and may pass
information between macros. An important use is to define a
set of problem dependent parameters stored as <global

variables> that can be referenced in several different but

26

related application commands or macros.

The value of <global variable>s may also be used and
returned directly by application command routines. 1In fact,
<global variable>s are the only means by which regsults may
be returned from application commands, within the framework
of Intrac. Other possible ways, files, data areas, etc.
are not administered by Intrac.

Finally, it should be mentioned, that the implementor of an
interactive program package has the possibility to
initialize the table of <global variable>s so that there
always will be a set of "reserved" <global variables> for
special use. Nonreserved global variables can be
deallocated by the statement FREE.

Unassigned variables

Under certain circumstances, a global or local variable, or
a formal argument may have been defined without having been
assigned a value. This may be the result of using the
<termination marker> in a macro definition or a

READ-command, or when suspending“a macro in a READ-command.

The type 'unassigned' may be @rgnsferred in a LET-command.
The action on 'unassigned’ ¢alues by IF ... GOTO commands
is defined, and most important, the DEFAULT command is
specifically desighed to handle them.

.
If an unassigned variab%é ;?ppears as an argument to an
application command it “will be totally invisible to the

corresponding routine.

27
Example

Assume that the variables A and B have the following values.
A = 2,5, B = 'unassigned'

The command
>COM A B 5.5

will then be equivalent to
>COM 2.5 5.5

Unassigned variables together with the use of the

<termination marker> 1is important when constructing macros

for simplified interaction, cf. Chapter 5.

28

4, THE STATEMENTS OF INTRAC

This chapter contains the detailed description of the

statements in Intrac.

4,1 Generation of macros {MACRO, FORMAL, END)

There are some different ways to generate a macro. Since a
macro 1s implemented as a text file it is possible to

generate and modify a macro using a text editor.

A macro can also be generated by entering the
MACRO-statement from the terminal. In generation mode all
correct commands entered from the terminal are stored on a
file, This continues until generation mode is left by the
END-statement. Whether the commands in the macro should be
executed during generation or not is determined by the
switch EXEC (see statement SWITCH). If EXEC is OFF then the
commands are only checked for formal errors and if correct
stored on the file. 1If EXEC is ON the commands will also be
executed. There are some exceptions to this, such as the
GOTO- and IP-statements (see Table 1). These statements are
only checked and stored. If EXEC is ON, actual values for
the formal arguments of the macgro are reguested, with the
value promter (%), when the MACEO— and FORMAL-statements are
encountered. The rules ongde%imiters and the <termination

marker> used for macro calls 3lso applies in this case.

The FORMAL-statement can be’ used to extend the 1list of
formal arguments anywhere in the macro. It is placed after

the MACRO-statement aut?@aﬁ}cally when the generation is

finished. /

1

29

Example

>SWITCH EXEC OFF
>HMACRO MAC A B
Pean
>FORMAL C
Paes
>END
>
>SWITCH EXEC ON
>MACRO MAC A B
#5 7.9
Pees
>FORMAL C
#ALPHA
P
>END

4.2 Assigment of variables (LET, DEFAULT)

Formal arguments are allocatediand possibly assigned when a
macro is entered. Their values can be changed with the
LET-, DEFAULT-, FOR-, and ﬁEAQ—gtatements.

TR
Global variables and local variables are allocated and
assigned (or changed) using’'the LET-, DEFAULT-, FOR-, and
READ-statements. !

g

b by
The LET-statement has the fé6llowing forms:

LET {<variable>=}*{<number>[{+/-/*//}<number>]
LET {<variable>=}*{+/-}<number>

* -
LET {<variable>=} <identifier>[+<integer>}

30

LET {<variab1e>=}*<delimiter>

*
LET {<variable>=} <unassigned variable>

The two first forms is the usual arithmetic assignment.

Only one or two operands can be given.

The third form contains a mixed mode operator + which
denotes string concatenation, The second operand, the
integer, 1is <converted +to the «corresponding string of
characters and appended to the first operand giving a new

identifier.

Examples:
statement: result:
LET A =B = @ A =B = 4§ (integer)
LET P = 3%5.5 P = 16.5
LET Gl. = 2+P Gl. = 18.5
LET DATA = FILEL DATA = FILEl (identifier)
if FILEl is not a variable
LET NUMBER.DATA = 189 NUMBER.DATA = 169
LET I = 5 I =25 _
LET ID = FILE+4I H“;Z;[D = FILE5 (identifier)
) if FILE is not a variable
3
,f)! i

The DEFAULT-statement is a conditional assignment statement.

Its form is: ’
.
DEFAULT {<variab1e?%}?t<argument>
'
The assignment is performed only if either
- the named variable is 'unaséigned'
- the named variable does not exist.
In the last case a new variable is allocated.

31

The DEFAULT statement is wuseful in connection with the
<termination marker> as it gives rise to 'unassigned’
variables,

Examples:

Assume the following variables are accessible.

A =5

G. = DATA

B = 'unassigned'

statement: effect:

DEFAULT A = @ none

DEFAULT B = INFILE B = INFILE

DEFAULT C = 7 C = 7 {new variable}
DEFAULT G, = 1 none

4.3 Branching (LABEL, GOTO, IF)

To make macros flexible it is necessary to have a way to
change the sedquence of commandgnexecuted. This is possible
by using simple unconditional and conditional branch

statements. 3 .

gt
The labels used in branch statements are declared at the

position which they indicateé using the LABEL-statement:

i

LABEL <label identifier>
] <ﬁ ’&

<label identifier>::=<identifier>/<integer>

32

The label identifier is locally defined in a macro. Note
that there is no check that a label is uniquely defined in a
macro. If a label is multiply defined then a GOTO-statement
will use the first label found when searching the file from
the top.

Examples:

LABEL SKIP

LABEL 3

The unconditional GOTO-statement is:

GOTO <label identifier>

The next command executed will be the command after the
corresponding LABEL-statement. If no LABEL-statement with
the same label identifier is found then the command after
the CGOTO-statement will be the next to execute.

It is allowed to jump out of a FOR-NEXT loop but not into

,

)

one .

Since the argument in the 0TQO-statement could be a variable

e}

whose value is a label ideht¥fier it is possible to use the
statement as the assigned GOTO of FORTRAN.

' r
’

f

Examples: ff 7
A

Assume LAB = SKIP, L. = NOLAB, I = 3
statement: effect:

GOTO SKIP GOTO SKIP

33

GOTO LAB GOTO BKIP
GOTO L. GOTO MNOLAB
execute next statement if

NOLAB is not a label
GOTO T GOTO 3

The conditional GOTQO statement has the form:

IF <argument> {EQ/NE/GE/LE/GT/LT} <argument)
GOTO <label identifier>

The effect of this statement is the same as for the
GOTO-statement 1if the relation is true. If it is false the
next command in sequence is executed.

The relational operators EQ, NE, GE, LE, GT, and LT means
equal, not equal, greater or equal, less or equal, greater
than, and less than.

Mixed mode relations are defined as follows. If one vwvalue

is real and the other is integer the test is done using real

arithmetic. If one of the operands is an unassigned
variable then the EQ-relation %NE—relation) will be true if
and only if the other operfndz }s (is not) an unassigned
variable. Mixed mode/ petween numeric and non-numeric

variables is illegal.

Example: - #
o= ;
/4 v
Assume A = 5 B, = DATA C = 8.5 D = unassigned
UNASS. = unassigned.

34

statement: effect:
IF A GT 2.5 GOTO 1 GOTO 1
IF B, EQ FILE GOTO 2 none

IF A NE UNASS. GOTO 4 GOTO 4
IF D EQ UNASS. GOTO 5 GOTO 5

The GOTO and IF statements are legal in suspended mode. If
the label exists (and the condition is true) the macro is

resumed and the execution is continued after the label.

4,4 Looping {FOR, NEXT)

It is possible to introduce loops among the commands in a
macro. This is done with the FOR- and NEXT-statements. The
FOR-statement begins the loop and has the following form:

FOR <variable> = <number> TO <number)> [STEP <number >}

The NEXT-statement ends the loop and has the form:
NEXT <variable>

The exact behaviour of the loop-statements are properly

described using the branch statements. This is done below:
The statements 3
FOR V = BEGIN TO FINISH STEP INCR

commands

NEXT V

are equivalent to

35

LET VvV = BEGIN

LABEL TEST

IF INCR EQ @ GOTO OUT
IF. INCR LT # GOTO NEG
IF V GT FINISH GOTO OUT
GOTC RUN

LABEL NEG

iFr V LT FINISH GOTO OUT
LABEL RUN

commands

LET V = V+INCR
GOTO TEST
LABEL OUT

If no increment 1is sgpecified, i.e. STEP <number> 1is

omitted, the increment one (integer) is assumed.

If the variable is previously defined it must be of type
integer or real., If the variable is of integer type while
all numbers in the FOR~statement are real, then real

arithmetic is used followed by an integer assignment,

i

If the variable 1is not 1prgviously defined then a new
variable 1is allocated fwithitype integer if all numbers in
the FOR-statement are integers, otherwise the type will be

real. K '

i
Loops may be nested to a@m?ximum of five levels. It 1is
allowed to Jjump (GOTéﬁ- IF) out of a loop but not into a
loop. A loop entered in generation mode with EXEC ON will

execute once with the 1loop: variable egual to BEGIN
regardless of the value of FINISH,

36

Examples:

FOR I = 1 TO 19

NEXT I

FOR P = @ TO PEND STEP 0.1

NEXT P

FOR G. = 5 7O -1,5 STEP -1.5

NEXT G.

4.5 Qutput and input (WRITE, READ)

The macro facility can be used to implement gquestion and
answer interactive programs.

Questions are written on the terminal with the
WRITE—-statement and the answers are read using the
READ-statement.

The WRITE-statement is used to write variablés and text

. . S N . .
strings or to display all_§ya;}ab1e variables. 1Its form is
/

WRITE [([DIS/TP/LP] [FF/LF])] [<variable>/<string>]"
!
When no variable or str@qg is given in the WRITE-statement,
all currently accessiﬁlg ‘variables are displayed on the
output device (see example below). This is particularly
useful when debugging macros.

37

A <string> is any string of characters except ' enclosed by

two ',
The output device is specified as

DIS - display
TP - terminal printer
LP - lineprintet

The default output device is display. The actual output

device is of course installation dependent.

The FF (form feed) and LF (line feed) option specifies if
the output should be made on a new page or just on the next
line. If this option is omitted and the command does not
contain any variables or strings (see below) a form feed is
made before the output else the ouﬁput will be made on the
next line.

Examgles:

Assume that the following WRITE-statements are given in a
macro MAC at macro level 2 or from the terminal with this
macro suspended. Also assume tﬁat the variables shown below
have been defined. ?he; _WRITE-statements and the
corresponding printouts grgrshown.

>WRITE ,
RESERVED GLOBALJVA?IABLES
J' - 3
A . = 5 PAR/ *,8¥ST = 5,5E-3
GLOBAL VARIABLES
Gl . = DATAl DATA ,SIM = FILE]l

G2 . 7

38

LOCAL VARIABLES IN MAC AT LEVEL 2
Al = 13,5 INDATA = FILEZ I =1

SWRITE 'What do you want to do?'

What do you want to do

>WRITE (LP) 'The input data was ' INDATA

The input data was FILE2

>WRITE 'Gl. = * Gl. ' Al = ' Al

Gl. = DATAl Al = 13.5

The READ-statement reads values from the terminal and
assigns variables. Its form is:

READ { {<variable> { INT/REAL/NUM/NAME/DELIM/YESNO}} /
<termination marker>}*

After each variable a type specéﬁication for the expected

value is given:

3 3

INT ~ integer numbdl

REAL - real number

NUM - integer or real number
NAME - identifier |

DELIM - delimiter[i 7.

YESNO - identifier YES or NO

When the READ-statement is executed a prompting # is written
on the terminal.

39

The <termination marker> has the same function as in the
MACRO-statement. It gives alternative places where the
answer could be cut off. The variables that are not given

any value become 'unassigned’.

There are two means of escape from the READ statement,

resulting in the suspending of the macro.

- If the answer is just a > the READ-statement will have no
effect and the macro 1is suspended. If the macro is
resumed by the statement RESUME the READ-statement will
be re-executed.

- 1If an acceptable answer is given followed by a > the
variables will be properly assigned and the macro
suspended. If the macro is resumed with RESUME, the

command following the READ will be executed.

Examples:
statement: answer: effect:
READ A NAME GL. NUM #P1 17 A=Pl, GL.=17

READ DATAl NAME; DATA2 NAME #FIQEI DATA1=FILE],

s

DATA2=unassigned

READ INDEX INT " ﬁ) INDEX=unassigned
, }. iy macro suspended
READ INDEX INT #3> INDEX=3

‘ macro suspended

. #‘n 2
o

= i

I
4.6 Suspending a macro (SUSPEND, RESUME)

There are cases when the freedom 'to have formal arguments in
a macro is not enough. Perhaps at some point in a macro it
is not known at generation which commands that would be

49

appropriate. It is then possible to switch to command input
from the terminal (i.e. suspend the macro). When the
command input from the terminal is finished the macro is
resumed. This facility is handled by the statements SUSPEND
and RESUME as below:

Macro Terminal
MACRO MAC
SUSPEND
> [I 3]
> . & &
>RESUME
END

The commands entered from the terminal are interpreted in
the environment of the suspended macro. The variables in
the suspended macro are thus accessible,

The execution of the macro can also be resumed by entering
the GOTO or IF statements from the terminal. The user also
has the possibility to deactivate all macros by giving the
statement END from the terminal’’

A P
A macro is automatically ,spspended in some cases.

- When an error is detected during the execution of a macro
then an error message; is printed and the macro is
suspended. The user»éan then e.g. enter a correct form
of the erroneous comﬁand -and then RESUME the macro.

- When the READ-command has been executed in a macro, the
user has to input the requested values from the terminal,
or he can enter a special escape character (>) which

41

causes the macro to be suspended.

- Depending on the implementation, there should be a way to

externally interrupt the execution of a macro forcing it

into suspended mode.

4,7 Switches in Intrac (SWITCH)

Intrac has some switches which are manipulated by the

following command.

SWITCH {EXEC/ECHO/LOG/TRACE} {QE/OFF}

The switches have the following meaning:

EXEC

ECHO

LOG

TRACE

Determines whether the commands entered in generation

mode should be executed or not, See section 4.1.

If ECHO is ON, the commands in a macro are echoed on
the terminal as they are executed. Echoed commands

are preceded by a 'reversed promter’', viz. <.

Determines whether the é&écuted commands should be
logged on the line arin;qr or not.
/ i"%

Affects the echoing and logging features. If TRACE is
OFF only épplicatiqn commands are echoed and logged.
Also Macro calls and Intrac statements are output if
TRACE is ON. /*’ ¢

N

A1l switches have the default value OFF.

42

4.8 Deallocation of global variables (FREE)

Nonreserved global variables can be deallocated by the

command

FREE { {<global variable>}* J *.*]
The form

FREE #,%

is used to delete all nonreserved global variables.

4,9 Stopping the program (STOP)

The command

STOP

will stop the execution of the program containing Intrac.

43

5. SOME DIFFERENT FORMS OF INTERACTION

In the context of Chapter 1, the Intrac language is
primarily suited for the needs of the experienced user,
giving access with few restrictions to all available
commands, in any order. As indicated there, this complete
freedom may not always be desirable, so other forms of
interaction should be provided. This is done by means of
the macro facility, and this chapter will demonstrate the
main ideas in how to obtain the desired result,

5,1 Commonly used command seguences

The experienced user will often f£ind that a command sequence
is frequently executed with only minor changes, By defining
that seguence as a macro effectively generates a new special
purpose command, suitable for a specific problem. This case
is illustrated in Dialogues 2 & 3 in Chapter 2.

This type of macros may serve as a short hand facility for
the experienced user, and as simple-to-use primitives for
his assistant. In the examples, the macros were generated
in the mode EXEC OFF. The mode EXEC ON is suitable when,
during the solving of a problem, it 1is apparent that the
following actions will be,used more than once. By starting
the definition of a macro, dur fng the first time through, the
command sequence is then immediately available for repeated

use. K

¥

——
e
o

44

5.2 Interaction for the infrequent user

A question and answer dialogue, giving good guidance for the
one-time or infrequent user, might be realized in the way
shown in the example on pages 46 - 49,

The READ and WRITE general purpose commands of Intrac are
used to communicate with the user, who is taken in an
orderly fashion from point to point so as to solve his
problem. Some details are worth noting.

a) After the first run, the user is given a choice of
possible next steps. This is done by SUSPENDing the
macro. The user can then GOTO a previous point ang
restart from there.

b} At any READ point, the wuser can escape from the
programmed sequence by using the Tescape symbol' (>). He
will then enter command mode and can GOTC any point as iq
a) .

¢) By virtue of the <termination marker> in the READ commanq
in the macro ENTER, the user need to type only the numbey
of values consistent with the dimension of the matrix,

'Unassigned' arguments will be invisible to the RO%

T

command.

d) If the user enters an eTptg }ine in answer to the READ iq
the macro ENTER, tge,ar@ument M1 will be 'unassigned'\
The test in the IF command against the global variable
UNASS. then effects, an exit from the subcommanﬁ
sequence, leaving the rest of the matrix (the entir%
matrix, 1if used on the,flrst row) unaltered. UNASS. i%
assumed to be a reseﬁved*global variable with the valu%

'unassigned’.

e) The position is continuously recorded in the globa\

variable HELP. . At any command point as in a) or b)‘

the user may call the macro HELP, which will use thk
W

£)

macro

45

position information to output a message with hints at
future actions.

There is a label with the name RESTART in both
SOLVELIN in the macro ENTER.
GOTO RESTART always makes good sense and
to the of the

regardless of the macro nesting.

the main
Thus a command
will take the

current macro,

and -

user restart point

46

MACRO SOLVELIN

LET HELP., = HINIT

HELP

LABEL ORDER

WRITE 'ORDER: Number of eguations:'
LET HELP. = HORDER

READ W INT

IF N LE 5 GOTO AMATRIX

WRITE 'Too many equations’

GOTO ORDER

LABEL AMATRIX

LET HELP. = HAMAT

WRITE 'AMATRIX: Enter matrix A’
ENTER A N N

LABEL BMATRIX

LET HELP. = HBMAT

WRITE 'BMATRIX: Enter matrix B'
ENTER B N 1

LABEL SOLVE

WRITE 'SOLVE: Solution of equations’
MATOP X = A*¥*-1%*B

PRINT X

LABEL RESTART

LET HELP. = HREST

WRITE 'You can go to ORDER, AMATRIX, BMATRIX, SOLVE,'
WRITE 'ALTER or OUT or write commands'

SUSPEND

LABEL ALTER

LET HELP., = HALTER

WRITE 'ALTER: Give matrix name, index 1, index 2 and value'
READ MAT NAME I1 INT I2 INT V NUM

LETME MAT (Il 12) =V

GOTO RESTART

LABEL OUT T
END

47

MACRO ENTER MAT N M
MATRIX MAT (N M)

FOR I =1 TO N

LABEL RESTART

WRITE 'ROW' I

READ ;M1 NOUM; MZ NUM M3 NUM; M4 NUM; M5 NUM
IF M1 EQ UNASS. GOTO DONE
ROW {(I) M1 M2 M3 M4 M5
NEXT I

LAREL DONE .

EXIT

END

MACRO HELP

GOTQ HELP.

LABEL HINIT

WRITE ’The program solves linear equations of the form'
WRITE A * X = B'

WRITE 'The matrices A and B are asked for and the solution'
WRITE 'X is printed. It is possible to change the matrices'
WRITE 'and recompute the solution. Help 1nformat10n can be'
WRITE 'obtained by calling the macro HELP.

GOTO END

I, ABEL HORDER

WRITE 'Enter the dimension of the sqguare matrix A and'
WRITE 'the vector B'

GOTC END

LARBEL HAMAT
LABEL HBMAT
WRITE *‘The matrix is entered as one row at a time’
GOTO END
i 7
LABEL HREST
WRITE * !
WRITE 'Use the GOTO-statemént or the commands'’
WRITE "MATRIX, LETME, PRLNT'OffMATOP'
GOTO END

LABEL HALTER K

WRITE 'You can change an element in A or B’

GOTO END
i iof ;

IO

LABEL END 7 e

LET HELP, = HINIT

END

48

>SCLVELIN
The program solves linear equations of the form
A * X =8B

The matrices A and B are askegq for and the solution
X is printed. It is possible to change the matrices
and recompute the solution. Help information can be
obtained by calling the macro HELP,
ORDER: Number of equations:
$3
AMATRIX: Enter matrix A
Row 1
>
>HELP
The matrix is entered as one row at a time
>RESUME
#1 3 0
Row 2
#5 7 -2
Row 3
#9 ~1 2
BMATRIX: Enter matrix B
Row 1
#2
Row 2
#-3
Row 3
#5
SOLVE: Solution of equations
~-5.666667
7.888889
2.944444

You can go to ORDER, AMATRIX, BMATRIX, SOLVE,
ALTER or OUT or write commands

>HELP

Use the GOTO-statement or the commands

MATRIX, LETME, PRINT and MATOP

>GOTO ALTER v

ALTER: Give matrix name, index1, index2 and value
#2 2 2 @ .

You can go to ORDER, AMATRYX, “BMATRIX, SOLVE,
ALTER or OUT or write commands

>PRINT A :
1 3) ;o
5] -2 o
a -1 2
>GOTO SOLVE 7
SOLVE: Solution of equatfidns-
8.5 ‘
8.5
2.75

You can go to ORDER, AMATRIX, BMATRIX, SOLVE,
ALTER or OUT or write commands

>GOTO AMATRIX
AMATRIX: Enter matrix A
Row 1
#-5 ¢
Too few columns
>GOTO RESTART
Row
-5
Row
$-2
Row
$#0 2 @
BMATRIX: Enter matrix B
Row 1
#
SOLVE: Solution of equations
2.75
2.5
3.15

5

g

[0l NS R o I e

You can go to ORDER, AMATRIX, BMATRIX,
ALTER or OUT or write commands

>G0OTO 00T

>

Example 1

S0LVE,

49

58

5.3 Simplified command forms

Example 2 shows a method of implementing commands with two
possible call formats. One form allows a single line call
with arguments, while the other form consists of only the
command name. The necessary arguments are then asked for,
one by one. Finally, the proper action routine 1s called.
This example demonstrates a possible implementation of the
command EIGEN of Chapter 2. The actual computations are
implemented in the action routine called by the command
QREIG (eigenvalues by the Q-R method)}.

a) Note the use of the <termination marker> and the use of
the 'unassigned' global variable, as in Example 1.

b) Note the use of a <delimiter> in the list of formal
arguments. The rules state that the same delimiter must

appear in the same position among the actual arguments.

MACRO EIGEN ; EVAL EVEC = A

IF EVAL NE UNASS, GOTO XCT
WRITE 'Name of eigenvalues?'
READ EVAL NAME Yoo
WRITE 'Name of eigenvéé&érgé'
READ EBVEC NAME

WRITE 'Name of matrix?' i
READ A NAME »
LABEL XCT /- 7
QREIG EVAL EVEC A

END

Example 2.

51

The command syntax for EIGEN as implemented by Example 2
thus looks like (cf Chapter 2):

EIGEN [<matrix of eigenvalues> <matrix of eigenvectors> =
<matrix identifier>]

5.4 Macros diving help and information

For the user with ambition to learn the possibilities of an
interactive package in order to some day be an experienced
user, facilities other than those of Example 1 are needed.
Also, the experienced user may need occasional short advice,
e.g. on a seldom used facility.

The macros given in Example 3 will offer some assistence in
such a case. HELPSYN and HELPINF serve to write some
informatory text, chosen through the argument. HELPSYN will
give the syntax of the command in guestion, while HELPINF
will give information on the nature and use of the different
command arguments. HELPEX will ask guestions to execute a
command in a way similar to that of Example 2.

The operation of the macro HELP, is as follows:

The beginner wanting to get to know the interactive program
on his first session at /tHé €érminal types HELP as response
to the promting character. The presentation and the
information on the different modes of the help offered is
then output. The mode will'&nitially be @. The beginner
gshould keep this valuefﬁhé/first time and will then get the
menu, i.e. a list of a 1" available commands, shown. He
then indicates his interest for one of the application
commands, and then, being in mode B, receives information on
the chosen command. In this way, a certain familiarity with
the program is gained.

52

After a while, the user will £feel ready to execute the
commands. Specifying mode 1 in the section 'MODES' will
cause HELP to execute the command chosen by the wuser in a
gquestion & answer type mode. Finally, the user will try his
wings by writing the complete command with arguments. Mode
2 will still give some help in that the proper command
syntax is displayed.

In' this way, the beginner will recieve support according to
his current state of training. Finally the user won't need
the detailed help the HELP function gives. The subfunctions
HELPSYN and HELPINF will however still be useful also for

the experienced user, and can of course be used separately.

Some parts of the macro HELP are worth further comments:

a) The DEFAULT statement in the beginning of the macro gives
the possibility of initialization the first time it is
called.

b) The repeated use of WRITE statements to output large
amounts of text is somewhat clumsy. In most
implementations, there will probably be an application
command available to output text files to a terminal. 1In
such a case, presentation text, the menu and similar
information would be stored on files separate from the
macro HELP. - .

c) Note the use of global yar%aples to allow the “mode and
state of the macro tg be 8aved so that at the next call,
the desired options are still in effect.

53

MACRO HELP
It

" pemonstration HELP function.
1}

DEFAULT HELP,STATE=0

IF HELP,.STATE EQ 1 GOTO ACTIVE
IF HELP.STATE EQ -1 GOTO MENU1

Initialize

LET HELP,STATE=1

LET HELP.MODE =0

n

LABEL PRESENT

WRITE 'PRESENTATION.'

WRITE 'This is a demonstration of some possible help’
WRITE 'function facilities. The application is the earlier’
WRITE 'linear algebra package.'’

WRITE 'The help function can work in different modes,'
WRITE 'selectable in the MODES section.'

WRITE 'The help function utilizes functions that also can'
WRITE 'be called upon directly. They are:'

WRITE ' '

WRITE 'HELPSYN CMND - Displays the command syntax for CMND'
WRITE 'HELPINF CMND - Displays information on command CMND'
WRITE 'HELPEX CMND - Ask gquestions to help execute CMND'
WRITE ' '

LABEL MODES

WRITE 'MODES.'

WRITE 'You may now choose the mode of this help function.'
WRITE ' ! ‘

WRITE '# - Obtain information only'

WRITE 'l - Obtain help to execute'

WRITE '2 - Obtain command syntax, execute by yourself’
WRITE '3 - Execute by yourself with no help’

WRITE ' L

LABEL CHOOSE

LET TMpP=HELP.MODE 3 .

WRITE ’'Choose mode by typing the appropriate integer.'
WRITE 'The current value/ik (' TMP '). You may accept'’
WRITE 'this with an empty line.’

READ ; TMP INT ‘
IF TMP LE § GOTO WRONG .
IF TMP GT 3 GOTO WRONG 7
LET HELP.MODE=TMP

GOTO MENU L7,
LABEL WRONG e

WRITE 'Your answer must be in the range #-3'
GOTO CHOOSE

n

LABEL MENU1

LET HELP.STATE=1

LABEL MENU

WRITE (FF) ' '

WRITE 'MENU.'

Il

e

:

54

WRITE 'The following facilities are available:’
WRITE ' '

WRITE 'MATRIX :'

WRITE 'LETME '

WRITE 'PRINT : Application commands'

WRITE 'MATOP !
WRITE 'EIGEN '
WRITE ' '

WRITE 'MODES Change help mode'’

WRITE 'PRESENT Obtain the presentation of help’
WRITE 'EXIT - Exit from the help function'
WRITE ' '

WRITE 'What is your interest?'

READ ANSWER NAME

IF ANSWER EQ MODES GOTO MODES

IF ANSWER EQ PRESENT GOTO PRESENT

IF ANSWER EQ EXIT GOTO EXIT

" Must be a request for an application command

" Act according to mode

IF HELP.MODE EQ 9@ GOTO INFO

IF HELP,.MODE EQ 1 GOTO XCT

IF HELP,MODE EQ 3 GOTC LEAVE

" Must be mode 2

HELPSYN ANSWER

LABEL LEAVE

WRITE 'Now you are in command mode.'

WRITE 'Return to HELP by typing RESUME,'

SUSPEND

GOTO MENU

H

LABEL INFO

HELPINF ANSWER

GOTO MENU

14

»e

1

LABEL XCT

HELPEX ANSWER T
GOTO MENU

13

LABEL ACTIVE Y
WRITE 'HELP is already active;”

WRITE 'Use RESUME to obtain more help.'
GOTO END ' , ;

LABEL EXIT ’
" HELP not active any more.
LET HELP.STATE=-1 v
LABEL END [fs
END 1o

!

Example 3a

MACRO HELPSYN CMND

GOTO CMND
WRITE 'There
GOTO EXIT
LABEL MATRIX

is no command with name ' CMND

WRITE 'MATRIX MNAME {D1,D2)'

WRITE ' Subcommands:'

WRITE ' ROW (I) V1 V2 ... VN
WRITE ! EXIT'

GOTO EXIT

LABEL LETME

WRITE 'LETME MNAME(I1,I2) = V!
GOT0O EXIT ‘

LABEL PRINT

WRITE 'PRINT MNAME'

GOTOD EXIT
LABEL MATOP
WRITE 'MATOP
GOTC EXIT
LABEL EIGEN
WRITE 'EIGEN
LABEL EXIT
END

Example 3b

MACRO HELPEX
GOTO CMND

WRITE 'Therxe
GOTO EXIT

LABEL HMATRIX
LABEL LETME
LABEL PRINT
LABEL MATOP
WRITE 'HELPX
GOTO EXIT

LABEL EIGEN

MNAME = EXPRESSION'

EVAL EVEC = MNAME'

CMND

is no command with name ' CMND

for ' CMND ' is not implemented’

P A
i

WRITE 'Name of eigenvalues?'
READ EVAL NAME !
WRITE 'Name of eigenvectors?"
READ EVEC NAME E
WRITE 'Name of matrix?'§«(‘L

READ A NAME

EIGEN EVAL EVEC = A

LABEL EXIT
END

Example 3c

55

56

MACRCO HELPINF CMND

GOTO CMND

WRITE 'There is no command with name ' CMND
GOTO EXIT

13

LABEL MATRIX

WRITE 'Declares a matrix. Values are assigned’
WRITE 'via subcommands.

GOTO EXIT

1]

LABEL LETME

WRITE 'Assigns a value to a matrix element'
GOTO EXIT

(]

LABEL PRINT

WRITE 'Outputs a matrix to the terminal’
GOTO EXIT

L1

LABEL MATOP

WRITE 'Evaluates matrix expressions'

GOTO EXIT

i1

LABEL EIGEN.

WRITE 'Computes eigenvalues and eigenvectors of
WRITE 'a sguare matrix'

GOTO EXIT
n

LABEL EXIT
END

Example 3d

57

6. ACKNOWLEDGEMENTS

Intrac as presented in this report is the fruit of many
year's evolution. It has been desgsigned as a common facility
to handle interaction in a number of programs developed at
our department. Many poeple have been involved in this
work.,

First of all, the programming of this, as we think, final
version has been done by Tommy Essebo and Tomas Schonthal,
based on the original FORTRAN version by Staffan Selander,

Secondly, the large gqroup of users of, and contributors to,
these interactive programs have formed a realistic
environment in wich our ideas have been tested. Naturally
they have had to endure errors and malfunctions. To a
significant extent, this group consists of our friends and
collegues, Not least due to our common head of department,
K-J Astrom, they all help to create an inspiring atmosphere
for wich we are grateful.

Finally, financial support from ITM (Institute of Applied
Mathematics) and STU (Board of Technical Developement) has
been recieved for many years, and is gratefully

e

acknowledged.

58

APPENDIX

1. Syntax notation

The following syﬁtax notation is used.

/ or (separates terms in a list from which one and
only one must be chosen)

{ 1 groups terms together

[1 groups terms together and denotes that the group
is optional

{ 1 denotes repetition one or more times

[] denotes repetition none or more times

It should be noted that the syntax is not complete in some
respects. It does not contain the definition of basic items
like <identifier> and <number>. Trivial production rules
such as <macro identifier> ::= <identifier> are omitted.
Items are sometimes underlined in the syntax., It is used to
indicate that an item could be.replaced by a variable with

e

the wvalue 'item'.

3 o
Example A A

<number> could formally be replaced by <number>/<variable>.
The notation also gives the information that the value of
the variable must be a 7ﬁh¢er.

A

i

59

2. Summary of Intrac-statements

MACRO <macro identifier>[<formal argument>/<delimiter>/
*
{termination marker>]

Begins a macro definition and creates a macro.

FORMAL {<formal argument>/<delimiter>/
*
<termination marker>}
Declares formal arguments in a macro definition and

when creating a macro.

END
Ends a macro and ends macro creation mode.
Deactivates suspended macros.

LET {<Variable>=}*{<number>{{+/—/*//}<number>]
/{+/=}<number>
/<identifier>[+<integer>]
/<delimiter>

/<unassigned variable?

Assigns (allocates) variables,

*
DEFAULT {<variable>=} <argument>
Assigns a variable if it is unassigned or does not

exist previously.

LABEL <label identifier>, ;. -

Defines a label.
.
GOTO <label identifier> !
Makes unconditionalﬁj%mp.

o
IF <argument> {EQ/NE/GE/LE/GT/LT} <argument>
GOTO <label identifier>

Makes conditional jump.

68

FOR <variable> = <number> TO <number> [STEP <number>]
Starts a loop.

NEXT <variable>
Ends a loop.

*
WRITE [([DIS/TP/LP] [FF/LF])] [<variable>/<string>]
Writes variables and text strings or displays currently
available variables.

READ { {<variable> {INT/REAL/NUM/NAME/DELIM/YESNO}} /
<termination marker> }*
Reads values for variables from the terminal

SUSPEND

Suspends the execution of a macro.

RESUME

Resumes the execution of a macro.

SWITCHE {EXEC/ECHO/LOG/TRACE} {ON/QOFF}
Modifies switches in Intrac.

FREE {{<global variab1e>}* / *.ﬁf}
Deallocates global variables.
o
STOP g

Stops the execution of the program.

