
LUND UNIVERSITY

PO Box 117
221 00 Lund
+46 46-222 00 00

Execution-Time Properties of a Hybrid Controller

Persson, Patrik; Cervin, Anton; Eker, Johan

2000

Document Version:
Publisher's PDF, also known as Version of record

Link to publication

Citation for published version (APA):
Persson, P., Cervin, A., & Eker, J. (2000). Execution-Time Properties of a Hybrid Controller. (Technical Reports
TFRT-7591). Department of Automatic Control, Lund Institute of Technology (LTH).

Total number of authors:
3

General rights
Unless other specific re-use rights are stated the following general rights apply:
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors
and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the
legal requirements associated with these rights.
 • Users may download and print one copy of any publication from the public portal for the purpose of private study
or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal

Read more about Creative commons licenses: https://creativecommons.org/licenses/
Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove
access to the work immediately and investigate your claim.

https://portal.research.lu.se/en/publications/0c7df8dd-3b26-48ad-8e2d-ef2174d25553


ISSN 0280–5316
ISRN LUTFD2/TFRT--7591--SE

Execution-Time Properties of a
Hybrid Controller

Patrik Persson
Anton Cervin

Johan Eker

Department of Automatic Control
Lund Institute of Technology

April 2000



Department of Automatic Control
Lund Institute of Technology
Box 118
SE-221 00 Lund Sweden

Document name
INTERNAL REPORT

Date of issue
April 2000

Document Number
ISRN LUTFD2/TFRT--7591--SE

Author(s)

Patrik Persson, Anton Cervin, Johan Eker
Supervisor

Sponsoring organisation

Title and subtitle
Execution-Time Properties of a Hybrid Controller

Abstract

We are interested in gaining more knowledge about the execution-time requirements of real-time control
tasks, and this paper presents a system for gathering statistics of the execution times of real-time tasks.
The system allows real-time code to be instrumented in order to gather, analyze, and present execution-
time statistics. It has been used to instrument an existing hybrid controller to gather execution-time
statistics. These statistics indicate that the worst-case execution times of the controller occur in conjunc-
tion with reference and mode changes, and that a scheduling based on that worst-case execution time
leads to poor CPU utilization.

Key words

Classification system and/or index terms (if any)

Supplementary bibliographical information

ISSN and key title
0280–5316

ISBN

Language
English

Number of pages
9

Security classification

Recipient’s notes

The report may be ordered from the Department of Automatic Control or borrowed through:
University Library 2, Box 3, SE-221 00 Lund, Sweden
Fax +46 46 222 44 22 E-mail ub2@ub2.lu.se



Execution-Time Properties of a
Hybrid Controller

Patrik Persson
Department of Computer Science

Lund Institute of Technology
Box 118, 221 00 Lund, Sweden

patrik@cs.lth.se

Anton Cervin, Johan Eker
Department of Automatic Control

Lund Institute of Technology
Box 118, 221 00 Lund, Sweden

{anton,johane}@control.lth.se

Abstract

We are interested in gaining more knowledge about the execution-time re-
quirements of real-time control tasks, and this paper presents a system for
gathering statistics of the execution times of real-time tasks. The system
allows real-time code to be instrumented in order to gather, analyze, and
present execution-time statistics. It has been used to instrument an ex-
isting hybrid controller to gather execution-time statistics. These statistics
indicate that the worst-case execution times of the controller occur in con-
junction with reference and mode changes, and that a scheduling based on
that worst-case execution time leads to poor CPU utilization.

1. Background

Present real-time scheduling strategies are typically based on the assumption
that the execution-time demands of a process remain constant over time. This
may be true for some applications, but not all. Hybrid controllers, for exam-
ple, switch between PID control and other (potentially time-consuming) control
algorithms. The execution-time demands depend on the mode currently active.

We have developed a tool for measuring the execution times of real-time tasks.
The tool is geared towards examining the distribution of these times, rather than
the actual times themselves. The software-based measuring technique implies
a certain small (constant) run-time overhead that affects the absolute values of
time measurements, but not the distribution of them.

We have used this tool to examine the timing behavior, that is, the execution
times and the distribution of those times, of an existing hybrid controller. We
have also observed in which situations the worst-case execution time occurs. Such
information can be useful when a scheduling strategy is chosen, in particular if
this worst case occurs relatively infrequently [Eker, 1999].

Related Work
Profiling of programs, that is, measuring the execution time and execution fre-
quency of individual part of programs, is quite common, both in real-time systems

1



and elsewhere. However, such techniques generally do not address of distribu-
tions of execution times.

Sarkar [Sarkar, 1989] shows how to use profiling to determine statistical
measures such as mean and variance of execution times, but did not pay any
particular attention to the worst case as done in this work. Mueller and We-
gener [Mueller and Wegener, 1998] describe a real-time system testing technique
called evolutionary testing, where the input to the system is automatically and
iteratively adjusted to seek the worst-case behavior. However, they do not discuss
in which situations the worst-case behavior occurs.

Outline
The remainder of this report is structured as follows. In Section 2, we present
the hybrid controller and the controlled process. In Section 3, the execution-time
logging system is presented and the necessary real-time kernel modifications
discussed. In Section 4 the measurements of an existing hybrid controller are
presented. Section 5 concludes the paper.

2. A Hybrid Controller

A hybrid controller for the double tank process shown in Figure 1 is described.
The controller was designed and implemented on a real process in [Eker and

Pump

Figure 1 The double tank process.

Malmborg, 1999]. The goal is to control the level of the lower tank to a desired
set-point. The measurement signals are the levels of both tanks, and the control
signal is the inflow to the upper tank. Choosing the state variables x1 for the
upper tank level and x2 for the lower tank level, we get the nonlinear state-space
description

ẋ =
[
−α√x1 + βu

α√x1 −α√x2

]
. (1)

The process constants α and β depend on the cross-sections of the tanks, the
outlet areas, and the capacity of the pump. The limitations of the pump give that
the control signal u must lie in the interval [0, 1].

2



Traditionally there is a trade-off in design objectives when choosing controller
parameters. It is usually hard to achieve the desired step change response and at
the same time get the wanted steady-state behavior. An example of contradictory
design criteria is tuning a PID controller to achieve both fast response to set-
point changes, fast disturbance rejection, and no or little overshoot. In process
control it is common practice to use PI control for steady state regulation and to
use manual control for large set-point changes.

One solution to this problem is to use a hybrid controller consisting of two
sub-controllers, one PID controller and one time-optimal controller, together with
a supervisory switching scheme. The time-optimal controller is used when the
states are far away from the reference point. Coming closer, the PID controller
will automatically be switched in to replace the time optimal controller. At each
different set-point the controller is redesigned, keeping the same structure but
using set-point dependent parameters. Figure 2 describes the structure of the
hybrid controller as a Grafcet [David and Alla, 1992] with four steps.

Init

NewRef

Ref

not NewRef

Opt

NewRef

OnTarget or Off

PID

NewRef

Off

NewControllers

OptController

PIDController

Figure 2 The Grafcet diagram for the hybrid controller.

Initially the controller is in step Init, i.e. the controller is turned off. Opt is
the step where the time optimal controller is active and PID is the step for the
PID controller. The Ref step is an intermediary step used for calculating new
controller parameters before switching to a new time optimal controller.

The sub-controller designs are based on a linearized version of Equation (1).

ẋ =
[
−a 0

a −a

]
x +

[
b

0

]
u (2)

The new process parameters a and b are functions of α , β and the linearization
level.

3



Controller Implementation
The hybrid controller for the double tank system was implemented in PAL for
use in the PÅLSJÖ real-time environment.

PAL [Blomdell, 1997] is a dedicated control language with support for hybrid
algorithms. Furthermore, the language supports data-types such as polynomials
and matrices, which are extensively used in control theory. PAL has a run-time
environment, PÅLSJÖ [Eker and Blomdell, 1997], that is well suited for experi-
ments with hybrid control. PÅLSJÖ was developed to meet the needs for a software
environment for dynamically configurable embedded control systems. PÅLSJÖ fea-
tures include rapid prototyping, code re-usability, expandability, portability, and
efficiency. For a more exhaustive description of PAL and PÅLSJÖ, see [Eker, 1997].

The PÅLSJÖ system consists of two main parts; a compiler and a framework.
The compiler translates PAL code into C++ code that fits into the framework.
The framework has classes for real-time scheduling, network interface and user
interaction. The control algorithm coding is made off-line and the system con-
figuration is made on-line. The system may also be reconfigured on-line without
stopping the system.

PÅLSJÖ is currently available for Motorola 68000 VME, Power PC VME and
Windows NT. PÅLSJÖ is implemented on top of the STORK real-time kernel [An-
dersson and Blomdell, 1991]. STORK is a public domain real-time kernel avail-
able for Windows NT, Motorola 68000, Motorola Power PC and Sun Solaris 2.x.
The real-time performance achieved on a Motorola 68040 are sampling intervals
of around 5 milliseconds. The Power PC version is about 10-100 times faster.

3. Gathering Execution-Time Statistics

IMPORT TimeLog;
(* PROCESS *) PROCEDURE SomeTask;
VAR

log : TimeLog.TimeLog;
BEGIN

TimeLog.New(log, 1000, "log_of_SomeTask");
...
LOOP

TimeLog.Run(log); (* A *)
(* Real-time stuff goes here... *)
TimeLog.Stop(log); (* B *)

END;
END SomeTask;

Figure 3 Process instrumentation example

The tool for measuring execution times is implemented as an addition to the
existing real-time kernel. As such, it requires certain (trivial) modifications of
that kernel. The TimeLog module allows user processes to be instrumented for
execution-time measurements in a straightforward and flexible manner. An ex-
ample of such instrumentation is given in Figure 3. In that example, statistics
will be made for the time to execute the code between point A and point B.

Multiple code sections of multiple processes may be instrumented in this way.
The gathered statistics may be viewed at any time using a web browser, since

4



an embedded web server is integrated with the time measurement system. The
statistics may also be displayed on standard output by calling special procedures.

Note that although the TimeLog module, other supporting modules, and the
real-time kernel are implemented in Modula-2, the system can easily be used to
gather statistics from C or C++ code using the m2c Modula-2-to-C translator.
Modula-2 procedures are mapped to C functions in a straightforward way.

stopped running suspended

resume / -

suspend / -

stop /
a := a + (now() - t); log(a);

t := now(); a := 0; a := a + (now() - t);
run /

resume /
t := now();

suspend /

Figure 4 TimeLog state machine. The log is initially in the state stopped.

Time logs are modeled as Mealy state machines. The state diagram in Fig-
ure 4 shows the three states and the transitions between them. The transitions
are written in the form e / s, where e is the event that triggers the transition
and s is one or more statements executed upon the transition. Transitions drawn
with solid arrows are triggered by calls from the probed process, and transitions
drawn with dotted arrows are trigged by the real-time kernel.

The events have the following meanings:

• The run and stop events are triggered by the probed process. The run event
indicates that a new time measurement is commenced. The stop event in-
dicates that the measurement is completed and should be incorporated into
the statistics. (These events correspond to procedures Run(...) and Stop(...)
called by the probed process.)

• The suspend and resume events are triggered by the real-time kernel. The
suspend event indicates that the associated process leaves the Running
state. The resume event indicates that the associated process enters the
Running state. (These events are trigged for all existing time logs together
when the kernel calls the suspendAll and resumeAll procedures.)

The identifier a denotes accumulated execution time since the latest run
event. The identifier t denotes the time (relative to some system start time) of
the last transition to the running state so far. The function now() returns the
current time (again, relative to system start time). The procedure log(a) adds a
to the set of measured execution times.

Real-Time Kernel Modifications
The real-time kernel must be modified to inform any time logs of process switches
(that is, the kernel must trigger the suspend and resume events). To minimize
interference with the development and porting of the kernel, modifications of the
kernel are kept few, short, and simple.

Whenever a context switch occurs, any time logs in the currently executing
process needs to be informed. Immediately before each context switch, all time

5



logs of the current process are suspended. Immediately after each context switch,
all time logs of the new process are resumed.

In our implementation (targeted towards the PowerPC platform) the modi-
fications to the platform-dependent part of the kernel were quite modest. Four
procedure calls and two module import statements were added.

Measuring Method
To examine the execution time of the hybrid controller, two different approaches
were taken for gathering statistics:

Controller level measurements: execution-time measurements for the entire
controller. Different control algorithms may be executed in each execution
depending on controller mode.

Mode level measurements: execution-time measurements for the specific
modes of the controller.

The controller level measurements concern the execution time of the entire
controller. Although this is an interesting entity, it is based on the execution
of not only the control algorithm, but also some other code (e.g., the run-time
environment), which can make the numbers hard to interpret. The mode level
measurements, on the other hand, concern the execution time of the actual al-
gorithms.

Data Presentation
The PÅLSJÖ user interface was modified to let the operator view the statistics
gathered so far, and to reset the statistics; that is, dispose of previously gathered
data. A web interface was also added to allow graphical presentation of data, see
Figure 5.

4. Results

The controller was observed in both stationary mode and in non-stationary mode
(after a significant reference change).

For the controller level measurements, the PÅLSJÖ environment was instru-
mented to measure the execution time of the forward sweep (calculating output
signals) and backward sweep (updating controller state) of the controller execu-
tion.

For the algorithm level measurements, the C++ code generated by PÅLSJÖ

was instrumented to measure the specific algorithms. The hybrid controller in
question consists of three different algorithms: Reference (executed upon refer-
ence changes), Optimal (executed when the controlled process is not stationary),
and PID (executed when the controlled process is stationary). Statistics were
made of each iteration of each of these algorithms.

Mode Level Measurements
The mode level analysis provides statistics of the execution times of the individ-
ual mode algorithms, and an excerpt from the time logs is presented in Table 1.
The table in divided in three parts, each representing one of the controller modes
PID, Optimal, and Reference. Measurements were made over a period of time
where several reference changes (and thus mode changes) were made.

6



Figure 5 The web interface.

The results show that the execution times differ substantially between modes.
The PID algorithm was executed most frequently and had the shortest execution
time (mean 2.2µs, max 9.5µs). The Reference algorithm was only executed 13
times but had the longest execution time (mean 14µs, max 22µs). The Optimal
algorithm was somewhere in-between in terms of both the number of iterations
and the execution time.

This data also shows that execution times within modes vary. The longest
observed times are substantially longer than the average times for both the PID
and the Optimal modes.

Controller Level Measurements
Tables 3 and 2 show measurements of the execution time of the controller’s
forward and backward sweeps in stationary mode and non-stationary mode.

The forward sweep’s longest observed execution time increases from 12µs to
52µs (that is, by a factor larger than four) when the reference changes. This
seems to confirm that mode changes are expensive in terms of execution time;
however, it is hard to compare the execution times of the actual algorithms on

7



PID mode Optimal mode Reference mode
min 2.1µs, min 3.7µs, min 9.4µs,

max 9.5µs, max 14µs, max 22µs,

average 2.2µs average 3.8µs average 14µs

Interval (µs) N Interval (µs) N Interval (µs) N

2.09–2.50 9010 3.70–4.25 7136 9.42–10.1 1

2.50–2.91 12 4.25–4.79 1 10.1–10.8 0

2.91–3.32 0 4.79–5.34 0 10.8–11.5 0

3.32–3.73 4 5.34–5.49 4 11.5–12.3 0

3.73–4.14 4 5.89–6.44 0 12.3–13.0 6

4.14–4.55 2 6.44–6.99 3 13.0–13.7 1

4.55–4.96 6 6.99–7.54 1 13.7–14.4 1

4.96–5.37 0 7.54–8.09 0 14.4–15.1 1

5.37–5.78 0 8.09–8.64 1 15.1–15.8 2

5.78–6.19 0 8.64–9.19 2 15.8–16.5 0

6.19–6.60 0 9.19–9.74 2 16.5–17.2 0

6.60–7.01 0 9.74–10.3 0 17.2–17.9 0

7.01–7.42 0 10.3–10.8 0 17.9–18.6 0

7.42–7.83 0 10.8–11.4 5 18.6–19.3 0

7.83–8.25 0 11.4–11.9 2 19.3–20.0 0

8.25–8.66 0 11.9–12.5 0 20.0–20.8 0

8.66–9.07 1 12.5–13.0 0 20.8–21.5 0

9.07–9.48 1 13.0–13.6 1 21.5–22.2 1

Table 1 Mode level measurements of the hybrid controller. N denotes the number of
executions with an execution time in the corresponding interval.

Min Max Average

Stationary mode 8.5µs 16µs 8.7µs

Non-stationary mode 8.5µs 18µs 8.7µs

Table 2 Controller level measurements of the hybrid controller’s backward sweep.

controller level (as discussed in Section 3).
Although mode changes require extra execution time, these requirements are

transient. In our measurements, the long execution times (in the 50µs range)
appeared only once per reference change.

5. Conclusions

Many practical control applications exhibit different execution-time demands at
different times. Measurements made for a hybrid controller controlling a dou-

8



Min Max Average

Stationary mode 5.0µs 12µs 5.2µs

Non-stationary mode 5.0µs 52µs 5.9µs

Table 3 Controller level measurements of the hybrid controller’s forward sweep.

ble tank process show that real-time control tasks require substantially more
execution time during mode changes than during stationary control; in our mea-
surements, the increase was by a factor larger than four.

The measurements also show that execution times vary between control al-
gorithms of different controller modes. The most expensive algorithm was ex-
ecuted relatively infrequently; consequently, a task scheduling based solely on
the worst-case execution time of the most time-consuming control mode results
in very poor utilization of CPU resources.

6. References

Andersson, L. and A. Blomdell (1991): “A real-time programming environment
and a real-time kernel.” In Asplund, Ed., National Swedish Symposium on
Real-Time Systems, Technical Report No 30 1991-06-21. Dept. of Computer
Systems, Uppsala University, Uppsala, Sweden.

Blomdell, A. (1997): “A real time control language for the Pålsjö environment.”
Master thesis ISRN LUTFD2/TFRT--5578--SE. Department of Automatic
Control, Lund Institute of Technology, Lund, Sweden.

David, R. and H. Alla (1992): Petri Nets and Grafcet: Tools for modelling discrete
events systems. Prentice-Hall.

Eker, J. (1997): A Framework for Dynamically Configurable Embedded Con-
trollers. Lic Tech thesis ISRN LUTFD2/TFRT--3218--SE, Department of Au-
tomatic Control, Lund Institute of Technology, Lund, Sweden.

Eker, J. (1999): Flexible Embedded Control Systems. Design and Implementa-
tion. PhD thesis ISRN LUTFD2/TFRT--1055--SE, Department of Automatic
Control, Lund Institute of Technology, Lund, Sweden.

Eker, J. and A. Blomdell (1997): “A structured interactive approach to embedded
control.” In Preprints SNART ’97, Lund, Sweden.

Eker, J. and J. Malmborg (1999): “Design and implementation of a hybrid control
strategy.” IEEE Control Systems Magazine, 19:4.

Mueller, F. and J. Wegener (1998): “A comparison of static analysis and
evolutionary testing for the verification of timing constraints.” In Proceedings
of the Fourth IEEE Real-Time Technology and Applications Symposium
(RTAS’98). Denver, Colorado.

Sarkar, V. (1989): “Determining average program execution times and their
variance.” In Proceedings of the ACM SIGPLAN Conference on Programming
Language and Design (PLDI’89). Portland, Oregon.

9


