

LUND UNIVERSITY

The activity gradient in a sample in the sorption microcalorimeter SORP4 : Part 1, two models for the activity difference over the sample

Wadsö, Lars

1998

Link to publication

Citation for published version (APA):

Wadsö, L. (1998). The activity gradient in a sample in the sorption microcalorimeter SORP4 : Part 1, two models for the activity difference over the sample. (Report TVBM (Intern 7000-rapport); Vol. 7128). Division of Building Materials, LTH, Lund University.

Total number of authors: 1

General rights

Unless other specific re-use rights are stated the following general rights apply:

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. • Users may download and print one copy of any publication from the public portal for the purpose of private study

or research.

- You may not further distribute the material or use it for any profit-making activity or commercial gain
 You may freely distribute the URL identifying the publication in the public portal

Read more about Creative commons licenses: https://creativecommons.org/licenses/

Take down policy

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

LUND UNIVERSITY

PO Box 117 221 00 Lund +46 46-222 00 00

LUND UNIVERSITY LUND INSTITUTE OF TECHNOLOGY Division of Building Materials

The activity gradient in a sample in the sorption microcalorimeter SORP4. Part 1: Two models for the activity difference over the sample

Lars Wadsö

Rapport TVBM-7128 Lund, 1998

LUND UNIVERSITY LUND INSTITUTE OF TECHNOLOGY Division of Building Materials

The activity gradient in a sample in the sorption microcalorimeter SORP4. Part 1: Two models for the activity difference over the sample

Lars Wadsö

April 6, 1998

Rapport TVBM-7128 Lund, 1998

1 Nomenclature

The figures given refer to the SORP4 instumentation with water vapor at 25° C and 1 atm.

activity of vapor $(= p/p_{sat})$	1
difference in activity over the sample	1
exposed surface area of sample $(130 \cdot 10^{-6})$	m^2
vapor concentration in sample	$ m g/m^3$
vapor capacity of cell in simulation	
diffusion coefficient in air with p as potential $(182 \cdot 10^{-9})$	g/m/s/Pa
diffusivity in sample with c as potential	m^2/s
mass flow rate	g/s
flux in vessel when activity difference is $1.0 (400 \cdot 10^{-9})$	g/s
sample thickness	\mathbf{m}
vapor conductance between cells in simulation	g/s
dimensionless factor $(=h\alpha/D_c)$	1
dry mass of sample	g
number of simulation cells in sample	1
vapor pressure	Pa
saturation vapor pressure (3160)	\mathbf{Pa}
flow resistance $(1/k)$	s/g
time	S
vapor content of air (23.0)	$ m g/m^3$
volume	m^3
mass transfer coefficient	m/s
ratio of diffusion coefficients D_p in sample and in air	1
dimensionless length	1
dimensionless slope of isotherm $(\partial c/\rho/\partial a)$	1
density of dry sample	$ m g/m^3$
dimensionless time	1
	activity of vapor $(= p/p_{sat})$ difference in activity over the sample exposed surface area of sample $(130 \cdot 10^{-6})$ vapor concentration in sample vapor capacity of cell in simulation diffusion coefficient in air with p as potential $(182 \cdot 10^{-9})$ diffusivity in sample with c as potential mass flow rate flux in vessel when activity difference is $1.0 (400 \cdot 10^{-9})$ sample thickness vapor conductance between cells in simulation dimensionless factor $(=h\alpha/D_c)$ dry mass of sample number of simulation cells in sample vapor pressure saturation vapor pressure (3160) flow resistance $(1/k)$ time vapor content of air (23.0) volume mass transfer coefficient ratio of diffusion coefficients D_p in sample and in air dimensionless length dimensionless slope of isotherm $(\partial c/\rho/\partial a)$ density of dry sample dimensionless time

2 Introduction

In the SORP4 sorption microcalorimeter a sample is scanned in vapor concentration from low to high values. During this process there will be a gradient through the sample. This report describes two ways of finding out how large this gradient is (expressed as difference in activity (Δa) between top and bottom of the sample). The reader is referred to Wadsö and Wadsö (1996, 1997) for a description of the experimental technique.

3 Analytical solution

The arrangement in the SORP4 vessel can be seen as a vapor source, a mass transfer coefficient (the gas phase in the tube), and a sample. The concentration or activity as a function of time and position in such a system can be solved analytically. There are three differences between such a solution and the actual case:

- 1. The vapor capacity of the gas phase is not taken into account. As the vessel is modelled as a flow resistance without vapor capacity the solution will give a too rapid sorption at the beginning of a measurement (cf. Appendix A).
- 2. The three dimensional geometry of the vessel is cannot be taken into account.
- 3. The sorption isotherm must be linear in the analytical solution. The slope of the sorption isotherm is $\xi \rho$, i.e. the activity a = 1 corresponds to a concentration $\xi \rho$ g/m³.

The density of a sample in SORP4 may be found from the following relation:

$$\rho = \frac{M}{A_{\rm s}h} \tag{1}$$

We introduce a mass transfer coefficient α of the gas phase as:

$$\frac{F}{A_{\rm s}} = \alpha \Delta c \tag{2}$$

The flow rate per unit area is α times the concentration difference over the gas phase (i.e. between the exposed surface of the sample and the water source; the concentration of the latter is taken as $\xi \rho$). For the present case α may be found from the following equation:

$$\frac{F_{\max}}{A_{\rm s}} = \alpha \xi \rho \tag{3}$$

Here, both flow rate and concentration difference is taken at the conditions of maximum flow rate. Note that $\xi\rho$ is the concentration difference corresponding to an activity difference of 1.0, i.e. the situation in which $F_{\rm max}$ was measured. The exposed sample surface $(A_{\rm s})$ must be introduced because α in Eq. 3 is defined per unit area perpendicular to the flow (the unit m/s for α is actually an abbreviation of $g/s/m^2/(g/m^3)$)

The ratio of the flow resistance of the sample and the flow resistance of the gas phase is:

$$L = \frac{h\alpha}{D_c} \tag{4}$$

Crank (1975) gives the following solution (in my notations) for the concentration in a plane sheet $(-h \le x \le h)$ with a mass transfer coefficient α on its surfaces:

$$\frac{c(\lambda,\tau)}{\xi} = 1 - \sum_{n=1}^{\infty} \frac{2L\cos(\beta_n\lambda)\exp(-\beta_n^2\tau)}{(\beta_n^2 + L^2 + L)\cos\beta_n}$$
(5)

Here

$$\lambda = x/h \tag{6}$$

$$\tau = D_c t / h^2 \tag{7}$$

and the β_n s are the positive roots of

$$\beta \tan \beta = L \tag{8}$$

The left hand side of Eq. 5 has been simplified from the equation given by Crank because in our case the final concentration after infinite time equals ξ and the initial concentration is 0. The exposed surface is at x = h ($\lambda = 1$) and the unexposed bottom surface is at x = 0 ($\lambda = 0$)

A problem in applying this solution to the present case is that we have to express the transport properties of both the sample and the gas phase with concentration (in the sample) as potential. Equation 3 takes care of this problem for the gas phase. For the sample diffusivity the following relation is used:

$$D_c = \delta D_p \frac{\partial p}{\partial a} \frac{\partial a}{\partial c} = \delta D_p p_{\text{sat}} \frac{1}{\rho \xi}$$
(9)

Here, the transport property of the sample is expressed as a hinderance factor δ (the ratio of the flow through a sample and through still air under the same vapor pressure gradient).

To find the size of L we use Eqs. 4, 3 and 9 and write:

$$L = \frac{h\alpha}{D_c} = \frac{hF_{\max}\rho\xi}{A_s\rho\xi\delta D_p p_{\text{sat}}\rho\xi} = K\frac{h}{\delta}$$
(10)

$$K = \frac{F_{\max}}{A_s D_p p_{\text{sat}}} \tag{11}$$

In the present case

 $K = 5.345 \text{ m}^{-1}$ (12) $0.5 \text{ mm} \leq h \leq 3 \text{ mm}$ $0.1 \leq \delta \leq 1.0$

This gives the following bounds for L:

$$0.003 \le L \le 0.2$$
 (13)

It is seen that L is quite small, i.e. the flow resistance in the gas phase is high compared to the flow resistance in the sample, and this is the way that the SORP4 instrument is to work; with the gas phase governing the rate of sorption.

As a measure of the activity gradient over the sample we take the difference in activity $a(\lambda, \tau)$ between the sample surface $(\lambda = 1)$ and the bottom $(\lambda = 0)$ of the sample:

$$\Delta a(\tau) = a(1,\tau) - a(0,\tau)$$
(14)

As $a = c/\rho/\xi$ Eq. 5 may be written as:

$$\Delta a(\tau) = 2L \sum_{n=1}^{\infty} \frac{(\cos\beta_n - \cos 0) \exp(-\beta_n^2 \tau)}{(\beta_n^2 + L^2 + L) \cos\beta_n} \tag{15}$$

For $\tau > 0.3$ the terms for $n \ge 3$ will be very small and may be safely neglected (the worst case is for n=3, $\tau=0.3$ and L=0.2 when $\exp(-\beta_n^2 \tau) < 10^{-5}$ and the denominator $(\beta_3^2 + L^2 + L) \cos \beta_3 > 40$).

The β s are troublesome to work with but must be found with more than three correct decimals for the solutions to be good. With only two terms the solution may be written as:

$$\Delta a = 2L \left[\frac{(\cos\beta_2 - 1)\exp(-\beta_2^2 \tau)}{(\beta_2^2 + L^2 + L)\cos\beta_2} + \frac{(\cos\beta_1 - 1)\exp(-\beta_1^2 \tau)}{(\beta_1^2 + L^2 + L)\cos\beta_1} \right]$$
(16)

This equation gives the difference in activity over the sample as a function of time for different values of L.

4 Computer simulation

I have also modelled the SORP4 vessel and the sample as a one dimensional series of vapor capacitances (C) connected by conductances (k). Each capacitance cell has an activity (a) and between capacitances there are vapor flows (F). For the cells in the sample the concentration can be calculated from the activity by the sorption isotherm (which is a piece-wise linear function in our simulation).

There are two differences between such the computer simulation and the actual case:

- 1. The three dimensional geometry of the vessel is simplified in the one dimensional solution.
- 2. The problem is discretized. This is no problem, however, as the discretization can be made very fine.

Figure 1 shows the model. The gas phase is modelled as five capacitances and the sample is modelled as n capacitances. The numbering of the capacitances and the conductances is given in Fig. 1 for the case when n is 4. The capacitance C_{n+7} (the last capacitance C_{11} in Fig. 1) is a dummy capacitance to speed up the simulation (as the conductance $k_{n+6}=0$ there will never be any flow to C_{n+7}). There is also a capacitance C_1 which has a similar purpose: its activity is $a_1=1.0$ at the start of the simulation, but as the simulation program never changes its value it will act as a constant activity vapor source.

The following equations together with Fig. 1 give the simulation procedure:

$$F_i = k_i (a_{i+1} - a_i) \tag{17}$$

$$\Delta a_i = \frac{F_i - F_{i+1}}{C_i} \Delta t \tag{18}$$

Here, Δt is the time step in the simulation which is made with the forward difference method. For each time step the flows F between the cells are first calculated; then the resulting changes in the activities Δa are computed. The time step must be chosen according to the following criterion to get a stable solution (Eftring 1990):

$$\Delta t \le \min(\frac{C_i}{k_{i-1} + k_i}) \tag{19}$$

Figure 1: The simulation model with four sample cells (n=4). The boundary between the gas phase and the sample is shown as a thick vertical line.

To calculate the conductances the following general relations were used:

semple:
$$k = \frac{\lambda/n}{\delta D}$$
 (20)
gample: $k = \frac{\lambda/n}{\delta D}$

For the gas phase a steady-state computer simulation was used to find the Δa :s over five quite arbitrarily chosen parts of this phase. For the sample the Eq. 20 gives the conductivity of a sample cell of thickness h/n and surface area. As a start of a sample cell of thickness h/n and surface area.

The capacitances to be used in the simulation were calculated with:

$$\begin{array}{ll} \text{gas phase:} & C = \xi \rho V \\ \text{gas phase:} & C = v_{\text{sat}} V \end{array} \tag{21} \end{array}$$

The capacities are calculated as the vapor content of a cell when a=1. The tull calculation procedure is given in some detail below:

1. A steady-state computer simulation was made of the activity gradients within an empty vessel with a = 1 at the bottom (vapor source) and a = 0 at the top (vapor sink). The vessel was then divided into five parts as shown in Fig. 2a. The values of a^{sim} (explained in Fig. 2), V_s and V_b were:

$$a_{\rm c01.0}^{\rm cm} = 0.105$$

 $M_{\rm a} = 0.72 \cdot 10^{-6} \, {\rm m}^3$
 $W_{\rm b} = 1.43 \cdot 10^{-6} \, {\rm m}^3$

- 2. To simplify the calculation it was made with resistances R (the inverses of k). Figure 2 shows how the vessel is divided into five parts, and how resistances (R_a :s and R_b :s) connect the center of each cell with a boundary between two cells. It should be noted that the tube part of the vessel is divided into four equal parts so that the eight R_a :s are equal and that the mid-point of the top part of the vessel (the chamber) is chosen so that the resistances from the mid-point to each boundary are equal.
- 3. The simulation gave that $a^{\text{sim}} = 0.105$ (64 mm from the bottom of the tube, cf. caption to Fig. 2). The resistance R_a is then calculated as

$$R_{\rm a} = \frac{1.00 - a^{\rm sim}}{8F^{\rm max}} \tag{22}$$

4. The resistance $R_{\rm b}$ may be calculated in a similar fashion:

$$R_{\rm b} = \frac{a^{\rm sim} - 0.00}{2F^{\rm max}} \tag{23}$$

5. The conductances are then calculated according to the following equations:

$$k_{1} = \frac{1}{R_{a}}$$

$$k_{i} = \frac{1}{2R_{a}} \quad \text{for } 2 \le i \le 4$$

$$k_{5} = \frac{1}{R_{a} + R_{b}}$$

$$k_{6} = \frac{1}{R_{b} + R_{c}} \quad (24)$$

where $R_{\rm c}$ is calculated below.

6. The conductances in the sample are calculated in a similar fashion as those in the gas phase. The resistance R_c is defined as (cf. Fig 3b):

$$R_c = \frac{h}{2n\delta D_p p_{\rm sat} A_{\rm s}} \tag{25}$$

The conductances are then calculated as:

$$k_i = \frac{1}{2R_c} \quad \text{for } 7 \le i \le (5+n)$$
 (26)

Figure 2: The simulation model of the gas phase. a. The five volumes corresponding to the five capacitances in the gas phase. b. The conductancies in the gas phase. c. The resistances in the gas phase used to calculate the conductancies. d. The iso-activity lines in the gas phase when there is an activity potential of 1.00 over the vessel. The arrow marks the boundary between two of the volumes (cf. Fig. 2a) where the activity is 0.105.

Figure 3: The simulation model of the sample. a. The conductances. b. The resistance Rc used in the calculation of the conductance k6.

7. The capacities in the vapor phase are calculated as:

$$C_{i} = v_{\text{sat}} V_{\text{a}} \quad \text{for } 2 \le i \le 5$$

$$C_{6} = v_{\text{sat}} V_{\text{b}} \tag{27}$$

8. The capacities in the sample were calculated as:

$$C_i = \xi \rho \frac{h}{n} A_s \text{ for } 7 \le i \le (6+n)$$
(28)

The simulations were made with a MATLAB program sorp4sim.m that is given in Appendix B.

The activity difference Δa was calculated by multiplying the activity difference between the top and bottom cell of the sample by $\frac{n}{n-1}$ thus correcting for the fact that the activities calculated by the simulation are in the cell centers, not at the boundaries. This correction is very good for the type of activity gradient one will get in a sample in SORP4.

5 Results from calculations and simulations

Figure 4 gives the results of analytical calculations of Δa as a function of dimensionless time τ for different values of L within the bounds given in Eq.13. In Appendix B are five examples of simulations and calculations of

 Δa for the same input values. The agreement is very good, indicating that the two different ways of solving the problem have been applied successfully. All simulations were made with five sample cells. Other tests have also shown that the simulation gives correct values of $a(\lambda, \tau)$.

6 References

Crank, J. (1975) The Mathematics of Diffusion, Oxford University Press

Eftring, B. (1990) Numerical calculation of thermal processes (in Swedish), Swedish Building Research Council, Stockholm, R81:1990

Wadsö, I. and Wadsö, L. (1996), Thermochim. Acta, 273 277-

Wadsö, I. and Wadsö, L. (1997), J. Thermal Anal., 49 1045-1052

Figure 4: The analytical solution for the activity difference as a function of dimensionless time and L. The bottom curve is for L=0.003; the others are for (from bottom to top) L=0.01 to 0.2 in steps of 0.01.

7 Appendix A: Five comparisons between the two solutions

Appendix A contain the results of five comparisons of results from the analytical solution and the computer model. In all cases the agreement between the two methods is very good when τ is greater than 0.5.

T. t.

solid line = computer simulation, - - - analytical solution

F. +2

F. +3

solid line = computer simulation, - - - analytical solution 0.1 0.09 80.0 0.07 0.06 ₩ 0.05 h=2 mm rho=0.5 g/cm2 0.04 delta=0.05 sample mass=130 mg 0.03 max tau≃11.11 h L=0.214 0.02 0.01 0 \ 1.6 1.8 1.2 1.4 2 0.2 0.4 0.6 0.8 1 tau

Ti- 45

8 Appendix B: The simulation program and other programs used in this study

%	6 sorp4sim - a one-dimensional simulation of			
%	% the vapor transport and sorption in SORP4			
%	%			
%]	This MATLAB 4 program sim	ulates a measurement with the sorption microcalorimeter		
% \$	SORP4 (not the sorption enthal	pies). The following input is asked for by the program:		
%	h	height of the sample (mm)		
%	rho	density of the sample (mg)		
%	delta	ratio of the diff.coeffs in sample and in air		
%	n	number of calculation layers in sample		
%	tend	end of simulation (s)		
%	tout	time interval between outputs (s)		
% If you give no input the following standard input will be used:				
% h=2 mm, rho= 0.15 g/cm ³ , delta= 0.5 (M= 37 mg), n= 5 , tend= 20000 , tout= 200 , linear isotherm.				
%				
%1	t is also possible for the user to	make other changes in the program:		
%	vsat, psat, Dpair	properties of vapor in air		
%	As	surface area of sample (m2)		
%	Dvh	vaporization entinalpy (J/g)		
%	also, ciso	sorption isotherm		
%	C, K	capacities & conductancies of model		
%0	a(1) A simulation since the fallessin	activity at vaporization surface		
70 £	A simulation gives the followin	ig numerical ouput (+a number of piols).		
70 0/	i ii	nic (s) [a vector]		
/0 0/.	a av	$\frac{1}{2} = \frac{1}{2} = \frac{1}$		
/0 0/2		α activity difference over the sample (1)		
%	Pv th	ermal power of vaporization (W) [a vector]		
% The following points should be noted:				
%	- The simulation is by simple forward differences (Fick's law and mass			
%	balances are cale	culated in small time increments). The time step dt is		
%	automatically calculated as the maximum time step found in any part of the			
%	model during th	e whole simulation (the program would have a higher speed		
%	if dt was continously changed, but this is not trivial to implement)			
%	- During the simulation t, a and c are used and the output is stored in			
%	tt, aa and cc. After the simulation the result is transferred to			
%	t, a and c. The thermal power of vaporization is given in Pv.			
%	- Calculations are	made with SI-units: kg, m, s, Pa		
%	- Standard temper	rature is 25oC and the vapor forming liquid is water		
%	- For each cell on	ly the activity (a) is saved, but as equilibrium is		
%	assumed the vap	or concentration can be found with the sorption isotherm		
%	I 11 0706	22 070527 070914 070920		
%	Lars wadso 9705	22 970527 970814 970820		
0/	Near input			
γ_{0}				
h=i	nout ('height of sample (mm) :	Sample (m2)		
if $(h=0)/(h=0) \cdot h=2$ and $\frac{0}{2}$ standard case				
h = h/1000: %into units of m				
rho=input('density of sample (g/cm3) .')				
if $(rho == [1]) (rho == 0)$: rho = 0.15: end % standard case				
rho=rho*1000; %into kg/m3				
delta=input('Dp(sample)/Dp(air):'); %delta=ratio of diff. coeff.				
if (e	if (delta==0) (delta==[]);delta=0.5;end %standard case			
M=	M=h*As*rho;			
disp(' ');				
dis	p(['Sample mass = ',num2str(N	1*1e6),' mg']);		
n=i	input('number of calculation la	yers in sample :');		
if (1	if $(n==0) (n==[]);n=5;end;$ %standard case			

tend=input('end of simulation (s) :'); if (tend==0)|(tend==[]);tend=20000;end %standard case tout=input('time interval between outputs (s) :'); if (tout==0)|(tout==[]);tout=200;end%-----physical data----vsat=23e-3; %vapor content (kg/m3) psat=3160; %vapor pressure (Pa) Dpair=182e-12; %diffusion coefficient of water vapor in air (kg/Pa/m/s) As=130e-6; %cross sectional area of sample (m2) Dvh=2440e3; %heat of vaporization (J/kg) Fmax=400e-12; %maximal vapor flow (kg/s) %-----sample data----isotype=input('type of isotherm ? (1=linear, 2=sigmoid, 3=hydrate) :'); %aiso are the activity knickpoints on isotherm %ciso are the concentration knickpoints on isotherm (kg/kg) if (isotype==0)|(isotype==[]);isotype=1;end %standard case if isotype==1 %linear aiso=[0 1];ciso=[0 0.3];elseif isotype==2 %sigmoid (wood Eucalyptys regnans, Christensen & Kelsev 1959) aiso=[0 0.05 0.10 0.40 0.70 0.80 0.90 0.95 1.00]; ciso=[0 0.02 0.035 0.085 0.15 0.18 0.23 0.27 0.37]; elseif isotype==3 %hydrate (Morphine sulphate) aiso=[0 0.029 0.031 0.229 0.231 0.95 1.0]; ciso=[0 0.0001 0.0538 0.0539 0.135 0.136 0.2]; end xi=diff(ciso)./diff(aiso); %slope of isotherm %-----show input----figure(1):clf subplot(121) plot(aiso,ciso,'*');hold on;plot(aiso,ciso,'-');hold off xlabel('relative activity') vlabel('vapor content (kg/kg)') subplot(122) text(0,5,['sample density='.rho.' kg/m3']); text(0,4,['sample height=',num2str(h*1000),' mm']); text(0,3,['sample mass=',num2str(M*1e6),' mg']); text(0,2,['diff.ratio=',num2str(delta)]); text(0,1,[int2str(n),' simulation cells']); text(0,0,['simulation ends at ',num2str(tend),' s']); text(0,-1,['output interval: ',num2str(tout),' s']); axis([-1 10 -2 5]);set(gca,'Visible','Off') disp('Press any key to continue (Ctrl-c to abort)') pause %------simulation data------Va=0.72e-6;Vb=1.43e-6; asim=0.105; Ra=(1-asim)/8/Fmax;Rb=asim/2/Fmax;Rc=h/2/n/delta/Dpair/psat/As; k(1)=1/Ra; k(2:4)=ones([1 3])/2/Ra;k(5)=1/(Ra+Rb);k(6)=1/(Rb+Rc);k(7:5+n)=ones([1 n-1])/2/Rc;k(6+n)=0;C(1)=0;C(2:5)=ones([1 4])*Va*vsat; C(6)=Vb*vsat; C(7:6+n) = ones([1 n])*h/n*As*xi(1)*rho;

%-----simulation initialization----nn=n+5; %number of last active conductance in sample a=zeros([1 nn+1]); %activities a(1)=1; %activity of water q=zeros([1 nn+1]); %flows (kg/s) Q=0; %Q keeps track of the flow into the sample since last output (kg/s) dt=min([C(2:6)./(k(1:5)+k(2:6))]); %max time step in vapor phase for z=1:length(xi) dt=min([dt M/n*xi(z)*ones([1 nn-6])./(k(6:nn-1)+k(7:nn))]); %max. time steps in sample end %dt=min([C(2:6)./k(1:5) C(2:6)./k(2:6)]); %max time step in vapor phase %for z=1:length(xi) % dt=min([dt M/n*xi(z)*ones([1 nn-6])./k(6:nn-1) ... % M/n*xi(z)*ones([1 nn-6])./k(7:nn)]); %max. time steps in sample %end dt=dt*0.4; %to be on the safe side (0.5 is limit) t=0; %time in simulation (s) amax=aiso(length(aiso)); %maximal possible activity amaxend=0; %when amaxend=1 the simulation has to be stopped toutnext=tout; %second output time (first is at t=0) leg=ones([1 n]); %part on isotherm in which each sample part is at each time out=1; %counter for outputs nout=ceil(tend/tout)+1; %approx. no of outputs tt=zeros([nout 1]); %in tt the sim. time is saved aa=zeros([nout nn+1]); %in aa the activities are saved aa(1,1)=1; %activity of source=1 from t=0 cc=zeros([nout 1]); %in cc the concentrations are saved Da=zeros([nout 1]); %in Da the activity difference over the sample is saved Pv=zeros([nout 1]); %in Pv the thermal power of vap. are saved konst=1.05*dt/C(7); %to make the simulation run faster %-----simulation----while (t<tend)&(amaxend==0) t=t+dt; %increment time q(1:nn)=(a(1:nn)-a(2:nn+1)).*k(1:nn); %calculate flows if a(7)+konst*(q(6)-q(7))>amax %stop before going outside defined isotherm in the first cell amaxend=1; end Q=Q+q(6); %add flow rate into sample to Q a(2:nn+1)=a(2:nn+1)+dt*(q(1:nn)-q(2:nn+1))./C(2:nn+1); %calculate activities (q(nn+1)==1) ind=findstr(a(6:6+n-1)>aiso(leg+1),'1'); %find index of sample cells that has changed leg on isotherm if ind~=[]; leg(ind)=leg(ind)+1; %new leg C(ind)=M/n*xi(leg(ind)); %new capacity end if toutnext <t %time for output? out=out+1; %index in output vectors tt(out)=t; %output time aa(out,1:nn+1)=a(1:nn+1); %output activities Da(out)=(a(7)-a(nn+1))*n/(n-1); %difference in activity over sample cc(out)=cc(out-1)+Q*dt/M; %output mean concentration in sample Q=0; %zero Q Pv(out)=q(1)*Dvh; %output thermal power (W) toutnext=toutnext+tout; %time for next output end end %-----cleaning up-----L=length(tt); %L=length of vectors

if out<L %if the outputs have not filled the vector

```
aa(:,out+1:L)=[]; %clear the unused parts of aa, cc, Pv, tt
 cc(out+1:L)=[];
 Pv(out+1:L)=[];
 tt(out+1:L)=[];
end
a=aa;c=cc;t=tt; %output is in t, a, c (&Pv)
clear aa cc tt %clear the simulation var. to save space
%-----plot result------
figure(2);clf
subplot(121) %plot of activities as function of time
col='rgggggyyyyyyyyyyyyy'; %water=red; gas phase=green; sample=yellow
for z=1:7+n-1
 eval(['plot(t,a(:,z),',"",col(z),"",')'])
 hold on
end
xlabel('time / s')
ylabel('activity')
subplot(122) %plot of thermal power as a function of time
plot(t, Pv*1e6)
xlabel('time / s')
vlabel('Thermal power of vaporization / uW')
hold off
figure(3);clf
subplot(121)
plot(t,Da)
xlabel('time / s')
ylabel('activity difference over sample')
subplot(122)
plot(t,c)
xlabel('time / s')
ylabel('mean concentration (kg/kg) in sample')
figure(2);subplot(121) %Ready to zoom on sample activities
%-----end-----
```

```
%adifanal anlytical solution
beta=input('beta : ');
lambda=input('lambda :');
L=input('L: ');
tau=input('tau : ');
for l=1:length(lambda)
 s=0;
 for b=1:length(beta)
  disp(num2str(beta(b)));
  Ds=2*L*cos(beta(b)*lambda(l))*exp(-beta(b)^2*tau)/...
     (beta(b)^2+L^2+L)/cos(beta(b)):
  s=s+Ds;
 end
 summa=1-s;
disp(['lambda=',num2str(lambda(l)),' >>> C=',num2str(summa),' last Ds=',num2str(Ds)])
end
```

%ADIFTEST

%test of analytical solution and computer simulation %of activity gradient over sample in SORP4

```
sorp4sim
clf
figure(4)
sps=input('subplot string: ');
eval(['subplot(',sps,')'])
Dc=delta*Dpair*psat/xi(1)/rho;
plot(t*Dc/h^2,Da,'-')
hold on
alpha=Fmax/As/xi(1)/rho;
L=h*alpha/Dc;
 clear tautau da
 k=0;
maxtau=tend*Dc/h^2;
 for tau=0.3:0.1:maxtau;
 k=k+1;
 tautau(k)=tau;
 da(k)=adiff4(L,tau);
 end
plot(tautau,da,'--g');
xlabel('tau')
vlabel('a-diff')
ax=axis;
dx=ax(2)-ax(1);
dy=ax(4)-ax(3);
xx=ax(1)+0.3*dx;
yy=ax(4)-0.5*dy;
text(xx,yy,['h=',num2str(h*1000),' mm'],'FontSize',8)
text(xx,yy-0.05*dy,['rho=',num2str(rho/1000),' g/cm2'],'FontSize',8)
text(xx,yy-0.10*dy,['delta=',num2str(delta)],'FontSize',8)
text(xx,yy-0.15*dy,['sample mass=',num2str(M*1e6),' mg'],'FontSize',8)
text(xx,yy-0.20*dy,['max tau=',num2str(tend/3600),' h'],'FontSize',8)
text(xx,yy-0.25*dy,['L=',num2str(L)],'FontSize',8)
title('solid line = computer simulation, - - - analytical solution')
```

hold off

```
function <u>bevec=beta(L,n);</u>
% beta(\overline{L,n})
%This matlab function calculates n solutions of the equation
% beta*tan(beta)=L.
global LL
LL=L;
n;
if L<=0.01
 sv0=0.0998;
elseif L<=0.1
 sv0=0.3111;
elseif L<=1
 sv0=0.8603;
elseif L<=10
 sv0=1.4289;
else
 sv0=pi/2;
end
startval=[sv0 pi*(1:(n-1))];
bevec=zeros([1 n]);
for k=1:n
bevec(k)=fzero('betafunc',startval(k));
end
```

```
function res=<u>betafunc(beta);</u>
global LL
```

res=beta*tan(beta)-LL;

```
function adiff=adiff4(L,tau);
%adiff4
%calculates the difference in activity over a sample in
%the sorption calorimeter SORP4
%
%
adiff=adiff4(L,tau)
%
%
L=ell*alpha/Dc (L<=0.2)
%
%
tau=Dc*t/ell^2
```

if L>0.2 disp('The equations are not correct for L>0.2'); end b=beta(L,2); b1=b(1);

```
b2=b(2);
A=2*cos(b2)*exp(-b2^2*tau)/(b2^2+L^2+L);
B=(cos(b1)-1)*exp(-b1^2*tau)/(b1^2+L^2+L)/cos(b1);
adiff=-2*L*(A+B);
%disp(['A=',num2str(A),'B=',num2str(B)])
end
```

%adiff

for L=[0.003 0.01:0.01:0.2] clear tautau da k=0; for tau=0.3:0.1:10; k=k+1; tautau(k)=tau; da(k)=adiff4(L,tau); end plot(tautau,da); hold on plot(tautau(1),da(1),'o') end plot(tautau(1),da(1),'og') hold off xlabel('tau') ylabel('a-diff')