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1 Nomenclature

The figures given refer to the SORP4 instumentation with water vapor at
25°C and 1 atm.

a activity of vapor (= p/psas) 1

Aa  difference in activity over the sample 1

A exposed surface area of sample (130-107°) m?

c vapor concentration in sample g/m?®
C vapor capacity of cell in simulation g

D,  diffusion coeflicient in air with p as potential (182:107°) g/m/s/Pa
D,  diffusivity in sample with ¢ as potential m?/s
F mass flow rate g/s
Frmax  flux in vessel when activity difference is 1.0 (400-107°)  g/s
h sample thickness m

k vapor conductance between cells in simulation g/s
L dimensionless factor (=ha/D,) 1

M dry mass of sample g

n number of simulation cells in sample 1

P vapor pressure Pa
Dsat  saturation vapor pressure (3160) Pa
R flow resistance (1/k) s/g

¢ time s

Usat  vapor content of air (23.0) g/m?
|4 volume m?

o mass transfer coefficient m/s
) ratio of diffusion coefficients D, in sample and in air 1

A dimensionless length 1

3 dimensionless slope of isotherm (9¢/p/da) 1

p density of dry sample g/m?
g dimensionless time 1

2 Introduction

In the SORP4 sorption microcalorimeter a sample is scanned in vapor concen-
tration from low to high values. During this process there will be a gradient
through the sample. This report describes two ways of finding out how large
this gradient is (expressed as difference in activity (Aa) between top and
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bottom of the sample). The reader is refered to Wads6 and Wadss (1996,
1997) for a description of the experimental technique.

3 Analytical solution

The arrangement in the SORP4 vessel can be seen as a vapor source, a,
mass transfer coefficient (the gas phase in the tube), and a sample. The
concentration or activity as a function of time and position in such a system
can be solved analytically. There are three differences between such a solution
and the actual case:

1. The vapor capacity of the gas phase is not taken into account. As the
vessel is modelled as a flow resistance without vapor capacity the solu-
tion will give a too rapid sorption at the beginning of a measurement
(cf. Appendix A).

2. The three dimensional geometry of the vessel is cannot be taken into
account.

3. The sorption isotherm must be linear in the analytical solution. The
slope of the sorption isotherm is £p, i.e. the activity a = 1 corresponds
to a concentration £p g/m3.

The density of a sample in SORP4 may be found from the following
relation:

M
= 1
P=T15 (1)
We introduce a mass transfer coefficient o of the gas phase as:
F
— = alc 2
A (2)

The flow rate per unit area is o times the concentration difference over the
gas phase (i.e. between the exposed surface of the sample and the water
source; the concentration of the latter is taken as ¢ p). For the present case
a may be found from the following equation:

Fma.x
Y (3)




Here, both flow rate and concentration difference is taken at the conditions
of maximum flow rate. Note that £p is the concentration difference corre-
sponding to an activity difference of 1.0, i.e. the situation in which F,, was
measured. The exposed sample surface (A;) must be introduced because
in Eq. 3 is defined per unit area perpendicular to the flow (the unit m/s for
«a is actually an abbreviation of g/s/m?/(g/m3))

The ratio of the flow resistance of the sample and the flow resistance of

the gas phase is:
_ ha

5 )

Crank (1975) gives the following solution (in my notations) for the con-
centration in a plane sheet (—h < 2 < h) with a mass transfer coefficient o
on 1its surfaces:

L

c(A, 1) <= 2Lcos(B,A) exp(—32T)
& T AT @ Do, &
Here
A=z/h (6)
T = Dit/h? (7)

and the (3, s are the positive roots of

BtanG =L (8)

The left hand side of Eq. 5 has been simplified from the equation given by
Crank because in our case the final concentration after infinite time equals £
and the initial concentration is 0. The exposed surface is at x = h (A = 1)
and the unexposed bottom surface is at z = 0 (A = 0)

A problem in applying this solution to the present case is that we have to
express the transport properties of both the sample and the gas phase with
concentration (in the sample) as potential. Equation 3 takes care of this
problem for the gas phase. For the sample diffusivity the following relation

18 used:
JOp Oa 1

%% . 6Dppsatp_§ (9)

Here, the transport property of the sample is expressed as a hinderance factor
6 (the ratio of the flow through a sample and through still air under the same
vapor pressure gradient).

D, = 6D,



To find the size of L we use Eqs. 4, 3 and 9 and write:

ha hFax h
L= = Tt K3 1o
Fnax
K= b (11)
In the present case
K = 5345m™! (12)
0.5mm < A<3Imm
0.1 < 6<1.0
This gives the following bounds for L:
0.003 < L <0.2 (13)

It is seen that L is quite small, i.e. the flow resistance in the gas phase 18
high compared to the flow resistance in the sample, and this is the way that
the SORP4 instrument is to work; with the gas phase governing the rate of
sorption.

As a measure of the activity gradient over the sample we take the differ-
ence in activity a(), 7) between the sample surface (A = 1) and the bottom
(A = 0) of the sample:

Aa(t) = a(1,7) — a(0,7) (14)
As a = ¢/p/€ Eq. 5 may be written as:

Aa(r) = 2L i (cos ,Hzn — cos0) exp(—fB27) (15)
n=1 (/6n+L2+L) COSIBn
For 7 > 0.3 the terms for n > 3 will be very small and may be safely neglected
(the worst case is for n=3, 7=0.3 and L=0.2 when exp(—B27) < 10~° and
the denominator (83 + L? + L) cos 83 > 40).
The s are troublesome to work with but must be found with more than
three correct decimals for the solutions to be good. With only two terms the
solution may be written as:

(cos By — 1) exp(—f327) | (cos By — 1) exp(=fiT)
(85 + L? + L) cos 3, (6% + L? + L) cos 3,

This equation gives the difference in activity over the sample as a function
of time for different values of L.

Aa = 2L

(16)



4 Computer simulation

I have also modelled the SORP4 vessel and the sample as a one dimensional
series of vapor capacitances (C) connected by conductances (k). Each capac-
itance cell has an activity (a) and between capacitances there are vapor flows
(F). For the cells in the sample the concentration can be calculated from
the activity by the sorption isotherm (which is a piece-wise linear function
in our simulation).

There are two differences between such the computer simulation and the
actual case:

1. The three dimensional geometry of the vessel is simplified in the one
dimensional solution.

2. The problem 1s discretized. This is no problem, however , as the dis-
cretization can be made very fine.

Figure 1 shows the model. The gas phase 1s modelled as five capacitances
and the sample is modelled as n capacitances. The numbering of the ca-
pacitances and the conductances is given in Fig. 1 for the case when n is
4. The capacitance C, 7 (the last capacitance Cj; in Fig. 1) is a dummy
capacitance to speed up the simulation (as the conductance k,s=0 there
will never be any flow to Cy, 7). There is also a capacitance C; which has
a similar purpose: its activity is a;=1.0 at the start of the simulation, but
as the simulation program never changes its value it will act as a constant
activity vapor source.

The following equations together with Fig. 1 give the simulation proce-
dure:

F; = ki(ait1 — a;) (17)
Aa; = Ei—_%m (18)

Here, At is the time step in the simulation which is made with the forward
difference method. For each time step the flows F' between the cells are first
calculated; then the resulting changes in the activities Aa are computed. The
time step must be chosen according to the following criterion to get a stable

solution (Eftring 1990):

At < min(

e 19
ki—1 -+ ki) (19)
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. To simplify the calculation it was made with resistances R (the inverses
of k). Figure 2 shows how the vessel is divided into five parts, and
how resistances (R,:s and Ry:s) connect the center of each cell with
a boundary between two cells. It should be noted that the tube part
of the vessel is divided into four equal parts so that the eight R,:s are
equal and that the mid-point of the top part of the vessel (the chamber)
1s chosen so that the resistances from the mid-point to each boundary
are equal.

. The simulation gave that a*™ = 0.105 (64 mm from the bottom of the
tube, cf. caption to Fig. 2). The resistance R, is then calculated as

1.00 — a5'®
Ro=—r— 22
8Fma.x ( )
. The resistance R;,, may be calculated in a similar fashion:
as'™ — (.00
R = 23
b 2 ['max ( )

. The conductances are then calculated according to the following equa-
tions:

b=
k, == for2<i<4
T (24)
3 Ra+Rb
ke = ——
6 — R,+R

where R, is calculated below.

. The conductances in the sample are calculated in a similar fashion as
those in the gas phase. The resistance R, is defined as (cf. Fig 3b):

h
e = 25
R 27’2,(5D ppsatAs ( )
The conductances are then calculated as:
ki= g for7<i<(5+4n) (26)
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Figure 2: The simulation model of the gas phase. a. The five volumes
corresponding to the five capacitances in the gas phase. b. The conductancies
in the gas phase. c¢. The resistances in the gas phase used to calculate the
conductancies. d. The iso-activity lines in the gas phase when there is an
actlvity potential of 1.00 over the vessel. The arrow marks the boundary
between two of the volumes (cf. Fig. 2a) where the activity is 0.105.



Figure 3: The simulation model of the sample. a. The conductanses. b. The
resistance Rc used in the calculation of the conductance k6.

7. The capacities in the vapor phase are calculated as:

C; =v5V, for2<i<5

Cﬁ‘ = Usat% (27)
8. The capacities in the sample were calculated as:
h
C; = prAs for 7<i< (6+n) (28)

The simulations were made with a MATLAB program sorp4sim.m that
1s given in Appendix B.

The activity difference Aa was calculated by multiplying the activity
difference between the top and bottom cell of the sample by —2+ thus cor-
recting for the fact that the activities calculated by the simulation are in the
cell centers, not at the boundaries. This correction is very good for the type
of activity gradient one will get in a sample in SORPA4.

5 Results from calculations and simulations

Figure 4 gives the results of analytical calculations of Aa as a function of
dimensionless time T for different values of L within the bounds given in
Eq.13. In Appendix B are five examples of simulations and calculations of
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Aa for the same input values. The agreement is very good, indicating that
the two different ways of solving the problem have been applied successfully.
All simulations were made with five sample cells. Other tests have also shown
that the simulation gives correct values of a(X, 7).
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Figure 4: The analytical solution for the activity difference as a function of
dimensionless time and L. The bottom curve is for L=0.003; the others are
for (from bottom to top) L=0.01 to 0.2 in steps of 0.01.
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7 Appendix A: Five comparisons between the
two solutions

Appendix A contain the results of five comparisons of results from the ana-
lytical solution and the computer model. In all cases the agreement between
the two methods is very good when T is greater than 0.5.
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8 Appendix B: The simulation program and
other programs used in this study



% _sorp4sim - a one-dimensional simulation of

% the vapor transport and sorption in SORP4

%

% This MATLAB 4 program simulates a measurement with the

sorption microcalorimeter

% SORP4 (not the sorption enthalpies...). The following input is asked for by the program:
% h height of the sample (mm)

% rho density of the sample (mg)

% delta ratio of the diff.coeffs in sample and in air
% n number of calculation layers in sample

% tend end of simulation (s)

% tout time interval between outputs (s)

% If you give no input the following standard input will be used:

% h=2 mm, tho=0.15 g/cm3, delta=0.5 M=37 mg), n=>5, tend=20000, tout=200, lincar isotherm.

%

% It is also possible for the user to make other changes in the program:

% vsat, psat, Dpair properties of vapor in air

% As surface area of sample (m2)

% Dvh vaporization enthalpy (J/g)

% aiso. ¢iso sorption isotherm

% C.k capacities & conductancies of model

% a(l) activity at vaporization surface
% A simulation gives the following numerical ouput (+a number of plots):

% 1 time (s) {a vector]

% a activity in each computational cell (1) [a matrix]

% Da the activity difference over the sample (1)

% c mean concentration in sample (kg/kg) [a vector]

% Pv thermal power of vaporization (W) [a vector]

% The following points should be noted:

% - The simulation is by simple forward differences (Fick's law and mass

% balances are calculated in small time increments). The time step dt is

% automatically calculated as the maximum time step found in any part of the
% model during the whole simulation (the program would have a higher speed
% if dt was continously changed, but this is not trivial to implement)

% - During the simulation t, a and c are used and the output is stored in

% tt, aa and cc. After the simulation the result is transferred to

% t, a and c. The thermal power of vaporization is given in Pv.

% - Calculations are made with SI-units: kg, m, s, Pa

% - Standard temperature is 250C and the vapor forming liquid is water

% - For each cell only the activity (a) is saved, but as equilibrium is

% assumed the vapor concentration can be found with the sorption isotherm
%

% Lars Wadso 970522 970527 970814 970820

° USET INPUt---=-=---=n=nn=emnmn=

As=130e-6; %exposed surface of sample (m2)
h=input(‘height of sample (mm) :'):

if (h==0)|(h==[]);h=2;end %standard case

h=h/1000; %into units of m

rho=input('density of sample (g/cm3) :');

if (rho==[])|(rtho==0);rho=0.15;end %standard casc
rho=rho*1000; %into kg/m3
delta=input('Dp(sample)/Dp(air) :'); Y%odelta=ratio of diff. coeff.
if (delta==0)|(delta==[]);delta=0.5;end %standard case
M=h*As*rho:

disp(* ).

disp(['Sample mass = ', num2str(M*1e6),' mg']);
n=input('number of calculation layers in sample :'):

if (n==0)|(n==[]);n=5;end; Y%standard case



tend=input(‘end of simulation (s) :");
if (tend==0)|(tend=={]);tend=20000:end %standard case
tout=input('time interval between outputs (s) :");
if (tout==0)|(tout==[]);tout=200:end
% physical data---------~-=e-e---
vsat=23e-3; %vapor content (kg/m3)
psat=3160; %vapor pressure (Pa)
Dpair=182¢-12; %diffusion coefficient of water vapor in air (kg/Pa/m/s)
As=130e-6; %ocross sectional area of sample (m2)
Dvh=2440e3; %heat of vaporization (J/kg)
Fmax=400e-12; %maximal vapor flow (kg/s)
% sample datd-------=====nme-amn-
isotype=input(‘type of isotherm ? (1=linear, 2=sigmoid, 3=hydrate) :");
%aiso are the activity knickpoints on isotherm
%eciso are the concentration knickpoints on isotherm (kg/kg)
if (isotype==0)|(isotype==[]);isotype=1;end %standard case
if isotype==1 %linear
aiso=[0 1];ciso=[0 0.3];
elseif isotype==2 %sigmoid (wood Eucalyptys regnans, Christensen & Kelsey 1959)
aiso=[0 0.05 0.10 0.40 0.70 0.80 0.90 0.95 1.00];
ciso=[0 0.02 0.0350.0850.150.18 0.23 0.27 0.37];
elseif isotype==3 %hydrate (Morphine sulphate)
2iso=[0 0.029 0.031 0.229 0.231 0.95 1.0];
ciso=[0 0.0001 0.0538 0.0539 0.135 0.136 0.2];

end

xi=diff(ciso)./diff(aiso); %eslope of isotherm

Yo show input------===-emmeeeemu-
figure(1);clf

subplot(121)

plot(aiso,ciso,*");hold on;plot(aiso,ciso,'-');hold off
xlabel('relative activity')

ylabel('vapor content (kg/kg)")

subplot(122)

text(0,5,['sample density=",rho,' kg/m3']);
text(0,4,['sample height="num?2str(h*1000),' mm']):
text(0.3,['sample mass=',num2str(M*1e6),' mg'));
text(0,2,['diff. ratio=",num2str(delta)]):
text(0,1,[int2str(n),’ simulation cells']);
text(0,0,['simulation ends at ',num2str(tend),' s');
text(0,-1,['output interval: ',num2str(tout),’ s');
axis([-1 10 -2 5]):set(gca,'Visible','Off")

disp(‘Press any key to continue (Ctrl-c to abort)")
pause
Yo simulation data--------=-------
Va=0.72¢-6.Vb=1.43¢-6:

asim=0.105;
Ra=(1-asim)/8/Fmax;Rb=asim/2/Fmax;Rc=h/2/n/delta/Dpair/psat/As;
k(1)=1/Ra;

k(2:4)=ones([1 3])/2/Ra;

k(5)=1/(Ra+Rb);

k(6)=1/(Rb+Rc);

k(7:5+n)=ones([1 n-1])/2/Rc;

k(6+n)=0;

C(1)=0;

C(2:5)=ones([1 4])*Va*vsat;

C(6)=Vb*vsat;

C(7:6+n)=ones([1 n])*h/n*As*xi(1)*rho;




% simulation initialization------
nn=n+5; Y%number of last active conductance in sample
a=zeros([1 nn+1]); %activities
a(1)=1; %activity of water
g=zeros([1 nn+1]); %flows (kg/s)
Q=0; %Q keeps track of the flow into the sample since last output (kg/s)
dt=min([C(2:6)./(k(1:5)+k(2:6))]); %emax time step in vapor phase
for z=1:length(xi)
dt=min([dt M/n*xi(z)*ones([1 nn-6])./(k(6:1n-1)+k(7:nn))]); Y%max. time steps in sample
end
Yodt=min([C(2:6)./k(1:5) C(2:6)./k(2:6)]); %max time step in vapor phase
Y%for z=1:length(xi)
% dt=min([dt M/n*xi(z)*ones([1 nn-6])./k(6:nn-1) ...
%  M/n*xi(z)*ones([1 nn-6])./k(7:nm)]); Y%emax. time steps in sample
%end
dt=dt*0.4; %to be on the safe side (0.5 is limit)
t=0; %time in simulation (s)
amax=aiso(length(aiso)). %emaximal possible activity
amaxend=0; %when amaxend=1 the simulation has to be stopped
toutnext=tout; %esecond output time (first is at t=0)
leg=ones([1 n]); %part on isotherm in which each sample part is at each time
out=1; %counter for outputs
nout=ceil(tend/tout)+1; %approx. no of outputs
tt=zeros([nout 1]); %in tt the sim. time is saved
aa=zeros([nout nn+11); %in aa the activities are saved
aa(1,1)=1; %activity of source=1 from t=0
cc=zeros([nout 1]); %in cc the concentrations are saved
Da=zeros([nout 1]); %in Da the activity difference over the sample is saved
Pv=zeros([nout 1]); %in Pv the thermal power of vap. are saved
konst=1.05*dt/C(7); %to make the simulation run faster
% simulation
while (t<tend)&(amaxend==0)
t=t+dt; %increment time
q(1:nn)=(a(l:nn)-a(2:nn+1)) *k(1:nn); %calculate flows
if a(7)+konst*(q(6)-q(7))>amax Yostop before going outside defined isotherm in the first cell
amaxend=1,
end
Q=Q+q(6); %add flow rate into sample to Q
a(2mn+1)=a(2:nn+1)+dt*(q(1:nn)-q(2:nn+1))./C(2:nn+1); Y%calculate activities (q(nn+1)==1)
ind=findstr(a(6:6+n-1)>aiso(leg+1),'1"); %find index of sample cells that has changed leg on isotherm
if ind~={];
leg(ind)=leg(ind)+1; Y%new leg
C(ind)=M/n*xi(leg(ind)); %new capacity
end
if toutnext<t %time for output?
out=out+1; %index in output vectors
tt(out)=t; %ooutput time
aa(out,l:nn+1)=a(1:nn+1); %output activities
Da(out)=(a(7)-a(nn+1))*n/(n-1); %difference in activity over sample
cc(out)y=cc(out~1)+Q*dt/M; %output mean concentration in sample
Q=0; %zero Q
Pv(out)=q(1)*Dvh; %output thermal power (W)
toutnext=toutnext+tout; %time for next output
end
end
% cleaning up-------=--=-ceeeeo-
L=length(tt); %L~=length of vectors
if out<L %if the outputs have not filled the vector




aa(:,out+1:L)=[]; %clear the unused parts of aa, cc. Py, tt
cc(out+1:L)=[]:
Pv(out+1:L)={];
tt(out+1:L)=[];
end
a=aa;c=cc;t=tt; %output is in t, a, ¢ (&Pv)
clear aa cc tt %clear the simulation var. to save space
% plot result------=--mmmmemammu-
figure(2);clf
subplot(121) %plot of activities as function of time
col="rggeegyyyyyyyyyyyyyyy'; Yowater=red; gas phase=green; sample=yellow
for z=1:7+n-1
eval(['plot(t,a(:,z),',"",col(z),"".)'])
hold on
end
xlabel('time / s')
ylabel('activity')
subplot(122) %plot of thermal power as a function of time
plot(t,Pv¥le6)
xlabel('time / s")
ylabel('Thermal power of vaporization / uW')
hold off
figure(3);clf
subplot(121)
plot(t,Da)
xlabel(‘time / s")
vlabel('activity difference over sample’)
subplot(122)
plot(t,c)
xlabel('time / s")
ylabel('mean concentration (kg/kg) in sample')
figure(2);subplot(121) %Ready to zoom on sample activities
%Yo end




%vadifapal anlytical solution
beta=input(‘beta : ');
lambda=input('lambda :");
L=input('L: *);
tav=input(‘tau : ');

for I=1:length(lambda)
s=0;
for b=1:length(beta)
disp(num2str(beta(b)));
Ds=2 *L*cos(beta(b)*lambda(l))*exp(-beta(b)/‘Z*tau)/
(beta(b)"2+L"2+L)/cos(beta(b)):
s=s+Ds;
end
summa=1-s;
disp(['lambda=",num2str(lambda(l)),’ >>> C=",num2str(summa),' last Ds=",num2str(Ds)])
end

WADIFIEST |
Ytest of analytical solution and computer simulation
%of activity gradient over sample in SORP4

sorp4sim
clf
figure(4)
sps=input(‘subplot string: *);
eval(['subplot(',sps,")'])
Dc=delta*Dpair*psat/xi(1)/rho;
plot(t*Dc/h"2,Da,'-")
hold on
alpha=Fmax/As/xi(1)/tho;
L=h*alpha/Dc:
clear tautau da
k=0;
maxtau=tend*Dc/h"2;
for tau=0.3:0.1:maxtau;
k=k+1;
tautan(k)=tau;
da(k)=adiff4(L tau);
end
plot(tautau,da,'--g";
xlabel(‘tau")
ylabel('a-diff")
ax=axis;
dx=ax(2)-ax(1);
dv=ax(4)-ax(3);
xx=ax(1)+0.3*dx;
yy=ax(4)-0.5*dy;
text(xx,yy,['h=",num2str(h*1000),' mm'],'FontSize',8)
text(xx,yy-0.05*dy, ['tho=",num2str(rho/1000),' g/cm2'],'FontSize',8)
text(xx,yy-0.10*dy, ['delta=",num2str(delta)],'FontSize',8)
text(xx.yy-0.15*dy,['sample mass=',num2str(M*1e6),' mg'], FontSize',8)
text(xx,yy-0.20*dy,['max tav=',num2str(tend/3600)," h'],'FontSize',8)
text(xx,yy-0.25*dy, ['L=",num2str(L)], FontSize',8)
title('solid line = computer simulation, - - - analytical solution")



hold off

function beyec=beta(L,n);
% beta(L,n)

%This matlab function calculates n solutions of the equation
% beta*tan(beta)=L.

global LL
LL=L;
n;
if L<=0.01
sv0=0.0998;
elseif L<=0.1
sv0=0.3111;
elseif L<=1
sv0=0.8603;
elseif L<=10
sv0=1.4289:
else
sv0=pi/2;
end
startval=[sv0 pi*(1:(n-1))];
bevec=zeros([1 n]):
for k=1n
bevec(k)=fzero("betafunc',startval(k));
end

function res=betafunc(beta);
global LL

res=beta*tan(beta)-LL;

function adiff=adiff4(L,tau);

Yeadiff4

%calculates the difference in activity over a sample in
Y%the sorption calorimeter SORP4

%

% adiff=adiff4(L,tau)

%

% L=ell*alpha/Dc (L<=0.2)
%

% tau=Dc*t/ell"2

if L>0.2
disp('The equations are not correct for L>0.2');
end
b=beta(L,2);
bl=b(1);



b2=b(2);
A=2*cos(b2)*exp(-b2/2*tan)/(b2"2+L"2+L);
B=(cos(b1)-1)*exp(-b12*tau)/(b1"2+L"2+L)/cos(bl);
adiff=-2*L*(A+B),

%disp(['A=",num2str(A),' B=",num2sit(B)])

end

Yeadiff
for L=[0.003 0.01:0.01:0.2]
clear tautau da
k=0;
for tau=0.3:0.1:10;
k=k+1;
tautau(k)=tau,
da(k)=adiff4(Ltau),
end
plot(tautau,da);
hold on
plot(tautau(1),da(1),'o")
end
plot(tautau(1),da(1),'og")
hold off
xlabel('tau")
ylabel(‘a-diff")



