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1. Introduction

This report contains derivation of the dynamics of the ETH helicopter lab-
oratory process, see Figure 1, using the Euler-Lagrange approach. The pro-
cess is designed at the Automatic Control Laboratory at ETH in Zürich,
see Mansour and Schaufelberger (1986) and Schaufelberger (1990). A de-
scription of the setup is found in Morari, M., W. Schaufelberger and A.
Glattfelder (1995). The process is of MIMO type with nonlinear dynam-
ics, and static input nonlinearities, as will be shown below. The present
model is derived with the purpose of accurate simulation of the helicopter
process. It may also prove helpful for nonlinear controller design. Identi-
fication of a linear model, and a linear controller design is presented in
Åkesson, Gustafson and Johansson (1996).

Figure 1 The ETH helicopter laboratory process.

A schematic picture of the process is found in Figure 2. The helicopter
consists of a vertical axle (A), on which a lever arm (L) is connected by a
cylindric joint. The helicopter has two degrees of freedom: the rotation of
the vertical axle (angle φ) with respect to the fixed ground, and the pivoting
of the lever arm (angle θ) with respect to the vertical axle. Two rotors are
mounted on the lever arm: R1 and R2, with the resultant aerodynamic
forces giving rise to moments in the θ and φ directions respectively. The
voltages u1 and u2 to the rotor motors are the inputs to the process. A
weight is mounted at an adjustable position on the lever arm towards
rotor R2.

2. Kinematics

It is assumed that the mass distribution on the lever arm is restricted to a
straight line between the rotors, a distance h from the pivot point. Denote
by O′ an origo on this line. Let [rx(R), ry(R), rz(R)] denote a point P on
the lever arm parameterized in the distance R from O ′, expressed in an
earth fixed reference system with origo in O and oriented with ez along the
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Figure 2 Helicopter process configuration.

center axle. Then

rx(R) = R cosθ cosφ − h sinθ cosφ
ry(R) = R cosθ sinφ − h sinθ sinφ
rz(R) = R sinθ + h cosφ

(1)

The corresponding velocities are obtained from differentiation of (1) with
respect to time:

vx(R) = −R sin θ cosφθ̇ − R cosθ sin φφ̇ − h cosθ cosφθ̇ + h sinθ sinφφ̇
vy(R) = −R sin θ sinφθ̇ + R cosθ cosφφ̇ − h cosθ sinφθ̇ − h sinθ cosφφ̇
vz(R) = R cosθθ̇ − h sinθθ̇

(2)

The squared magnitude of the velocity of P is then given by v2(R) = v2
x(R)+

v2
y(R) + v2

z(R):

v2(R) = R2 (θ̇2 + cos2 θφ̇2)+ h2 (θ̇2 + sin2 θφ̇2)− 2hR cosθ sin θφ̇2 (3)

3. Energy expressions

The kinetic and potential energies are derived from

T = 1
2

∫
v2(R) dm(R) (4)

V = k
∫

rz(R) dm(R) (5)
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where k is the acceleration of gravity. With (3) inserted this yields for lever
arm

TL =
1
2

[
θ̇2 + cos2 θφ̇2] JL − h cosθ sinθφ̇2mlc +

1
2

h2 [θ̇2 + sin2 θφ̇2]m

(6a)
VL = mk sinθ lc +mkh cos θ (6b)

and for the axle

TA =
1
2

JAφ̇2 (6c)

VA = 0 (6d)

where the inertia of the lever arm JL
*=
∫

R2 dm(R), the center of gravity

of the lever arm lc
*= 1

m

∫
R dm(R), the lever arm mass m

*=
∫

dm(R),
and the center axle inertia JA have been introduced. The total kinetic and
potential energies are

T = TL + TA (7)
V = VL + VA (8)

4. Equations of motion

Forming the Lagrangian

L = T − V (9)

the equations of motion are given by

d
dt

(V L
Vφ̇

)
− V L
Vφ

= τφ

d
dt

(V L

Vθ̇

)
− V L
Vθ

= τθ

(10)

Inserting (6) in (10) gives

[
−2 cosθ sinθφ̇θ̇ + cos2 θφ̈

]
JL+2h

[(
sin2 θ − cos2 θ

)
φ̇θ̇ − cosθ sinθφ̈

]
mlc

+ h2 [2 sinθ cosθθ̇φ̇ + sin2 θφ̈
]

m + JAφ̈ = τφ (11a)
[
θ̈ + cosθ sinθφ̇2] JL +

[
h
(
− sin2 θ + cos2 θ

)
φ̇2 + k cosθ

]
mlc

+
[
h2θ̈ − h2 sinθ cosθφ̇2 − kh sinθ

]
m = τθ (11b)

These equations may be expressed on matrix form as

D(φ , θ)
[ φ̈

θ̈

]
+ C(φ , θ , φ̇ , θ̇)

[ φ̇
θ̇

]
+ k(φ , θ) = τ (12)

The fundamental property N(φ , θ , φ̇ , θ̇) = Ḋ(φ , θ)−2C(φ , θ , φ̇ , θ̇) is fulfilled
with the skew symmetric matrix N(φ , θ , φ̇ , θ̇). The matrices D(⋅), C(⋅), k(⋅),
and N(⋅) are defined as in Figure 3.
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Figure 3 Matrices for Equation (12).
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5. Rotors

The rotors are driven by DC-motors without current-control. The motor
operation is described by

La
d
dt

ia = −Raia − kω + u (13a)

J
d
dt

ω = Td − TL (13b)

where Ra and La are the rotor-circuit resistance and inductance respec-
tively, and k the motor constant. The driving moment is described by

Td = kia (14)
and the motor load is described by

TL = Dω eω e (15)
where D is the aerodynamic torque coefficient, according to propeller Blade
Element Theory, see e.g. Weick (1926) or, if preferred, a modern textbook
on theory of flight. Combining (13–15) in steady-state yields

u0 =
RaD

k
ω0eω0e+kω0 � kω0 (16)

The approximation is found valid by examining experimental results in
Morari et al. (1995). The second order motor dynamics may then be ap-
proximated by first order dynamics as

R1 :
d
dt

ω1 = −
1
T1

ω1 +
1

k1T1
u1 (17a)

R2 :
d
dt

ω2 = −
1
T2

ω2 +
1

k2T2
u2 (17b)

where T1 and T2 are the time constants of the motors.
The resulting aerodynamic drag forces are given by F1 = C1ω1eω1e and

F2 = C2ω2eω2e with C1 and C2 being aerodynamics drag coeffients (Weick
1926). Each rotor affects the helicopter with a moment resulting from the
aerodynamic force, and with a moment that is the reaction moment from
the driving torque of the rotor motor. (The sign of the reaction moments
depend on the configuration of the rotor blades.) Gyroscopic effects of the
rotors are assumed to be small and are neglected. (Any gyroscopic mo-
ments resulting from the rotor rotations would mainly include components
perpendicular to the φ and θ rotation axis.) For R1:

τ1,φ = D1ω1eω1ecosθ (18a)
τ1,θ = l1C1ω1eω1e (18b)

and for R2:

τ2,φ = l2 cosθ C2ω2eω2e (19a)
τ2,θ = D2ω2eω2e (19b)

These moments are combined to form

τφ = τ1,φ + τ2,φ (20a)
τθ = τ1,θ +τ2,θ (20b)
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6. Simulation model

The complete set of equations describing the helicopter process is given by
(11) together with (17)–(20). Rewriting these on state-space form gives

d
dt

φ̇ =
[
cos2 θ JL − 2h cosθ sinθ mlc + h2 sin2 θ m + JA

]−1

⋅
[
2 cosθ sin θφ̇θ̇ JL − 2h

(
sin2 θ − cos2 θ

)
φ̇θ̇ mlc − 2h2 sinθ cosθφ̇θ̇ m

+D1ω1eω1ecosθ + l2 cosθ C2ω2eω2e] (21a)
d
dt

φ = φ̇ (21b)
d
dt

θ̇ =
[
JL + h2m

]−1 ⋅
[
− cosθ sinθφ̇2JL − h

(
− sin2 θ + cos2 θ

)
φ̇2mlc

−k cosθ mlc + h2 sinθ cosθφ̇2m + mkh sinθ + l1C1ω1eω1e+D2ω2eω2e
]

(21c)
d
dt

θ = θ̇ (21d)
d
dt

ω1 = −
1
T1

ω1 +
1

k1T1
u1 (21e)

d
dt

ω2 = −
1
T2

ω2 +
1

k2T2
u2 (21f)

7. Equilibrium points

Equations (11), (17)– (20)may be solved for stationary points (φ0, θ0, u1,0, u2,0)
by setting φ̈ = θ̈ = φ̇ = θ̇ = ω̇1 = ω̇2 � 0:

0 = D1ω1,0eω1,0ecosθ + l2 cosθ C2ω2,0eω2,0e (22a)
mk (lc cosθ0 − h sinθ0) = l1C1ω1,0eω1,0e+D2ω2,0eω2,0e (22b)

For the unforced system with τφ = τθ � 0 then φ = φ0, θ = θ0 are
equilibrium points, with arbitrary φ0 and tanθ0 = lc/h. Since the tan−1

function is periodic there are infinitely many equilibrium points θ 0. In par-
ticular there is one θ0 ∈ [−π/2, π/2), and one θ0 ∈ [−π ,−π/2)⋃[π/2, π ).
Stability for the lever arm dynamics around (φ0, θ0) may be investigated
by regarding the resulting simplification and Taylor expansion of (11b):

θ̈ = mk
JL

[h sinθ − lc cosθ ] = mk
JL

[h cosθ0 + lc sinθ0]δ θ +O (δ θ2)

= mk cosθ0

hJL

(
h2 + l2

c

)
δ θ +O (δ θ2) (23)

with δ θ *= θ − θ0. Thus the stationary point (φ0, θ0) with θ0 ∈ [−π/2, π/2)
is stable for h < 0, and unstable for h > 0, and the stationary point with
θ0 ∈ [−π ,−π/2)⋃[π/2, π ) is unstable for h < 0, and stable for h > 0. The
resulting dynamics is a pendulum equation.
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8. Parameters

Parameters for a real helicopter process are presented in Morari et al.
(1995). Geometric and interial parameters are presented directly. Motor
and rotor properties are presented in graphs resulting from experiments.
The corresponding parameters presented here are computed from the graphs.

Description Parameter Value Unit

Arm length to R1 l1 0.1995 [m]
Arm length to R2 l2 0.1743 [m]
Mass of lever arm bar ml 0.280 [kg]
Pivot height h 0.0298 [m]
Mass of weight mw 0.158 [kg]
Distance to weight (nominal1) lw 0.090 [m]
Mass of rotor R1 m1 0.3792 [kg]
Mass of rotor R2 m2 0.1739 [kg]
Time constant for rotor R1 T1 1.1 [s]
Time constant for rotor R2 T2 0.33 [s]
Motor constant for rotor R1 k1 1.00 ⋅10−2 [Vs/rad]
Motor constant for rotor R2 k2 1.39 ⋅10−2 [Vs/rad]
Aerodynamic drag for rotor R1 C1 2.50 ⋅10−5 [Ns2/rad2]
Aerodynamic drag for rotor R2 C2 1.58 ⋅10−6 [Ns2/rad2]
Aerodynamic torque for rotor R1 D1 2.90 ⋅10−7 [Nms2/rad2]
Aerodynamic torque for rotor R2 D2 1.76 ⋅10−7 [Nms2/rad2]

Table 1 Helicopter model parameters.

The total mass of the lever arm is

m = ml +m1 +m2 +mw (24)

The moment of inertia for the lever arm is the sum of the moment of inertia
for the solid lever bar and for the point masses of the rotors and the weight:

JL =
ml

3
l3
1 + l3

2

l1 + l2
+m1l2

1 +m2l2
2 +mwl2

w (25)

The moment of inertia for the vertical axle may be neglected:

JA � 0 (26)

The center of gravity is

lc =
ml (l1 − l2) + m1l1 −m2l2 −mwlw

m
(27)

1May be varied in the range 0.0705 – 0.119 [m].
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