
LUND UNIVERSITY

PO Box 117
221 00 Lund
+46 46-222 00 00

On Canonical Forms, Parameter Identifiability and the Concept of Complexity

Rissanen, Jorma; Ljung, Lennart

1975

Document Version:
Publisher's PDF, also known as Version of record

Link to publication

Citation for published version (APA):
Rissanen, J., & Ljung, L. (1975). On Canonical Forms, Parameter Identifiability and the Concept of Complexity.
(Technical Reports TFRT-7083). Department of Automatic Control, Lund Institute of Technology (LTH).

Total number of authors:
2

General rights
Unless other specific re-use rights are stated the following general rights apply:
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors
and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the
legal requirements associated with these rights.
 • Users may download and print one copy of any publication from the public portal for the purpose of private study
or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal

Read more about Creative commons licenses: https://creativecommons.org/licenses/
Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove
access to the work immediately and investigate your claim.

Download date: 17. Apr. 2024

https://portal.research.lu.se/en/publications/c1f11904-6326-4e70-9710-780f21aabc00


ON CANONICAL FORMS, PARAMETER
IDENTIFIABILITY AND THE CONCEPT
OF COMPLEXITY

L. LJUNG
J. RISSANEN

Report 7527l}l November 1975
Deportment of Automotic Control
Lund lnstitute of Tec nology



For the 4tfr IFAC Symposium on Identification, TbilisirUSSR L976

ON CANONICAL FORMS, PARAMETER IDENTIFIABILITY AND

THE CONCEPT OF COMPLEXITY

Lennart Ljung and Jorma Rissanen

Dept of Aut.omatic Control
Lund Institute of Technology
s-220 07 LUND 7, SI^iEDEN

ABSTRACT

A method is presented to parameterize mul-ti-output linear models

for identification purposes. Ideas from realization theory are used as

guidance in selecting a basis in a prediction space which in turn de-
termines an appropriately parameterized model. The selecÈion is inter-
preted as a data compression procedure, and the concept of complexity
and enÈropy of a random variable is used as the criterion.

1. TNTRODUCTION

During Èhe past decade identificetíon of single-output sysÈems has

become a routine as evidenced by nunerous successful applications. In
comparison, eonsiderable diffícultíes arise when the same identifica-
tion methods are attempted at the multi-output systems. The major
source of trouble is due to the fact that there is no universal strr¡c-
ture wít,hin which the systems could be parameterized. As,/a conse-
guence, the identification problem includes the structure estimation
as an essential part,.

rn this peper we shall discuss how a stationary, multi-output time
series {y} ís nodelLed as an ARMA-process or in state space form, i.e.

y(t) + Arr(t-1) +...+Any(r-n) =e(r) * Cl"(r-t) +...+Crre(r-n) (1)

IBM Research
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x(t+l)=Fx(t)+re(t)
y(t)=Hx(t)+e(t)

or

(2)
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Ì{here ie} is a seguence of independent random variables. The inclusion
of an input signal to treat dynaurical, stochastic systems is st,raight-
forward.

l,le shall treat. the problem how to select a set of parameters de-
scribing the ARMA coefficients or the natrices F, K, H such rhat they
may be uniquely determined in a parameter estimation procedure. l{e
shal1 not discuss the parameter estimation part of the problem here,
but let us assume that the selected parameters are determined using a

prediccion error identification method, such as the maximum likelihood
merhod. Seer ê.8., [1], I2l an¿ [3].

The choice of parameters is based on the ídea of selectíng a struc-
Èure wit.h its parameters in such a rÀray as to make the parameter esti-
macion a'well-conditioned problem. The structure selection ís inter-
preted as an information compression procedure, and the concept of
complexity and entropy of a random variable (see [4]) r¡ill be used as
a guiding crit,erion. From these prelíruinary studies in the present
paper a perhaps more satisfying over-aL1 approach to Èhe'identifica-
tion problem was developed in [5] an¿ [Oj.

2. CANONICAI, FORMS AND THE HANKEL MATRIX OF THE IMPULSE RESPONSE

rr is quite well knor¿n, see e.g. t7]-t11], that the Hankel narrix
of Èhe impulse response can be used as a starting point for describing
the system as a state space or AR}fA-representat,ion.

For future reference, we shal1 briefly review the procedure here.
Let

tir( z) H0*H1 ,*Hz +z
2 ;Ho=r

{y}, and

(3)

(4)

be the transfer function from {e} to

H H

H

2 3
Ht

H
2

tu
H3

4 \r*rtr,"
Ht¡ Htt*l t**2 HN*M

be the Mtrl*tt, block Hankel matrix formed from the impulse response ma-
trices {ttt}. Then if the process {y(t)} has a finite, sâ} n-dimensio-
nal, representation (2) or an ARMA-represenÈation (1), all matrices
HN,l4 ti11 have rank less or equal to n. The n first rinearly indepen-
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dent ror¡s determine Èhe observability or Kronecker indices, and they
can be used as a basis for representations like (l) or (2).

From (3)
4'

Y(t) = I
k=0

(s)

r.¡e obtain for f (tlr-r¡, Ehe predicrion of y(t) basea on y(r-r),
y(t-r-l),....

í{tlt-'¡ \. "(t-t)
Hence

L "(t-t)

=þ

co

:
k=r

Î(t+t I t¡

(6)

(t'l

(e)

e (r)
e(t-1)Y (r)

N @
Hr.¡

f 1t+ult)

rf the rank of 
"*,- 

i" bounded when N increases, fqt*Nlt) wilr eventu-
a1Ly 1ie in the linear span of the oÈher predictors. Therefore

i(.*¡rlt) +A1 i(r+N-11.) *.... +\i{t*rl.) =0 (s)

Clearly, when the innovations are added t,o the predietions in order to
obtaín y(r+N), rhe relation (g) gives an ARr,fA-represenrarion of {y(t)}
with the LHS of (8) formed from e(t+t),.. . ,e(r+w).

Analogously the rinear relationship (g) can be expressed as

i(t+zlt¡

y (t+n 
I r)

i¡t+r I r)

ylr+ll-1lr)

which gives ríse to the state space representation (2) in the foll0wing
rday:

Let

v (t)

and

then

i(t*r I r-1) Kr.e(t)
x(t+1) = + = F x(t) + t< e(r)

flt+u-rlr-r) \-r" ( t)

rf the componenrs of y*(t) that enrer in (g) and (9) are resrricÈed
to a basis that spans 

"*,*an.r 
the representation r¿irr be unique (for

x(t+1) = ti(r+rlt) .... i(.*n-rlr)lr.
= [r,0 0 .. 0] x(r) + e(r)
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this basis). Consequently, the problem of parameterization or of re-
presentation of {V(t) } can be seen as the problem of choosing of an

appropriate basis in the "predictor space". This interpretation has

very elegantly been persued by Akaike [ff1. Usually, Èhe "firsr" li-
nearly independent rows are chosen as the basis.

LeE us consider a simple example to which we shall return several
times below.

Example 1. Consider a process with 2 componentr, ry = 2, and sup-
pose that t,he lst , 2nd and 4th rows are the first l_inearly indepen-
dent rows. Then the basis consisrs ot if(t+fl t), îZ(t+flr) and

ir{t*zlt) and (9) has the form

r)
r)
r)

i, {.*z
9 r{t*z
f, { t*l

xx0
001
xxx

îr(t+r I t)
î, (t+r 

I t¡
îr(vzlt)

xx
I K= xx

xx

00

(ro¡

(i1)

r¡here "x" denotes a numerical value, The zero at the (1r3) place comes

from the way basis is chosen¡ we know that fr(r+zlt) lies in rhe span

of the rows above it. Correspondingly, the ARl"lA-representation has the
form

10 xx
0x Ãz xxAo= 01 At

The matrices C, may be fully parameterized.I

3. PARAI'ÍETER IDENTIFIABILITY AND CANONICAL FORMS

The concept of parameter identifiability has been given some diffe-
rent definitions, buE ín essence we may say. that a certair{ model
paramet,erizat,ion, M, is Parameter rdentífiable (pr) if rhe idenrifi-
cation eriterion (the prediction error loss function) has a unique
global minimum, corresponding to e t.rue description of Èhe system.

In the previous section r^re described how a certain set of canoni-
cal forms may be constructed froru the first linearly índependent rows
(i.e. the Kronecker or observability indices). rt is true that cano-
nical forms are by construction such that the corresponding model pa-
rameterizaÈions are Pr. This requires hor¿ever, that certain a priori
information (namely the Kronecker indices) about the system is avail-
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ab1e, and it has been suggested that these be estimated first, e.8.

[9], [16], [17].
For identification Ëhe primary interest is in model paramet.eriza-

tions that yield PI rather than in canonical forms, i.". we do not bo-

ther if a given sysÈem may be represented within several parameteriza-

Èions, as long as it is uniquely represent.ed within each. This point
has also been stïessed by Glover and l^lillems [12], and it makes it
possible to extend the search for suitable structures outside the ca-

nonical forms.

It is clear from the expressions (B) and (9) that the cause of non-

-uniqueness within a given represent,ation is that the cornponents of

flt+tlt) t=f,...N involved in the expressions may be linearly depen-

dent. Therefore, by restricting these components to a linearly inde-
pendent set, we do obtain unique representat.ions. In the ARMA repre-

sentations (1) the restriction is made by fíxing parameters in A. to
zexo, that correspond to components of y not belonging to this set.
Let us formulat.e this rather straightforward result, which is closely
related to Luenberger [fg], as a theorem.

Theorem: Let x(t) = {i1.(t*tlt); k=f,...,N, ik € Ik c {1,...,rr}}
be a set of components of Vr(t), such that the corresponding rows of
H,u are linearly independent, and such that 11 = {1,...,ûy}. Assume

further that if i € Ik, then i € lk_l. Then the following parameter-

izations are PI-parameterizations:
O ARMA:

A0=I, Or=(

co = r,

o St.ate Space:

F = (fr"), where if xr(t)=i¡(t+tlt) is the r:th component of x(t)
(hence j € Ik) and also j € lt_f, then (frr, s=1,...,n) =

= (0r..r1r..r0) where the 1 is on the place corresponding to

i, (r+r-t I t).
J

K = (kr") ; H = (r 0 ... 0)

If we return to Example l, we could e.g. consider the rows l, 2 and

4 as a basis for \, where row 3 not necessarily lies in the span of
ror¿s 1 and 2. Then the parameterization would be

Ç=r

r.a)ts'
r.c)ts-(

where al" = 0 if " € ll¡-r*1 i r=l,..,N

r=1, . . ,N
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and

p=
xxx
001
xxx

001
xxx
xxx

0x
0x

xx

(L2)

( 13)Ao=r'4, Ã2=
xx

instead of (10) and (11). Notice in parricular thar rhe zero in the
(1r3) place in (L2) can be replaced by a parameter r¿ithour the pr-pro-
perty being 1ost.

The conclusion of this siurple example is that Ehe parameterizations
(12) and (13) yield Pr even though they contain more paramerers than
the "canonical" ones (10) and (11). This raises the question whether
the smallest possible parameterization for identification is of any

interest at all. rn a certain sense it is so, since if the (113) ele-
menÈ in (12) really is zero, then the other five parameËers can be

estimated more accurately in (10) than in (Lz). However, since this
parameter is identifiable, it helps to give a betÈer fit to the mea-

sured data, and the identification criterion will take a smaller value
for the structure (12) than for (10). The hyporhesis rhat Ëhe parame-
ter has the value zero can also be test.ed using either Ëhe estimate
covariance or Akaikers [t+1 criterion for the number of parameters.

The procedure of testing wheËher cert.ain parameters are zero in va-
rious strucÈures is in fact quite conmon, but we claim that this is
not done to mininize the number of est.imated parameters, but to obtain
the simplest possible model. To return to our exarnple, it is indeed
doubtful whether rhe model (r2> is "simpler" if the (113) elemenr is
zeto, tr^le r¡ould say it is not, and that there is no point in setting
this element t.o zexo, since it does not effect the pr-proy'erry.

The choice of parameÈerization described in Ëhe theorem leaves in
general several possible choices for a given system (i.e. they are not
"canonical forms"). For example 1 it may very well be that not only
ro¡¿s 1, 2 and 4, but. also the first three rows form a basis for Il. The
parameterization of F corresponding to the latter choice is then

F- (14)
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Now, it is not completely without importance whether (12) or (14) is
chosen. For example, if ttre estimated value of the (1,3) element in
(L2) is small, this means that i11r+2lt) is "close" to the linear span

ot ir(t+rlt) and ir(t*rlt). Then (14) is a badly conditioned paramerer-

ization, i.e. relatively large changes in the paraneters can be made

without t.oo much an effect on the transfer function coefficients. More-

over, (14) and (12) do not describe exactly the same ser of linear sys-
tems as the parameÈers vary.

We may sununarize the discussion of thís section as follows.
o A Pr model parameterization is obtained as soon as a basis

for tI is chosen.

o There is no need Èo elaborate on the structure of che basis
(such as certain roïrs not. in the bases being linearly de-
pendenË on the above ones) unless this gives simpler models.

o rn general we have a choice of bases (parameterizations).
o For a given model order (n), the n "most linearly indepen-

dent'i rows of H should be chosen as a basis for the para-
meterization.

tr,Ie shall relurn to the issue of how "the most linearly independent
ror¡s of H" can be interpreted, after what may seem to be a digression.

4. THE CONCEPT OF COMPLEXITY

The concept of complexity has been discussed in various contexts.
I,Ie shall here follo¡s the exposition by van rmden [4] and give a few de-
tails that are relevanÈ for the discussion above.

Complexity is c1ose1-y related Ëo int.eraction. The more interaction
there is in an object the more cornplex it is. Interaetioo:câ¡ be mea-

sured ín t.erms of entropy and along these lines a general definition
can be given. l,Ie will here be concerned r^rith the conplexity of random
vectors. Since interact.ion within a random vector can be measured by
the correlations, the complexity can be expressed. using the covariance
matrix. Van Emden derives the following expressions:

c, =max (n{xr) +... +n(xrr) -H(xI,...,xn)) =-å Ï log(nÀ.)(15)
1=I

Here (xlr...r*r) is an n-dimensional random vector, H(*i) are the en-
tropies of the component and H(xr,. . . ,*rr) is the entropy of the whole
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vector. À. are the eigenvalues of the covariance matrix R"r which has

been normalized so that tr R* = 1. The maximum is taken over all
orthonormal t,ransformations .

By expanding the logarithrn around À.=l/n up to second order terms,
C, can be approximated by

rlnz) = L/n 2r..
1J

n

Ti,i=1

gt
c=l/n )fl:

!1=I
2

( 16)

where r-. are the components of R_- and again r r.. = 1. The measure c1J ' x " -- I -ii
has the advantage of being cornputable directlf r.o* the matrix, without
having to find the eigenvalues, but is less sensitive to complete cor-
relation. observe, that then measures c, and c atre zero for R*=r and
positive for all other mat.rices.

The complexity is closely related to data compression, van Emden

t4l. rf a random vector has high complexity, then there are strong in-
teractions between the components and it can be compressed into a lower
dimensional vector without loosing much information contained i-n the
oríginal vecËor.

The complexity is clearly also relaÈed to the condition number of
the covariance matrix: rf the complexity is large, Ëhen the covariance
matrix ís ill-condiËioned

5. CHOICE OF BASIS

L/n

Let us return to the random vect.or
variance mat,rix is

YN(t) defined in (3.5). Irs co-

corresponding to these varia-

ç=EY*(t)v*(t)T="*4; Hl¡="*,_ (17)

Hence linear dependence of the rows of H* is connected with correlation
between the correspondíng random variabres: rf ir(r+rlt) and frlr+2lt)
in our example are completely correlated., then the first and third rows
of H* are linearly dependent and vice versa. The third ror,¡ of H* is
"close" to the linear span of the tr¡o first ones íf the three rand.om
variabLes it{t*rlt), iz(t+rIt) and ír{.*zlt) tr".r" srrong inreracrion
(and, consequently, the submatrix of ñ,
bles has a large complexity).

Irle now see a possibility to interpret "the most linearly indepen-
dent ror¿s" staÈed in the end of section 3. The n most linearly inde-
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pendent rows of Hou are those, whose corresponding nxn submatrix of ñ--
v

has the least complexí ty.
If r+e consider YN(t) for some suitably large N as the available in-

formation about the past; as the "true" basis for the predictor space,

then the problem of finding an n-dimensional representation is the pro-
blem of compressing the nrxN vector y*(t) into an n-vector xn, the
basis for the parameterization. This should naturally be done so that
as much information as possible is retained. The choice of taking xn
so that rx-*] is rhe submatrix of ñ., thar has rhe least complexity isnn y
then the same as choosing those n components of yN(t) as a basis that
are most. difficult to compress further. This seems to be a sensible
so lution.

To sumrnarize this discussion, qre suggest that the basis for the
parameterization should be chosen as consisting of those components
of Y*(say ir; j=1,..,n) which give the nxn submarrix of Ë, (made up

from the elements (ijrik; jrk=1r...rn)) with the smallest complexity
of all its nxn submatrices, subject to the eonstrainÈ that if row i is
chosen then also row i - n, should be. once the basis is chosen it is
clear from the theorem how the model is to be parameterized,

6. A PROCEDURE FOR IDENTIFYING MULTIVARIABLE SYSTEMS

The procedure described in section 5 requires rhar }\tl, or an esri-
mate of it, is kndwn. since no structure must be imposed on H* in the
preliminary analysis, nrirfi should be esrimared using basically a non-
-parametric method. several possibilities exisÈ, but we would suggesr
Ëhe following one. Adjust the parameters of a high order autoregressive
model to the dara using the method of least squares. rn çhis \,ray a
fairly good estimat.e of the sequence of innovations is obtained by
using fast and straightforward calculations. Subtract the innovatíons
from the measured y, which yields i(t+ilt¡ t=1,... . Repear N rimes
whieh gives i(t*tlt) t=tr... ; k=l,..rN. Then form the estimate of ñ

v(=HNHñ) by simply taking for rhe (i jl block
.M

tij = # ,1, 
i(t+i-llt) i1t+¡-tlt)r (M=number of data) (rs¡

rt is known, see [15] or [16] rhat rhe observabiliry indices can
also be obtained from one "corner" of the covariance matrix of the
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process y since this has the same rank properties as H. Therefore also

this submatrix (tiures its transpose) may be utilized for the selecrion
of a basis, using the cornplexity criterion. This procedure can be given

an independent interpretaÈion since it gives a well-conditioned way of
determining the A-mat.rices usíng the method of instrumental variables.

lrle now suggest the following procedure for identification of multi-
variable systems:

o Form from the recorded output sequence y the estimates of
T

HrOHfr (or of the covariance matrix) as described above. The

number N is chosen suitably large to reflect the largest
tine lag one is prepared to accept in the model.

o Choose the model order n and determine the nxn submatrix of
T

H*Hfr that has the smallest eomplexity according to Section
4. The corresponding conoponents of Y* are then chosen as the
basis for the parameterízation as given in the theorem.

o For the model order n, and the given parameterization then
the prediction error estimaÈion method is applied, the mo-

. del Ëhat minimizes the prediction error covariance is deter-
mined and the corresponding value of Èhe criterion, Vn, is
calculaÈed.

o The procedure is repeated for higher order models, n+l rrtt2,
..., until the decrease in VO is not significant any more.

For instance, Akaikers [14] criterion Vr, * r0 where n, is
the number of estimated parameters (=n.n .2 for the parame-

terization of the theoren) could be minimized with respect
t,o n.

7 . CONCLUDING RE}ÍARKS

l,le have sÈressed the use of parameter ident.ifiable model parameter-
izations rather than canonical forms. The reason can be expressed as

follo¡¡s: For a reaLízation of a given order, say n, the number of pa-
rameters in a canonical form based on the observability indices de-
pends on the actual values of these. This reflects the fact that the
indices contain certain information about the struct.ure of the basis.
However, this information can be obtained also in the parameter esti-
mation stage, and it corresponds to certain parameters having the
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value zero. NoI^t, it is usually an easier problem to estimate e parame-

ter than to check for linear dependence in the (estimated and noisy)
Hankel matrix of the impulse responses. Therefore it seems more natural
to defer this analysis to the parameter estimation step than to extract
this information from the Hankel maÈrix.

Ilith this philosophy we have not only sought a paraneterization that
will be identifiable, but we have also tried to make it as well condi-
tioned as possible, so that the estiuration step will have good numeri-
cal properties. This feature is difficult to introduce in the canonical
form approach; see also t5] and t6].

As a final remark, Èhe rank testing procedures are difficulr statis-
tical problems. our procedure does not involve rank testing or any de-
cision-making threshold. All decisions are based on direct comparisons
of real numbers (the complexities). The order of the model is derer-
mined by use of the prediction error criterion, which has suceessfully
been used for single output systems, [f1, [14].
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