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THE CONCEPT OF COMPLEXITY

Lennart Ljung and Jorma Rissanen
Dept of Automatic Control IBM Research
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§-220 07 LUND 7, SWEDEN USA
ABSTRACT

A method is presented to parameterize multi-output linear models
for identification purposes. Ideas from realization theory are used as
guidance in selecting a basis in a prediction space which in turn de-
termines an appropriately parameterized model. The selection is inter-
preted as a data compression procedure, and the concept of complexity

and entropy of a random variable is used as the criterion.

1. INTRODUCTION

During the past decade identification of single-output systems has
become a routine as evidenced by numerous successful applications. In
comparison, considerable difficulties arise when the same identifica-
tion methods are attempted at the multi-output systems. The major
source of trouble is due to the fact that there is no universal struc-
ture within which the systems could be parameterized., Assa conse-
quence, the identification problem includes the structure estimation
as an essential part.

In this paper we shall discuss how a stationary, multi-output time

series {y} is modelled as an ARMA-process or in state space form, i.e.
y(t) + Aly(t—l) +...+Any(t-n) =e(t) + Cle(t—l) +...+Cne(t-n) 1

or
x(t+l) = F x(t) + K e(t)
y(t) = H x(t) + e(t) (2)



where {e} is a sequence of independent random variables. The inclusion
of an input signal to treat dynamical, stochastic systems is straight-
forward.

We shall treat the problem how to select a set of parameters de-
scribing the ARMA coefficients or the matrices F, K, H such that they
may be uniquely determined in a parameter estimation procedure. We
shall not discuss the parameter estimation part of the problem here,
but let us assume that the selected parameters are determined using a
prediction error identification method, such as the maximum likelihood
method. See, e.g., [1], [2] and [3].

The choice of parameters is based on the idea of selecting a struc-
ture with its parameters in such a way as to make the parameter esti-—
mation a well-conditioned problem. The structure selection is inter-
preted as an information compression procedure, and the concept of
complexity and entropy of a random variable (see [4]) will be used as
a guiding criterion. From these preliminary studies in the present
paper a perhaps more satisfying over—all approach to the identifica-

tion problem was developed in [5] and [6].

2. CANONICAL FORMS AND THE HANKEL MATRIX OF THE IMPULSE RESPONSE

It is quite well known, see e.g. [7]-[11], that the Hankel matrix
of the impulse response can be used as a starting point for describing
the system as a state space or ARMA-representation.

For future reference, we shall briefly review the procedure here.

Let

= 2 _
Hs(z) = HO + H1 z + H2 Z + awaate 5 HO =1 (3)
be the transfer function from {e} to {y}, and ;
1 B2 Hy wems Hy
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be the Mny|Nny block Hankel matrix formed from the impulse response ma-
trices {Hi}. Then if the process {y(t)} has a finite, say n-dimensio-
nal, representation (2) or an ARMA-representation (1), all matrices

HN M will have rank less or equal to n. The n first linearly indepen-
b



dent rows determine the observability or Kronecker indices, and they
can be used as a basis for representations like (1) or (2).
From (3)
- 5 - (5)
y(t) kio H e(t-k)
we obtain for §(t|t-r), the prediction of y(t) based on y(t-r),
y(t-r-1),....

y(t|t-r) = T H e(t-k) (6)
k=r
Hence
y(e+1]t) e(t)
T () = é = Hy . e(f—l) (7)
§(;+N|t) :

If the rank of HN «.is bounded when N increases, ;(t+N]t) will eventu-
H

ally lie in the linear span of the other predictors. Therefore
y(t+N|t) + Al YOEHN-1[t) + ..., + Ay y(t+1l]t) = 0 (8)

Clearly, when the innovations are added to the predictions in order to
obtain y(t+N), the relation (8) gives an ARMA-representation of {y(t)}
with the LHS of (8) formed from e(t+l),...,e(t+N).
Analogously the linear relationship (8) can be expressed as
y(t+2]¢t) y(t+1]t)
. =F . (9)
§(£+ ] t) §(t+N-1] t)

which gives rise to the state space representation (2) in the following
way:

Let x(t+l) = [y(t+l]t) .... y(e+N-1]t) 1%, Then

y(t) = [1,0 0 .. 0] x(t) + e(t)

and
y(t+1]t-1) K, e(t)
x(t+l) = . + E = F x(t) + K e(t)
y(t+N-1|t-1) Ky_1e()

If the components of YN(t) that enter in (8) and (9) are restricted

to a basis that spans HN(nthen the representation will be unique (for
s



this basis). Consequently, the problem of parameterization or of re-
presentation of {y(t)} can be seen as the problem of choosing of an
appropriate basis in the "predictor space". This interpretation has
very elegantly been persued by Akaike [11]. Usually, the "first'" 1i-
nearly independent rows are chosen as the basis.

Let us consider a simple example to which we shall return several

times below.

le 1. C id rocess with 2 components, n_ = 2, and sup-
Example onsider a p e p v P
pose that the lst, 2nd and 4th rows are the first linearly indepen-
dent rows. Then the basis consists of §1(t+1|t), §2(t+1|t) and
§2(t+2|t) and (9) has the form

§1(t+2|t) x x 0 §r1(t+1|t) X X
Fo(t+2[t) | =] 0 0 1 §2(t+1|t) ; K=|x x (10)
§2(t+3|t) X X X §2(t+2|t) X X

where "x'" denotes a numerical value. The zero at the (1,3) place comes

from the way basis is chosen; we know that §1(t+2|t) lies in the span
of the rows above it. Correspondingly, the ARMA-representation has the

form

A = A = 0 A = (11)

The matrices Ci may be fully parameterized.

3. PARAMETER IDENTIFIABILITY AND CANONICAL FORMS

The concept of parameter identifiability has been given some diffe-
rent definitions, but in essence we may say that a certain model
parameterization, M, is Parameter Identifiable (PI) if the identifi-
cation criterion (the prediction error loss function) has a unique
global minimum, corresponding to a true description of the system.

In the previous section we described how a certain set of canoni-
cal forms may be constructed frqp‘the first linearly independent rows
(i.e. the Kronecker or observability indices). It is true that cano-
nical forms are by construction such that the corresponding model pa-
rameterizations are PI. This requires however, that certain a priori

information (namely the Kronecker indices) about the system is avail-



able, and it has been suggested that these be estimated first, e.g.
(91, [16]1, [17].

For identification the primary interest is in model parameteriza-
tions that yield PI rather than in canonical forms, i.e. we do not bo-
ther if a given system may be represented within several parameteriza-
tions, as long as it is uniquely represented within each. This point
has also been stressed by Glover and Willems {12], and it makes it
possible to extend the search for suitable structures outside the ca-
nonical forms.

It is clear from the expressions (8) and (9) that the cause of non-
-uniqueness within a given representation is that the components of
y(t+k|t) k=1,...N involved in the expressions may be linearly depen-
dent. Therefore, by restricting these components to a linearly inde-
pendent set, we do obtain unique representations. In the ARMA repre-
sentations (1) the restriction is made by fixing parameters in Ai to
zero, that correspond to components of y not belonging to this set,
Let us formulate this rather straightforward result, which is closely

related to Luenberger [13], as a theorem.

Theorem: Let x(t) = {§ik(t+k|t); k=1,...,N, i €I < {1,...,ny}}

be a set of components of YN(t), such that the corresponding rows of

Hy are linearly independent, and such that I1 = {l,...,ny}. Assume
further that if i € I, then i€ I,.;+ Then the following parameter-—
izations are PIl-parameterizations:

O ARMA:

= = r r = 1 ) N =
AO I, Ar (ats) where ag 0 if s € IN—r+1 H r=1,..,N
r
Cop =1, €, = () r=1,..,N

O State Space:
F = (frs)’ where if xr(t)=§j(t+k|t) is the r:th componént of x(t)

(hence j € Ik) and also j €1 then (frs’ s=l,...,n) =

k-1’
= (0,..,1,..,0) where the 1 is on the place corresponding to

§j(t+k—1|t).
K = (krs) H H=(I0 ... 0)

If we return to Example 1, we could e.g. consider the rows 1, 2 and
4 as a basis for Hes where row 3 not necessarily lies in the span of

rows 1 and 2. Then the parameterization would be



X X X
F=|0 01 (12)
X X X
and
0 x X X
A =1, A = , A = (13)
0 1 2
0 x X X

instead of (10) and (11). Notice in particular that the zero in the
(1,3) élace in (12) can be replaced by a parameter without the PI-pro-
perty being lost.

The conclusion of this simple example is that the parameterizations
(12) and (13) yield PI even though they contain more parameters than
the "canonical" ones (10) and (11). This raises the question whether
the smallest possible parameterization for identification is of any
interest at all. In a certain sense it is so, since if the (1,3) ele-
ment in (12) really is zero, then the other five parameters can be
estimated more accurately in (10) than in (12). However, since this
parameter is identifiable, it helps to give a better fit to the mea-
sured data, and the identification criterion will take a smaller value
for the structure (12) than for (10). The hypothesis that the parame-
ter has the value zero can also be tested using either the estimate
covariance or Akaike's [14] criterion for the number of parameters.

The procedure of testing whether certain parameters are zero in va-—
rious structures is in fact quite common, but we claim that this is
not done to minimize the number of estimated parameters, but to obtain
the simplest possible model. To return to our example, it is indeed
doubtful whether the model (12) is "simpler" if the (1,3) element is
zero. We would say it is not, and that there is no point in setting
this element to zero, since it does not effect the PI-property.

The choice of parameterization described in the theorem leaves in
general several possible choices for a given system (i.e. they are not
"canonical forms'). For example 1 it may very well be that not only
rows 1, 2 and 4, but also the first three rows form a basis for H. The

parameterization of F corresponding to the latter choice is then

0 0 1
F = X X X (14)

X X X



Now, it is not completely without importance whether (12) or (l4) is
chosen. For example, if the estimated value of the (1,3) element in
(12) is small, this means that §1(t+2|t) is "close" to the linear span
of §l(t+1|t) and §2(t+1]t). Then (14) is a badly conditioned parameter-—
ization, i.e. relatively large changes in the parameters can be made
without too much an effect on the transfer function coefficients. More-
over, (l4) and (12) do not describe exactly the same set of linear sys-
tems as the parameters vary.
We may summarize the discussion of this section as follows.

o A PI model parameterization is obtained as soon as a basis
for H is chosen.

o There is no need to elaborate on the structure of the basis
(such as certain rows not in the bases being linearly de-
pendent on the above ones) unless this gives simpler models.

0 In general we have a choice of bases (parameterizations).

o For a given model order (n), the n "most linearly indepen-
dent" rows of H should be chosen as a basis for the para-
meterization.

We shall return to the issue of how 'the most linearly independent

rows of H" can be interpreted, after what may seem to be a digression.

4. THE CONCEPT OF COMPLEXITY

The concept of complexity has been discussed in various contexts.

We shall here follow the exposition by van Emden [4] and give a few de-
;ails that are relevant for the discussion above.

Complexity is closely related to interaction. The more interaction
there is in an object the more complex it is. Interaction,can be mea-
sured in terms of entropy and along these lines a general definition
can be given. We will here be concerned with the complexity of random
vectors. Since interaction within a random vector can be measured by
the correlations, the complexity can be expressed using the covariance
matrix. Van Emden derives the following expressions:

;] o
Cp =max {(H(x)) + ... + H(x) - HOtp,eeex)) = = 5 ] log(mr,) (15)

1=1
Here (x;,...,x ) is an n-dimensional random vector, H(x.,) are the en-
1 n i

tropies of the component and H(xl,...,xn) is the entropy of the whole



vector. Ai are the eigenvalues of the covariance matrix Rx’ which has
been normalized so that tr Rx = 1. The maximum is taken over all
orthonormal transformations.

By expanding the logarithm around Ai=1/n up to second order terms,

C1 can be approximated by

n n
C=1/n J (A% - 1/0%) = 1/n ) ri. - 1/n° (16)
i=1 * ij=1

where rij are the components of Rx and again ; rii = 1. The measure C
has the advantage of being computable direct1§ from the matrix, without
having to find the eigenvalues, but is less sensitive to complete cor-
relation. Observe, that then measures C1 and C are zero for Rx=I and
positive for all other matrices.

The complexity is closely related to data compression, van Emden
[4]. If a random vector has high complexity, then there are strong in-
teractions between the components and it can be compressed into a lower
dimensional vector without loosing much information contained in the
original vector.

The complexity is clearly also related to the condition number of
the covariance matrix: If the complexity is large, then the covariance

matrix is i1ll-conditioned.

5. CHOICE OF BASIS

Let us return to the random vector YN(t) defined in (3.5). Its co-

variance matrix is

R, =E ¥, (6) YN(t)T = Hy Hg S g S He (17)
Hence linear dependence of the rows of Hy is connected wigh correlation
between the corresponding random variables: If §1(t+1|t) and §1(t+2|t)
in our example are completely correlated, then the first and third rows
of HN are linearly dependent and vice versa. The third row of Hy is
"close" to the linear span of the two first ones if the three random
variables §1(t+1|t), §2(t+1|t) and §l(t+2lt) have strong interaction
(and, consequently, the submatrix of ﬁ; corresponding to these varia-
bles has a large complexity).

We now see a possibility to interpret "the most linearly indepen-

dent rows" stated in the end of Section 3. The n most linearly inde-



pendent rows of H_ are those, whose corresponding nxn submatrix of R

N
has the least complexity.

If we consider YN(t) for some suitably large N as the available in-
formation about the past; as the "true" basis for the predictor space,
then the problem of finding an n-dimensional representation is the pro-
blem of compressing the nny vector YN(t) into an n-vector X s the
basis for the parameterization. This should naturally be done so that
as much information as possible is retained. The choice of taking x
so that Exnxz is the submatrix of E; that has the least complexity is
then the same as choosing those n components of YN(t) as a basis that
are most difficult to compress further. This seems to be a sensible
solution.

To summarize this discussion, we suggest that the basis for the
parameterization should be chosen as consisting of those components
of YN(say ij; j=1,..,n) which give the nxn submatrix of ﬁ; (made up
from the elements (ij,ik; jsk=1,...,n)) with the smallest complexity
of all its nxn submatrices, subject to the constraint that if row i is
chosen then also row i - ny should be. Once the basis is chosen it is

clear from the theorem how the model is to be parameterized.

6. A PROCEDURE FOR IDENTIFYING MULTIVARIABLE SYSTEMS

] . . . T :
The procedure described in Section 5 requires that HNHN’ or an esti-
mate of it, is known. Since no structure must be imposed on Hy in the
. . . T . . .
preliminary analysis, H _H_ should be estimated using basically a non-

—parametric method. SevSer possibilities exist, but we would suggest
the following one. Adjust the parameters of a high order autoregressive
model to the data using the method of least squares. In this way a
fairly good estimate of the sequence of innovations is obtained by

using fast and straightforward calculations. Subtract the innovations

from the measured y, which yields y(t+1l]t) t=1,... . Repeat N times
which gives §(t+k|t) t=1,... ; k=1,..,N. Then form the estimate of ﬁ;
(=HNH£) by simply taking for the (i j) block
19 I T
rij = ﬁ-til y(t+i-1|t) y(t+J-1|t) (M=number of data) (18)

It is known, see [15] or [16] that the observability indices can

also be obtained from one '"corner" of the covariance matrix of the



process y since this has the same rank properties as H. Therefore also

this submatrix (times its transpose) may be utilized for the selection

of a basis, using the complexity criterion. This procedure can be given

an independent interpretation since it gives a well-conditioned way of

determining the A-matrices using the method of instrumental variables.

We now suggest the following procedure for identification of multi-

variable

o

systems:

Form from the recorded output sequence y the estimates of
HNH§ (or of the covariance matrix) as described above. The
number N is chosen suitably large to reflect the largest
time lag one is prepared to accept in the model.

Choose the model order n and determine the nxn submatrix of
H HT that has the smallest complexity according to Section

N'N

4. The corresponding components of Y _ are then chosen as the

N
basis for the parameterization as given in the theorem.

For the model order n, and the given parameterization then
the prediction error estimation method is applied, the mo-
del that minimizes the prediction error covariance is deter-
mined and the corresponding value of the criterion, Vn, is
calculated.

The procedure is repeated for higher order models, n+l,n+2,

«++s until the decrease in V. is not significant any more.

k

For instance, Akaike's [14] criterion Vn + ng where ng is
the number of estimated parameters (=nq5;2 for the parame-

terization of the theorem) could be minimized with respect

to n.

7. CONCLUDING REMARKS

We have stressed the use of parameter identifiable model parameter-

izations
follows:
rameters

pends on

rather than canonical forms. The reason can be expressed as
For a realization of a given order, say n, the number of pa-
in a canonical form based on the observability indices de-

the actual values of these. This reflects the fact that the

indices contain certain information about the structure of the basis.

However,

this information can be obtained also in the parameter esti-

mation stage, and it corresponds to certain parameters having the

10.



value zero. Now, it is usually an easier problem to estimate 2 parame-
ter than to check for linear dependence in the (estimated and noisy)
Hankel matrix of the impulse responses. Therefore it seems more natural
to defer this analysis to the parameter estimation step than to extract
this information from the Hankel matrix.

With this philosophy we have not only sought a parameterization that
will be identifiable, but we have also tried to make it as well condi-
tioned as possible, so that the estimation step will have good numeri-
cal properties. This feature is difficult to introduce in the canonical
form approach; see also [5] and [6].

As a final remark, the rank testing procedures are difficult statis-
tical problems. Our procedure does not involve rank testing or any de-
cision-making threshold. All decisions are based on direct comparisons
of real numbers (the complexities). The order of the model is deter-
mined by use of the prediction error criterion, which has successfully

been used for single output systems, [1], [14].
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