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ABSTRACT

An objective with adaptive control of stochastic systems 1is to
obtain in some sense optimal control of the process. For practical app-
lications it is important that the controller is not too sensitive
with respect to assumptions concerning the process. For example it is
desired that the stability of the closed loop system can be guaran-
teed. In this paper a stabilizing property is considered for a certain
class of adaptive regulators, the so called self-tuning regulators.

The investigated controllers are based on simultaneous recursive pa-
rameter estimation and control. It is shown that, under fairly weak
conditions, these controllers have a stabilizing property in the

sense that the output-signal is bounded.

1. INTRODUCTION

The main objective with adaptive controllers is to get a possibili-
ty to control unknown processes. It is thus desirable to @ake as few
assumptions as possible concerning the controlled process. Usually
when the adaptive controllers are designed it is assumed that the pro-
cess is of a certain type.

Assumptions can be made concerning the order and the time delay of
the system. Also assumptions must be made concerning the disturbances
acting on the system. For practical applications it is important that
these assumptions easily can be verified. One feature of an adaptive
controller that is desirable is that the stability of the closed loop

system can be guaranteed.



The stability analysis of a system controlled by an adaptive regu-
lator is far from trivial. The closed loop system is non-linear and
timevariant. Even if the properties of the different parts of the
controller, i.e. the estimation and the control routines, are well
known there might be difficulties when they are connected into a
closed loop system.

For stability analysis a common tool is linearization around the
desired solution. This is not a suitable tool for stochastic systems
since there is a non-zero probability that the system will be forced
outside the area where the linearization is valid. Also it is the be-
haviour far from the optimal solution that might be particularly inte-
resting, since this gives a feeling for the transient properties of
the controller.

The problem of stability for adaptive controllers is not easy to
solve even for deterministic systems. One example is the adaptive
controller based on Narendra's adaptive observer. In this case the
convergence of the controller can be shown under the assumption that
the output of the system is bounded, i.e. that the closed loop sys-
tem is stable. This is, however, a condition that is difficult to
show. The problem is so far solved for special types of processes [1].
An other example is the model reference adaptive controllers where
fairly strong assumptions must be made on the controlled system.

This paper discusses a stabilizing property of a certain class of
adaptive regulators, the self-tuning regulators [2],[3]. These con-
trollers are based on recursive parameter identification and minimum
variance control. It will be shown that the input and the output of
the process are bounded in the mean square sense under weak conditions.
In Section 2 the class of regulators is presented and heuristic argu-
ments are given for the stabilizing property. In Section 3 the results
are given and a proof is outlined. The properties are illustrated with
a simple example in Section 4. Conclusions and references are given

in Sections 5 and 6 respectively.

2. ADAPTIVE REGULATORS BASED ON RECURSIVE IDENTIFICATION

A fairly straightforward approach to adaptive control is to combine

a recursive identification method with a regulator of a certain struc-



ture. The parameters of the regulator are then determined based on

the current system parameter estimates, provided by the identification
scheme. This approach has been described in [3], and various special
cases have been discussed earlier, A certain version, which will be
described in more detail below, has been successfully applied to se-
veral industrial processes.

The overall stability properties of adaptive regulators based on
recursive identification can be heuristically discussed as follows. If
something goes wrong and the feedback yields an unstable system, then
the output and input signals increase rapidly. As the signals increase,
more information about the true system becomes available, and the sys-—
tem parameter estimates converge rapidly to their true values. If now
the feedback law, based on the true parameter values, yields a stable
closed loop system (a very reasonable assumption) then the unstable
behaviour of the system is quickly stopped after a "burst'" in the out-
put signal.

However, this discussion is purely heuristic and has some short-
comings. The most important feature is that if only one of the system's
modes becomes unstable, only information about this one increases ra-
pidly. Therefore only a certain combination of the system parameter
estimates converges rapidly to its true value. This may not be suffi-
cient to ensure that the closed loop system is stabilized or that the
unstable mode changes significantly to reveal other modes of the sys-—
tems. A more complete analysis of the structure of the regulator ver-
sus the identification method is therefore required.

In the next section we shall perform such an analysis for the fol-
lowing adaptive regulator. The identification method is chosen to be
recursive least squares [4] and the regulator is the minimum variance
controller, see e.g. [5].

4
More formally, we have a model

y(t+k) + aly(t—1)+...+ ﬁﬁy(t-n) . Biu(t-l)+...+ Bﬁu(t-ﬁ) (1)

where y is the output and u is the input. The time delay in the process
is k, and it is assumed to be known. The parameters ﬁi Bi are estima-

ted using the LS criterion, i.e.
N-k 2
VN = f (y(t+k)+ aly(t-1)+...+ aﬁy(t—n)— Blu(t-l)—p..—ﬁﬁu(t—m)]
(2)

is minimized w.r.t. ﬁi and Si' Let the minimizing parameter at step N



be denoted by ﬁi(N), Ei(N). It is well known how these are found

recursively, e.g. [4]. The control is then chosen as

1

A

b, (t)

u(t) = [ al(t) y(e)+.. .+ an(t) y(t-fi+1l) - Bz(t) u(t-1)+

it Bﬁ(t) u(t-n+1)] (3)

This resulting adaptive, or self-tuning regulator is described in

more detail in [2] and [3].

3. A STABILIZING PROPERTY

In this section we shall prove that the self-tuning regulator (1)-
(3) possesses an overall stability property regardless of disturbances
in (1). The proof is based on the heuristic discussion in Section 2,
complemented with a proper analysis of how the unstable modes change.
Due to the limited space here, only an outline of the proof can be

given; the full proof can be found in [6].
Theorem: Suppose that the true process can be described by

y(t+k)+a1y(t—1)+...+any(t-n) = blu(t-1)+...+bmu(t—m)+V(t+k) (4)

where v(') is some disturbance such that

N 2
T v(t)" < C
1

(5)

N ll

Let the self-tuning regulator (1)~(3) be applied to (4) with n » n,

o 2 m. Then the overall system is stable in 'the sense that

1 N 2
ﬂN = N L oy(r) < C2 (6)
1
If the system (4) is minimum phase, then also
N
Ly ww?<c 7
N o 3

The constants Ci are independent of N, but may depend on the realiza-

tion of the (possibly stochastic) sequence V.
Proof: Introduce
~ ~ T
o(t) = [ y(e)..., y(t=n+1), u(t),... u(t-m+1)]

= . T
60 [ a; eee 3, 0...0; b1 v bm 0...0 1]



iy -~ ~ "~ T
8= 8 «.v @ ... ds, 61 b Bm -3l Bﬁ 1
a a - T
8(t) = [ a;(t),..., aa(t), B (t),..., ba(t)]
T-06-6

[o]

B(e) = 8(t) - o
Then (4) can be written
y(t+k+l) = ez ©(t) + v(t+k+1)
and (3) tis

e(t)T e(t) =0

Hence
y(esk+1) = BT @(t) + v(t+k+l) (8)
Let
1 T
R(t) = s Z P(s-k-1) @w(s—k-1)
s=1

Then the LS criterion (2) can be written

t t
v, ® = 8R()T + 2-% S Blp(s—k-1) v(s)t +-% r v(s)?,
s=1 s=1
According to (5)
Vt(O) < C1
Therefore,

Vt(e(t)) < C1

and using Schwarz’ inequality this implies that

)T R(t) O(t) < 4,
or
8T R 3y < 4c,/n, 9)

e

If now (6) does not hold so . tends to infinity along a subsequence,
then ng is arbitrarily large and increasing for ts<sst' for some suffi-
ciently large t. This implies via (9) that 8(s) is arbitrarily close
to the null space of R(t)//Lt for t<s<t'. Since ng is increasing, y(s)
is "large" for a number of s=t,...,t'. In view of (8) this means that
g(s)qp(s) also is "large". Since 3(5) is arbitrarily close to the null
space of R(t)/&t, @(s) cannot belong to the range space of R(t)/nt.
(Since the matrix is symmetric, the null space and the range space are
orthogonal.) Hence R(t') gets a significant contribution from matrices

with range space not belonging to the range space of R(t)/nt. In other



words, the rank of R(t')/nt, is higher than that of R(t)/&t. Repeat-—
ing the argument at mos n+m times, it follows that R(t')/&t, has full
rank, yielding the only possible choice in (9) 6(s)=0 (i.e. the true
parameters). This gives y(s)=v(s), which contradicts the assumption
that g increases for t<s<t' at an arbitrarily high level.

If the system is minimum phase, the inverse system is stable. If
the input to the inverse system, y, satisfies (6), then the output, u,
must satisfy (7).

a]

This theorem shows a fairly important feature of the self-tuning
regulator (1)-(3). Under quite weak conditions, the most important one

being that the time delay has to be known, the regulator is capable of

stabilizing any system in the sense (6). This stabilization takes place

regardless of the character of the disturbances (as long as (5) holds)

and regardless of or whether the estimate 6(t) converges or not.

4, EXAMPLE

In order to illustrate the stabilizing property of the discussed

self-tuning regulator we consider to following process
y(t) + a(t)y(t-1) = u(t-1) + e(t) e(t) € N(0,1) (10)

where a(t) is a timevarying parameter. The parameter is altered bet-
ween -1 and 1 every 150th step of time., The model is assumed to have

the structure

y(t) + ay(t-1) = u(t-1)

It is assumed that the parameter 61 in (1) is fixed to its true
value. In [6] the stability is shown for this case if the’parameter 31
is fixed to a value which is sufficiently close to the correct value.
It can be advantegous to fix 51 for reasons of identifiability. In
this case the control law is characterized by one parameter and it is
thus sufficient to identify one parameter.

The control law is

u(t) = ay(t) (11)

The closed loop system is stable when

-~
a-l<a<a+1l

Thus if the estimated parameter has the same sign as the true parameter



-

then the closed loop system will be unstable when the parameter a
changes sign. The magnitude of the output will then increase and the
estimated parameter will rapidly be changed in order to stabilize

the system. In the simulation a weighting factor is introduced in (2},
that accomplishes an exponential discounting of old data. With such a
factor it is easier for the system to follow timevarying parameters,
see e.g. [3]. The effect of old data is decreased to about 10Z of the
initial weight after about 2/(1-A) steps of time where A is the weight-
ing factor.

Figure 1 shows the estimated and the true parameter when A = 0.98.
This means that about 100 old values are used in the identification
and the effect of a change in a should be almost forgotten before a
new change occures. Figure 2 shows the output signal. The instability
is seen at t = 150, 300 and 450. It is seen that the system is stabi-
lized rapidly. In this example the system is unstable during 5-6 steps

of time each time the parameter a changes sign.
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Figure 1. The estimated and the true parameter values when the pro-
cess (10) is controlled by the control law (11).
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Figure 2. The output signal when controlling the process (10). At t =
= 150, 300 and 450 the closed loop system is unstable for

5-6 steps of time before the estimator has changed the es-

timated parameter.

5. CONCLUDING REMARKS

An ability to stabilize any system is perhaps the most important
feature of an adaptive controller. If the overall stability of the
controller is sensitive to certain assumptions that are difficult to
verify a priori, then the controller is useless in practice. If the
dynamics of the process is subject to changes that make it impossible
to stabilize it with a constant regulator, then an adaptive stabili-
zing regulator may be sufficient, even if it does not behave optimal-
ly from other points of view.

We have here shown that the self-tuning regulator (1)-(3) possesses
such a stabilizing capability. This regulator has been analysed pre-
viously in [2], [6]. Possible convergence points and actual conver-
gence (w.p. 1) to the optimal regulator have been studied under vary-
ing assumptions on v(:). It has been shown that if v(:) is a moving
average of order k or less, then we have desired convergence, and this
can take place also for more general disturbances (but not necessarily).

The remarkable feature of the present result is that it holds almost

regardless of the characteristics of V(-). No stochastic assumptions



-

or assumptions on zero mean etc are introduced. It is required that the
time delay, k, is known, but this is usually not difficult to accom-
plish, since it is often easy to estimate k from basic transport delays

etc.
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