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Preface

“It’s one small step for man, one giant leap for mankind.”

Neil Armstrong

The size of a step should be related to its environment. This is partic-
ularly true in numerical integration of ordinary differential equations,
where the stepsize is used to control the quality of the produced solu-
tion. A large stepsize leads to a large error, while a too small stepsize
is inefficient due to the many steps needed to carry out the integration.
What is regarded as large or small, depends on the differential equation
and the required accuracy.

“The choice of stepsize in an integration method is a problem you
control guys should have a look at,” said Professor Gustaf Soderlind,
when handing out project suggestions at the end of a course on numeri-
cal integration methods in 1986/87. Michael Lundh and I got interested
in the problem and started working. We soon realized that the standard
rule for selecting stepsize could be interpreted as a pure integrating con-
troller. A generalization to PI or PID control is then rather reasonable.
We experimented with PI control and achieved good results [Gustafsson
et al., 1988]. -

After having finished the project both Michael and I continued work-
ing on other research topics. I was, however, rather annoyed that we did
not have a good explanation of why a PI controller made such a differ-
ence in performance in the case where numerical stability restricts the
stepsize. What was it in the integration method that changed so dra-
matically? After a couple of months I returned to the problem, strongly
encouraged by Professors Karl Johan Astrom, Gustaf Soderlind, and Do-
cent Per Hagander. Soon I was hooked. Pursuing the feedback control
viewpoint turned out to be very rewarding. Not only was it possible to ex-
plain the superiority of the PI controller, but the approach also provided
means to ..., well, continue on reading, and you will learn all about it.
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Introduction

Simulation is a powerful alternative to practical experiments. The prop-
erties of many physical systems and/or phenomena can be assessed by
combining mathematical models with a numerical simulation program.
Ordinary differential equations (ODE) are basic building blocks in such
models. It is usually impossible to obtain closed form solutions of dif-
ferential equations. The simulation program therefore has to implement
some numerical integration method to obtain the behavior of the system.
Such simulation programs are used routinely by e. g. control engineers.

Most simulation programs are constructed so that the user only
supplies the model and prescribes a certain tolerance. The program is
then expected to produce a solution with the specified accuracy. This is
a very difficult task. Different models have quite different properties,
and robust implementations of several types of integration methods are
required to simulate them accurately and efficiently.

This thesis deals with some of the problems encountered on the
road from a discretization formula defined by the integration method
to a working simulation. Implementing a numerical method is not only
a question of turning a formula into code. Most methods include pa-
rameters and variables that need to be adjusted during the execution.
An important step towards a successful implementation is the design of
algorithms and strategies taking care of these adjustments. The imple-
mentation should also include algorithms that check the solution accu-
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Chapter 1 Introduction

racy and administrate special situations, e.g. the initialization, restart
after possible failures, etc.

The viewpoint taken in the thesis is to regard the algorithms for
parameter adjustment and supervision as a controller. The objective of
this controller is to run the numerical integration method so that it
solves a large class of differential equations accurately and efficiently.

1.1 Is This Thesis Really Needed?

There are many high quality implementations of different integration
methods available today, e.g. DASSL [Brenan et al, 1989], RADAU5
[Hairer and Wanner, 1991], LSODE [Hindmarsh, 1983], STRIDE [Bur-
rage et al, 1980]. This indicates that some people, at least, know how
to turn a discretization formula into a successful implementation. Why
then devote a thesis to the problem? To illustrate that thls thesis is
indeed needed we will show two examples:

EXAMPLE 1.1—Control system example

The stepsize is an important variable that needs to be adjusted during
the integration. Figure 1.1 shows a signal from a simulation of a small
linear control system, cf. Example 4.2. If an explicit integration method
is used to solve the problem, stability restricts the size of the integration
steps. The standard method of selecting stepsize fails to handle this
situation properly, and the result is an oscillatory stepsize sequence.
The oscillations introduce an error in the simulation result as is shown
in the left plot of Figure 1.1. There are no oscillatory modes in the control
system and the solution produced is therefore qualitatively wrong. The
artifact can be removed by improving the stepsize selection algorithm
using the methods discussed in this thesis. The result is shown in the
right plot of Figure 1.1. O

EXAMPLE 1.2—Brusselator

The Brusselator is a test problem often used in numerical integration, cf.
Examples 4.1 and 5.4. The result of simulating this problem is shown in
Figure 1.2. Just before and during the large state transition at ¢ ~ 4.8
many integration steps have to be rejected due to a large error. It is
reasonable to expect the error controller to negotiate the change in the
differential equation without this amount of wasted computation. In this
thesis we will demonstrate how that can be achieved. O
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1.1 Is This Thesis Really Needed?

1.3 incorrect 1.3 . correct '

0.8 i 5 0.8 i i
0 5 10 15 0 5 10 15

time time

Figure 1.1 A signal drawn from a control system simulation. The oscillatory
component in the signal to the left is caused by an irregular stepsize sequence.
The correct signal, to the right, is obtained by improving the stepsize selection
algorithm,
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Figure 1.2 The solution to the Brusselator in Example 1.2. The ‘0’ marks the
numerical solution points, and the corresponding ‘<’ indicates if a specific step
was successful (high value) or rejected (low value). During the time interval
t € [3.0, 4.8] there are 25 accepted and 20 rejected steps.

The above examples demonstrate two situations where even today’s
best algorithms fail. Although they normally perform better, the situa-
tions shown in the examples are not unique. To improve the robustness
of current simulation programs we need to understand the reasons for
the misbehavior, and then design remedies.

Classical numerical analysis theory gives, unfortunately, few tools to
approach analysis arnd design of algorithms for supervision and param-
eter adjustment. Instead it is advantageous to exploit some analogies
from feedback control theory. The supervisory algorithms measure dif-
ferent variables (e. g. error estimate, rate of convergence in the equation
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Chapter 1 Introduction

solution
accuracy
requirement control measured
»  Controller variables Process variables
— . .
- error control - integration method
- convergence control - differential equation

Figure 1.3 Error and convergence control in an integration method. The
convergence control is not needed in an explicit method.

solver, stiffness estimate) that tell the current status of the integration.
Based on this information they decide how to continue the integration
(e.g. accept/reject current step, what stepsize to use, choice of equation
solver, change of iteration matrix). This is a feedback control loop, as
shown in Figure 1.3. The supervision is the controller and the integra-
tion method is the controlled process. Feedback control theory supplies
proven methods to analyze the properties of the feedback loop as well
as methods to design a good controller. o

Separating the controller from the “numerical” part of the integra-
tion method is an important idea per se. Integration codes are compli-
cated, and the separation makes it easier to obtain a correct implemen-
tation. It also makes it easier to introduce global considerations into the
controller design.

1.2 Scope of the Thesis

Since the control of numerical integration is of paramount importance
for the reliability, efficiency, and accuracy of a simulation, the problem
has repeatedly been given considerable attention in numerical analysis.
In particular, error control by means of adjusting the stepsize is central
to every high quality solver for dynamical systems. The error estimator,
to be used for this purpose, is mathematically both intricate and highly
sophisticated. In contrast, the stepsize selection strategies implemented
are typically based on heuristic principles and asymptotic arguments.
They are simplistic from the point of view of control theory, although
they perform remarkably well in most cases.

12




1.2 Scope of the Thesis

The present thesis, interdisciplinary in character, aims at develop-
ing a better process understanding and better use of the error estimate
by means of control theory. A few well chosen test problems, that are
rich in features, demonstrate shortcomings of the classical approach.
Some of these can be remedied by using proven techniques from control
theory. Others, however, cannot be treated at all, not because of short-
comings in control, but as a matter of principle. In the latter case our
analysis returns the problem to numerical analysis with the conclusion
that the method itself and/or its error estimator may be inappropriate
for certain classes of problems.

The thesis deals almost solely with Runge-Kutta methods. This is
not to say that other types of integration methods are uninteresting. The
class of Runge-Kutta methods is, however, sufficiently rich to demon-
strate the problems we want to address. The methodology we use, and
also many of the results, are applicable to other types of integration
methods. Dealing with one class of methods makes comparative stud-
ies easier. In addition, care has been taken to provide exactly the same
environment in the implementation of the different methods we use.

Controlling an integration method is both a question of accuracy and
efficiency. The problem of producing a solution within a specified accu-
racy will be referred to as error control. In an integration method the size
of the integration steps relates directly to the error in the solution, and
the stepsize is one of the variables the error controller needs to adjust.
The stepsize also affects the efficiency, since the smaller the stepsize the
more integration steps will be needed to simulate the differential equa-
tion. In an implicit integration method a large part of the computation
is spent solving a set of nonlinear equations using an iterative equation
solver. The convergence rate of this iteration is closely related to the
efficiency of the integration method. We will, in loose terms, refer to the
supervision and control of the equation solver as convergence control.

One way to improve the efficiency of an integration method is to
exploit special types of computer hardware, e. g. serial/parallel architec-
tures, or special properties of the differential equation, e. g. sparse/non-
sparse or banded Jacobian. These types of considerations will not be
addressed in the thesis.

Before designing a controller it is important to consider the quality
of the measured variables that are available. The purpose of the error
control is to make the accuracy of the solution comply with the user’s
requirement. This can only be achieved if the measurements available

13




Chapter 1 Introduction

to the controller truly reflect the real error. If the relation between the
measured variable and the global objective is weak, then the result will
be poor no matter how the controller is constructed. Our attitude is to
make as good control as possible with available information. The prob-
lem of constructing methods and relevant error estimators properly, is
the responsibility of the numerical analyst.

In the design of the controller we will note that seemingly similar
processes differ significantly in how difficult they are to control. Again
we will try to do the best with what is available, but new integration
methods should be designed also from the control point of view.

1.3 Thesis OQutline

This thesis describes a typical application of feedback control. The pro-
cess is a little different from the standard mechanical, electrical, or
chemical examples. The methodology is nevertheless identical to what
is developed in standard textbooks on feedback control theory [Franklin
et al., 1986; Astrom and Wittenmark, 1990; Franklin et al, 1990].

A first step towards successful control is to acquire process knowl-
edge. What is the purpose of the process? What is its normal mode of
operation? What are the input signals, and how do they affect the be-
havior of the process? What are the output signals, and do they truly
reflect the internal state of the process? What is the controller expected
to achieve? Chapter 2 addresses some of these questions, by presenting
an overview of numerical integration in general and Runge-Kutta meth-
ods in particular. Not all of the material is essential for the controller
design, but most of it is needed to get the overall picture.

Many readers may want to skim Chapter 2. For the numerical an-
alyst most of the material is probably well known, although the nota-
tions sometimes differ from what is normally used. The control engineer
may find the chapter long and involved. A detailed understanding of the
whole material is not needed to appreciate the ideas of later chapters. It
would be possible to continue and only consult Chapter 2 as a reference.

Once the properties of the process are understood we proceed to
derive models for its"behavior. These models will be used in the design
of the controller, and they should describe dominating features of the
relation between the input and output signals as simply as possible.
Important considerations are: is the input-output relation static or dy-
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1.3 Thesis Outline

namic, linear or nonlinear? Does the behavior differ between different
operating points?

An integration method has several inputs and outputs. The most
important relation is the one between stepsize and error. Chapter 3 is
devoted to this. It turns out that different models are needed at different
operating points, and, more importantly, for a detailed process descrip-
tion the static models normally used are not sufficient. We derive simple
dynamic models that describe the different aspects of the stepsize-error
relation well. The models are verified using numerical tests and system
identification techniques.

Having obtained process models we continue with the controller de-
sign. Chapter 4 is devoted to explicit Runge-Kutta methods. The prop-
erties of the algorithms in use today are analyzed and the reasons for
some of their shortcomings are explained. Much insight is gained from
the emphasis on dynamics provided by the feedback control analysis.
A new improved controller is designed and evaluated on different test
problems. It results in good overall performance and avoids several of
the misbehaviors of current controllers.

Chapter 5 treats the design of a controller for implicit Runge-Kutta
methods. An implicit integration method includes an equation solver,
and part of the chapter is spent on modeling its input-output behavior.
This model is combined with the models of the stepsize-error relation
and a new improved controller is derived. The controller achieves better
error control and provides a new strategy concerning the administration
of the equation solver.

Finally, we conclude in Chapter 6 with a general discussion of the
methodology used and the results obtained in the thesis.
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Runge-Kutta Methods

: ~

A robust implementation of an integration method involves the design
of strategies and algorithms to supervise and run the integration in
an accurate and efficient way. We approach the problem by regarding
these algorithms as a controller connected to the integration method.
The design of such a controller requires a thorough understanding of
the properties of the integration method.

In this chapter we review some basic properties of integration meth-
ods in general, and Runge-Kutta methods in particular. The aim is to
introduce notations and present the background needed for the control
analysis and control design. For more complete presentations we refer
to standard textbooks such as [Gear, 1971; Butcher, 1987; Hairer et al,,
1987; Hairer and Wanner, 1991]. |

2.1 Integration Methods in General

An integration method computes the solution to the initial value problem

y = f(¢, y), y(to) = yo e RN, t € [to, tendl, (2.1)

where f is sufﬁciénﬂy differentiable, by approximating it with the dif-
ference equation

Vil = Yn+hafn, n=01,2... (2.2)

16




2.1 Integration Methods in General

In this equation ¥, is formed as a combination of past solution points
and f, is formed as a combination of function values f (¢, y) evaluated
at the solution points or in their neighborhood. Using (2.2) we compute
Y0, Y1, Y2, ... as approximations to y(Zo), ¥(¢1), ¥(¢2),.... The stepsize h,
between consecutive solution points is defined as t,.1 = ¢, + Anp.

The discretization defining 7, and f, can be constructed in many dif-
ferent ways. The simplest choice is the explicit (forward) Euler method.

ExAMPLE 2.1—Explicit Euler method
The explicit Euler method discretizes the equation (2.1) as

Yn+1 = yn‘*‘hnf(tna yn)

i.e. ¥, is chosen as the previous numerical solution point y, and fn 18
the function value f(¢, y) at this point. O

Any integration method aims at producing a numerical solution
close to the true solution. Whether this is achieved or not; depends on
how the discretization (2.2) is constructed, as well as on the proper-
ties of the underlying problem (2.1). Although different methods may
choose ¥, and f, very differently, certain basic properties are shared by
all (useful) integration methods.

Consistency, Stability, and Convergence

In a suitable setting, the differential equation (2.1) can be regarded as
an operator equation ® = 0, where ® maps a normed function space
U into another normed function space V. Necessary initial values are
assumed to be incorporated in this formulation. An element y € U is
a function y : ¢ y(¢), t € R", y(¢) € RY. It is a solution to (2.1) if
O(y) =

An integration method defines a discrete approximation @, to @,
which rewrites (2.2) as @;(y*) = 0. The discrete operator @, maps the
normed sequence space U, into another normed sequence space V. The
sequence y* € Uy, is a function y* : n— y,, n e IN, yp € RN and it
solves (2.2) if @, (y") = 0%,

The discrete solution y” is an approximation of the exact solution
y on the grid t*, t* ¥ n— t,, n € IN, ¢, € IR. To be able to compare
y" with ¥ we need a restriction operator that relates U (V) to Uy, (V).
Introduce I" : T't = ¢* and let 'y denote the restriction of y(t) to the grid
points t*. The relation between the differential equation (2.1) and the

17




Chapter 2 Runge-Kutta Methods
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Figure 2.1 The solution y” generated by the integration method differs from
the exact solution I'y, since the discretization @, only solves the underlying
differential equation ® approximately. The discretization error can be studied
either through the global error g” or the defect d*. -

difference equation (2.2) can now be described as in Figure 2.1 [Stetter,
1973, pp. 1-11], [Soderlind, 1987]. ,

The difference between the numerical solution and the exact solu-
tion is referred to as the global error,i.e. gh = y"» — Ty or, pointwise,
&n = Yn — ¥(ts). The global error is defined in the space U,. The corre-
sponding error in V}, is called the defect and is defined as d* = —®,(T'y).

For a (useful) integration method we expect the numerical solution
y"* to converge to the exact solution y when A — 0. This property is
referred to as convergence.

DEFINITION 2.1—Convergence
An integration method is convergent of order p if ||g”|| = O(h?), or
equivalently, if the global error satisfies

I(®3'T = T@~)(0)|| = O(R?)

on V, for all sufficiently smooth problems @( y) = 0. O

Convergence is related to two other properties: consistency and sta-
bility. Consistency implies that the difference equation (2.2) converges
to the differential equation (2. 1) when A — 0. Stability, on 'the other
hand, concerns the operator ®;' and assures that it is well behaved in
the limit as A — 0.

18




2.1 Integration Methods in General

DEFINITION 2.2—Consistency
An integration method is consistent of order p if ||d*|| = O(hP), or equiv-
alently, if the defect satisfies

(AT = TP)(y)|| = O(A”)
on U, for all sufficiently smooth problems ®(y) = 0. O

DEFINITION 2.3—Stability
An integration method is stable if ®;! is uniformly Lipschitz on V} as
h — 0. O

This definition is a little more strict than necessary, but it assures
that the orders of consistency and convergence agree. The term “order”
therefore usually refers to the order of convergence.

The following theorem [Gear, 1971, p. 170], [Dahlquist et al., 1974,
p. 377], [Hairer et al, 1987, p. 341], [Butcher,-1987, pp. 852-367], is
classical in numerical analysis:

THEOREM 2.1
Convergence, consistency, and stability are related as

convergence <= consistency + stability

O

The definitions above seem to indicate that an integration method
should have as high convergence order as possible. The higher the order,
the larger we could choose the stepsize and still obtain a numerical
solution with sufficient accuracy. Each individual integration step is,
however, computationally more expensive in a high order method, and
therefore high order does not necessarily lead to less computation for a
given accuracy. Which order that is the most efficient depends on the
differential equation, on the type of integration method, as well as on
the required accuracy. In practice it is advantageous to have methods of
different orders available.

Two methods with the same order may behave very differently on
the same problem. The reason is that specific discretizations perform
better on some classes of problems than other. No discretization is able
to handle all types of problems equally well. Consequently, many dif-
ferent integration methods have been suggested over the years, each
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one with its own advantages and disadvantages. Depending on the type
of discretization they use, one can normally separate them into a few
different classes, e.g. explicit — implicit, onestep — multistep.

Explicit - Implicit

An integration method is said to be explicit if f, in (2.2) is not a func-
tion of y,.1. An obvious example is the explicit Euler method described
in Example 2.1. Such methods give an explicit formula for the calcula-
tion of the next solution point, which makes them straightforward to
implement.

The situation is more complicated for implicit methods. Then f,
depends on y,,;, and a nonlinear equation has to be solved in order to
get the next solution point. An example is the implicit (backward) Euler
method.

ExAMPLE 2.2—Implicit Euler method o
The implicit Euler method discretizes the equation (2.1) as

Yn+1 = Yn +hnf(tn+1,yn+1)

i.e. ¥, is chosen as the previous numerical solution point y, and f, is
the function value f(¢,y) at the new solution point. To obtain y,.1 a
nonlinear equation has to be solved. O

The equation that defines y,.; in an implicit method requires the
use of a numerical equation solver, leading to increased implementation
complexity. This complexity is, however, often well motivated, since for
certain problems (e.g. mildly stiff or stiff problems) an implicit method
is much more efficient than comparable explicit ones.

Onestep — Multistep

An integration method is a onestep method if y, and £, in (2.2) do
not depend on solution points prior to y,. A consistent onestep method
is always convergent for ordinary differential equations. The previous
two examples, i.e. explicit Euler and implicit Euler, are both onestep
methods. More complicated onestep methods normally involve iterated
evaluations of f when forming f,. Such methods are known as Runge-
Kutta methods, and an example is:
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ExXAMPLE 2.3—Midpoint method

The midpoint method [Hairer et al, 1987, p. 130] makes use of two
function evaluations when forming f;,. The resulting difference equation
reads

hy, hn
Yn+l = Yn+hnf (tn+ ‘é‘ayn'*' 7f(tmyn)> .

The method is explicit since y,.1 does not enter the right hand side of
the formula. O

When computing f, a Runge-Kutta method makes use of intermedi-
ate points, called stages, in the neighborhood of a local solution of the dif-
ferential equation. In the previous example (¢,+A,/2, yn+hnf(tn, ¥1)/2)
is such a point. Another approach, leading to multistep methods, is to
construct 7 and/or f based on several previous values of the numerical
solution instead of using intermediate points.

ExaMpPLE 2.4—Second order Adams-Bashforth method, AB2

The Adams-Bashforth methods [Hairer et al., 1987, pp. 304—308] are a
family of explicit multistep methods. The second order formula in this
family reads

3 1, |
Ynil = Yn+h <§f(tn,yn) - §f(tn~1a yn—1)>

assuming a constant stepsize ~. The method uses the function value at
two previous solution points, y, and y,_; when forming f,. O

A multistep method is normally more complicated to implement
than a onestep method. Several previous solution points are used when
forming ¥, and/or f,, and if the stepsize varies these points come from
a nonequidistant grid. The coefficients of the method should be recom-
puted to compensate for this, making the discretization formula far more
complicated than what is indicated in Example 2.4. In addition, due to
the dependence on several previous solution points a multistep method
needs more initial values than onestep methods. All in all, this adds com-
plexity and makes the implementation quite technical. It may, however,
for other reasons still be motivated, e.g. less amount of computation for
certain classes of differential equations.

The multistep method in Example 2.4 uses several previods function
values when forming f,. A multistep method can, naturally, also be
based on using several points when computing y,, cf. (2.2).
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; 1 B

tn tn+1

Figure 2.2 The idea behind a Runge-Kutta method. The derivative is sam-
pled at a few points in the neighborhood of the local solution. A step is then
taken in a direction based on these derivative values (Y;). The figure illus-
trates the classical method RK4 [Hairer and Wanner, 1991, p. 137].

EXAMPLE 2.5—Second order backward differentiation method, BDF2
The backward differentiation methods [Hairer et al., 1987, pp. 311-312]

are a set of implicit multistep methods. The second order member in this

set reads

B 4 B 1 N 2h f(t )
Yn+l = 3yn Syn~1 3 n+ls Yn+1).

assuming a constant stepsize A. O

A multistep method is called linear if 7, and f, involves only linear
combinations of old solution points and corresponding function values.
The Adams-Bashforth method in Example 2.4 and the backward differ-
entiation method in Example 2.5 are both linear multistep methods.

Another important class of multistep methods is the oneleg methods.
Such methods use only one function evaluation per integration step. The
BDF methods belong to this class. Another example is:

EXAMPLE 2.6—Implicit midpoint method
The implicit midpoint method [Hairer et al., 1987, pp. 199-201] reads

tne1+ 1t +
Yool = yn+hnf( n+12 n’yn-rl2 yn) . |
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Some of the definitions for different classes of integration methods
overlap. The implicit midpoint method could for instance be regarded
both as an implicit oneleg multistep method and an implicit onestep
method. Similarly, the backward differentiation methods belong both to
the class of linear multistep methods and the class of oneleg multistep
methods.

2.2 Runge-Kutta Methods

Runge-Kutta methods belong to the class of onestep integration meth-
ods. They may be either explicit or implicit. An s-stage Runge-Kutta
method applied to the problem (2.1) takes the form

S
Yi=f@n+cibnyn+hn ¥ ay¥;), i=1..s

Jj=1

§ . 2.3
Yn+1 :yn"‘hnzijj ( )

Jj=1
tn+1 = tn +hn

The intuitive idea behind a Runge-Kutta method is to sample the vector
field f(¢, y) at a number of points in the neighborhood of the local solu-
tion. Based on these values (Y;) an “average” derivative on the interval
[tn, tna1] is constructed, and the solution is updated in that direction (cf.
Figure 2.2).

A convenient way to represent a Runge-Kutta method is to use the
Butcher tableau

Ci1|Qu1 @12 ... Qi
C2 | G21 Qg2 ... ag;
Cs | Q51 Qg2 ... Qg
bl b2 bs
or shorter S |
. N
(2.4)
bT
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The structure of 4 gives rise to different types of Runge-Kutta methods.
The most common ones are:

ERK  Explicit Runge-Kutta, 4 is strictly lower triangular.
DIRK Diagonally Implicit Runge-Kutta, 4 is lower triangular.

SDIRK Singly Diagonally Implicit Runge-Kutta, 4 is lower triangular
with all diagonal elements equal.

SIRK  Singly Implicit Runge-Kutta, 4 is (in general) full, nondiagona-
lizable with one single s-fold eigenvalue.

FIRK Fully Implicit Runge-Kutta, 4 is full with no specific eigenstruc-
ture.

A nonautonomous problem y = f(¢ y) can be translated to an au-
tonomous problem y = f(y) by adding an extra equation yn,; = 1. The
integration method should give the same result for the nonautonomous
problem and its autonomous counterpart. It can be shown [Hairer et al,
1987, pp. 142-143] that this puts the restriction

T |
c=41, 1= (1 1 ... ,1] - (2.5)
on the method parameters.

Order Conditions

The coefficients in 4 and b (c is given by 4 through (2.5)) determine
the properties of the Runge-Kutta method. Choosing them is a trade
off between a number of properties, such as: method order, stability re-
gion, and error coefficients. We will refrain from deriving general formu-
las but rather demonstrate through an example. For a comprehensive
treatment, the reader is referred to [Hairer et al., 1987; Butcher, 1987].

EXAMPLE 2.7—A general explicit 2-stage Runge-Kutta method

A general explicit 2-stage Runge-Kutta method includes three parame-
ters that need to be chosen. It has the Butcher tableau

~ 00 O ‘
ala O
b1 bz
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y(to)

Lo t1 to t3
Figure 2.3 The local truncation error e, in a Runge-Kutta method is the

difference between the numerical solution y, and the solution z,(t) of the
local problem.

which corresponds to the explicit formulas

Yl = f(tn’ yn)
Yo = f(tn+ahn, yn+hnaYy)
Yn+1 = Yn +hn(b1Yl + szz)

The numerical solution thus takes the form
Ynil = Ynthp (blf(tn, Yn) + b2f(tn +ahy, yn+hpaf(tn, yn)))
Expanding the right hand side in a Taylor series leads to

Yn+1 = yn+hn(b1+b2)f(tn9yn)+h?zab2(ft+ fyf)(tnayn)

3,2 (2.6)
#2802 (o 2y F 4 Fon )t ya) + O(h).

A particular Runge-Kutta step inherits the previous approximation
Yn as starting point, and the numerical solution can be thought of as
following a local solution z,(¢) (see Figure 2.3 and [Hairer et al., 1987,
p. 160]) defined by

zn = [(2a(2)), Zn(tn) = Yn. (2.7)

The local solution can be expressed as a Taylor expansion about (¢,, y,),
. \
1.e.

dzn
dt

_i_Lé d?z,
2 dt?

Zn(tns1) = 2n(tn) + Ay (tn) + (tn) + —};—i%(tn) +O(ht) (2.8)
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where
dz,
'E?(tn) = f(tn’ yn)
2
L20 10) = (Fit o) ms0)
dz,

W(tn) = (Fu+2fiyf+ oy F+Fyfet Fyfy F)En yn).

Trying to match the numerical solution (2.6) with the local solution
(2.8) leads to the order conditions

p=21: bi+by=1

2.9
p=2: bsa=1/2 (2:9)

Choosing the method parameters according to (2.9) makes the numerical
solution (2.6) and the local solution (2.8) identical for all terms up to and
including order two. The third order term cannot be matched since the
numerical solution (2.6) does not include the elementary differentials
fyfr and fyfyf.

The remaining difference between (2.6) and (2.8) is called the local
truncation error, and belongs to the space Uy, cf. Figure 2.1. It is defined
as

3
€n+l = Yn+1 —Z(tn+l) = 'h6—n((3b2a2 - 1)(ftt+2ftyf+ fyyff)
= (fyfi+ fy [y £)) (ns y2) + O(hy)

(2.10)

Equation (2.9) specifies only two parameters. The remaining free param-
eter can be used to “minimize” the error, e. g. 3bsa? = 1, or to “maximize”
the stability region. 4 O

The type of derivations in Example 2.7 get very complicated when
trying to obtain integration methods of high order. Since all (useful)
Runge-Kutta methods obey (2.5) we may work with a problem formu-
lation on autonomous form, i.e. y = f(y). This reduces the number of
different elementary differentials substantially. Moreover, elementary
differentials can be represented as trees [Hairer et al, 1987; Butcher,
1987] each having its unique order condition, leading to a yery clean
notation.

It is possible to make some rather general observations from Exam-
ple 2.7. The achievable method order is related to the number of stages.
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2.2 Runge-Kutta Methods

Above it was only possible to obtain a second order method. Higher order
methods require more stages. The problem of determining exactly how
many stages that are required to achieve a certain order is only partly
solved [Hairer et al., 1987, Section II.6].

The order conditions do not normally give a unique specification of
the parameters of the method. The freedom that is left can be used to
optimize certain desirable properties. Often one tries, as in Example
2.7, to “maximize” the stability region or to “minimize” certain error
coefficients.

As can be seen from (2.10) the local truncation error is problem
dependent, in that it depends on many elementary differentials of f
evaluated along the solution of the problem. The first nonmatched terms
in the Taylor expansion are normally not complete, e.g. in (2.10) part
of the third order term is affected by the parameter choice. In general,
two methods with the same order need not have the same error terms,
and consequently their errors need not be proportional.

Error Estimation

When solving (2.1) numerically the integration error should be kept
small. To do this it must be possible to measure the error. The global
error g, = ¥, — ¥(t,) is the fundamental measure of the integration
error. This quantity is not computable (it requires that the true solution
is known), and in general, it is even difficult to estimate [Skeel, 1986].
The global error consists of propagated and accumulated local truncation
errors (cf. Figure 2.3), and most integration methods resort to estimating
and controlling the latter. Once a local truncation error is made, the
numerical solution will start tracking a neighboring (possibly divergent)
solution. Through the local truncation errors it is possible to calculate
bounds on the global error [Dahlquist et al, 1974, p. 336]. These bounds
are, however, often quite pessimistic.

The local truncation error can, for an order p method, be written
eni1 = P(tn)hE™ + O(RE2) (2.11)

where ¢(t) is a smooth function (assuming f € CP*!) of ¢, cf. (2.10). The
local truncation error usually depends on several elementary differen-
tials of f of order p + 1 and higher. It is in general not computable, but
can be estimated. Embedded Runge-Kutta methods provide an extra set
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of b-parameters, I;, to advance the solution from ¢, to ¢,.1, i.e.

c| 4
y | bT
y |67

where

s s
Yn+1 = yn+hanJYJ9 5’n+1 = yn+hanJYJ
j=1 Jj=1

The two sets of parameters are chosen so that y,,; and y,.; corre-
spond to methods of order p and p + 1, respectively. Hence, the quantity
||¥n+1 — Yns1l| gives an asymptotically correct estimate of the norm of the
local truncation error of y,.1. It is sometimes also of interest to consider
the measure ||y,.1 — Yns1||//hn. This latter quantity is called error-per-
unit-step (EPUS), while the former is called error-per-step (EPS). The
heuristic motive to use EPUS is to get the same “accumulated global
error” for a fixed integration time regardless of the number of steps
used. ‘

ExAMPLE 2.8—Explicit Euler with embedded error estimator
Consider the explicit 2-stage Runge-Kutta in Example 2.7, and choose
the parameters as

0] O 0
1] 1 0
yi 1 0
yl1/2 1/2

The first stage (read out by b) corresponds to explicit Euler (cf. Example
2.1). Combining both stages () leads to a second order method (modified
Euler). The local truncation error for the two methods are

ha RS s
enil = ——z—fyf % (fff+1ff)+0(h;) (explEuler) (2.12a)

€n+1 =

__6_n (_%fyy fr+7 f) + O(hi) (mod Euler) (2.12b)

where all function evaluations are done at y,, and the O(h%)-terms are
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identical. Forming the difference of the two outputs gives the error es-

timate
. . h% h‘,”2
€n+t1 = Yn+l — Yn+1 = — fyf fyyff (2'13)

(|

Although the error estimate is asymptotically correct (it recovers
the leading term in (2.12a)) it may still over- or underestimate the true
error considerably. There may be large error contributions from high or-
der elementary differentials that are not captured by the estimate (cf.
(2.12) and (2.13) in Example 2.8). Moreover, some early methods have
incomplete error estimators, which are asymptotically correct only for
certain classes of problems. The error estimator in the Merson method
[Hairer et al., 1987, p. 169] is correct only for linear differential equa-
tions with constant coefficients.

There are many ways to measure the size of the vector error esti-
mate (2.13). For robustness, a mixed absolute-relative “norm” is often
used. Two common choices are (see [Higham and Hall, 1989] for a list
of norms used in different codes)

A 7 - A ' »2
é; N e;
ell = = 2.14
yz“"ﬂt‘ ” ” J;(yi'*‘ni) ( )

where y; is (a possibly smoothed) absolute value of y;, and 7; is a scaling
factor for that component of y. In the case of EPUS a normalization with
h is also used, and we arrive at the scalar error estimate

llel| = max
H

rnel = ||€ns1]]  (EPS), rnel = ||€nsal|l/hn  (EPUS) (2.15)

Local Extrapolation

Which one of y and y should be used as the new solution point? On the
one hand, the estimate of the local truncation error is only asymptoti-
cally correct if the low order formula is used, while on the other hand, the
high order formula usually gives a better numerical solution. In prac-
tice both alternatives are used, and choosing the high order formula is
referred to as local extrapolation.

There are four possible alternatives for combining error estimate
and solution update:
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EPS error-per-step, no local extrapolation
XEPS error-per-step, local extrapolation

EPUS error-per-unit-step, no local extrapolation
XEPUS error-per-unit-step, local extrapolation

All four modes have been used in practice, but often XEPS is regarded
as the most efficient [Shampine, 1977].

Since it is not possible to measure the global error, most error con-
trol schemes concentrate on keeping an estimate of the local truncation
error bounded. One would hope that such a scheme leads to that the
global error decreases with the control level for the local truncation
error (so-called ¢olerance proportionality [Stetter, 1976; Stetter, 1980]),
but this is not always true. It can be shown that to achieve tolerance
proportionality, XEPS or EPUS has to be used [Higham, 1990].

Interpolant and Defect

The numerical solution y, is only given at the grid points ¢,. It is often
useful to have available a continuous function g(¢) which approximates
¥(¢) between the grid points. This allows for dense solution output with-
out having to restrict the distance between consecutive grid points. The
stepsize can, consequently, be chosen based on the required accuracy of
the numerical solution, instead of being restricted by the desired den-
sity of solution points. Many Runge-Kutta methods supply a continuous
extension q(t) of the form

q(tn+ Vhn) = yo+hy Y b;(v)Y], (2.16)

J=1

where each b;(v) is a polynomial in v [Hairer et al., 1987; Dormand and
Prince, 1986; Enright, 1989b; Shampine, 1985a; Shampine, 1986]. If s >
s, extra stages have been added to the original method. The continuous
extension is normally chosen to satisfy g(¢,) = y, and qQ(tni1) = Ynit,
and is therefore an interpolant. The derivatives at the mesh points are
often also matched, i.e. ¢(¢,) = f(¢n, y») and q(tn+1) = F(tni1s Yni1)-

The accuracy of an interpolant is related to its order. The extension
q(t) approximates a local solution to the differential equation, and the
local order of q(t) is [ if for any fixed v € [0, 1]

q(tn+ VRy) = 2, (ty + VR,) + O(RL)
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when h, — 0. Here 2,(¢) is the local solution defined by (2.7). The order
of the interpolant is, naturally, chosen in relation to the method order,
and normally I = p+1 or !/ = p. Having I = p +1 normally requires
§ > s.

It has been suggested to use the interpolant to estimate and control
the integration error [Enright, 1989a; Enright, 1989b; Higham, 1989a:
Higham, 1989b]. In each step the local defect

6(t) 1= q(t) — f(2.q(t)),

is calculated and a sample §(¢, + v*h,) of this quantity is controlled.
This scheme corresponds to an error control in the space V), instead of
Uy, since the defect is an element in V}, (cf. Figure 2.1). The relation
between §(¢) and the defect d” is similar to the one between the local
truncation error per unit step e,/h, and the global error g*.

It is possible to construct the interpolant g(¢) so that one sample
at a predefined point v* gives an asymptotically correct estimate of the
maximum defect over the interval v e [0,1] [Higham, 1989a; Higham,
1989b]. The cost may, however, be rather high, since the formation of g(t)
often requires extra stages. To get tolerance proportionality the order of
the interpolant must be chosen so that / = p + 1 [Higham, 1990].

The Test Equation

The discretization (2.2) of (2.1) relates to the concept of system sampling
in sampled-data control, e. g. [}o\strﬁm and Wittenmark, 1990, Chapters
3, and 8.1-8.2], [Franklin et al., 1990, Chapter 4]. We are trying to con-
struct a discrete-time system that mimics the behavior of a continuous-
time system. In numerical integration both the differential equation and
the difference equation are in general nonlinear, which makes the prob-
lem difficult to analyze. The standard analysis is to use a linear test
equation with constant coefficients, i.e. y = Ay. Runge-Kutta methods
are diagonalizable (the discretization and matrix diagonalization com-
mute), which simplifies the analysis and it is adequate to study the
scalar test equation

y = Ay. (2.17)

\
We derive the difference equation resulting when applying a Runge-

Kutta method to (2.17) and then list the result for the general case
y = Ay.

o
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Applying an s-stage Runge-Kutta method (2.3) to the problem (2.17)
results in

Y = Aya1+hpA2Y =  h,Y = (I - hya2)  1h,Ay,
where
. . . . T
Y = [Y1 Yo ... Ys] .
Introduce z = h,A €C, and yni1 = yn +bTh,Y yields
yne1 = (L+207 (I —24)" 1)y, = P(2)yn (2.18)

where P(z) is a rational function in z, with the highest degree of z being
less than or equal to s. In an explicit Runge-Kutta method the matrix 4
is nilpotent and consequently P(z) is polynomial with degree less than
or equal to s.

Similarly to (2.18),

ne1 = (1 +2b7 (I -2z4)" 1)y, = P(2)yn

) ) (2.19)
éns1 =2(b-0)T T -22)"1y, = E(2)y,

where P(z) and E(z) are, again, rational functions in z, with the highest
degree of z being less than or equal to s. ' '

The way a Runge-Kutta method is constructed leads to special prop-
erties for the Taylor expansions of P(z), P(z), and E(z). The expansions
about z = 0 of P(z) and P(z) match the Taylor expansion of ez, All
terms are identical up to and including O(z?) and O(zP*1), respectively.
The function E(z) is the difference between P(z) and P(z), and therefore
the O(zP*)-term is the first nonzero term in its expansion about z = 0.

For the general case y = Ay, where y € IRY, the equations corre-
sponding to (2.18) and (2.19) read

Yn1 = P(hnA)yn,  Jnt = P(hnA)yn,  éna1 = E(hnd)y,
with
P(hyA) = yu+ (0T @In) [s®IN —A Q@ h,A) (1 @ hnAy,)
P(hyA) = yo+ (BT @In) Is @ In — A @ hyA) L (A ® hydy,)  (2.20)
E(hpA) = (b -5)T @Iy) (I, @Iy — A @hyA) ™ (1 ® hyAyn)

i
where Iy and I are identity matrices of size N and s, respectively,
and ® is the Kronecker product. For an explicit method the functions
P(h,A), P(h,A), and E(h,A) are matrix polynomials.
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Stability Region

The difference equation (2.2) should mimic the differential equation
(2.1). A basic requirement is that for constant 4, it is stable when the
differential equation is stable. Even for linear problems this is difficult
to achieve for all A,,.

Consider the linear test equation y = Ay. For which A, is the differ-
ence equation (2.3) stable? The diagonalization property of Runge-Kutta
methods simplifies the analysis, and it suffices to consider (2.17) with
A equal to the eigenvalues of A. We arrive at the difference equation
(2.18), which is stable if |P(z)|] < 1. The z-region where this is true
defines the stability region of the integration method.

DEFINITION 2.4—Region of (absolute) stability
When applying a Runge-Kutta method to the linear test equation (2.17)
the resulting difference equation will be stable as long as z €.,

S={zeC:[1+2b7 (I -22) 1| < 1)

where z = h, 1. S defines the region of absolute stablhty of the integra-
tion method. : O

ExXAMPLE 2.9—Stability region of the modified Euler method
Consider the explicit 2-stage Runge-Kutta method in Example 2.7. Here

1 0y ' (1
P(z)=1+z[b1 bz) [_za 1] [1] = 1+ (b1 +b2)z + baaz®.

From the order conditions (2.9) we obtain
P(z) = 1+z+2%/2.

The stability region §, i.e. the region where |P(z2)| < 1, is depicted in
Figure 2.4. O

It is very desirable to have integration methods where the whole left
halfplane C~ belongs to the stability region. Such methods correspond
to discretizations that are stable for Re A < 0.
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Re

Figure 2.4 The stability region S of the explicit Runge-Kutta method in
Example 2.9. The two rings mark the zeros of P(z).

DEFINITION 2.5—A-stability [Dahlquist, 1963; Hairer and Wanner, 1991]
An integration method where '

S>C ={z:Rez <0}

is called A-stable. O

Consider again the concept of system sampling in sampled-data
control. A-stability guarantees that the discretization retains the sta-
bility of the continuous-time system. It is, however, also desirable that
the discrete-time system and the continuous-time system have similar
dynamical properties, e.g. a fast continuous-time eigenvalue should be
mapped to a fast discrete-time eigenvalue. This relates to the stronger
property L-stability.

DEFINITION 2.6—L-stability [Ehle, 1969; Hairer and Wanner, 1991]

» An integration method is said to be L-stable if it is A-stable, and in

addition |
| - lim P(z) = 0 \
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2.2 Runge-Kutta Methods

Discretization Accuracy

The stability region only tells part of the story when trying to determine
how well the difference equation (2.2) matches the original differen-
tial equation (2.1). Of greater importance is the deviation between P(z)
(2.18), or P(z) (2.19), from e*. Consider, again, the linear test equation
(2.17). Assuming y(¢,) = y», we have

y(tn+hn) = ehni{yn, Yn+1 = P(hn/l)yn, 5’n+1 = P(hn/‘{)yn,

with the local truncation error and estimate given by

eni1 = Yni1 — Y(tn +hn) ( (hnl) —e" )yna
€nil = Ynil — Yni1 = E(hpA)yn

Introduce z = h,A e C. When taking one integration step the local
truncation error is governed by P(z) — e?, or P(z) —e? in case of local ex-
trapolation. Similarly, the local truncation error estimate is governed by
E(z). By restricting the stepsize so that |E(z)| < v the local truncation
error estimate (and then hopefully also the true local truncatlon error)
will be kept below vy,.

EXAMPLE 2.10—Discretization accuracy

Consider the embedded Runge-Kutta method in Example 2.8. For this
method

P(z) =1+2z, P(e)=1+z+22/2, E(z)= -22/2.

Figure 2.5 depicts the stability regions as well as some level curves for
|P(2) — €?|, |P(z) — |, and | E(2)).

The integration method is of second or first order depending on if
local extrapolation is used or not. For the same accuracy, cf. Figure 2.5,
the higher order method allows the use of a larger z, and hence a larger
stepsize. O
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Local extrapolation, |P(z) — e?| = v No local extrapolation, |P(z) — e*| = v

Local extrapolation, |E(z)| = v No local extrapolation, |E(z)| = v
T T T T 17 1 A

Figure 2.5 The stability regions (full line) of the embedded Runge-Kutta
method in Example 2.10. The level curves (dashed lines) for the functions
governing the local truncation error (upper plots) and the local truncation
error estimate (lower plots) are depicted for v = 0.01, 0.1, and 0.5. As can be
seen z has to be close to 0 in order to get an accurate numerical solution. In
the nonextrapolated case the error estimate would be close to the true error,
while it would be overestimating the true error in case of local extrapolation.
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2.3 The Standard Stepsize Selection Rule

The integration method is supposed to produce a numerical solution
within the error tolerance tol. Ideally, the global error should be below
tol, but the global error is difficult to estimate and most integration
methods confine themselves to keeping an estimate of the local trunca-
tion error close to £, where € is chosen in relation to tol. This is achieved
by adjusting the stepsize during the integration.

The standard stepsize selection rule [Gear, 1971; Dahlquist et al,
1974; Hairer et al., 1987] is based on the relation (2.11). The error esti-
mate r (2.15) measures the norm of ¢ and consequently the asymptotic
behavior of r is given by

'n = ¢n—1hﬁ_1, (2.21)

where £ = p +1 for EPS and 2 = p for EPUS. The coefficient vector
©n = ||@(tn) + O(hn)||, cf. (2.11), is assumed constant or slowly varying.
In order to achieve r,,; = € the next stepsize Ak, is chosen as

€ 1/k - Co
h, = (——) hy_q. (2.22)

T'n

If the error in a step is too large, e.g. r, > p tol, the step is rejected,
and a new try is made with smaller stepsize. By having £ < tol and
p > 1, typically 0.2¢0l < € < 0.8t0l and 1 < p < 1.3, a safety factor is
introduced in the choice of stepsize, and the risk for a rejected step is
reduced, cf. Figure 2.6.

Occasionally, the error estimator may produce an unusually small
(or large) value, thus advocating a very large stepsize change. To im-
prove robustness the controller normally includes some limitation on
such changes. In an implicit integration method the choice of stepsize
also affects the performance of the equation solver. This has to be consid-
ered when choosing stepsize, and most implicit methods augment (2.22)
with further restrictions.

-
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2.4 Equation Solvers

In an implicit method it is necessary to solve for Y; in (2.3). In general,
f(t,y) is a nonlinear function and the equation (2.3) cannot be solved
analytically. Instead an iterative numerical equation solver is normally
used.

When considering the equation solver, the Runge-Kutta method
(2.8) is often rewritten using Y; = f(t, + cihn, Y;) as

S
Yi=9n+hn ) aijf(ta+cihn,Y;), i=1..s

j=1
S (2.23)
Ynil = Yn+hn Z bjf(tn + thn’ Yj)
j=1
lnt1 = Iy + hn
and we solve for Y; instead of Y;. Introduce
Yy [(tn+c1hn, Y1)
Y:=| |, F(Y):= : N
Y, f(tn +cshn, Ys)
and (2.23) takes the form of the implicit equation, cf. (2.20)
Y=1Q@y,+(h,AQIy)F(Y) (2.24a)
Yt = Yn+ha (b7 ®In) @ F(Y). (2.24b)

The equation system in (2.24a) is of order NsxNs, but it is often possible
to make substantial simplifications. One example is in DIRK where 4 is
lower triangular. It is then possible to successively solve for each stage
separately (s systems of order N xN). Other methods may lead to other
types of simplifications [Butcher, 1976; Bickart, 1977; Burrage, 1978].

Many different types of equation solvers have been used to solve
(2.24a) in practice. Which one to choose depends both on the problem as
well as on the integration method itself. The two standard choices are
fixed point iteration and modified Newton iteration. '
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Fixed Point Iteration

The simplest way to solve (2.24a) is to use fixed point iteration, i. e. iter-
ate

Y™ = 1@y, +(hA@Iy)F(Y™),

until the solution is sufficiently accurate.

The starting value Y for the iteration is often obtained using the in-
terpolant g(¢) (2.16) from the previous step. Although ¢(¢) was designed
primarily to interpolate within a step, it normally gives reasonably good
extrapolations. During successful numerical integration the stepsize A,
is kept on scale, i.e. &, is chosen so that the solution change is mod-
erate between successive steps, and consequently the extrapolation will
normally be good. Should the integration method not supply an inter-
polant, it is still often possible to use old stage values to construct a
crude extrapolant to obtain Y©.

Under certain conditions there exist a unique solution Y* to (2.24a)
[Kraaijevanger and Schneid, 1991]. The iteration error E” = Y™ - Y*
can be written

E™ = (h,A @ IN)JE™ (2.25)

where J is a mean value Jacobian [Ortega and ’Rheinboidt', 1970, 3.2.6]

J = / O (Y + L (Y™ — YY) dl.

The matrix J is block diagonal with s blocks. Block number i is formed
as fo 3y Gntcihn, Y+ (Y -Y})) d{. For the test equation y = Ay
the mean value Jacobian takes the form J = I, ® A.

The iteration (2.25) converges if it is a contraction,

|(hrA @ In)J| < 1. (2.26)

We observe that to obtain convergence the stepsize &, must be limited
in correspondence with the magnitude of the eigenvalues of (4 ® Iy)dJ.
If the eigenvalues have approximately the same magnitude this is quite
natural; when the solution y(#) changes quickly (large eigenvalues) a
small stepsize is neceéssary. If, on the other hand, there is a large span
of eigenvalues the stepsize must be chosen in relation to the largest
eigenvalues, while y(¢) may be governed by some of the smaller ones. A
differential equation with this property is referred to as stiff [Shampine
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and Gear, 1979; Cash, 1985; Shampine, 1985b; Byrne and Hindmarsh,
1987]. The restriction on the stepsize can be very severe, which makes
the integration method inefficient. Hence a different type of equation
solver should be used.

Modified Newton Iteration

By using Newton iteration it is possible to obtain convergence in the
equation solver without the severe stepsize limitations for fixed point it-
eration. Newton’s method applied to (2.24a) needs for each iteration the

solution of a linear system with the matrix (compare with the structure
of (hpA ®IN)J)

I —hpanGh(tn+cihn, Y7?) ... ~hn@1s 3L (tn + cshn, Y
: : (2.27)
~hnta 3 (tn +c1hn, YT oo I = haass 8L (bn + cshn, YI)

It would be too expensive to evaluate (2.27) at each iteration, and it is
common to use the approximation

8 ) |
8—];—(t,,, +cihy, Y") = a—i(tn,yn) =:.J.

This replaces (2.27) with the iteration matrix M, defined as

M=I,Iny -h,A®J.

Define the residual of (2.24a) as
R(Y):=1®y,+(h, A4 ®IN)F(37) -, - (2.28)

and the Newton iteration for (2.24a) takes the form

Y™ = Y™+ M 1R(Y™). (2.29)
In (2.29) an NsxNs linear system has to be solved each iteration. If 4 is
triangular (DIRK) the problem is reduced to solving s systems of size N'x
N. Moreover, if the diagonal elements in 4 are equal (SDIRK) the same

iteration matrix can be used for all the stages. Similar simplifications
can be done for 4 possessing other types of structure.
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| The approximation I; ® J differs from the (unknown) mean value
Jacobian J of F(Y). Similarly to (2.25)

E™ = (I,@Iy —hA0d)  (haA®IN)(J —I,®J))E™,  (2.30)
and for contraction
H (I, ®Iy — 1A ®J) " (haA ®IN)(J — I, ®J)) H <1 (2.31)

As for fixed point iteration the convergence depends on the stepsize
hn. The dependence on the span in the magnitude of the eigenvalues
of the Jacobian J is, however, reduced due to the premultiplication by
(Is®Iny —h,A ®J) 1. To get convergence we do not need to know o
exactly. The iteration will converge as long as ||J — I, ® J|| is moderate.
Newton iteration thus makes it possible to obtain efficient integration
methods also for stiff problems.

Newton iteration is computationally expens1ve To save computa-
tions the same iteration matrix M is used over several integration steps.
The approximate matrix M and the fact that it is used during several
steps is the reason for the term modified Newton iteration. Storing M
as an LU decomposition further reduces the operation count. It also fa-
cilitates solving for Y™ in (2.29). The modified Newton iteration will
converge as long as the Jacobian or the stepsize do not deviate too much
from the values used when forming M (cf. [Alexander, 1991] for more
precise conditions). The rules for when to evaluate the Jacobian and/or
factorize the iteration matrix are important decisions to assure a cor-
rect solution and to make the implementation of the integration method
efficient [Shampine, 1980; Hairer and Wanner, 1991, pp. 128-141]. We
will return to this problem in Chapter 5.

The Iteration Error in the Equation Solver

In each step of the integration there are two types of error contribu-
tions: the discretization error and the error from the inexact solution
of (2.24a). The first term is measured either as an estimate of the lo-
cal truncation error or the defect, and its contribution can be controlled
through the stepsize. The second term is measured either as the dis-
placement A, = Y™!—-Y™ or as the residual R(Y™) (2.28), and its size
is affected by the number of iterations in the equation solver. In princi-
pal, the displacement is an element in the space Uy, while the residual
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belongs to V7, cf. Figure 2.1. For a consistent error control one either
combines the use of the local truncation error with the displacement
(error control in Uj), or combines the defect with the residual (error
control in V}). The most common choice is the former [Houbak et al,
1985].

The stepsize control algorithm keeps the local truncation error be-
low some value €, and the equation solver continues to iterate until the
displacement is below 7. The value ¢ is, normally, chosen based on the
user-specified tolerance ¢ol, and the remaining question is how 7 should
be related to €. The iteration error should, naturally, not be too large.
On the other hand, the smaller 7 is chosen, the more it costs to compute
Y. Experiments show that the solution of the differential equation is
not improved by making 7 <« &£ [Shampine, 1980; Ngrsett and Thomsen,
1986a; Hairer and Wanner, 1991, p. 131].

The local truncation error e is related to the local truncation error
estimate ¢ and the displacement A as [Houbak et al., 1985; Ngrsett and
Thomsen, 1986a] :

énment ((b-0)TA 1 @IN)M ((haA R IN)IT — I, @ J))A,.  (2.32)

The quantity [|[M~! (7,2 ® In)(J ~ I; ® J)) || is an estimate of the rate
of convergence (cf. (2.30)), which must be less than 1. The contribution of
the second term in (2.32) is therefore bounded by ||(b — B)T.ﬂl“l ®In||z.
By setting J = 0 it is easy to see that this holds also for fixed point
iteration.

If the iteration error contribution to é is to be kept below a fraction
x of € then

t=||(b-b)TateIy| ke (2.33)

Few implementations calculate 7 based on x and the method coefficients
(2.33). Instead 7 is set at a fixed fraction of €. A value 7 /¢ around 101
or 1072 is common [Hairer and Wanner, 1991, p. 131].

Let ¥ denote the numerical solution to (2.24a). The structure of
(2.24b) suggests that, after having obtained Y, one should evaluate F (¥)
in order to calculate the new solution point. The value Y is, however,
inaccurate, and the actual evaluation of f(¢,+c;h,, Y; i) would, especially
for stiff pro’tzlems;\“afhplify these errors [Shampine, 1980]. Iqstead, we
solve for F'(Y) in (2.24a),

F(Y):= (kaA) ' @ In) (Y = 1 ® yn), (2.34)
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and use this value in (2.24b). Through (2.34) we also save one function
evaluation per stage.

Rate of Convergence and Stiffness

Let L be the Lipschitz constant of the iteration map in (2.25) or (2.30).
If L < 1 the iteration is contractive. The convergence in the equation
solver can be monitored by estimating the rate of convergence by

[|Am||
JAvESY|

0 = Max o, = max (2.35)
m m

and often « or «,, is used instead of L, although both underestimate L.

To get efficiency in the equation solver one would in practice not
allow a to get close to 1, i.e. (say) @ < 0.5. Slow convergence when
using fixed point iteration is an indication that the problem may turn
stiff, and it is reasonable to switch to modified Newton iteration. In
the case modified Newton iteration is already in use one would instead
consider a refactorization of the iteration matrix and/or a reevaluation
of the Jacobian (cf. Chapter 5).

Switching from modified Newton iteration back to fixed point iter-
ation requires (2.26) to be satisfied. The quantity ||(h»,4 ® In)J|| can be
estimated using variables available in the modified Newton iteration.
Define the “stiffness measure” B as [Ngrsett and Thomsen, 19864]

IBE™)I _ | M Al

f = max ——— = max ———. 2.36

A A (2.36)
We have

B<I|IM|=Ii®In —hAQJ| < 1+||h, A Q]| (2.37)

Assume that I, ®¢J is a good approximation to J. When ||(h,A®Ix)J|| <
1, and hence B8 < 2, we know that fixed point iteration converges. Some
codes [Ngrsett and Thomsen, 1987] therefore use 8 < 2 as an indication
to switch from modified Newton iteration to fixed point iteration. The
estimate (2.36) may, however, underestimate the norm of M, and g < 2
is necessary but not sufficient for ||(h,4 ® In)J|| < 1. Some' codes are
more elaborate, and calculate ||/|| in order to decide when to switch back
to fixed point iteration.
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2.5 Standard Error and Convergence Control

To guarantee efficiency and accuracy all numerical integration codes
include algorithms for error control and, in case of an implicit method,
convergence control. The stepsize is the main variable used to control the
error (cf. Section 2.3), although the error also depends on the accuracy of
the equation solver iteration, cf. (2.32). The convergence in the equation
solver is assured by choosing the correct type of solver and updating the
iteration matrix appropriately. Most control actions affect, however, both
the error and the convergence of the iteration, and this cross-coupling
has to be considered in the choice of control algorithms.

Choosing Stepsize

The standard rule to select the stepsize is (2.22). As (2.25) and (2.30)
illustrate the stepsize also affects the convergence rate, and most con-
trol algorithms restrict stepsize changes so that_the convergence is not
jeopardized. The structure of (2.25) and (2.30) suggests a lihear relation
between A and «, and if o,y is the worst acceptable convergence rate,
the new stepsize must obey

(94
(04

For efficiency the iteration matrix M in the equation solver is stored
in LU-factorized form. When the stepsize is changed the factorization
“should” be updated accordingly. The modified Newton iteration may,
naturally, still converge; it all depends on how much the stepsize changes
and/or if the Jacobian itself also has changed. Doing a factorization at
every step would be very inefficient, and instead most control algorithms
incorporate some logic that prevents the stepsize from changing too fre-
quently. All in all the stepsize selection rule becomes rather involved.

EXAMPLE 2.11—Stepsize selection in SIMPLE(2)3

SIMPLE(2)3 is a third order implicit Runge-Kutta implementation due
to Ngrsett and Thomsen, [Ngrsett and Thomsen, 1984; Ngrsett and
Thomsen, 1987; Ngrsett and Thomsen, 1990]. At each step SIMPLE(2)3

calculates
w = (tol 1/k _ Ofmax ‘
,lll - rn ’ ,u2 - o ’

where £ = 3 and @4, = 0.8. The two values give an estimate of how
much the stepsize could change without getting rp,1 > tol or & > Ormax,
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I
tol A
Lo reject, decrease stepsize
1.0 A1 accept, decrease stepsize
0.8 A
0.6 1
0.4 accept, stepsize unchanged
0.2

accept, increase stepsize

-
time

Figure 2.6 Depending on the value of r/tol SIMPLE(2)3 uses different rules

for choosing the next stepsize.

respectively. The choice of stepsize depends on ,121 and ug as

(0.8h,_1 min (11, max (0.1, i3)), 0 <u; <095

he - 0.9%,_1, 095 < u; <11
" ) ko, 1.1 < uq <20
\O.th_l min (‘Ul,uz), 2.0 < Hi1 < O

(reject)
(accept)
(accept)
(accept)

In terms of r/tol these rules can be viewed as in Figure 2.6. The
algorithm does not use fixed values on the safety factors p and &/tol
discussed in Section 2.3. The rejection in case 1 corresponds to p =
(1/0.95)3 ~ 1.2, and the factors 0.8 and 0.9 in case 1 and case 4 corre-
sponds to having £ = 0.8%3tol ~ 0.5¢tol and & = 0.9% tol ~ 0.7 tol, respec-
tively. The deadband (case 3) reduces the number of stepsize changes in

order to get efficiency in the equation solver.
In addition, the following logic is also used:

o the stepsize is never chosen larger than the simulation interval,

e the stepsize is never increased by more than a factor of 4 in one

step, and

e 1o stepsize increase is allowed during 3 steps following‘a rejected

step.

O
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Supervising the Equation Solver

In the equation solver one normally tries to use fixed point iteration as
often as possible. Should the iteration fail to converge there is no new
solution point and it is not possible to calculate the estimate of the local
truncation error. In this case one could either switch to modified New-
ton iteration or recompute the step with a smaller stepsize and hope
that fixed point iteration will converge. Since modified Newton itera-
tion is computationally more expensive it seems natural to reduce the
stepsize before changing iteration method. For efficiency the stepsize
should, however, not be too small. What choice to make is a nontriv-
ial decision, and different codes use different strategies [Ngrsett and
Thomsen, 1986b; Shampine, 1981; Hairer and Wanner, 1991].

The switch back from modified Newton to fixed point is done as fast
as possible. Normally, the norm of the iteration matrix or the stiffness
measure 3 (2.36) is calculated, and a switch is done when this measure
signals that fixed point iteration would converge.

There are two natural reasons for the iteration in the equation
solver to terminate: a sufficiently accurate solution has been found or
the iteration does not converge. The equation solver must also include
logic to handle a third case: poor convergence so that too many iterations
will be needed to find a solution.

Most control algorithms handle the factorization of the iteration
matrix and the evaluation of the Jacobian in a similar way [Ngrsett and
Thomsen, 1986b; Shampine, 1981; Hairer and Wanner, 1991]. Typically,
the iteration matrix is factorized when the stepsize is changed, and the
Jacobian is evaluated if the convergence is bad. The iteration matrix is,
naturally, refactorized in case the Jacobian was evaluated.

ExaMpLE 2.12—Equation solver logic in SIMPLE(2)3 ;

The logic handling the equation solver in SIMPLE(2)3 is rather straight-
forward [Ngrsett and Thomsen, 1986a; Ngrsett and Thomsen, 1986b;
Ngrsett and Thomsen, 1990]. At each iteration step the equation solver
calculates an estimate « of the rate of convergence (2.35). Depending
on this value and the last displacement A the following decisions are
made:

1. A < 7, the solution is accepted and the iteration is terminated.
i

2. A > 1, the iteration error is too large, and if

a. o < Qmax, the convergence is good and the iteration is contin-
ued,
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b. amax < @ < 10, the convergence is poor but the iteration is
continued until either an acceptable solution is found (case 1)
or another iteration with poor convergence is experienced, and

c. a > 10, the iteration is terminated due to poor convergence.

A switch from fixed point iteration to modified Newton iteration is
done as soon as the fixed point iteration fails to converge. A stiffness esti-
mate f (2.36) is calculated to determine when it is safe to switch back to
fixed point iteration. The stiffness measure is smoothed, using geomet-
ric averaging, before used, i.e. Bsnooth := (B + Bsmooth)/2. After having
switched to modified Newton iteration a change back is prevented dur-
ing 10 steps. In addition, the following strategy is implemented for the
iteration matrix and the Jacobian:

e The iteration matrix is factorized every time the Jacobian is evalu-
ated or the stepsize is changed.

e The Jacobian is evaluated if the stepsize change was restricted by
the convergence rate (us < ui, see Examplée 2.11), or if a step was
rejected due to a convergence failure in the equation solver. O

2.6 Control Issues in Runge-Kutta Methods

A Runge-Kutta method is a complicated nonlinear system with several
inputs and outputs (Figure 2.7). By choosing the inputs to this system
we want to control its behavior. This requires a thorough understanding
of the properties of the method.

A fundamental problem is whether the outputs of the integration
method reflect the true situation, i.e. does the error estimate give an
accurate picture of the true error? Part of the problem with poor mea-
surements can be solved in the controller design; a noisy signal could
for instance be averaged before being used. The overall system, i.e. the
controller and the process, will, however, fail to accomplish its task if the
output signals relate weakly to the global objectives. It is important to
consider this problem when designing an integration method. Sophisti-
cated controller design will never save the performance of an integration
method supplying‘a poor error estimator. On the other hand, pgor control
can destroy the performance of any integration method.

The standard controller is based on asymptotic models and heuris-
tics. These assumptions are sometimes not valid and as a result the
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Integration method
Differential equation

accept/reject error estimate r
Error Discretization
tol Control stepsize h formula solution y
e - e ———
restrict T @[ L o ;o] | = - ]
stepsize {
ref fixed/Newton
— B convergence rate o
- Convergence | new Jacobian - Equation
stiffness measure
Control factorize solver B
o

Figure 2.7 The integration method can be regarded-as a multi-input-multi-
output system. There are quite strong cross couplings and the dependence
between the inputs and the outputs is complicated. The error controller keeps
the error estimate r in correspondence with the prescribed accuracy, and the
convergence controller supervise the equation solver so that it operates effi-
ciently. The equation solver and the convergence control is only present in an
implicit method.

closed loop system behaves poorly. In order to improve the control it
is vital to understand the relationship between the different inputs and
outputs. When and why do the standard asymptotic models fail? A large
part of this thesis (Chapter 3 and part of Chapter 5) is devoted to an-
swering that question. A part of the answer is to derive new models that
better describe the behavior of the process. Such models are critical in
the design of an improved controller, cf. Chapters 4 and 5.

The main objective of the controller is to keep the error at, or below,
a user prescribed level. The error control is achieved by a feedback loop
around the upper part of the process in Figure 2.7. The error estimate is
kept at a tolerable level, by adjusting the stepsize and deciding whether
a specific integration step should be accepted or rejected. The error is
of course also affected by the equation solver in the lower part of the
process, cf. Figure 2.7, but by keeping the iteration error sufficiently
small the cross-coupling can be neglected. The iteration error is not kept
down just to avoid cross-coupling. Its contribution to the error estimate
is nonsmooth, and if allowed to be large it would seriously impair the
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error control.

The integration method should produce an acceptable solution as
efficiently as possible. For an explicit Runge-Kutta method this relates
closely to the error control. The error control should not try to obtain a
solution of higher accuracy than asked for, since that would involve un-
necessarily small integration steps. The same is of course also true for an
implicit method, but the efficiency is here also related to the properties
of the equation solver. By carefully choosing the inputs related to the
equation solver the numerical solution can be produced with a minimum
of computation. This is the mission of the convergence control.

Although the convergence control relates primarily to the inputs
and outputs of the equation solver (cf. the lower part of the process in
Figure 2.7), it also depends on the error control. The stepsize affects
the convergence, and the error and convergence control algorithms can
therefore not be designed separately.
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The Stepsize-Error
Relation

A Runge-Kutta method is a complicated nonlinear system with several
inputs and outputs (cf. Figure 2.7). Successful control of the integration
requires a good understanding of how the different inputs affect the
outputs. There are quite strong cross couplings inside the integration
method and each output variable is affected by, more or less, all the
input variables. The strongest, and most important, dependence is the
one between the stepsize A and the error estimate r.

The traditional asymptotic model (2.21) sometimes fails to correctly
describe the stepsize-error relation, and consequently the error control
degrades. In this chapter the asymptotic model is revisited and we in-
vestigate when it is insufficient. New models that better describe the
stepsize-error relation are derived and verified. These models are used
later (Chapters 4 and 5) to improve the error control algorithm.

3.1 The Limitations of the Asymptotic Model
Motivated by the asymptotic model (2.21), the stepsize should be calcu-
lated from
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to achieve r,.1 = &, cf. Section 2.3. The quantity ¢, is unknown at the
time ¢,, and the controller cannot use (3.1) as is. Instead ¢ is assumed
slowly varying and the previous value ¢,_;, which is computable from
the most recent solution point (¢,-1 = r,/h%_,), is used to predict ¢,.
Hence, the standard stepsize controller (2.22) is based on the stepsize-
error model

'ny1 = @nhﬁ, @n = @Pn-1. (32)

The key assumptions in this simple model are that higher order A-
terms are negligible in the asymptotic relation (2.21), and that ¢ varies
slowly. Both these assumptions are in some cases questionable, and as
a consequence the model (3.2) is insufficient for successful error control.
Some important reasons for the shortcomings are:

e The stepsize is nonzero during the integration, and it is not nec-
essarily the p + 1 term that dominates in (2.11). Consequently the
error may behave as if £ is larger than expected in (2.21).

e  Some implicit methods lose convergence order when applied to stiff
problems (order reduction [Prothero and Robinson, 1974]), causing
k in (2.21) to be smaller than expected.

e ¢ may change considerably between two solution points, making
@n-1 @ poor substitute for ¢,. The model (3.2) then gives an inac-
curate description of the stepsize-error relation.

e In an integration method with bounded stability region the stepsize
may grow large enough to move eigenvalues outside or close to the
border of the stability region, cf. Definition 2.4. In this case the
dynamics of the integration method changes significantly, and the
resulting stepsize-error relation is very different from (2.21).

e In an implicit integration method the iteration error from the equa-
tion solver contributes to r, cf. (2.32). This contribution varies non-
smoothly from step to step, and ¢ will seem to vary irregularly.

As we will see in the sequel it is possible to devise new models that
capture part of these properties. Before turning to the modeling, we will
demonstrate the behavior through three examples.

ExXAMPLE 3.1—Nonasymptotic behavior in the stepsize-error relation
The nonlinear problem [Hairer et al., 1987, pp. 107, 236]

}

y1=y2’ y1(0)=2

3.3
5’2=O'(1—y§)y2—y1, y2(0) =0 (3.3)
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is referred to as the van der Pol oscillator and is a common test problem
for numerical integration methods. The problem has a periodic solution
(upper diagram of Figure 3.1) with quite different properties along the
trajectory. The parameter o is used to vary the properties of the problem.
The choice o = 5 makes the problem mildly stiff during the smooth part
of the solution.

The problem (3.3) was solved using the explicit RKF(1)2 method (cf.
Example 2.8 and Appendix A). The method was run as XEPS, with the
error measured using the mixed absolute-relative 2-norm in (2.14). The
tolerance was set to £ = 0.01 and the norm used 7 = 0.01 and ¥ = |y|.

RKF(1)2 is a simple integration method, and it is fairly straight-
forward to calculate the error estimate explicitly (cf. (2.13) in Example
2.8)

R R h2 h3
€n+l = Yn+l — Yn+l = ““7nfyf"' zrlfyyff (3-4)

With the help of the symbolic manipulation tool Maple [Char et al,
1988] the differentials f, f and f,,ff were calculated for (3.3). At each
step n we evaluate the differentials and use these values to calculate
the stepsize A, required to make r,,; = €. The procedure involves a
lot of computation since r,,1 depends nonlinearly on A, and y,. The
result is a computationally very expensive error controller that calcu-
lates a stepsize sequence that achieves “perfect” control, i.e. r = €. There
is, however, no guarantee that this also makes the global error behave
well. The numerical solution points resulting from the integration pro-
cedure are plotted as crosses in the upper diagram of Figure 3.1. The
middle diagram depicts how the stepsize changes during the simulation
interval.

The error estimate (3.4) consists of one A2 .and one A3 component.
The lower diagram in Figure 3.1 shows the norm of each of the two com-
ponents. The A% term normally dominates, but the A3 term cannot be
neglected at the turning point and in the middle of the smooth phase.
In 20 % of the integration steps the A® term is larger than one tenth
of the A? term. The full line in the lower diagram of Figure 3.1 shows
the norm of the local truncation error, i.e. ||e]|. Since RKF(1)2 uses lo-
cal extrapolation the error estimator normally overestimates the local
truncation error. © * ‘

It is interesting to note that at times both the A2 and the A® er-
ror terms are much larger than €. In these cases the two error vectors
have different directions and partly cancel. The norm of their combined
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Figure 3.1 The upper diagram shows the solution to the van der Pol oscil-
lator (¢ = 5) in Example 3.1. The numerical solution points are shown as
crosses on the solution curve. The stepsize, depicted in the middle diagram,
is chosen so that the error estimate r is equal to the tolerance ¢ = 1072 at
each numerical solution point. The error estimate includes one h? and one A3
term. The lower diagram shows the norm of each of these components. The h?
term normally dominates but the 2® component is often large enough to cause
a stepsize-error relation different from (2.21). The lower diagram also depicts
the norm of the local truncation error ||| (calculated with a different method
of high accuracy). RKF(1)2 uses local extrapolation and as a consequence the
embedded error estimator often overestimates the local truncation error.

i
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Figure 3.2 The diagram depicts the ratio ¢,,1/¢» during the integration of
the van der Pol oscillator in Example 3.1. As can be seen the variations in ¢
may be rather large. Changes labeled with ‘x’ corresponds to rapid changes
in the elementary differentials, while changes labeled ‘o’ are provoked by the
absolute-relative norm.

contribution is still exactly equal to €.

In this example the error estimate is kept exactly equal to the tol-
erance, i.e. € = @,h%, and consequently ¢,.1h% , = @,h% From this
expression it is straightforward to calculate the variation in ¢, i.e.

Pn+1 ( by )2

On - hni1)

This quantity is plotted in Figure 3.2. The variations are quite large
and any stepsize selection algorithm based on the assumption that ¢
is approximately constant will at times behave poorly. An algorithm
that has & <« ¢ol would in principle manage large ¢ variations without
rejected steps, but the integration would be very inefficient.

Large changes in ¢ stem from two different sources: rapid changes
in the elementary differentials and “discontinuities” in the norm. The
jumps at ¢ ~ 2.0, 5.4, 7.8 and 11.2 in ¢ (marked by %’ in Figure 3.2)
belong to the former category and are caused by rapid direction changes
in f,f. The other jumps can be attributed to the change from relative
to absolute error norm that takes place when a solution component gets

close to 0. This change introduces a discontinuity that affects ¢ (marked
by ‘0’ in Figure 3.2). O
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Figure 3.3 The upper part of the figure depicts the solution to the problem
in Example 3.2. Each numerical solution point is marked with a cross. The
lower part of the figure shows the stepsize sequence used when solving the
problem. The stepsize sequence was chosen so that r, = ¢ at all solution
points.

EXAMPLE 3.2—Stepsize restricted by numerical stability
The problem

y = Ay, A=-1 y(0)=1 (3.5)

was solved with the explicit method RKF(1)2. The stepsize sequence
was calculated so that the error estimate is exactly equal to € = 1073 at
each solution point. A pure absolute 2-norm, i.e. r = /3, é? = |é|, was
used to measure the error.

As the solution decays towards its stationary value the stepsize
increases to keep r, = €. The discretization becomes unstable if 2,4 <
—2 (cf. Example 2.9), and as seen in Figure 3.3 the stepsize levels out
at h, = 2.

To investigate the stepsize-error dynamics we use the calculated
stepsize sequence‘to perform a step response test. The nominal stepsize
was increased by 10 % during two intervals: one during the transient
phase of the solution and one when the stepsize has reached the stability
limit. When increasing the stepsize by a factor of 8 one would expect
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Figure 3.4 The problem in Example 3.2 was solved with two stepsize se-
quences. The first one (upper plot, full line) makes r, = £ at each step. The
second sequence (upper plot, dashed line) is a perturbed version of the first
sequence, with the stepsize increased by 10 % in the intervals [10,19] and
[60,69]. As can be seen in the lower diagram the response to the perturbation
is quite different in the two intervals. The behavior in the first interval is
described by (2.11) while the second case is a consequence of the integration
method operating on its stability boundary. Note that, in contrast to Figure
3.3, all variables are plotted as a function of integration step number.

the error estimate to grow like #%. This is indeed the case for the first
interval (see Figure 3.4). In the second interval the behavior is quite
different. The error estimate seems to accumulate previous values. The
reason is that the integration method operates on the edge of inétability,
resulting in quite different error dynamics.

This example demonstrates something that will happen whenever
an explicit integration method is used to solve a differential equation
where a fast mode decays towards a constant or slowly varying solution.
The choice of norm is not critical and we would see the same effect for
a nonzero stationary%value and a relative norm. O
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Figure 3.5 In Example 3.3 the initial integration step is calculated using
different number of iterations in the equation solver. The figure depicts the
iteration error and its effect on the error estimate as function of the number
of iterations.

EXAMPLE 3.3—The iteration error effect on the stepsize-error relation
Consider again the linear test equation (3.5) in Example 3.2. We use the
implicit midpoint rule for the integration and estimate the error as the
difference between the implicit midpoint step and an implicit Euler step
(cf. Appendix A). Fixed point iteration was used to solve for the stage
values Y, cf. (2.24a). ‘

The first integration step (A = 0.5) was taken using a different
number of iterations in the equation solver. Figure 3.5 depicts how the
error contribution from the iteration affects the error estimate. As the
number of iterations grow the iteration error gets smaller, and the error
estimate levels out at approximately 0.067.

When the iteration error is allowed to be large, i.e. 7 large and
therefore few iterations, the error estimate is strongly affected when the
number of iterations change. This adds a nonsmooth error component,
depending weakly on the stepsize, to the error estimate. O

It is difficult to capture all the effects demonstrated in Examples
3.1-3.3 in one model. Most of what is seen in Example 3.1 can be handled
by extending the standard model (2.21) with a model for the variations
in ¢. The case where the stepsize gets restricted by stability (Example
3.2) is, however, quite different, and a separate model has to be used for
that case.

‘The contribution from the iteration error (Example 3.3) depends
on decisions made in the equation solver, which may vary considerably
between successive steps. The coupling between the iteration error and
the stepsize is quite weak, and we will refrain from trying to model the
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dependence. Instead we will consider the iteration error effect on r as
a disturbance that can be kept small by controlling the equation solver
appropriately.

3.2 Different Operating Regions

Based on the properties of the stepsize-error relation an integration
method can be regarded as operating in one of three different regions:

e the asymptotic region,
e the nonasymptotic region, and
e the stepsize restricted by numerical stability.

The dependence between stepsize and error is quite different in these
regions, and one single model is insufficient.

Again we return to the linear test equation (2.17). Figure 3.6 depicts
the functions P(z) and |P(z) — e?| on the real axis for two integration
methods: RKF(1)2 and implicit Euler (cf. Example 2.10). When z = h4
is close to 0 the function P(z) matches the exponential function very
well, and the numerical solution will be close to the true solution. In
this case the integration method operates in its asymptotic region, and
the error is governed by the A* asymptotics, cf. (2.21).

For A < 0 the solution to the test equation decays towards zero, and
eventually it will approach values that are below the required accuracy
of the numerical integration (For simplicity consider an absolute error
norm. The same arguments will be true also for a relative norm with
n # 0 or a relative norm around a nonzero stationary value). As the
solution tends to zero the error drops and the error controller increases
the stepsize in response. The relative accuracy of the discretization gets
worse as z decreases along the negative real axis (Figure 3.6),‘but due
to the small value of the solution the local truncation error will still be
within the accuracy requirements. As the stepsize increases the inte-
gration method moves to the nonasymptotic operating region, and the
error no longer obeys the h* asymptotics.

If the stepsize continues to increase explicit methods become unsta-
ble,i.e. |P(z)| > 1 (cf. RKF(1)2 in Figure 3.6). The instability will cause
the solution to grow and soon it will be large enough to cause nonnegli-
gible local truncation errors and the stepsize has to be decreased. In this
case the stepsize is said to be limited by numerical stability. The situa-

tion is different for a well-designed implicit method. Here the stepsize
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Figure 3.6 The functions P(z) and |P(z) — €?| for two different integration
methods. The functions are evaluated along the real axis. When z ~ 0 the
exponential function is closely matched by P(z). As z » —oo the matching
deteriorates and at z ~ —2.1 the explicit method RKF(1)2 gets unstable.

may be increased without |P(z)| getting larger than 1 (cf. implicit Euler
in Figure 3.6). Thus, as the solution decays the error controller increases
the stepsize, and the integration method moves farther and farther out
in the nonasymptotic region, but without becoming unstable.

Although Figure 3.6 depicts the situation for the linear test equa-
tion, it is still of interest when trying to solve nonlinear differential
equations where the Jacobian has a spectrum with large differences
in eigenvalue magnitude. At startup the error controller has to use a
small stepsize to correctly resolve the transients corresponding to the
eigenvalues with large negative real part. As these modes decay their
contribution to the local truncation error decreases, and it is no longer
necessary to keep them in the asymptotic region. The stepsize is, conse-
quently, increased and it will be chosen in relation to the slower modes.

- The situation is identical to the one for the linear test equation, although

we now have fast transients converging towards a slowly varying sta-
tionary solution instead of a single component approaching zero.
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Control Authority

In the asymptotic region the error controller can easily affect the local
truncation error by changing the stepsize. For an explicit method the
situation is similar in the nonasymptotic region. The stepsize-error re-
lation differs from A%, but the error can still be affected with moderate
stepsize changes. Implicit methods are, however, a completely different
case. For large negative values on z the value of |P(z) — e?| is almost
constant, and very large stepsize changes are needed to affect the error.
This is normally not called for since, in general, the error contribution
from the nonasymptotic modes is well below the accuracy requirement.

When a mode has decayed and been moved out to the nonasymptotic
region the error controller has lost control authority over it. Its error con-
tribution cannot be controlled without very large changes in the control
signal. The behavior of P(z) as z - —oo is therefore of great importance.
Although, |P(2z)| < 1 is enough for stability this requirement is not suffi-
cient for good performance. The value of P(z) also governs how much of
a specific mode is propagated to the next step, and P(z) should, as the
exponential, tend to zero as z - —oo (a property shared by all L-stability
methods, Definition 2.6). If this is not the case, errors in the fast modes
will propagate from step to step. In particular, errors due to an inaccu-
rate iterative solution may excite these modes. If |P(z)| gets close to 1
the errors may accumulate and eventually become large enough to cause
a step rejection [Arévalo, 1992]. It then takes a drastic stepsize decrease
in order to continue the integration. The fast mode must be returned to
the asymptotic region, i.e. where E(z) is small enough and control au-
thority is regained. This behavior has been observed in practical codes,
cf. Figures 5.4-5.6 and [Hairer and Wanner, 1991, p. 122].

Having P(z) - 0 as z — —oo is important since it prevents from
accumulating an error that is difficult to control. It is, however, equally
important for E(z) » 0 as z —» —co. Otherwise the error estimator may
observe fictitious errors in a region where the error controller has almost
no control authority. The error estimator should observe only the “real”

errors, so that the control effort can be concentrated on the error terms
that matter.

60




3.3 An Improved Asymptotic Model

3.3 An Improved Asymptotic Model

As was demonstrated in Example 3.1 both the ¢ model

Pn = Pn-1 (3.6)

as well as the fixed exponent k are questionable in the model (3.2).
During the integration we have, however, available only recent errors
r and recent stepsizes k. From these measurements it is impossible to
separate variations in ¢ from variations in k. If stepsizes that are far
outside the asymptotic error region are disregarded (we will treat them
in Section 3.4), variations in % are less likely than variations in ¢. We
will therefore continue to regard % as fixed. Should & still vary, this can
be anticipated as changes in ¢ provided the variation is moderate.

Comparing Different Models for ¢

There is a lot of structure in the variations of ¢ along the solution of the
differential equation (cf. Figure 3.2). If some of this structure could be
captured in a model it would be possible to improve the prediction @,.
The model should preferably be simple. Sometimes there are very abrupt
changes in ¢, and at such situations it would be difficult to reinitialize
the states in a complicated model.

Using a linear approximation for ¢ we obtain

(’bn = QPp_1+ (pn—lhn- (37)

An inherent problem of this model is ¢. This quantity is difficult to cal-
culate or estimate. To obtain an asymptotically correct estimate requires
extra stages in the integration method [Soderlind, 1991].

A simplification of (3.7) would be to have

Pn = Qn1+ V1 (3.8)

where V is the backward difference operator, i.e. V@,_1 = @n_1 — ¢n_2,
and V¢,_; is a measure of how much ¢ changed in the last step. If
the stepsize changes considerably between consecutive steps it seems
natural to normalize Vo, i.e. \

n—-1

(bn = @Pp-1t 7 V¢n—1- (3'9)
n-2
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The factor ¢ (and hence also ) may vary several orders of mag-
nitude, and it might be beneficial to use logarithmic variables, i.e. to
consider multiplicative changes instead of additive. One obtains

log ¢, = log@,_1+Vloge,_1, (3.10)

where Vlog ¢p,_1 = log ¢n_1 —log ¢,_2 is a measure of how much log ¢
changed in the last step. To normalize Vlog ¢ with the stepsize, one
could introduce

n-1

log @, = log¢,_1 + 7 Vlog ¢n-1. (3.11)
n-2

We compare the five models (3.6), (3.8)—-(3.11) using a simple example.

ExAMPLE 3.4—Different models for ¢

The five models (3.6), (3.8)—(3.11) can be tested on the ¢-sequence cal-
culated for the van der Pol simulation in Example 3.1. Histograms over
the onestep prediction errors are depicted in Figure 3.7. The width of
a bin corresponds to a 2 % error in log;, ¢,, and the height of a bin
shows the number of steps belonging to the bin. In total there were 250
integration steps. »

A prediction error in ¢, will result in an error r,,; that is different
from &. To keep r,,; within +20 % from & corresponds to a prediction
error |log;, ¢, — log;y @»| less than 0.1.

From Figure 3.7 it is clear that the logarithmic models perform best,
the linear ones slightly worse, while the standard model behaves quite
poorly. The models that normalize with the stepsize are slightly less
successful than the versions that do not use normalization. In particular,
they tend to underestimate ¢. The stepsize varies in relation to ¢, and
these variations act as a time scaling of the ¢-changes. A model which
normalizes with the stepsize removes some of the positive effects of this
scaling.

Occasionally, all models result in very large prediction errors. This
corresponds to the situations where there are abrupt changes in ¢ (cf.
Figure 3.2). The models presented here are based on the smoothness of ¢
and abrupt changes cannot be captured. When ¢,, is underestimated the
resulting integration error will be large, and the step has to be rejected.
An overestimation, on the other hand, results in an integration step that
is unnecessarily short. O
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Figure 3.7 Histograms for the prediction error of log¢ for five different
models for ¢. The models were used on the ¢ sequence from the simulation
of the van der Pol oscillator in Example 3.1. The height of a bin depicts how
many steps that resulted in a specific prediction error. The five models are
a) standard model (3.6), b) linear model (3.8), ¢) linear model with stepsize
normalization (3.9), d) logarithmic model (3.10), and e) logarithmic model
with stepsize normalization (3.11). The figure in the upper right corner of
each plot tells how miany percent of the predictions that were within +0.05 of
the correct value. This corresponds approximately to a 10 % error in Fn,;. As
can be seen the logarithmic model (3.10) is the most successful in predicting

On.
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log @,

log A, log r,

—— k q_l S

Figure 3.8 For small stepsizes the integration method can be viewed as a
linear process with log A, as input and logr,, as output. The external distur-
bance log ¢, depends on both the differential equation and the integration
method.

The Asymptotic Model

We conclude the section on the asymptotic model by rewriting it in a
slightly different way. By regarding log &, as the input signal and logr,
as the output of the process (see Figure 3.8), the asymptotic model (2.21)
is turned into an affine relation. Using the forward shift operator q we
obtain .

logr, = Gpi(q)logh, +q tlog ¢, Gp1(q) = kgL, (3.12)

Thus, the process is just a constant gain %, depending on the order of the
error estimator, and a disturbance log ¢,, depending on the properties of
the differential equation and its solution, cf. (2.11). The delay q~! is a
consequence of the indexing conventions, i.e. the stepsize A, is used to
advance y, to y,.1 giving r,.1 as output.

In the asymptotic region the model (3.12) describes the stepsize er-
ror relation very well. The disturbance ¢, should, however, be predicted
using model (3.10) rather than (3.2). The change in the disturbance
model may seem insignificant, but, as will be seen in Chapters 4 and 5,
it implies a different type of error controller.

3.4 Outside the Asymptotic Region

If a mode in the nonasymptotic region dominates the error estimate we
may experience a stepsize-error relation with a very dlfferent k than
expected. Examples of when this may happen are:

e The character of the differential equation may change so that a fast
mode at stationarity gets excited and induces a new transient.
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e It may be difficult to choose the initial integration step putting all
fast modes within the asymptotic region, without the stepsize being
unnecessarily small.

e  Some implicit integration methods lose convergence order when be-
ing applied to a stiff differential equation [Prothero and Robinson,
1974]. The phenomenon is referred to as order reduction, and it
results in a £ value in (2.21) that is lower than expected.

From measurements of 7 and 4 it is impossible to distinguish variations
in k from variations in ¢. This is a serious problem. A varying ¢ is just
an external signal that the controller will be able to handle, but a vary-
ing k changes the dynamics of the feedback loop, cf. Figure 3.8, which
may call for a redesign of the controller so that sufficient robustness is
obtained.

Due to the difficulty with a varying % the process should be designed
making this situation less likely. It is possible to design stiffly accurate
integration methods where the effect from order reduction is minimized
[Cash, 1979; Kveerng, 1988; Hairer et al, 1989; Hairer and Wanner,
1991], and from the control point of view it is recommended to use
these methods whenever trying to solve stiff differential or differential-
algebraic equations.

Even when using stiffly accurate integration methods there may be
error contributions from modes in the nonasymptotic region. This may
be experienced as a value of k different from the one expected [Hairer
and Wanner, 1991, p. 434]. If the experienced variation is moderate it
may be modeled as changes in ¢. An error controller that is based on a
stepsize-error model where ¢ is not assumed constant, e.g. (3.10) and
(3.12), will be able to handle also this situation.

Initial Stepsize

To demonstrate some of the properties of the stepsize-error relation out-
side the asymptotic region, we will consider the choice of initial stepsize.
When starting the integration of a new problem it can be quite difficult
to choose an appropriate stepsize. Some codes leave this choice to the
user, while other implement an automatic strategy [Watts, 1982; Hairer
et al., 1987, pp. 182-183]. Independently of how it was obtained, there is
always a risk that the initial stepsize is outside the asymptotic region of
the stepsize-error relation. In such a case k& will differ from its expected
value. The behavior differs between explicit and implicit methods. In an
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Figure 8.9 The error estimate in the initial step as function of stepsize.
For the van der Pol equation with ¢ = 5 the two methods, DOPRI(4)5 and
SIMPLE(2)3, have quite different behavior outside the asymptotic region » <
0.1.

explicit method the error estimate depends almost polynomially on the
stepsize. When the stepsize increases, higher order terms will dominate
and the error grows faster than A*. In implicit methods, on the other
hand, the error estimate is a rational function of the stepsize. The order
of the numerator polynomial is less than or equal to the order of the
denominator polynomial, and for large stepsizes the error estimate will
be almost constant or tend to zero.

ExaMPLE 3.5—Error dependence on stepsize at initial step

Consider DOPRI(4)5, £ = 5, and SIMPLE(2)3, & = 3, applied to the
van der Pol oscillator in Example 3.1. Figure 3.9 shows how the error
estimate in the initial step depends on the stepsize. A mixed absolute-
relative 2-norm (2.14) with 7 = 107 and y = |y| was used. The asymp-
totic behavior is clearly visible for stepsizes A < 0.1. For large stepsizes
the error behaves quite differently. The error in the implicit method
stays fairly constant while the error in the explicit method grows strong-
ly with increasing stepsize. O

A Simplistic Model

As was pointed out“above it is not possible to separate changes in %
and ¢ during normal integration. One exception is at a rejected step,
where we get two measurements from the same point. If rejected steps
are repeated, it therefore seems reasonable to use the information to
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estimate the current k-value, i.e.

logrp.1 —logry

k= loghy, —logh,_1

(3.13)

where (ry1,hy,) and (r,, h,_1) are errors and stepsizes from two consec-
utive rejected steps. The obtained value can be used when calculating
a new stepsize. In practice k should be compared with the expected &,
and too large deviations should not be trusted.

In some situations the benefit from using an estimated £ value may
be very large. Order reduction may sometimes lead to a long sequence
of rejected steps [Hairer and Wanner, 1991, p. 122]. In Chapter 5 we
will use a controller that estimates &, and through that greatly reduces
the number of rejections in the described situation.

3.5 Stepsize Limited by Stability -

In Example 3.2 the decay of the transient made it possible to increase the
stepsize and still fulfill the accuracy requirement. This is a common sit-
uation, i.e. it is in general possible to increase the stepsize when initial
transient have died out and the forcing function in the differential equa-
tion varies slowly compared to the equation dynamics. An integration
method with bounded stability region (cf. Example 2.9) cannot increase
the stepsize above a critical value k. This value puts some eigenvalue
A of the (linearized) problem on 85, the boundary of the stability re-
gion § = {hA : |P(hA)| < 1} of the integration method. Increasing the
stepsize beyond A makes the nonlinear difference equation system (2.3)
unstable. This will cause the error estimate r to grow and the error con-
troller reduces the stepsize to k. The stepsize is said to be limited by
numerical stability.

When A, approaches i, the dynamics of the stepsize-error relation
changes considerably. An important question is whether the error con-
trol loop is stable in spite of this change in process dynamics. There are
two types of stability discussed here: the possibly unstable integration
method which causes a change in process dynamics, and the stability
of the error control loop. The error control loop may very wel] be stable
although the integration method approaches instability.

The standard stepsize selection rule (2.22) is often unable to handle
the change in process dynamics. The instability in the error control loop
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leads to an irregular stepsize sequence, where the stepsize oscillation
around A causes many rejected steps. Hall and Higham have analyzed
the stability of the equilibrium state i assuming the standard stepsize
selection rule (2.22) [Hall, 1985; Hall, 1986; Hall and Higham, 1988;
Higham and Hall, 1989]. Their analysis leads to a stability test for the
error control loop based on the coefficients (4, b, and ¢) of the integration
method. Using this stability test they then proceed to design methods
where the equilibrium % is stable [Higham and Hall, 1987].

To be able to improve the properties of the error control loop it is
essential to model the behavior of the process when kA, A approaches 85.
We will derive such a model, using an analysis similar to that of Hall and
Higham. Our approach is, however, different, in that we want to model
the stepsize-error relation separately without making assumptions on
a specific error control strategy. Having obtained that model we will
later (cf. Chapter 4) design a controller that gives the complete system
desired properties. This approach gives, in general, a better damped
error control loop than what is achieved with the methodology of Higham
and Hall.

A Linearized Test Problem

Consider the problem
£=A(x—-w#)+w(E) x0)=xeRY, ¢>0, (3.14)

which is a linearization of the general problem (2.1) about a slowly
varying solution x(¢) = w(¢). The eigenvalues of A have negative real
parts, and describe how x(¢) approaches w(¢) from x(0) # w(0).

Introduce y, := x, —w(t,). A Runge-Kutta method applied to (3.14)
may then be written (a generalization of (2.7) in [Prothero and Robinson,
1974))

Yn+1 = P(hnA)yn + Wn, €nt1 = E(hnA)yn + Cns (3-15)

where P(h,A) and E(h,A) are defined in (2.20) and

On = W(ta) = W(tn1) + (0T @ Iy) I, @ Iy — A ® huA)" 1 W,
6n=(b-0)T®Iy)(I;®Iy ~A@h,A) ' W,
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and
hnA(w(tn) — w(tn +c1hn)) +W(ty + c1hy)

W, = :
hnA(w(tn) — w(tn +cshy)) + W (tn + cshy)

The forcing functions w, and ¢, in (3.15) depend on 2, A and the change
in w(¢) during the integration step. The structure of ¢, is similar to the
one of E(h,A), and the O(h”*!) term is the first nonzero term in a Taylor
expansion about A, = 0. This is to be expected in view of (2.11).

From (3.15) it is clear that ¢, in (2.21) depends both on y, and ¢,.
When y, is large the error controller will use small stepsizes to resolve
the transient. Small integration steps experience small changes in w(#)
and the two quantities w, and ¢, will therefore also be small. As the
transient decays the disturbance ¢, gets smaller due to its dependence
on y,. The error controller will increase the stepsize and eventually
@n approaches a value determined by w(¢) (through @, and ¢,). If the
properties of w(t) stay relatively constant with respect to time, the error
control loop reaches a kind of stationary point where the stepsize A, and
the error r, are almost constant (cf. the simulation of the Robertson
problem in Section 3.6). The stationary point is a complicated function
of w(t), the integration method coefficients, and the error set-point «.

On the Stability Boundary

The scenario above assumes that after the transient has decayed the er-
ror estimate is dominated by the effect from w, and ¢,, cf. (3.15). In an
integration method with bounded stability region, e. g. explicit methods,
the situation may be different. If the increasing stepsize reaches kg we
have |P(hsA)| = 1 for some dominating eigenvalue 1 of A. We use the
term dominating to indicate that A is the eigenvalue where |P(h )| = 1
is the most restrictive on ~;. When |P(h,A4)| is close to one, w, will accu-
mulate in y,, cf. (3.15), and the error estimate may be large although o,
and ¢, are small. By adjusting the stepsize about A, the error controller
reaches a kind of stationary point where the error estimate is kept al-
most constant. The dynamics of the stepsize-error relation at this point
is very different from (3.12).

!
To derive a model for the stepsize-error relation about the stationary
point h; we consider the case with constant w(¢). Repeating the argu-
ments of [Shampine, 1975; Higham and Hall, 1989] we assume that the
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log A

log 7,
-

log h, k(Bog+ Bo)

q(@g—1)

Figure 3.10 For a stepsize h; which places h;A on the stability boundary
of the integration method, the integration method can be described with the
dynamic relation (3.22) between log 4, and logr,. The external disturbance
log hs; depends on both the differential equation and the integration method.

with E’ and P’ being the derivatives of the functions E and P, respec-
tively. Then

CE —CE+Cp

hn—l

Ién+1| = |P(h8’1)| h,

ha
h

|éxn] (3.19)

S

Using EPS, and noting that |P(h 1)| = 1, (3.19) can be written in terms
of transfer functions as /

Ceq+Cp—-Cg
logr, = G logh, —logh,), G = ,
g »(q) (log ghe),  Gpla) = — 2

which is quite different from (3.12). EPUS introduces a normalization
of ry1 with h,, which changes the expression for G,(q) in (3.20) to

(3.20)

(CE—l)q+Cp—CE+1
q(g-1) '

For future calculations (Chapter 4) it is beneficial to rewrite (3.20) and
(3.21) as

Gp(q) =

(3.21)

logrs = Gya(q) (0ghn —loghs),  Gpa(g) = “EWTAD (599,

q(g-1)
with
[ Cx/k, EPS _ ((Cp-Cg)/k,  EPS
Bo= {((,?E ~1)/k, EPUS P1= {(Ci _Cp+1)/k, EPUS (329)

The dynamical béhavior of the process is governed by Gpz2(q) and the
only influence of the differential equation is the external perturbation
log hs (cf. Figure 3.10). The result (3.22) can be generalized to all linear
systems dominated by a real eigenvalue [Hall, 1985].
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A Second Order Problem with Complex Eigenvalues. Assume
that A has the following structure

A:[i —ﬁy] B <0, y#0, (3.24)

with the eigenvalues 1 = B +iy and 1 = B —iy.

Finding a stationary solution similar to the one for the scalar case,
requires the use of an error measure based on an absolute 2-norm [Hall,
1986; Hall and Higham, 1988]. The matrix A is normal, and ATA =
AAI, AT + A = (1 +A)I. Hence

1nalls = ¥ E(hnA)TE(hnA)yn = E(hnd)E(had)yy yn

= |E(hnA)*||ynll2.
lyniallz = yIP(hnA)TP(hyA)y, = P(hyA)P(hal)yl v,
= |P(RnA) || yulle. |

There exists a stepsize kg so that |[P(hs1)| = 1, and consequently the 2-
norm of y is constant. Consider small perturbations, i.e. h, = hg(1+x,)
[Hall, 1986; Hall and Higham, 1988], and use the same type of derivation
as in (3.18). Then, from (3.17)

A2
e ~ |1+ x,C
” n+1“2 | n“E |1+Kn— |2” n”

and using |1+ xC|? ~ 1+ 2x Re C, we may write

0 hn 2ReCg hn_l 2Re(-Cg+Cp) 0
llénllz = | 5 léxllz. - (3.25)

Hence, if the definitions for Cr and Cp are changed to

Cr(hsA) = R (h AE((Z j;) Cp(hsl) = R (h 2L ((:2))) (3.26)

the result (3.22) holds also for problems with the special structure (3.24).
The result can be generalized to all linear systems dominated by a com-

plex conjugate pair of eigenvalues having a negative real part [Hall,
1985; Hall and Higham, 1988].
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| The derivation of (3.25) hinges on the structure of A and the specific
norm that is used. If the problem is transformed with the nonsingular
matrix T, resulting in the system matrix 7-'AT, the norm ||-||7 = ||T"||2
has to be used to establish (3.22).

In practice T' is unknown, and consequently the norm will not be
aligned with the differential equation, i.e. the Jacobian is not normal.
The constant value A is then no longer an equilibrium. The model
(3.22) is, however, still of interest. It is possible to find a stepsize se-
quence varying around A ¢ keeping the norm of the solution y, constant.
The larger the misalignment between the differential equation and the
norm, the larger the amplitude of the variations. If we consider devia-
tions about this varying stepsize sequence (and the corresponding error
sequence) it is reasonable to assume a behavior similar to (3.22).

Other Error Norms

The existence of a constant equilibrium state: &, is a result of using a
uniform absolute error measure aligned with the differential equation.
The situation is more complicated when a mixed absolute-relative norm
is used, [Higham and Hall, 1989; Gustafsson, 1991].

For an integration method with P(hs1) = -1, e.g. RKF4(5), the
numerical solution x, of (3.14) oscillates around w(¢). A relative error
norm then results in an oscillating error estimate r, even if é, has
constant size. The variation in r, makes the error controller adjust the
stepsize, and as aresult r, and A, oscillate around € and A, respectively.
The oscillations may sometimes be reduced by using averaged solution
values when forming ¥ in the error norm (2.14), but in general, a mixed
absolute-relative norm will cause oscillations [Higham and Hall, 1989].
The model (3.22) is, however, still of interest since it reveals the behavior
of the underlying dynamic stepsize-error relation.

Implicit Integration Methods

The result (3.22) is valid also for implicit Runge-Kutta methods. Nor-
mally this is of little interest since many implicit methods are designed
to be L-stable. Methods only possessing the weaker property A-stability
may have oo on the boundary of §. Thus, as the stepsize is increased the

stepsize-error relation will eventually approach the behavion predicted
by (3.22).
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stepsize is locally constant, kh, = h;. Then
én+1 = E(hsA)y, = E(hsA)P(hsA)yn_1 = P(hsA)én, (3.16)

which indicates that on the stability boundary the estimate of the local
truncation error stays approximately constant. During normal integra-
tion the stepsize will vary, but we expect the average stepsize to keep
hnA close to the boundary of the stability region. In addition, from (3.15),
¥» should be close to the span of the dominant eigenvector(s) of A.

An important feature of the stepsize-error relation at the stability
boundary is the way old errors are propagated to the next step. For a
varying stepsize (3.16) becomes

é\n+1 = E(hnA)yn = E(hnA)P(hn—lA)yn—l

- ’ (3.17)
= E(hyA)P(hy_1A)E " (hy_14A)é,.

This recurrence relation is normally hard to analyze, but for certain
choices of A and error norm, it is possible to find “equilibrium states”
for Ay, r, and y,. We will use the first nonvanishing variation to derive
a stepsize-error model in two cases where it is possible to obtain these
states [Gustafsson, 1991]. ‘

A Scalar Problem. Consider the scalar problem one gets by setting
A = A. The constant stepsize ks, where |P(hsA)| = 1, leads to the “sta-
tionary” solution |y,.1| = |y»|. Consider small perturbations around the
equilibrium state hg, i.e. b, = hs(1+ x,) [Hall, 1985]. Then (3.17) can
be written

P(hsl(l + Kn—l)) R
E (hA(1+ Kn1))

P(hsA) (1+x,-1Cp) 5
E(hsA) (1+x,_1Cg) " (3.18)

~ P(hsA) (14 K,)%F (14 Ky_q)~CE¥CP 4,

CE —CE+Cp
= P(hsA) (%) (-——h;‘l) é,

where we have used 1+ xC = (1 + k)¢ for small x and \

éni1 = E(hsA(1+ Ky))

~ E(hsd) (1 + 5,C)

L E'(hsA) . P(heA)
Culhed) = hdgrys  Cr(hsd) = %)
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3.6 Experimental Verification of the Models

The process models (3.12) and (3.22) are variational approximations of
(2.3) about £, = 0 and h,, = h,. The approximations are valid in a neigh-
borhood around the approximation points, but the previous derivations
do not indicate how large these neighborhoods are. Somewhere in the
interval [0, h,] there is a transition from (3.12) to (3.22). The models,
however, do not tell where in the interval the transition occurs or how
it takes place.

System identification [Ljung, 1987; Soderstrém and Stoica, 1989]
can be used to partly answer these questions. The stepsize and error
sequence obtained from solving any appropriate differential equation
can be recorded and used to fit a dynamical relation between log &, and
log r,. The identification is done in closed loop and in the general case it
may be hard to distinguish between the effects from the stepsize (logh,)
and the disturbance (log ¢, or logh,) [Ljung, 1987, pp. 365-366]. By
using data sequences from a time interval where the disturbance, i. e. Wy,
and ¢, in (3.15), stays almost constant the problem can be overcome.

A Nonlinear Problem Dominated by a Real Eigenvalue

The Robertson problem [Enright et al, 1975, Problem D2]

1= —0.04y: +0.01ysy3 yl(()) =1.0
Y2 = 400y; — 100ysy3 — 3000y2 y2(0) = 0.0 (3.27)
ys = 30y3 y3(0) = 0.0

is a stiff problem originating from reaction kinetics. The first 0.3 sec-
onds of its solution are shown in Figure 3.11. At ¢ = 0 the eigenval-
ues of the Jacobian are 0, 0, and —0.040. Due to mass balance one of
the eigenvalues stays at the origin for all ¢£. During the initial tran-
sient (0 < ¢ < 0.005) one eigenvalue moves from the origin to —2190,
while the other moves from —0.040 to —0.4046. For ¢ > 0.005 the small
eigenvalue moves slowly towards the origin. At ¢ = 0.3 it has reached
—0.3650. The large eigenvalue starts by moving towards the origin and
then changes direction and moves outwards again. Over the time range
0.005 < t < 2 the change is less than 2 % in magnitude. \

The Robertson problem is quite stiff and most explicit methods will
be inefficient for any part of the solution other than the initial tran-
sient. After the transient the stepsize used in an explicit method will
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1.5 5 ; % ! !
0_5 P ........ y 2
f = | |
O 1 1 1 1 1
0 0.05 0.1 0.15 0.2 0.25 0.3

time
Figure 3.11 The solution of the Robertson problem (3.27).

be almost completely governed by the large negative eigenvalue Apax.
This eigenvalue moves only slowly with time and log ¢ will be almost
constant.

Identification of Model Parameters for DOPRI(4)5

The differential equation (3.27) was solved with € = 107%, 1077, ...,
10-'? using DOPRI(4)5 (cf. Appendix A or [Dormand and Prince, 1980])
in XEPS mode. A mixed absolute-relative 2-norm (2.14) with n = 0.01
and y = |y| was used. The Robertson problem belongs to the class of
problems where the standard stepsize selection rule (2.22) may cause
oscillations in the error control loop, cf. Figure 1.1. To prevent this the
new controller described in Chapter 4 was used. After an initial tran-
sient the disturbance ¢, cf. ®, and ¢, in (3.15), reaches an almost con-
stant value and since ¢ ~ @h* the stepsize stays essentially constant
too, cf. Figure 3.12. The larger the value of &, the larger this constant
stepsize. This holds true for tolerances below 10~7, while for larger val-
ues of £ the stepsize reaches h; and is restricted by stability. We have
hsAmax = 1.51-107%.(-2190) = —3.31, which corresponds to the value of
05 NIR™ for DOPRI(4)5, cf. Figure A.1 in Appendix A. The error control
loop is stable for all values of €.

The described behavior makes the Robertson problem ideal for iden-
tification. By chosing different tolerance levels we can get stationary be-
havior in the error control loop at several points in the interval [0, A;].
The disturbance ¢, is almost constant and its effect can be removed by
high pass filtering the data prior to identification.

The differential equation was solved a second time with an added
perturbation on the set-point € of the error control loop. From ¢ > 0.1,

75




Chapter 3 The Stepsize-Error Relation
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10'4 ‘::':.
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0 0.005 001 0015 002 0.025 003 0.035 004 0045 0.05

time

Figure 3.12 The stepsize for different tolerances when solving the Robertson
problem (3.27) using DOPRI(4)5. The curves come in order, i.e. the lower
one corresponds to £ = 107'2, the second from the bottom corresponds to
€ = 107, and so on. The stepsize is practically constant for ¢ > 0.02. For
€ = 1077 and £ = 107° the stationary value of the stepsize is identical and
the curves overlap, implying that the stepsize is limited by numerical stability.

~

0 0.05 0.1 0.15 0.2 0.25 0.3
time

Figure 3.13 Part of the stepsize and error estimate sequence recorded from
the identification experiment with DOPRI(4)5 and &9 = 107%. The irregulari-

ties in the data sequences for ¢ > 0.1 show the effect of the perturbation of &,
and are not due to poor error control.
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k k(Bogq + B1)
Gpl(Q) = a GIﬂ(Q) - q(q+a)
€0 P Amax k ko k31 o
106 -3.31 — 5.85 0.226 -1.00
107 -3.29 - 5.85 0.211 -0.978
10-8 -3.14 — 5.87 0.0100 —-0.816
1079 —-2.55 — 5.87 -0.417 —0.337
10-10 —1.78 5.78 — — -
10-11 -1.18 5.51 — - -
10-12 —-0.772 5.34 — - —

Table 3.1 The identified transfer functions from logh, to logr,. The inte-
gration method was DOPRI(4)5 using XEPS.

after the transient has died out completely, an excitation signal was
added by perturbing log e according to loge = logey + 0.05A¢,. Here
Ag, was a PRBS (pseudo random binary signal) sequence [Ljung, 1987;
Soderstrom and Stoica, 1989] alternating between +1 and —1. The per-
turbation was small causing the stepsize to vary only a few percent
around its stationary value. For each value of g the stepsize &, and the
error estimate r, were recorded and stored. The simulation interval was
chosen so that more than 1000 integration steps were taken. During the
data logging there were no rejected steps. Figure 3.13 shows part of the
stepsize and the error estimate recorded for £y = 1075,

The large eigenvalue of the differential equation moves and thereby
introduces a slow drift in the recorded data sequences. The drift is small,
only a few percent, but not negligible compared to the variations in log A,
and logr, due to the perturbation of £. The drift was removed by de-
trending the data sequences before the identification [Ljung, 1987, pp.
387-389]. For each pair of data signals (stepsize and error sequence) an
ARMA-model from log &, to log r, was identified using the identification
toolbox in PRO-MATLAB [Mat, 1990]. Different statistical tests as well
as simulation using the obtained models were used to decide upon rea-
sonable model orders [Ljung, 1987; Soderstrém and Stoica, 1989]. The

identified transfer fuinctions are listed in Table 3.1. ‘

The identified parameters are in very close agreement with the the-
oretical results. DOPRI(4)5 has, theoretically, £ equal to 5 when using
XEPS. The negative real axis intersects 85 at —3.31, and at this point
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Cr = 5.85 and Cp = 6.07. According to (3.12) and (3.22) one would
hence expect the models

5.0 _ 5.85¢+0.228
Gr(@) == Gmla) = 20 T 50)

(3.28)

which agree well with the practical results for A, Amax small and A, A max
on 85, cf. Table 3.1.

For hpAmax = —0.772 the following model was obtained:
logr, = —5—5—4 logh,. (3.29)

One would expect the value 5.0, cf. (3.28), instead of 5.34. The discrep-
ancy is explained by the fact that h,Ana differs significantly from zero.
As a result, one does not observe the asymptotic behavior but a slightly
modified one. By assuming that the behavior of the nonlinear equation
is completely governed by Anax it is possible to analytlcally estimate the
modified behavior. We obtain

é\n+1 ~ E(hnlmax)yna nyl =~ lE(hn/’Lmax)I “yn”

It should then approximately hold that

Ologry,y , Ologrp o
dloghn, ~ " o, " am, 108 (1B (rndna)]lllyal) 250
— El(hn/lmax) _ '

For ApAdmax = —0.772 the formula (3.30) evaluates to 5.28. This is in
almost perfect agreement with the value 5.34, cf. (3.29), obtained from
identification (the polynomials P(z) and E(z) for DOPRI(4)5 are given in
Appendix A). Note that this small discrepancy is due to our assumption
that Amax dominates the behavior and that in (3.30) we differentiate the
approximation for r,.;. The polynomial E(z) is, however, sufficiently
smooth to allow this operation. As A, Aya, increases, higher order terms
in E(z) will play a larger role. Hence (3.30) predicts the gain 5.55 for
hnAmax = —1.78, while the identification gives 5.78. \

As hpAmax is further increased it will approach 85 where now a
model of the form (3.22) is expected. Although not verified by theoretical
derivations the identification indicates a gradual change from (3.12)
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PE) A

Figure 3.14 The value of P(z) in RKF4(5). When z approaches the boundary
of the stability region (z = 3.0) the value of P(z) is negative.

to (3.22). As an example consider Ap,Amax = —2.55. For this value the
identification resulted in

5.87q — 0.417
q(q —0.337)

logr, = log hﬂn.

Identification of Model Parameters for RKF4(5)

The identification procedure was repeated for RKF4(5) using EPS. The
method coefficients (cf. Appendix A) and the models (3.12) and (3.22)

predict

5.0 5.53q + 0.354
Gpi1(q) = 7, Gp2(q) = a(q =1.00) "

Between these models we expect the same type of gradual change as
for DOPRI(4)5. This is confirmed by the identification results (see Table
3.2), except for some strange results around £ = 1078,

The reason for the deviation in the identification is that RKF4(5) is
a method where P(z) takes negative values as z approaches the bound-
ary of the stability region (cf. Figure 3.14). As a result the numerical
solution will, for large stepsizes, oscillate around the true solution. This
affects the error estimate, since the solution enters the calculation of the
error norm (2.14), and we get an oscillative perturbation of the error es-
timate. This perturbation may be amplified or damped depending on
the dynamic properties of the error control loop. The dependence is very
complicated since the perturbation enters nonlinearly through the error
norm. The effect can be seen in Figure 3.15, which depicts the same sit-
uation as Figure 3.13 but for 9 = 10~ and RKF4(5) using EPS. In our

(3.31)
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10+

Figure 3.15 Part of the stepsize and error estimate sequence recorded from
the identification experiment with RKF4(5) and £y = 1078, For the stepsizes
used P(z) takes a value close to —1, which causes an oscillatory disturbance
in the control loop. The perturbation on ¢ is started at ¢ = 0.1, but it can
hardly be observed due to the severe intrinsic oscillations. Compare with the
behavior for DOPRI(4)5 in Figure 3.13.

experiment we have chosen €/fol small to prevent rejected steps, and
in a realistic practical setting the oscillations depicted in Figure 3.15
would lead to many rejected steps.

The disturbance has rather large amplitude (compared to the vari-
ations due to the perturbation of £) and it is very concentrated in fre-
quency. Practically all its energy is concentrated to the Nyquist fre-
quency, corresponding to an alternating sequence (—1)". The disturbance
is fed back and the oscillation appears in both logh, and logr,. The
identification will try to make the model capture the behavior due to
the disturbance, and the result is models as in Table 3.2. The influ-
ence of the disturbance can be lowered by low pass filtering the data
sequences prior to the identification. We used a first order digital But-
terworth filter with half the Nyquist frequency as cut-off. Thé filter has
a zero in —1. The corresponding identification results are shown in Table
3.3.
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Gpi(q) = 'g Gpe(q) = k(q,B((;q:O,fi)l)
€o PnAmax k kBo kB o
106 -3.02 - 5.564 0.350 -1.00
10-7 -3.02 — 5.24 —-0.588 —-0.910
10-8 -3.01 - 11.5 -5.40 —0.985
102 -2.46 - 5.78 -0.146 0.492
10-10 -1.68 5.42 — - —
10-11 -1.09 5.37 - - -
10-12 —-0.705 5.26 - — -

Table 3.2 The identified transfer functions from log h, to logr,. The inte-
gration method was RKF4(5) using EPS.

k _ k(Bog +B1)
Gpl(q) = a Gp2(q) = q(q+a)
€9 PnAmax k kBo kB (4
106 -3.02 — 553 | 0355 | —-1.00
1077 -3.02 — 5.48 0.359 —0.995
108 -3.01 - 5.67 0.279 —0.983
102 —-2.46 — 5.63 —0.587 0.357
10-10 —1.68 5.28 - - -
10~1 -1.09 5.35 — — -
10-12 —0.705 5.25 — — —

Table 3.3 The identified transfer functions from logh, to logr,. The inte-
gration method was RKF4(5) using EPS. The data was low pass filtered prior
to the identification. The filter was a first order digital Butterworth filter with
half the Nyquist frequency as cut-off. The filter has a zero in —1.

General Observations

The identification results obtained for DOPRI(4)5 and RKF4(5) applied
to a differential equation dominated by a negative real eigenvalue are
quite typical. The model (3.12) is valid for a large span of, stepsizes,
although most of the methods behave as if 2 was slightly larger than
the true method order. The transition to the model (3.22) takes place
fairly close to the boundary of the stability region. It is not until A, is
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close to i, that we recognize the behavior predicted by (3.22).

For integration methods like RKF4(5), where P(hsA) = —1, the sit-
uation 1s more complicated. When the method operates in the nonasymp-
totic region, i.e. where P(hA) is negative and starts approaching —1, the
numerical solution will oscillate causing a perturbation of the error es-
timate. This perturbation depends on the differential equation and the
stepsize in a very complicated way. In some cases the perturbation will
strongly affect the error control. The underlying linear model does not,
however, change. This can be seen from identification based on low pass
filtered data.

A high frequency disturbance may be present also when integrat-
ing differential equations dominated by complex eigenvalues. As the
stepsize approaches the boundary of the stability region there will be a
transition from (3.12) to (3.22). The error norm is normally not aligned
with the differential equation, i.e. a nonnormal Jacobian. This will re-
sult in a perturbation to the error estimate similar to the one obtained
for P(hsA) = —1. As before, the perturbation cduses a dependence be-
tween the stepsize and the error estimate, which may dominate over the
one predicted by the linear model (3.22). The frequency of the distur-
bance depends on the position of the dominating eigenvalues.

3.7 Conclusions

The stepsize-error relation can often be modeled quite satisfactorily us-
ing the standard asymptotic model (2.21). It is, however, important not
to assume ¢ constant as in (3.2). The variations in ¢ can be captured
quite well with a model were the change in log ¢ is assumed constant.
All in all, we get, (3.10) and (3.12), ’

logr,,1 = klogh, +log ¢,, log ¢, = log@,_1+ Vlog@,_.

The & value experienced during integration is normally close to the order
of the error estimator. There are, however, practical situations where
its value may be very different. This is difficult to model since during
normal integration a change in %2 cannot be distinguished from a change
in ¢. At repeated rejected steps, k£ can be estimated by (3.13), i.e.

logry,, —logry

k= loghy —logh, 1’
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where (rp.1, hy) and (ry, h,_1) are errors and stepsizes from two consec-
utive rejected steps.

When stability limits the stepsize the model (3.12) is not sufficient.
A better description is (3.22)

k +
logru,1 = (f((;q_ 1’B)I) (log hn —loghs),

where the parameters o and 1 depend on the integration method and
the dominating eigenvalue of the differential equation. The stepsize A,
makes |P(hA)| = 1.

As the stepsize is increased from 0 to &4 our practical experiments
indicate a gradual change from (3.12) to (8.22). The error controller must
be robust enough to handle this process variation. In addition, methods
where P(z) is negative close to the stability boundary may in certain
cases introduce a large oscillating disturbance in the error control loop.
This disturbance causes a fluctuation in the error estimate that cannot
be predicted with neither (3.12) nor (3.22). '
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Runge-Kutta Methods

The control problem in an explicit Runge-Kutta method may seem decep-
tively straightforward. The error controller only has to decide whether
to accept or reject the current integration step, and then choose a new
stepsize based on the error estimate. A severe complication, however, is
the change in process behavior when stability restricts the stepsize. Sat-
isfactory error control in this situation conflicts with good attenuation
of the influence of a varying ¢.

Large process variations calls for a robust controller, cf. the discus-
sion in [Franklin et al,, 1986, pp. 521-525]. We generalize the standard
controller and arrive at a new controller that provides a reasonable trade
off between performance and robustness to process variations. The con-
troller is easy to implement and provides improved overall performance.

4.1’ Problems with the Standard Controller

|
To gain insight we will start by analyzing the properties of the error
control loop (cf. Figures 2.7 and 4.1) that results when combining the
standard controller (2.22) with the two process models (3.12) and (3.22).
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log @,
l log A,

log & log h, log 1,
& > G > G,(9

Figure 4.1 The error control loop where the transfer function G,(q) repre-
sents the process and G.(q) the controller. The differential equation acts as
an external perturbation log ¢, (or logh;).

Using logarithmic variables the standard controller (2.22) can be
written

logh, =logh,_1+ % (loge —logry) (4.1)

which is recognized as a discrete-time integrating controller [Gustafsson
et al., 1988] with integration gain k; = 1/k, cf. [Astrom and Witten-
mark, 1990, Section 8.3] about discrete-time integrating controllers in
general. The set-point is loge, the measured variable logr,, and the
control variable (and controller state) is log k.

In the following we will keep the integration gain as a free parame-
ter to investigate its influence on the stepsize control loop. Furthermore,
to facilitate the analysis, (4.1) is rewritten as

loghn = Gei(q) (loge ~logra),  Ge(q) = ki 1 - (4.2)

Similarly, for ease of reference, we restate the equations for the two
processes (3.12) and (3.22), i.e.

logrs = Gpi(q)logh, +q 'log g, Gui(q) = kg2,

logr, = Gpa(q) (loghy —loghy), Gpa(q) = k(f(‘;qf 1[;1).

Asymptotically Small Stepsizes

For asymptotically small stepsizes the process is well approximated by
(3.12). The same model structure is valid both for EPS and EPUS. By
combining (3.12) and (4.2) the control loop (see Figure 4.1) can be writ-
ten

logr, = G¢(q)loge + G,(q)log ¢, (4.3)
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‘where
G.(q) = Ge1(9)Gpi(q) _  kkr
€ 1+Ge1(Q)Gp1(q)  q—1+kkr’ (4.4)
1 g-1 )
Gco(CI)

T g1+ Ga(9)Gpi(9))  qlg — 1+ kky)

are transfer functions from tolerance and disturbance to error estimate,
respectively.

The characteristic equation (the denominator of G.(q)) has a root
at 1 — kky. This pole determines the stability as well as the transient
properties of the closed loop system. The difference operator g — 1 in the
numerator of G, (q) will remove constant components in log ¢, at a rate
determined by the position of the pole. Consequently, if the closed loop
system is stable, r, will eventually approach € since G.(1) = 1.

Choosing k; = 1/k, as is normally done in the standard controller,
places the pole at the origin. This corresponds to so called deadbeat
control [Astr('im and Wittenmark, 1990, p. 138]-and makes the system
as fast as possible. For this choice a constant disturbance is compensated
in a single step, but at the price of making the stepsize try to compensate
fast fluctuations in the error estimate. Moving the pole along the real
axis towards 1, makes the system slower and the stepsize sequence will
in general be smoother. Making the system slower will, however, also
degrade the ability to attenuate the influence from fast changes in ¢.
The position of the pole is thus a trade off between response time and
sensitivity, which makes the value of 2; a design parameter that should
not be regarded as given by 1/k.

Stepsizes Restricted by Stability

The system description (4.3) and (4.4) is not valid if the magnitude
of ¢, gets too small. A small ¢, leads to a large stepsize, and if ¢,
is sufficiently small the stepsize will be limited by numerical stability.
Using the model (3.22) together with the standard controller (4.2), the
closed loop system can be written

logr, = G¢(q)loge + Gy (q)loghs

Ge(q) = —2er@Gm(@) kk1(Boq + B1) ‘
T 11 Ga(9)Gr2(@) ~ @ + (Rk1Po — 2)q + 1+ kkr By (4.5)
Gh,(q) = Grala) __ _ k(g = 1)(Bog + B1)

" 1+Ga(q)Gr2(a) ~ q(@®+ (kkrfo — 2)g + 1+ kk1 B1)
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Here G.(1) = 1 and Gy (1) = 0. Therefore log hs, which is constant or
slowly varying, will be removed and eventually logr, will equal loge,
provided the closed loop system is stable.

The transient behavior as well as the stability of the control system
is governed by the roots of

2+ (kkiBo—2)q+1+kk1B1 = 0. (4.6)

The system is stable if these roots are inside the unit circle. In [Hall,
1985; Hall, 1986] another stability test is derived, consisting of an eigen-
value check for a 2 by 2 matrix. In the special case k; = 1/, the char-
acteristic equation of that matrix equals the polynomial in (4.6).

When choosing k2; = 1/k the roots of (4.6) are inside the unit cir-
cle for the (8¢, 81) values depicted by the triangle in Figure 4.2. The
plot also shows (B, 1) pairs calculated from (8.26) with hAsA varying
along the boundary of the stability regions of the explicit Runge-Kutta
methods in Appendix A (cf. also Figures A.1-A.2 and Tables A.1-A.2 in
Appendix A). As is readily seen, the values of (8¢, 81) are often outside
the stability region. The resulting instability in the error control loop is
the cause of the misbehavior in Example 1.1.

The stability problem cannot be solved by altering the value of k;. As
seen in (4.6) changing k; will merely scale the triangle in Figure 4.2, and
we will not succeed in stabilizing the cases where 81 > 0. These cases
are important. As an example consider solving a differential equation
dominated by a negative real eigenvalue. The process dynamics is then
determinated by (8¢, 1) evaluated at the intersection of 85 and the
negative real axis. Many integration methods have ;1 > 0 for this case
(cf. Tables A.1-A.2 in Appendix A).

The Time-Variability of the Stepsize-Error Relation

When using the standard controller the error control loop is often unsta-
ble for h, =~ h;. The instability makes the error grow (possibly causing
rejected steps) and the controller will reduce the stepsize to bring the
error down to €. The reduction of the stepsize moves 4,1 inside § and
the process changes behavior from (3.22) to (3.12), making the system
regain stability. The’error decreases and the controller may respond by
increasing the stepsize, again placing ~A,A on 85. The cycle repeats itself
creating an oscillatory stepsize sequence. The phenomenon is a conse-
quence of the stationary value of the disturbance ¢, corresponding to
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Figure 4.2 The standard controller with 2; = 1/k results in a stable er-
ror control loop if (B¢, 1) is inside the plotted triangle. This is seldom the
case as seen from the plotted (fo, 81) values. The (B, B1) values are calcu-
lated from (3.26) with A;A4 varying along the boundary of the stability regions
of the explicit Runge-Kutta methods depicted in Figures A.1 and A.2 in Ap-
pendix A. For each method 12 values where used for A;1. They were chosen
linearly spaced with z/2 < arg(hsA) < z. The 0’ corresponds to values for
DOPRI45. Changing the value of k; will not make the stability region extend
above 1 = 0, and is therefore not a solution to the stability problem. A pure
integrating controller (4.2), and hence the standard stepsize selection rule,
must be discarded in the case 1 > 0.




4.1 Problems with the Standard Controller

a stepsize that is outside the region where the process model (3.12) is
valid.

The error control loop may oscillate even in cases where the con-
troller stabilizes both (3.12) and (3.22). The changes in the stepsize
make the process behavior vary between (3.12) and (3.22), and this
variation may by itself cause a type of “oscillation” in the error control
loop.

4.2 Control Objectives

The overall objective of the controller is to make possible an efficient and
accurate integration of the differential equation. To get a more concrete
objective we will interpret this as:

e The controller should keep r close to &.
e  The controller structure should be simple. -

The set-point € of the controller is chosen based on the user-specified
tol. If the error r is larger than tol the step is rejected. How well the first
objective is fulfilled will therefore determine how close € can be chosen
to tol. A smooth error sequence will decrease the risk of a rejected step
and allow & to be chosen closer to tol, leading to fewer steps needed to
carry out the integration.

The second objective is important to minimize overhead, and also
to facilitate integration startup and restart after a rejected step. A com-
plicated controller with many internal states will be difficult to restart
based on the information available after a rejected step.

To fulfill the first objective, it is reasonable to try to achieve the
following:

e Good disturbance attenuation for the process model (3.12), i.e. r
should not vary too much when ¢ varies.

e A stable closed loop system for reasonable (B, 1) values in the
model (3.22).

These two properties are in conflict. The former calls for a fast controller
with accurate prediction of the ¢ sequence, while the latter demands
improved stabilizing”properties. \

The attenuation of ¢ is a trade off between variations in r and vari-
ations in A. Completely rejecting ¢ means having a perfect model for its
variation, and letting A vary accordingly. Any extra filtering or limit on
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the stepsize will result in ¢ affecting r. A characteristic of many control
problems is that rather large disturbance attenuation can be achieved
by moderate control signal variations, while completely rejecting the
disturbance is much more expensive (in terms of control signal varia-
tion), a general reference is [Boyd and Barrat, 1991]. We will strive to
attenuate the effect from ¢ as much as possible and not put too much
restrictions on the variation of ~. The stepsize variations caused by an
unstable error control loop (4.5) are, however, different. They do not re-
duce, but rather increase, the variations in r, and should of course be
avoided.

4.3 Changing the Controller Structure

The properties of the closed loop system depend on the controller as well
as on the process, and one may change either one to improve the behav-
ior of the system. Higham and Hall [Higham and Hall, 1987] approach
the problem by changing the process, viz. the integration algorithm.
When constructing an explicit Runge-Kutta method there is some free-
dom in the choice of parameters, cf. (2.9) in Example 2.7. Normally this
freedom is used to minimize error coefficients or to maximize the sta-
bility region of the method, but Higham and Hall exploit it to change
CEk and Cp so that the closed loop system is stable when the standard
controller is used.

It is our opinion that a better way to approach the problem is to
change the controller. Then the freedom in choice of parameters in the
method can be used to improve its numerical properties, while the in-
stability in the error control loop is solved by improving the controller,
1.e. the stepsize selection rule.

A PI Controller

The process model valid on the stability boundary (3.22) can be satis-
factorily controlled with a controller on the form

+kP _ (k1+kp)q-—kp.

v q
Geo(q) = qu—l 7—1 |

(4.7)

This controller is by no means arbitrary. When rewriting the standard
controller (2.22) on the form (4.1) it is recognized as a discrete-time
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Figure 4.3 Changing the controller parameters k; and kp affects which
values on (B, 81) the controller it manages to stabilize in the model (3.22).
Altering k; changes the size of the (8¢, 1) region while kp mainly affects
its orientation. The area inside the (+) region corresponds to (8o, 81) values
taken from the explicit Runge-Kutta methods in Appendix A. To cover this
area it seems as if 2p must be positive while k2; have to be reduced from its
original value. Also compare with the original stability area depicted in Figure
4.2,

integrating controller [Gustafsson et al., 1988]. Once this is realized, the
modification to a discrete-time proportional-integral (or PI) controller as
in (4.7) is straightforward. A PI controller provides, in general, better
stabilizing properties than an I controller [Astréjm and Higglund, 1988;
Franklin et al,, 1986; Hairer and Wanner, 1991].

The (B0, B1) values that the PI controller may stabilize depend on
the values of kk; and kkp. The standard I controller corresponds to
kkr = 1and kkp = 0 and gives the triangular stability region depicted in
Figure 4.2. Choosing kk; and kkp differently affects the stability region
as demonstrated in Figure 4.3. The (8, 81) values for DOPRI45 (the ’0’
in Figure 4.2 are inside the box marked with + in Figure 4.3. It turns out

that the (B¢, B1) values for the other Runge-Kutta methods, cf. Figure
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4.2, behave similarly and designing a good controller for DOPRI45 will
lead to a good controller also for the other methods. Figure 4.3 indicates
that to cover the box we must have kk; < 1 and kkp > O.

The improved stability for the model (3.22) comes with a price. With
the PI controller the ability to attenuate ¢ in (8.12) is traded for stabi-
lization of (3.22). This is typical for most robust control designs. When
enlarging the set of process models the controller is supposed to handle,
some of the performance often has to be sacrificed. Ideally, we would
like our new controller to have improved attenuation of the disturbance
¢. Chapter 3 suggested a ¢ model that assumes linear change in log ¢.
For satisfactory attenuation of a ramp disturbance a controller needs to
include two integrators [Astrém and Wittenmark, 1990, p. 134]. Such a
controller would be perfectly natural in the region where (3.12) holds,
but the two integrators make it very difficult to stabilize (3.22).

One way to resolve the trade off between ¢ attenuation and stability
would be to use different controllers depending on if (3.12) or (3.22)
holds. A major problem with this approach is to know when to switch
between the different controllers. There are different suggestions for
how to detect when an explicit method encounters stiffness [Shampine,
1991; Hairer and Wanner, 1991, pp. 22-25], and these algorithms do a
good job of determining that the method operates on the boundary of
the stability region. They are, however, less accurate in deciding when
the switch from (3.12) or (3.22) takes place, and may therefore miss
the correct time to switch controllers. Changing controllers introduces
a time variability into the stepsize control loop, and this action may by
itself provoke stepsize oscillations. We have, consequently, decided to
use a fixed controller and tune it so that it performs satisfactorily under
all operating conditions.

Explicit Formulation of the PI controller

The PI controller (4.7) can be reformulated in a way that resembles the
standard controller (2.22). Some manipulations applied to

logh, = Ge2(q)(loge —logry,)

yield [Gustafsson-et-al, 1988]

k1 kp
Pney = ( £ ) ( T ) Bn. (4.8)
In+l I'n+1
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From this expression it is clear that the proportional term is equivalent
to taking the most recent development of r into account when decid-
ing upon h,.1. It is also clear that this type of controller is trivial to
implement in existing ODE codes.

4.4 Tuning the Controller Parameters

The controller parameters should be chosen so that the closed loop sys-
tem behaves well for both the asymptotic model (3.12) as well as for the
model valid on the boundary of the stability region (3.22). One way to
make the choice is to use a pole placement strategy [Astrﬁm and Wit-
tenmark, 1990], e. g. we study the closed loop poles in the two cases and
choose parameters so that they are positioned at locations corresponding
to good closed loop behavior.

Combining the PI controller (4.7) with (3.12) and (3.22) makes the
closed loop system read

logr, = G¢(q)loge +Gy(q)log ¢,

G.(q) = Ge2(9)Gpi(e)  _ (kk1+kk1>)q kkp
D = I Go(@)Go(@) G+ (Bkr + Fkp — 1)q — Fkp
1 -1
Gy (q) = 1

q(1+Ge2(q)Gpi(q)) @2 + (ks + kkp — 1)q — kkp
and

logr, = G¢(q)loge + Gy (q) loghy
_ Gea(q)Gp2(q)

9D = 13 G () Grala)

ﬁo(kkl +kkp)q2 + (kk[ﬁl +kkp(,31 - ,Bo))q - kkp,Bl

3+ (Bo(kkp +kkr) — 2)q% + (kk; 1+ kkp(B1 — Bo) + 1)q — kkpf1
_ Gp2(q)

Gn.(a) = 1+GczIEQ)sz(q)
v —k(g —1)(Bog + B1)

(ﬁo(kkp +kk1) 2)(] + (kk]ﬁl +kkp(,31 - ,30) + 1)q kkpﬁl

respectively. The closed loop poles are given by the roots of the two
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Figure 4.4 The plot to the left demonstrates how the maximum absolute
value of the roots of (4.9a) depends on kk; and kkp, while the plot to the
right depcits the character of the two roots. The kk; and kkp values needed
to stabilize (3.22), i.e. (4.9b), typically belong in region 2.

characteristic equations

2 + (kk[ +kkp — l)q — kkp =0 (4.98.)
34 (Bo(kkp +Ekr) — 2)g°
+ (kk1B1+kkp(B1— Bo) +1)q — kkpBy = 0. (4.9b)

From Figure 4.3 we know that compared to the standard controller k%;
has to be decreased and k%kp increased in order to stabilize the rele-
vant (B, B1) area. This parameter change will most likely reduce the
performance for the standard model (3.12), i.e. (4.9a). The model (3.12)
describes, however, the most common situation, and any parameter ad-
justment should retain good error control properties for this case.

We start by investigating how a change in kk; and kkp affects the
poles of the error control for the standard model (8.12). Figure 4.4 de-
picts the properties of the roots of (4.9a) for different values of £k; and
kkp. To handle (4.9b) we need kk; < 1 and kkp > 0, which makes (4.9a)
have two real roots of opposite sign. Having a closed loop pole on the
real negative axis'is'not desirable. It corresponds to an oscillatory time
response, which may lead to over- or undershoot when controlling r,
about €. Too large an overshoot will make r, exceed tol and the result
will be a rejected step.
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kkp

Figure 4.5 The plot shows the upper left corner of the stability region in
Figure 4.4. The properties of the roots of (4.9a) are depicted as,a function .
of kk; and kkp. The full line shows the border of the stability region, the
dashed lines depict regions where the maximum absolute value of the two
poles is below the values written beside the lines, and the dash-dotted lines
show where the magnitude of the positive pole is o times larger than the
magnitude of the negative pole. The value of « is indicated beside the lines.

If aiming at stabilizing (4.9b) it is, unfortunately, not possible to
avoid the pole on the negative real axis in the normal case (4.9a). Its
effect on the closed loop system can, however, be decreased, by choosing
the controller parameters so that the positive pole has larger magnitude
than the negative. The situation is demonstrated in terms of kk; and
kkp values in Figure 4.5. To provide good error control for the case (3.12)
the poles of (4.9a) should be close to 0, i.e. deadbeat control, with the
positive pole dominating over the negative. This corresponds to k%; close
to 1 and kkp as small as possible. With this in mind we turn to the model
(3.22) and investigate what parameter values it takes to provide good
pole locations also for (4.9b).

The case (3.22) when numerical stability restricts the stepsize is
difficult. It is not sufficient to make the poles of (4.9b) stable for the
relevant (B, 1) values. Ideally, the closed loop poles should be well
inside the unit circleto provide good damping. If this is not the case, any
disturbance that excite the error control loop would give rise to a slowly
decaying (possibly oscillatory) perturbation of the stepsize sequence. As
a result the risk of rejected steps increases.
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Figure 4.6 The values kk; = 0.3 and kkp = 0.4 results in a PI controller
that manages to stabilize the relevant (8o, 81)-region (the box marked with
'+). The full line depicts the border of the stability region and the dashed
lines the level curves for the maximum absolute value of the roots of (4.9b),
i.e. |z] < 0.6,0.7,0.8,0.9. The controller not only stabilizes but also manages
to provide reasonable damping.

By varying the values of kk; and k%kp and investigating the resulting
stability regions, cf. Figure 4.3, it was found that the values

kkr =03,  kkp = 04,  (4.10)

result in an error controller with sensible damping for most relevant
(Bo, B1) values. The resulting stability region, in terms of (B, 1), is
shown in Figure 4.6. The values (4.10) seem reasonable also for the
normal case (3.12). The closed loop will be more sluggish than with the
deadbeat action of the standard stepsize selection rule (2.22), but not so
slow that it seriously impairs the performance.

The values of k; and kp are a trade off between different propert1es
of the error control loop. From the discussion above it should be clear
that the values suggested in (4.10) are not the only possible ones. As we
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‘will see in Section 4.6, these values work well in practice. It cannot, how-
ever, be excluded that some fine-tuning might improve the performance
for specific integration methods.

4.5 Restart Strategies

When a step is rejected the next step to be taken is a retry, and from
the last attempt it is known what to expect ahead. The error from the
rejected step can be used to calculate an approximate log ¢,. This quan-
tity is then used to calculate a new stepsize A} just as was done in the
standard controller, i.e.

1/k
h: = ( £ ) B (4.11)

Tn+l

The stepsize from (4.11) is normally of appropriate size to restart
the integration. It may, however, happen that the error again is too large,
resulting in another rejected step. One reason could be that the stepsize-
error relation locally has a lower & than the expected (see Chapter 3).
For explicit methods this is, normally, an unlikely case, and we do not
include any special measures in the controller, e. g. estimation of % as in
(3.13).

A Predicting Restart Strategy

The standard controller (2.22), and in a sense also the PI controller (4.8),
is derived assuming log ¢ constant or slowly varying. The performance
will, consequently, not be acceptable for problems where log ¢ changes
rapidly (cf. Example 1.2). A solution is to use a controller that predicts
changes in log ¢. This approach leads to a controller with more than
one integrator (cf. Chapter 5), which makes it difficult to stabilize the
system on 4§, i.e. the model (3.22). Inside .S, however, such a controller
works very well.

Although the stepsize-error relation on 85 in practice excludes the
use of a controller that predicts ¢, the prediction idea can be used after
a rejected step. A rejected step can be interpreted as a failure to capture
a large increase in ¢. Since ¢ includes a lot of structure it seems likely
that ¢ will continue to increase also in the following steps. Part of this
increase can be anticipated by having the stepsize decrease appropri-

ately after the rejected step.
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Figure 4.7 This plot depicts some variables from the time interval ¢ €
[1.0, 5.0] when integrating the Brusselator (Example 4.1). The upper plot orig-
inates from an integration using the standard restart strategy (4.11), cf. Fig-
ure 1.2, while the lower shows the improvement when using a restart strategy
that predicts the increase in ¢. The rejected steps are indicated by ‘¥’

After a rejected step we calculate and apply A% from (4.11). The
quotient h,/h;, is a measure of the increase in ¢ and probably also a
good guess of how large increase to expect in the next step. Hence, we
preschedule a similar stepsize change also in the next step, cf, (3.10)

and Figure 3.7. The internal state of the controller can be updated to
achieve this end. "

EXAMPLE 4.1—Restart strategy in DOPRI(4)5

The described restart strategy was used when integrating the Brusse-
lator [Hairer et al., 1987, p. 112]

y1=A+ylys — (B+1)y;
“ y2 = By; — 3y,

i

with A = 2, B = 8, y1(0) = 1, and y2(0) = 4. The controller (4.8) with
kkr = 0.3 and kkp = 0.4, and a mixed absolute-relative 2-norm (2.14)
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with 7 = 1072, 3 = |y|, tol = 51075, and e/tol 0.8 was used. The
Brusselator was solved in Example 1.2 and its solution is depicted in
Figure 1.2. In the time interval ¢ e [3.0, 4.8] there are many rejected
steps. When introducing the predictive restart strategy (cf. Figure 4.7)
the number of rejected steps was decreased by almost 50% (from 20
to 11). Each rejected step is now normally followed by (at least) two
accepted steps. The first accepted step is explained by (4.11) while the
second is due to the special update of the controller state. O

The predicting restart strategy normally performs well, and reduces
the total number of integration steps by a few percent. Even though the
strategy is based on the asymptotic model (3.12), it often performs well
also when stability restricts the stepsize. One notable exception, how-
ever, is the combination of integration methods where P(hsA) = —1 and
a tolerance which puts the stepsize-error relation in the region where
the transition between (3.12) and (3.22) takes place. The sign of P(hA1)
causes an oscillation in the error control loop. This ¢ “variation” can-
not be predicted by the model (3.10), and the predicting restart strategy
may cause an increase in the number of rejected steps. The predicting
restart strategy is therefore a poor choice for methods like RKF4(5) and
DOPRI(7)8, and to get comparable results we will not use it in any of
the numerical tests.

4.6 Numerical Examples

To evaluate the new PI controller we have run a large set of numerical
tests. The objectives have been many: to verify the properties of the PI
controller, to check the parameter values chosen for k; and kp, as well as
finding a reasonable way to choose € based on tol. Several different inte-
gration methods (RKF2(3), RKF4(5), DOPRI(4)5, and DOPRI(7)8) were
used. All methods were implemented in a common software framework
[Gustafsson, 1992], which allows for a fair comparative study where pa-
rameters, strategies, etc., may be varied one at a time, under controlled
experimental conditions. The test problems (see below) were integrated
for a large set of tolerance levels and parameter (k;, kp, &/tol) values.
Allin all, to obtain a Feasonably dense evaluation of the parameter space
more than 100 000 integrations were done.
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The Test Problems

Three different test problems have been used in the evaluation. The
problems have very different properties and they have been chosen so
that different types of stepsize-error relations will be experienced dur-
ing the integration. Although the solutions (cf. Figures 4.8-4.10) look
deceptively simple, we shall see that the special characteristics of these
problems give quite different results.

Problem 1. The van der Pol oscillator [Hairer et al., 1987, pp. 107,
236]

.'5’1=y2, y1(0)=2

ye = 0 (1-3) y2 — y1, y2(0) = 0
is a standard numerical test problem (cf. Example 3.1). It has a peri-
odic solution with different properties along the trajectory. The solution
contains both smooth parts, as well as transient parts where ¢ changes

quickly. For 6 = 10 the smooth part is mildly stiff. The problem is
studied in the time interval 0 < ¢ < 15.

Problem 2. The Robertson problem [Enright et al., 1975, Problem D2]

y1 = —0.04y; +0.01y2y3 y1(0) = 1.0
y2 = 400y; — 100y2y3 — 3000y3 y2(0) = 0.0
ys = 30y3 y3(0) = 0.0

is a stiff problem originating from chemical reaction kinetics (cf. Section
3.6). After the initial transient, the problem is dominated by one large
negative eigenvalue, and for moderate tolerances the stepsize gets re-
stricted by stability. The problem is studied in the time interval 0 < ¢ <
0.5.

Problem 3. The differential equation [Hairer and Wanner, 1991, p. 26]

Y1 = —2000 (1 + yicost+ ygsint) y1(0) = 1
Y2 = —2000 (1 — y;sint+ ys cos ) y2(0) =0

has eigenvalues that'move slowly on a large circle from —2000,to £20004,
as t changes from 0 to 77/2. For moderate tolerances stability will restrict
the stepsize, and integrating the problem gives an idea of the average
behavior of the error control loop when it operates on 85.
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15 ; s ; s ; s ;
0 2 4 6 8 10 12 14

Figure 4.8 The solution to the van der Pol oscillator with ¢ = 10 (test
problem 1).

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 04 0.45 0.5
time
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time

i

Figure 4.10 The solution to the test problem with varying complek eigen-
values (test problem 3).
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| When integrating the three problems a mixed absolute-relative 2-
norm (2.14) with n = 10~* and y = |y| was used. The error control was
run in EPS mode.

The error controller included various safety nets:

e The stepsize is not allowed to grow more than a factor 10/* in one
step. This corresponds to an error increase by a factor of 10.

e The factors (¢/ry;1)¥ and (rn/rp.1)® in (4.8) are restricted to the
interval [0.01, 100].

Controller Parameters

First we present the results from some numerical integrations that aim
at confirming the parameter choice kk; = 0.3, kkp = 0.4, cf. (4.10), that
was made for the PI controller. It is impossible to present all the indi-
vidual results, and instead we concentrate on some typical situations.
In all the simulations the set-point £ was chosen as a factor 0.8 of the
rejection level tol, i.e. /tol = 0.8. !

Integrating Problem 1 with DOPRI(4)5 and tol = 10~¢ corresponds
to a case where the stepsize almost never is restricted by stability.
Hence, the standard controller (2.22) is expected to work reasonably
well. This is confirmed by the plots in Figure 4.11. The standard con-
troller (kk; = 1, kkp = 0) results in a minimum number of integration
steps, but as can be seen the exact values of kk; and kkp are not too criti-
cal. In this case, the performance penalty of having kk; = 0.3, kkp = 0.4
is an approximate 5 % increase of the number of steps. For certain pa-
rameter values there is a very large increase in the number of steps.
These values lie outside or close to the border of the stability region
depicted in Figure 4.5. Although the error control loop gets unstable,
the logic for rejected steps saves the situation, and it is still possible to
proceed (although inefficiently) with the integration.

Problem 2 is dominated by a large negative eigenvalue and for mod-
erate tolerances the stepsize soon reaches the value k. If the integra-
tion method has f; > 0 (cf. Figure 4.2) the error control loop ends up
unstable with the standard controller. The larger 8, the more severe
the instability gets. To demonstrate the effect DOPRI4(5) has been run
without local extrapolation at tol = 10-%. This method has a large B
value (81 = 0.47), cf. Table A.1. From Figure 4.12 it is obvious that a
proportional term in the controller substantially reduces the total num-
ber of integration steps. Again we note that the exact values for kk; and
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Figure 4.11 Total number of integration steps for Problem 1 as a function
of kkr and kkp. The lower plot depicts the level curves for the surface in the
upper plot. The full line represents the parameter values that give less than
1 % increase in number of steps compared to the minimum. The dashed line
represents an increase by 5 %, while the 10 %, 15 %, 20 %, and so on, are
plotted with dotted lines. Problem 1 corresponds to a case where the stepsize-
error relation is rather well described by the asymptotic model (3.12). The
standard controller (kk; = 1, kkp = 0) performs very well, but as can be
seen the exact values of kk; and kkp are not too critical. The star marks the
parameter choice kk; = 0.3, kkp = 04, cf. (4.10).
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Figure 4.12 Total number of integration steps for Problem 2 as a function

of kk; and kkp. The lower plot depicts the level curves for the surface in the

upper plot. The full line represents the parameter values that give less than

1 % increase in number of steps compared to the minimum. The dashed line

. represents an increase by 5 %, while the 10 %, 15 %, 20 %, and so on, are

s plotted with dotted lines. Problem 2 corresponds to a case where the stepsize
gets restricted by stability. It is quite clear that to get a well behaved error
control loop the controller should include a proportional term. The statr marks
the parameter choice kk; = 0.3, kkp = 0.4, cf. (4.10).
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Figure 4.13 Total number of integration steps for Problem 3 as a func-
tion of kk; and kkp. The lower plot depicts the level curves for the surface
in the upper plot. The full line represents the parameter values that give
less than 1 % increase in number of steps compared to the minimum. The
dashed line represents an increase by 5 %, while the 10 %, 15 %, 20 %, and so
on, are plotted with dotted lines. Problem 3 corresponds to a case where the
stepsize gets restricted by stability. The complex eigenvalues of the Jacobian
in combination with the mixed absolute-relative error norm cause & rather
strong perturbation signal. This situation seems to favor a controller that
uses strong averaging, i.e. small k&7 and kkp. The star marks the parameter
choice kk; = 0.3, kkp = 0.4, cf. (4.10).
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kkp are not too critical.

The result from the integration of Problem 3 is more difficult to in-
terpret. Figure 4.13 depicts the situation for DOPRI(4)5 and tol = 1078,
For this tolerance the stepsize gets restricted by stability. The eigenval-
ues of the Jacobian in Problem 3 moves on a large circle from —2000
to £2000:. The forcing function is smooth and the complex eigenvalues
will cause the numerical solution to “oscillate” around the slowly vary-
ing stationary solution. Through the mixed absolute-relative error norm
this oscillation results in a perturbation causing rather large variations
in the error estimate and the stepsize. The resulting number of rejected
steps is quite high. The stepsize-error relation is governed by an under-
lying dynamics corresponding to (3.22), but due to the perturbation from
the nonaligned norm this dynamics does not always dominate. The re-
sults in Figure 4.13 advocates a controller with small values on k%; and
kkp. This corresponds to a slow controller which averages over many
previous steps before deciding on the current stepsize. With the pertur-
bation that is present this may be a rather wise thing to do.

The results shown in Figures 4.11-4.13 are typical. There is not one
single parameter value that gives optimum performance for all three
cases. The standard controller is performing well in some cases, but
very poorly in other. The choice kk; = 0.3, kkp = 0.4 is a compromise
resulting in a controller with reasonable performance for all cases.

The Choice of Set-Point

The relation between the error controller set-point £ and the rejection
level tol is an important choice that affects the efficiency of the integra-
tion method. If € is chosen too close to tol there will be many rejected
steps, while a value that is much smaller than #ol results in many ex-
tra integration steps. In order to investigate the effect of the choice of
€ a large set of tests were done, combining different integration meth-
ods and differential equations with different parameter settings. We will
present some typical results.

Problem 1 was integrated for different values of ¢£/tol using DO-
PRI(4)5 and ¢ol = 1075, The result is shown in Figure 4.14, and corre-
sponds well with the behavior we expect. It demonstrates that for nor-
mal problems the PI'controller requires a few more integration steps. As
€/tol approaches 1 the predictive restart strategy improves the efficiency
of the integration. Regarding the choice of ¢/tol Figure 4.14 seems to
indicate €/tol =~ 0.8. The minimum is, however, rather broad, and the
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exact value is probably not too critical.

The situation is somewhat different for Problem 2. Figure 4.15 de-
picts the result from applying DOPRI(4)5 and tol = 10~%. The standard
controller results in an unstable error control loop, increasing the num-
ber of required integration steps. The PI controller stabilizes the system
and reduces the number of integration steps. Its behavior agrees com-
pletely with what was seen in Figure 4.14.

The integrations of Problem 2 were redone but instead using DO-
PRI(7)8 and tol = 1078. This integration method belongs to the ones
where P(z) gets negative when z approaches the stability boundary. For
this type of methods we get strong oscillations, due to the interaction be-
tween the error norm and the stepsize error dynamics, at the transition
between the models (3.12) and (3.22). In this specific example the PI
controller behaves worse than the standard controller, cf. Figure 4.16.

Figure 4.17 shows the result from integrating Problem 3 with DO-
PRI(4)5 and tol = 1075. As for the case in Figure 4.16 these results
advocate a lower value for £/tol. The reason is that the oscillation in
the control loop makes it beneficial to have the set-point farther away
from the rejection level. In the case in Figure 4.17 we do not, how-
ever, have the problem with a negative value on P(k1), and in spite of
the oscillations caused by the nonaligned norm, the model (3.22) cap-
tures essential properties of the stepsize-error relation. The PI controller
therefore behaves better than the standard controller.

When combining the results from all the integrations it seems rea-
sonable to have &/tol = 0.8.

Smoothness of the Stepsize and Error Sequence

The numerical examples so far have been biased towards efficiency. By
providing a stable error control loop also when the stepsize reaches A,
the PI controller reduces the number of rejected steps and thus increases
efficiency. The price is a slight increase in the number of integration
steps needed for the standard case (3.12).

Apart from decreasing the number of rejected steps the PI controller
also provides a smoother error and stepsize sequence for (3.22). This was

demonstrated in Example 1.1, an example we now return to.
\

ExXAMPLE 4.2—Control system example

The signal in Figure 1.1 comes from a simulation of a small control sys-
tem consisting of a continuous-time PID-controller [Astrém and Hig-
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Figure 4.14 Total number of steps as a function of £ /tol, when integrating
Problem 1 using DOPRI(4)5 and ¢ol = 10-%, The full line corresponds to the
standard controller while the dashed line is the result for the PI controller.
The dash-dotted line depicts the result when using the PI controller with the
predicting restart strategy. This restart strategy is most effective when &/tol
approaches 1, since the set-point then is close to the rejection level. The PI
controller is slightly slower than the standard controller and thus requires a
few more steps to integrate the problem. For a minimum amount of integration
steps £/tol =~ 0.8.
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Figure 4.15 Total number of steps as function of g/tol, when integrating
Problem 2 using DOPRI(4)5 and tol = 10~¢, The full line corresponds to the
standard controller while the dashed line is the result for the PI controller.
The dash-dotted line depicts the result when using the PI controller with
the predicting restart strategy. The standard controller results in an unstable
closed loop system, which increases the number of steps needed to finish the
integration. The PI controller is more effective, and results in a minimum
number of steps for £/tol =~ 0.8.
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Figure 4.16 The same situation as in Figure 4.14, but using DOPRI(7)8
and tol = 1078 This method has P(hsA) = —1 and the tolerance level is
chosen to provoke the situation with the perturbation due to the error norm
described in connection with the identification for RKF4(5) in Section 3.6. In
this case the standard controller is better than the PI, and the predicting
restart strategy makes things even worse. The situation must, however, be
considered exceptional.
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Figure 4.17 Total number of steps as a function of £/tol, when integrating
Problem 3 using DOPRI(4)5 and tol = 1075, Although the nonaligned norm
makes the stepsize-error relation deviate from the boundary model (3.22), the
PI controller (dashed line) still behaves better than the standard controller
(full line). The predicting restart strategy improves the situation slightly. Due
to the oscillations it would be beneficial to have £/tol smaller than the normal
choice 0.8.
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glund, 1988; Franklin et al, 1986; Hairer and Wanner, 1991] and a
fourth order process. The variable y is the output from the process and
ypip (Which is the variable shown in Figure 1.1) is the output from the

controller (and thus the input to the process). The system is described
by

Yy = ﬁyPlD (process)
DT,
= - —-y) - 1
ypiD = k (yr y+ DT, (yr— ) DT, /N1 y) (controller)
yr =1 (reference signal)

with D being the differential operator. The parameter values 2 = 0.87,
T, =27, Ty = 0.69, and N = 30 yield a PID-controller well tuned for
the process. Figure 4.18 shows some signals from the simulation.

The system has one fast eigenvalue at —40 (corresponding to the fil-
tering of the D-part in the controller) and five well-damped eigenvalues
with magnitudes approximately equal to one. The stepsize soon reaches
hs, where the standard stepsize selection rule (2.22) results in an un-
stable error control loop, and the stepsize and error estimate oscillate,
cf. Figure 4.19. The PI controller instead gives a smooth stepsize and
error sequence. The two integrations give on average the same global
error, but the solution is qualitatively improved with the PI controller,
cf. Figures 1.1 and 4.19. O

4.7 The Complete Controller

To summarize this chapter, an outline of the code implementing the new
controller is presented in Listing 4.1. We give two versions: one with the
predicting restart strategy and one with the standard restart strategy.
We suggest using the one with predicting restart for methods where
P(hsA) = 1 and the one with standard restart when P(hsd) = —1.

The controller, which should be called after each step in the inte-
gration routine, calculates the stepsize to be used in the next step. As
before, h is the stepsize, and r the corresponding error estimate. The
variables A, and r,. are used to store the stepsize and the érror from
the most recent accepted step. Occasionally, the error estimator may
produce an unusually small (or large) value, thus advocating a very
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standard controller

PI controller

4.7 The Complete Controller
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Figure 4.18 The control signal ypip and the process output y from a simu-
lation of the control system in Example 4.2.
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Figure 4.19 The error estimate and the stepsize sequence resulting when
simulating the control system in Example 4.2. The upper plot clearly demon-
strates how the standard stepsize selection rule leads to an unstable error
control loop. Rejected steps are indicated with ’x’. By instead using a PI con-
troller (kk; = 0.3, kkp = 0.4) for choosing the stepsize one obtains a smooth

error and stepsize“’""se(%ence. \

111




Chapter 4 Control of Explicit Runge-Kutta Methods

if cur_step.accept then if cur_step.accept then
if prev_step_reject then AL
heoh h h_(;) (r)h
T 'hacc Face .= T
endif else "
. (€ Rt Paee | RP h = £ h
ne=(3) (5) b= ()
Boce := B endif
Face := T
else
e\ l/k
hi= (7))
endif

Listing 4.1 An outline of the code needed to implement the PI controller. The
listing to the left also includes the predicting restart strategy after rejected
steps.

large stepsize change. For robustness the controller should (as usual)
include some limitation on such large changes. Also, it is important to
avoid overflow or underflow in expressions as Tace/T.

The parameter choice :

kr = —, kp = — € = 0.8¢ol,

gives an error controller that works well with many explicit Runge-Kutta
methods and most types of differential equations.

Explicit Runge-Kutta Methods that are Difficult to Control

In many situations, both in the control design as well as when trying to
model the stepsize-error relation, special consideration had to be taken
for integration methods that have P(k1) negative at the intersection of
the negative real axis and 85. This property leads to a stepsize-error
relation that is more complicated, which in turn makes the integration
method more difficult to control. From a control point of view a neg-
ative P(hsA) is a property one should try to avoid when constructing

integration methods. ..
\
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Control of Implicit
Runge-Kutta Methods

It is considerably more complicated to design a controller for an im-
plicit integration method than an explicit. The key problem is to find
a controller that combines good error control with an efficient strategy
for the equation solver. What is efficient in the equation solver depends
strongly on the differential equation, e. g. number of states, nonlinearity,
rapidly/slowly varying solution. This makes the class of implicit Runge-
Kutta methods less homogeneous than the class of explicit ones, and for
efficiency the tuning of the controller will have to depend on the type of
differential equation.

The structure of the controller to be presented here is similar to
the one of traditional controllers (cf. Section 2.5), and may be viewed
as in Figure 5.1. The error controller keeps the integration error at a
prescribed level by adjusting the stepsize. The error depends also on the
quality of the stage values Y, but by keeping the iteration error small,
i.e. below 7, the error estimate r will be dominated by the error contri-
bution that may be affected by adjusting the stepsize k. Ourinew error
controller is based on the improved asymptotic stepsize-error relation
derived in Chapter 3, and achieves better error control by predicting

changes in ¢.
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Integration method + Differential equation
T T eETT TS e e =
— acc/rej : : r
§_> Error p I L :
control : - 'Igai('e 01;2 step | y
— , stimate error , »
I | 1
restrict A ] !
I 1
I Equation solver 1
[ e e 11
(I 11
f FIX/NEW L ™ b
re
— ¥ Convergence : : - Tterati tri : :
control JAC o - ration matrix .
- e N
B Y B
b Y 1o
: : Do one iteration __ﬁ”’_> max : : B
—— ™| Estimate convergence | «,, 1 o
| and iteration error A B> max I
| = Lo
| 11
|

continue/terminate

Iteration error control

Figure 5.1 A block diagram view of the control strategy in an implicit
Runge-Kutta method.

The convergence of the iteration in the equation solver is secured
by the convergence controller. This controller is quite different from the
error controller in that it makes decisions that are binary in nature
instead of adjusting some continuous control signal. The convergence is
affected by the choice of stepsize and traditional convergence controllers
often prohibit small stepsize changes. The smoothness of the error con-
trol is improved by removing some of these restrictions. We present a
convergence control strategy where small stepsize changes do not lead
to excessive operations on the iteration matrix.

‘The organizatiofi of this chapter is similar to the block, structure
of Figure 5.1. We will start by discussing the error control loop. Then
follows a short section on the control of the iteration error. Some of the
signals from this loop are used as measurements for the convergence
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controller, and we examine their quality before continuing with the con-
vergence control loop. Finally, some issues regarding the overall control
strategy are discussed.

5.1 A Predictive Error Controller

In an implicit integration method there are many input signals, cf. Fig-
ure 5.1, all directly or indirectly affecting the error estimate r. By mak-
ing the iteration error small, i.e. 7 small compared to the error set-point
€ (say 7 < 0.01¢), the dominating dependence will be the one between
the stepsize 4 and the error estimate r, and r may be controlled by
adjusting h appropriately.

From Examples 3.1 and 3.4 we know that the stepsize-error model
can be improved by adding a model for the changes in ¢. In the ex-
plicit case this could, however, not be exploited (cf. Section 4.3). The PI
controller that was needed to handle the case when numerical stability
restricts the stepsize, i.e. A = hy, is quite different from a controller
that predicts changes in ¢. Many implicit methods are designed to be
L-stable and the problems related to stability restricting the stepsize
need not be considered when designing the error controller. This is true
also for most methods possessing the weaker property A-stability. An ex-
ception is when oo belongs to 85, i.e. |[P(c0)| = 1, but this must here, in
this general context, be regarded as a poorly designed implicit method.

Being able to predict ¢, accurately is an essential part of improved
error control. We will start by designing an observer that, based on old
data and the model (3.10), predicts the value of ¢,. From the prediction
it is straightforward to calculate the new stepsize, and we will arrive at
a stepsize selection rule on the form

h € kao/k r ki/k
Bt = 2 ( ) ( n ) - 5.1
il Pno1 \Tns1 'n+1 ( )

where k; and ks are parameters related to the observer.

The selection rule (5.1) uses data from previous steps to decide upon
the new stepsize. At~a rejected step more information is available, and
(56.1) will be augmented with some logic reflecting this. !
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‘An Observer for the Disturbance

In order to use (3.10) to predict the disturbance, log ¢,_1 and Vlog ¢,_1
have to be estimated from past data. Should their value be based on
the last point only, or should some type of averaging be used? One way
to approach this problem is to use an observer (for a discussion about
observers see e.g. [Astrom and Wittenmark, 1990, Chapter 9.3]). Intro-
duce

x(n) = (xl(n) x2(n) ] T [loggon Vlog ¢, ] T,

and assume log ¢ linearly varying, i.e. V log ¢ constant. Then

x(n) = [(1) 1] x(n —1).

Let x(n|n) denote the estimate of x(n) given data up to n. The observer

that estimates %(n|n) based on log ¢, (log ¢, can be calculated from ry,;
and A,) then reads

x(n|n) = [(1) 1]3%(n—1|n—1)
+[Z;] (log(pn— (1 o] [(1) 1]56(n—1|n—1)) (5.2)
= [l:klzl 1::;]£(n—1|n—1)+[:;]log(pn,

where k1 and k2 are parameters determining the dynamics of the ob- ‘/
server. The observer can, in this case, be interpreted as a geometrically
weighted average of old measured values. The design parameters 2; and
ko determine how much the old measurements should influence the es-
timate. Taking k; = ks = 1 bases the estimation on the most recent
measurements only.

Using the forward shift operator q, (5.2) can be written

S k1g® + (ke — k1)q
2+ (—9 _
fn—1n—1) = q% + ( +k12+k2)q+1 k1 log @n_1,
koq® — kaq

q2+(—-2+k1+k2)q+1—k1
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5.1 A Predictive Error Controller

and from %(n — 1|n — 1) we predict log ¢, as

log ¢y, = [1 1] in—1n-1)

. (mth)P-hg (5.3)
T Pt (—2+kitha)gtl—Fk Bl

A Stepsize Selection Rule Using the Disturbance Prediction

Given a prediction of the disturbance it is natural to choose the stepsize
from the “asymptotic” formula, cf. (3.1),

logh, = k™ (loge —log §,). (5.4)
Using the expression for log ¢, (5.3) and the fact that log £ is constant,

(k1 +k2)q® — k1q

loghy, l
B = T (—2+ k1 +ka)g+ 1

" (loge —log @n-1). (5.5)

Finally, we substitute log ¢, 1 = logr, — kg~1logh, in (5.5), and solve
for logh,,,

1 (kl + kz)q — qu

logh, = loge —logr, 5.6
g E (qo1) (log grn). (5.6)

As a consequence of assuming log ¢ linearly varying the controller in-
cludes a double integrator. This is called the internal-model principle,
and says that the disturbance dynamics appears in the controller when
controlling a system including an unstable disturbance model [Astrijm
and Wittenmark, 1990, pp. 400-401].

It is worth noting the similarity between (5.6) and the PI controller
(4.7) recommended for explicit Runge-Kutta methods. By writing (5.6)

as
1 (kl + kz)q — k1

3 qg-1
we see that in (5.6) it is the stepsize change that is governed by a PI
controller and not the stepsize itself as in (4.7). This difference is impor-
tant, and it would nét be possible to use (5.6) when numerical stability
restricts the stepsize, i.e. for a process model on the form (3.22).

The controller (5.6) can be rewritten as (5.1), which reveals that the
controller forms the new stepsize based on extrapolation of old errors

-1

(loge —logry),
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Figure 5.2 The upper plot depicts the solution of the first component y;
of the stiff van der Pol problem (¢ = 1000) in Example 5.1. The problem
was solved using HW-SDIRK(3)4 and standard stepsize control (2.22). The
lower diagram shows the required stepsize sequence. During the fast state
transition there are many rejected steps (indicated with crosses).

and stepsizes. In that respect it is similar to the controllers derived in
[Watts, 1984] and [Zonneveld, 1964].

ExAMPLE 5.1—Predictive stepsize control

We return to the van der Pol oscillator in Example 3.1, and make the
problem stiff by choosing o = 1000. The solution for this o-value has
the same general form as the one for smaller o (cf. Figure 4.8), but the
peaks in yp are more pronounced and the state transitions are very
fast. The problem was solved (cf. Figure 5.2) using HW-SDIRK(3)4,
an SDIRK method by Hairer and Wanner (cf. Appendix A or [Hairer
and Wanner, 1991, p. 107]). A mixed absolute-relative 2-norm (2.14)
with 7 = 107* and ¥ = |y| was used. The tolerance was set to tol =
10-* and € = 0.8t0l. To remove potential effects from thg equation
solver, modified Newton iterations were used with a new Jacobian at

every step. The norm of the iteration error was required to be less than
0.01e.
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Figure 5.3 Stepsize and error sequences arising when solving the stiff van
der Pol oscillator in Example 5.1 using HW-SDIRK(3)4. The upper diagram
depicts the situation when using the standard controller (2.22), i.e. the step-
size and error sequence from Figure 5.2, while the lower diagram corresponds
to the predictive controller (5.1) augmented with some logic to handle rejected
steps. When using the standard controller almost every second step is rejected
(indicated with crosses) during the first part of the fast state transition (step
180-280). In contrast, the predictive controller quickly adjusts to the changes
in ¢ and as a result gives superior error control and fewer integration steps.

The standard controller (2.22) works rather well except at the fast
state transition (step 180-330 in the upper plot in Figure 5.3). Here
the controller fails to track the changes in ¢, resulting in many rejected
steps. In contrast, the predictive controller ((5.1) with 21 = ky = 1),
depicted in the lower plot of Figure 5.3, quickly captures the changes in
¢ and as a result gives superior error control and fewer rejected steps.

During a short period after the initial transient (steps 15-30 in the
upper plot of Figure 5.3) and after the fast state transition (steps 340-
355) the error drops very low. For robustness the error controller does
not allow a stepsize increase larger than 10%/%, i.e. a change that would
increase the error by more than a factor of 10. In the case at hand this
limit prevents the controller from increasing the stepsize fast enough to
keep r = €. O
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The inability of the standard controller (2.22) to handle fast changes
in ¢ is clearly demonstrated in Example 5.1. The same phenomenon is
responsible for the misbehavior in Example 1.2. The problem is resolved
by instead using the predictive error controller (5.1).

Rejected Steps

If rn.1 gets too large the current step has to be rejected. A new stepsize
needs to be determined and the observer should be updated with the
information from the rejected step. The predictive controller has two in-
ternal states, X; and %3, cf. (5.2), which makes the restart more involved
than for the standard controller. The situation depends on whether the
previous step was rejected or not, and it is beneficial to have different
restart strategies for these two cases.

First rejected step. The information from the rejected step makes
it possible to calculate ¢,, and as in the explicit case, cf. (4.11), it is
natural to use the standard stepsize selection rule to cal¢ulate a new
stepsize.

Updating the observer state X (5.2) is more difficult. One step does
not contain enough information to set both componentsof the observer
state vector to their “correct” values, and we have to choose. A likely
cause for the rejection is ¢ changing differently than predicted (cf. Ex-
ample 3.1 and Figure 3.2), and it is therefore reasonable to use the
information to calculate a new value for x2 (V log @).

The described strategy for rejected steps results in the expression

1 0

#(nln) = [ o

] x(n—1n-1)+ [ (1) ] 10g @rej, (5.7)

where log ¢, is calculated from the rejected step. After this special
update the stepsize is determined by using log @y; in (5.4). The strategy
is, actually, equivalent to (4.11), but as a side affect the observer states
are set to better track the changes in the following steps.

EXAMPLE 5.2—Restart after one rejected step

Again return to the van der Pol oscillator, and specifically the lower plot
in Figure 5.3. The predictive controller assumes a constant .change in
log ¢, and will as a result have problems when this assumption is not
valid. The rejected steps around 200 occur just at the transition from
the flat part of the solution to the fast state transition, the steps at 250
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5.1 A Predictive Error Controller

correspond to the peak of yg, and, finally, the step at 300 is an effect
of the change between absolute and relative norm when y, passes zero.
In all these cases there are large changes in V log ¢. After one or two
rejected steps the predictive controller captures the situation and the
integration continues successfully. O

Successive rejected steps. It may happen that there are successive
rejected steps. In this case the standard asymptotic model motivating
(4.11) fails to capture the situation. One reason may be that the excess
error was caused by a solution component in the nonasymptotic region,
leading to a stepsize-error relation with a lower value of k& than expected.
The standard stepsize selection rule then results in a long sequence of
rejected steps (cf. the example in [Hairer and Wanner, 1991, pp. 122—
123]). The efficiency of the restart is greatly improved by forming an
estimate £ (3.13), and using it in the normal stepsize selection rule at
rejected steps (4.11). For robustness the value of % should be limited
to (say) [0.1, ], and the stepsize should not be allowed to decrease by
more than a factor of (say) 10.

Using the estimated % is a kind of patch that reduces the number
of rejected steps, but it does not solve the main problem. Decreasing
the stepsize by several orders of magnitude in order to restart leads to
very inefficient integration. The conclusion to be drawn is to use inte-
gration methods which do not unnecessarily excite the nonasymptotic
modes, i.e. stiffly accurate integration methods [Cash, 1979; Kvaerng,
1988; Hairer et al., 1989; Hairer and Wanner, 1991].

When not being able to trust the value of & there is no way to cal-
culate ¢, and we cannot make a correct update of the observer state z.
We choose a conservative strategy and delay the updating until after
the first accepted step. At this stage ¢ is calculated and the state com-
ponents are reset as X; = log ¢, %2 = 0. This corresponds to using the
standard stepsize selection rule (2.22) at the first accepted step after
successive rejections.

ExaMPLE 5.3—Restart after successive rejected steps

SIMPLE(2)3 (see Appendix A) is an SDIRK where P(oo) # 0. It is quite
prone to order reductlon Figure 5.4 depicts the stepsize sequence arising
when solving the stiff van der Pol oscillator of Example 5.1. Several
times the stepsize drops by a factor of 10%; every time accompanied with
a long sequence of rejected steps. Predictive error control, i.e. (5.1) with
k1 = kg = 1, was used, but the artifacts in Figure 5.4 are similar when
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Figure 5.4 Stepsize sequence arising when using SIMPLE(2)3 to solve the
stiff van der Pol oscillator in Example 5.1 (compare with Figure 5.2). The
integration is very inefficient due to the very large stepsize reductions required
to restart the integration method after a rejected step.
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Figure 5.5 The upper plot depicts the stepsize and error sequence from the
time interval ¢ € [0, 400] of Figure 5.4. The stepsize-error relation at the
large stepsize drop disobeys the normal asymptotic model (2.21), resulting in
many rejected steps before the controller manages to restart the integration.
By using estimates of & after successive rejections, the restart strategy can
be made more efficient, greatly reducing the number of rejected steps. This is
demonstrated in the lower plot.
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Figure 5.6 The plot depicts the stepsize-error relation at the long sequence
of rejected steps at ¢ ~ 318 in Figure 5.4. The stepsize may change by almost
four orders of magnitude without substantially affecting the integration error
[Hairer and Wanner, 1991, pp. 122-123]. The error can be decomposed into
two components (dashed lines) corresponding to the eigenvectors of the Jaco-
bian. The component corresponding to the stiff eigenvalue is in the nonasymp-
totic region of the stepsize-error relation, which explains the difficulty of af-
fecting the error with reasonable stepsize changes. /

using the standard error controller (2.22).

The stepsize and error sequences from the first of these drops are
depicted in Figure 5.5. Almost 80 rejected steps are experienced be-
fore the integration finally succeeds in restarting. As Figure 5.6 clearly
demonstrates, the stepsize-error relation disobeys the asymptotic rela-
tion (3.12) normally assumed. If using a restart strategy where % is
estimated as described above, the integration can be restarted after a
few number of rejected steps. It is, however, important to note that the
strategy only reduces the number of rejected steps. The stepsize still
has to be reduced with the same amount to restart the integration.

During the stiff part of the solution the two eigenvalues of the Ja-
cobian differ considerably in magnitude. At ¢ ~ 318 they are 9.2 - 104
and —2.1-103, respectively. The solution mode corresponding to the large
eigenvalue is very small and has been moved far out in the nonasymp-
totic region, cf. Figure 3.9. Its error contribution is small and the stepsize
error relation is normally dominated by the mode corresponding to the
- small eigenvalue. Through a complicated interaction between the differ-
- ential equation and the integration method the stiff mode gets excited

and its error contribution is no longer negligible, leading to the situ-
ation depicted in the Figures 5.4-5.6, [Hairer and Wanner, 1991, pp.
434-435].
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By projecting the error estimate on the eigenvectors of the Jacobian
it is possible to obtain the error components corresponding to the two
modes. Figure 5.6 depicts these components as dashed lines, and it is
clear that one of the modes is within the asymptotic region while the
other is in the nonasymptotic region. The nonasymptotic component is
uncontrollable using reasonable stepsize changes.

The stiff mode is less excited when using the L-stable method HW-
SDIRK(3)4. Its error contribution remains small, and the integration
proceeds without the need for drastic stepsize reductions during the
stiff part of the solution, cf. Figure 5.2. O

Explicit Formulation of the Predictive Error Controller

To summarize the error controller obtained so far, an outline of the code
needed to implement it is presented in Listing 5.1. The controller is in-
complete in that it does not address the effect the stepsize choice has
on the convergence in the equation solver. The stepsize calculated for
error control needs to be restricted so that the convergence is not jeop-
ardized. Moreover, various additional safety nets need to be included,
e.g. discard unreasonably large stepsize changes, discard unreasonable
values of kg, protect against underflow/overflow, etc.

The variables Aacc, I'ace, Brej, and rye; are used to store the stepsize
and error from the most recent accepted and rejected step, respectively.

It may happen that the equation solver fails to produce a new so-
lution point. It is then not possible to calculate a valid error estimate r
and the new stepsize has to be based on the observed behavior of the
equation solver.

The code in Listing 5.1 prevents the use of the predictive control
when convergence restricts the stepsize (conurestrict). We W111 discuss
this further in Section 5.3.

Choosing Controller Parameters

The parameters £; and k5 influence the dynamics of the controller, and
hence also the closed loop system. Using the expression for logh, (5.6)
in

) logrn = klogh,_1+log @, 1
together with the fact that log € is constant yields ‘

(g —1)?

logr, =
o8 r loge+q(q 24 (-2+k1+ko)g+1—Fq)

log ¢5,.
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5.1 A Predictive Error Controller

if iteration_successfully.completed then
if current.step_accept then
if first.step or first.after_succrej or conuv_restrict then

hyi= (f)” “h
r
else
h re\kalk fro\Talk
heimg—(2) ()R
endif
Face =T
hacc = h
else
if successiverejects then
log r/7pe;

hyi= (f)l/k“‘ h >

r
else
e\ 1/k
heis (3) R
endif
I'rej := T
hrej =h
endif
h := restrict(h,)
else
endif

Listing 5.1 An outline of the code needed to implement the predictive con-
troller. The restriction of A, accentuates that the final choice of stepsize has
to be coordinated with the convergence control. The algorithm has to be aug-
mented with various safety nets, e.g. discard unreasonably large stepsize
changes, discard unreasonable values of k. protect against underflow/over-
flow.

By choosing k; and kg it is possible to position the two transfer func-
tion poles arbitrarily. Their location will determine how log\p, affects
logr,. In Figure 5.7 it is demonstrated how the properties of the poles
depend on the values of £; and ke. We strive for a fast system with well-
damped poles [Astrtjm and Wittenmark, 1990, Section 3.6 and Figure
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Figure 5.7 The properties of the poles in the transfer function from log ¢,
to logr, as a function of the parameters k; and k,.

10.2], which suggests having both %; and k3 in the neighborhood of 1 or
slightly below.

Just studying pole locations is not enough when choosing values
for k1 and k3. The nature of log ¢ is problem dependent and before the
values for k1 and kg are set, they have to be tested on real problems.
Such tests, however, do seem to advocate the choice

(5.8)

corresponding to the closed loop system having a double pole at the
origin, i.e. deadbeat control The following example shows some typical

results.
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5.1 A Predictive Error Controller

ExXAMPLE 5.4—Choosing values for k; and ks.

We return to the Brusselator problem in Examples 1.2 and 4.1. The
problem was solved using HW-SDIRK(3)4. A mixed absolute-relative 2-
norm (2.14) with 7 = 0.01 and y = |y| was used. The tolerance was set to
tol = 107® and & = 0.8¢ol. To remove potential effects from the equation
solver, modified Newton iterations were used with a new Jacobian at

every step. The norm of the iteration error was required to be less than
0.01€¢.

Figure 5.8 depicts the total number of integration steps as a function
of £1 and k3. The minimum is 128 steps, which should be compared with
the 164 steps it takes to solve the problem with the standard controller
(2.22). The minimum is quite broad, and the exact values of 2; and k9
are not too critical. It seems reasonable to have k1 = k3 = 1. 0

Continuous Stepsize Variations

: ”

Most algorithms for selecting stepsize restrict the stepsize variations, cf.
Figure 5.1. A limitation on too large stepsize changes is natural, since
occasionally the error estimator may produce an unusually large (or
small) value. Many algorithms, however, also prevent stepsize changes
if they are too small. This nonlinearity is introduced into the feedback
loop in order to improve efficiency by reducing the number of factoriza-
tions of the iteration matrix when using modified Newton [Ngrsett and
Thomsen, 1987; Hairer and Wanner, 1991, p.134].

An effect of preventing small stepsize changes is that once a change
is allowed it will usually be rather large, cf. Example 2.11. Such changes
often lead to transient effects that may differ from what is predicted
by the stepsize-error and stepsize-convergence models available. Small
changes produce a smoother behavior of the error with respect to the
set-point € of the error control. This is of importance if tolerance pro-
portionality is to be achieved.

The prevention of small stepsize changes is often introduced in an
asymmetric way, i.e. a stepsize decrease is readily accepted (in order to
reduce the risk for rejection) while a stepsize increase has to be sub-
stantial to be considered. As intended this reduces the number of fac-
torizations, but if the number of small stepsize decreases is large there
may still be many unnecessary factorizations. As an example consider
the stepsize sequence in the lower plot of Figure 5.3. In every step from
step 40 to step 200 there is a stepsize decrease by approximately 4 %.
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Figure 5.8 Total number of integration steps as a function of k; and ks
when solving the Brusselator in Example 5.4. The lower plot depicts the level
curves for the surface in the upper plot. The full line represents the parameter
values that give less than 1 % increase in number of steps compared to the
minimum (128 steps). The dashed line represents an increase by 5 %, while
the 10 %, 15 %, 20 %, and so on, are plotted with dotted lines. The values of
k1 and kg should*berabout 1 for a minimum number of steps, but th‘e exact
values are not too critical. The predictive controller performs better than the
standard, which requires 164 integration steps. The star marks the parameter
choice k1 = 1, k3 = 1, cf. (5.8).
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Preventing the change is not reasonable since it corresponds to an error
growth by almost 20 % per step. On the other hand it is questionable if
the changes are large enough to call for a refactorization of the iteration
matrix at every step.

If the stepsize is allowed to vary more freely it is of course infeasi-
ble (and unnecessary) to factorize the iteration matrix at every stepsize
change. Most changes are small and will not impair the convergence
rate. This, however, calls for a different strategy regarding the factor-
izations, a matter that we will return to in Section 5.3.

Although we advocate removing some of the normally used restric-
tions on stepsize change, this is by no means a requisite for using the
predictive controller. The predictive controller, expressed on the form
(56.1), calculates a new stepsize based on the actual restricted stepsizes
and the corresponding error estimates. A prevented stepsize change does
not cause any extra problems apart from making the error estimate de-
viate unnecessarily from the error control set-point.

5.2 The Iteration Error in the Equation Solver

The equation solver is a basic building block in an implicit integration
method. During the integration we need to assure that it operates ef-
ficiently and that its output is of sufficient quality. In this section we
will discuss some aspects of these requirements, mainly concerning the
iteration error control loop in Figure 5.1. The results form a basis for
the design of the convergence controller in Section 5.3.

Most of what will be discussed is well known [Shampine, 1980].
Still it needs to be discussed, since many control strategies rely (maybe
too) strongly on the asymptotic properties of the iteration. In addition,
the connection between the iteration error, i.e. the quality of Y, and
the integration error is not well understood. We will mention some cur-
rent research that might force a revision of the iteration error control
strategy.

For notational simplicity consider the case, e.g. SDIRK, where the
iterations are done stagewise (the arguments and results are similar for
the general case (2.24a)). At every integration step an iterative scheme
is used to solve a problem on the form

Yi =Y+ }/ihnf(Yi), (5.9)
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where Y; is the i:th stage value (2.23), w; a constant depending on
(tn, ¥n) and previous stage values, and ¥; is the i:th diagonal element of
A. In the sequel the index i will be suppressed. As noted earlier (Section
2.4), under certain conditions (5.9) has a unique solution Y* [Kraaije-
vanger and Schneid, 1991], and we expect the iteration to rapidly con-
verge towards this point.

The iteration can be written

Y™ = GIY™) = (I — yh'd) " (w+ 7R f(Y™) — yh'JY™)  (5.10)

where h, is the current stepsize, h’ the stepsize for which the itera-
tion matrix M = I — yh'J was formed, and J an approximation of the
Jacobian 8f/dy. By setting J = 0 we obtain fixed point iteration.

If the initial point Y is close to Y*, and &, and A’ are small enough,
then G is a contraction and (5.10) converges linearly to Y* [Ortega and
Rheinboldt, 1970, 10.1.3, 10.1.4], [Alexander, 1991]. Roughly speaking,
the better J approximates 8f /8y the less stringent asymptotic demands
on h, and A’ for convergence.

The Convergence Rate

In practice the convergence of (5.10) has to be supervised. A possibly
divergent process should be terminated as soon as possible. In addition,
if the convergence rate is known it can be used to estimate the current
iteration error as well as the number of iterations needed to bring this
error down below 7.

The convergence rate may be estimated as (2.35)

Y™ Y™ _ Al
Y™ =Y (| Am-all

O = Max &y, = (5.11)
m

The estimate (5.11) is an underestimate of the Lipschitz constant L
of G, and the iteration need not be contractive although o < 1. The
asymptotic convergence rate of the iteration (5.10) is p(G’(Y*)), where
p (-) denotes the spectral radius [Ortega and Rheinboldt, 1970, 10.1.4]. In
practice (5.11) may, however, assume values much larger or smaller than
p(G'(Y*)). There are several possible reasons for this: the iteration may
not yet have reached the asymptotic phase, or the norm used to calculate
(5.11) may differ from the one needed to observe the rate p(G'(Y*)).

130




5.2 The Iteration Error in the Equation Solver

102

100

102
I E™|]

104

106

) z T 2 ' j ;
100 Fomgererrereen — —— — -
| = o _ — | 1.5 b s 4
102 frrren o W I — i
NE™ L S H— 5
104 fevvevennnrnnn ................. .............. ............... -
0 5 10 15 20 0 5 10 15 20

iteration number iteration number

Figure 5.9 This figure demonstrates how the iteration in Example 5.5 con-
verges towards the fixed point Y* at the origin. The upper plots correspond to
the nonlinear equation and the lower plots correspond to the linear equation.
As can be seen the convergence rate estimate «,, may deviate considerably
from the spectral radius «, which in both cases equals 0.5.

ExAMPLE 5.5—The quality of the convergence estimate
Consider the two iterations

(Y{n+1\ ( ( _% 1Ym) 'Yg‘ (1
Yt ) o \Ym( %+T%(Ym Y;n))]’ YY) k1“0]
rY{n+1\ _} ryi)w (1
(ypt) | ][ ] (Y9 ) \1]

Both equations have a fixed point at the origin. Figure 5.9 depicts the
norm of the error E™ = Y™ — Y* and the corresponding estimate «,, as
the iteration converges towards Y*. The standard 2-norm is 1‘1sed. Note
that the rate estimate is not available until after the second iteration.
The first problem is nonlinear and its Jacobian has the eigenvalues
—1/2 and —1/4 at Y*. The iteration of the equation goes through three
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phases. The first, m € [1, 4], is a nonlinear transient, where the iteration
converges although not being strictly contractive in the chosen norm.
The second phase, m € [5, 10], is a linear transient governed by the —1/4
eigenvalue, and the iteration converges with approximately the rate 1/4.
After this fast mode has decayed the slower mode corresponding to the
eigenvalue —1/2 will dominate, and the iteration enters phase 3, m €
[11, 20]. This phase demonstrates the asymptotic properties predicted
by p(G'(Y*)), and we observe how the convergence rate estimate o,
approaches 1/2.

The second problem is linear and its Jacobian has eigenvalues +i/2.
The Jacobian is, however, not a normal matrix, and the norm is not
“aligned” with the eigenvectors. As a result we will not observe the
asymptotic convergence rate 1/2 (cf. the norm discussion in Section 3.5).

O

The behavior in Example 5.5 demonstrates that the convergence
estimate (5.11) may differ considerably from the asymptotic value, and
in particular underestimates L.. The nonlinear transient may often be
avoided by having a good predictor for the starting value Y°, but due
to norm misalignment and/or eigenvalues of different magnitude the
estimate o, may still be larger or smaller than the theoretical asymp-
totic value. Shampine comments that too much attention is paid to the
asymptotic behavior [Shampine, 1980]. He argues, very convincingly,
that for robustness one should insist on the iteration being contractive.
If any o, > 1 the iteration should be terminated. Moreover, the largest
observed ¢, should be taken as estimate « for the convergence rate, cf.
(5.11) and Figure 5.1.

Some algorithms do not check the convergence of (5.10). Instead, if
any ||An|| is small enough the corresponding iterate is accepted. Sham-
pine demonstrates [Shampine, 1980] that such a strategy may erro-
neously accept a solution point from a divergent iteration. Therefore a
minimum of two iterations should always be done, so that an estimate
o, can be formed. The iterate should not be accepted if «,, > 1, irre-
spective of the size of ||A.,]|-

The Iteration Error

The deviation E™ between the final iterate Y™ and Y* should ideally
be small. It is well known that [Ortega and Rheinboldt, 1970, 12.1.2]

L
|E™] < T 1Al
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with L being the Lipschitz constant of G, cf. (5.10). To assure ||[E™|| < 7

we may test if

L
Al < 7. (5.12)

In practical computations it is common to replace the test (5.12) with
the (weaker) requirement

o
T4 lAnll < 7. (5.13)

with o as the convergence rate estimate (5.11). Although (5.13) does

not imply ||E™|| < 7, this is usually not a severe limitation [Séderlind,
1984a]. Moreover, since ||[E™|| < L||E™1||, it is reasonable to use

l-o T
a1+mremain 10g _— + log
”Am” <7 = Myemain 2 ( 2 ) An ]
l-« log

(5.14)

as an estimate of the remaining number of iterations M emain needed
to bring the iteration error below 7. If My emain i too large the itera-
tion should be terminated and a new try with updated stepsize and/or
iteration matrix should be made. Often a maximum of 7-10 iterations
[Hairer and Wanner, 1991, p. 131] is accepted.

When using (5.13) and (5.14) we must anticipate that «,, may be a
misleading estimate for ¢, and in particular, could be too small. This is
the motive for using the largest o, as estimate « for the convergence
rate and demanding the iteration to be contracting.

Recently it has been shown [Jackson et al., 1992] that the order of a
Runge-Kutta method is connected to the number of iterations performed -
in the equation solver; specifically, a minimum number of iterations are
needed to recover the order of the underlying discretization formula.
The exact number depends on the type of problem (stiff — nonstiff),
the order of the interpolation polynomial used to obtain Y?, and the
type of iteration used in the equation solver. The result suggests that in
addition to checking the iteration error a minimum number of iterations
should be done. This number is often well below the maximum number
of iterations (7-10) normally allowed.

Fixing the number of iterations in the equation solver will probably
make the iteration error change more smoothly from step to step. The it-
eration error contributes to the error estimate (2.32), and one may hope
for a smoother error estimate as well. A smooth error sequence makes
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the error control easier. However, when the convergence of the itera-
tion is changed (a new Jacobian and/or a refactorization of the iteration
matrix), the iteration error (and thus the error estimate) may change
abruptly. This has to be considered in the error control algorithm, i.e. it
may be difficult to predict changes in ¢ when the iteration matrix is
updated.

The iteration error propagates from step to step. If P(co) # 0 or
P(z) tends too slowly to O as z — oo, these errors may accumulate and
eventually be large enough to dominate the integration error [Arévalo,
1992]. The picture is not yet clear, but the importance of having P(z) — 0
as z — oo is again demonstrated.

The Control Strategy for the Iteration Error

In our control algorithm we have chosen a conservative version of the
traditional strategies [Shampine, 1980; Hairer and Wanner, 1991, pp.
130-131]. The main parts are: -

o The acceptance test of the iterate Y™*! is based on the norm of the
displacement, i.e. ||An,||, to be consistent with the local error control.

e To be able to check the convergence a minimum of two iterations
are always done.

e The largest o, is taken as estimate « for the convergence rate.

e An iterate is accepted when (5.18) is fulfilled, and all o, < 1.

o The iteration is terminated if any «,, > 1.

e The number of remaining iterations is estimated with (5.14), and

the iteration is terminated if this indicates a total of more than 10
iterations.

From the discussion above we want to stress that the processes gov-
erning the iteration error effect on the integration error is not fully
understood. The outcome from on-going research [Jackson et al., 1992;
Arévalo, 1992] may very well force a revision of the current control strat-
egy regarding the equation solver and the iteration error.

5.3 Convergerice Control

\

While proceeding with the integration the controller needs to super-
vise the equation solver and make decisions like (cf. Figure 5.1): which

134




5.3 Convergence Control

equation solver should be used, when should the iteration matrix be
evaluated and factorized (in case of modified Newton iterations), and
what restrictions should be put on the stepsize to assure convergence?
This part of the controller is vital, and efficient integration hinges on
finding a good control strategy.

Although the strategy presented here is quite similar to current al-
gorithms, e.g. [Shampine, 1980; Narsett and Thomsen, 1987; Alexander,
1991; Hairer and Wanner, 1991, p. 134], there are some things worth
noting:

e Small stepsize changes are normally prevented in order to reduce
the number of factorizations of the iteration matrix. We remove this
restriction since a smooth stepsize sequence leads to smoother error
control.

e Most control strategies refactorize the iteration matrix at every
stepsize change. When allowing small stepsize changes this is in-
feasible (and unnecessary). We derive a botind on the, convergence
in terms of the relative stepsize change, and use this to decide when
to factorize. The same bound helps determining when to reevaluate
the Jacobian.

e The switch from fixed point iteration to modified Newton is done
based on an inefficiency measure that relates the stepsize needed
to assure convergence and the one that would give r = €. The switch
back is based on a traditional estimate of the local stiffness of the
differential equation.

e  When the stepsize has to be restricted to assure convergence we
use Oyr = 0.4 as set-point for the convergence rate. This value will
be shown to minimizes the amount of work needed to complete the
integration.

Each one of these items will be discussed in detail, but first we investi-
gate how the convergence rate « is related to variations in the stepsize
and in the Jacobian. The obtained models will be used as a basis for
further discussions concerning the convergence control strategy.

Convergence Effects Due to Stepsize and Jacobian Variations

\
To be able to control the convergence successfully we need to model
its dependence on the available control variables, e.g. the stepsize and
evaluations and/or refactorizations of the iteration matrix, cf. Figure
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5.1. The iteration (5.10) can be rewritten (cf. (2.30)) as
E™! = M7 (yh,d —yW'J)E™, M = (I —yh'd) (5.15)

where o/ is a mean value Jacobian [Ortega and Rheinboldt, 1970, 3.2.6]

T _ laf * m __
J_/O S (YL (Y™ =Y de.

Fixed point iteration and modified Newton iteration behave quite
differently and we will treat them separately.

Fixed point iteration. The case of fixed point iteration is trivial. Set-
ting J = 0 in (5.15) results in

E™' = yh,JE™, (5.16)

and obviously the convergence rate depends on both the ‘stepsize and
the (unknown) Jacobian /. One may write

o = Ohy, , - (517

where ¥ 5 y||J||. Note the similarity to the stepsize-error model (3.2).

Modified Newton iteration. Consider again the iteration (5.15). The
iteration matrix M was formed and factorized using the stepsize A’ and
the Jacobian approximation J. The convergence of the iteration is gov-
erned by the iteration matrix and §(h,J) = h,J — h'J, i.e. the differ-
ence between the current stepsize and Jacobian compared to the values
used when forming the iteration matrix. Since JJ is merely a numerical
approximation, the value of §(h,J) will always differ from zero.

Our aim is to find a bound for « in terms of the relative deviation
in h,dJ from h'J. Assuming that J-! exists, (5.15) can be rewritten

E™ = (I — yB'J) Lyh' I (W' JT) 15 (hnd ) E™.

, then

Introduce v = ||(I — yh/J) 1yh'J

a < v|[(WJI) TS (haJ)]. ' (5.18)

Our intention is to use (5.18) to predict how changes in §(h,J)
affect the convergence rate, but then the value of v has to be known.
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By a generalization [Nevanlinna, 1984; Soderlind, 1986a] of the spectral
theory of von Neumann [von Neumann, 1951], we have

pulyh'dl s p <1 = || -yh'Jd)yh'd|, < max iTz-_zl (5.19)
where || ||z is any inner product vector norm and ug[-] denotes the cor-
responding logarithmic norm [Soderlind, 1984b]. Hence, if ugy[yh'J] <
1/2, a rather realistic assumption, then (I —yh'J)~1yh'J is a contraction
and v < 1. One may ask how or to what extent this bound depends on
the choice of norm. Since ¢ should (ideally) be evaluated as the asymp-
totic convergence rate, this dependence is generally weak. However, the
actual value will depend on the (unknown) value of ug[yh'J], but this
dependence is also weak unless 1/2 < ug[yh'J] < 1.

When ||A'J|| <« 1, i. e. the nonstiff case, then v <« 1 and a bound

a < ||(B'I) TS| . (5.20)

will not be particularly sharp. This is not a serious problem since we do
not expect to use modified Newton iteration when the differential equa-
tion is nonstiff. In the stiff case we have ||A’J|| > 1 with J dominated by
some large eigenvalue with negative real part. The components in the
stiff subspace of J take active part in the iteration (5.15), and for the
norm used we expect v — 1 as ||h'J|| = oo. The bound (5.20) will hence
normally be sharp, and it loses sharpness only for a nonstiff problem or
a problem in transition between nonstiff and stiff, cf. Example 5.9 and
Figure 5.15.

If J remains constant and only the stepsize varies we can write
(5.20) as
Ohy
h' |
It can easily be seen, cf. (5.18), that this bound holds also when J is
singular, under the single assumption ug[yh'J] < 1/2.

Likewise, if h, is constant and J varies, then

o < l (5.21)

o < ||J8J|, (5.22)

whenever ug[yh' J ] <1 /2. For simultaneous variations in 4, and J we
neglect higher order variations, and obtain

S(hnd) ~ J Shy + h'Sd,
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‘which together with (5.20) leads to

Ohy
B

+ ||| (5.23)

provided that ug[yh'J] < 1/2.

The bounds (5.21) and (5.23) are important. They offer a possibility
to predict how a stepsize change will affect the convergence rate. This
can (and will later in this section) be used to decide when to factorize
the iteration matrix. Likewise, a poor convergence rate, although the
stepsize has been kept virtually constant, indicates, cf. (5.23), that the
Jacobian has changed and it may be wise to reevaluate the iteration
matrix.

Coordinating Stepsize Choice and Convergence Control

In some situations the stepsize has to be restrained in order to assure
convergence in the equation solver. The most common case is when fixed
point iteration is used and the integration enters a moderately stiff re-
gion of the differential equation. The stepsize is the only available con-
trol variable affecting the convergence rate, and convergence may be a
more restrictive constraint than accuracy. ,

When using modified Newton the convergence is normally secured
by appropriately updating the iteration matrix, i.e. by keeping &(h,J)
small. It may, however, happen that the convergence is poor although the
iteration matrix is based on current data. The Jacobian J is an approx-
imation calculated at one solution point, and the distance between the
different stage points may be large enough to jeopardize convergence.
Reducing the stepsize brings the stage points closer and convergence
may be secured.

In both cases described above the stepsize-convergence relation may
be modeled as (5.17). This model has the same structure as the standard
stepsize-error relation, and assuming ¢ constant, the stepsize should be
chosen as

B, = %ty (5.24)
o

to obtain & = . in the next step. If the change in ¢ is substantial
between steps, orie Could envision a predictive controller on, the same
form as the one derived for error control in Section 5.1.

The main problem with (5.24) is the low quality of the convergence
rate estimate «. As was seen in Example 5.5 this estimate may deviate
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considerably from the asymptotic value. In addition, it behaves non-
smoothly with respect to the stepsize; a small stepsize change may alter
the number of iterations needed and thereby cause a quite different
estimate. This lack of smoothness manifests itself as variations in #,
and it is hardly any use trying a more sophisticated strategy than (5.24).

The stepsize suggested by (5.24) has to be coordinated with the one
from the error control. A straightforward way is to choose the minimum,
i.e. when using fixed point iteration or experiencing poor convergence in
modified Newton in spite of an iteration matrix based on current data,
the restriction in Listing 5.1 should be implemented as

h := min(hy, ha), (5.25)

with h, taken from (5.24).

A problem with (5.25) and (5.24) is the deadbeat character it gives to
the convergence control loop. When convergence restricts the stepsize,
i.e. hq < h,, any value different from o will be brought to @ in
one step. Considering the low quality of the convergence rate estimate
this may be a too aggressive strategy. Two possibilities for making the
strategy smoother are: filter the convergence rate estimate before using
it in (5.24) and/or change (5.24) so that the closed loop pole is moved
from the origin to some position in the interval [0, 1], cf. Section 4.1 and
the discussion on the choice of k£; in the standard stepsize selection rule
(2.22). In the simulations in this chapter we will use (5.24) and (5.25)
as is.

Convergence restricting the stepsize leads to an error estimate be-
low €. When h, < h, the corresponding error estimate r < € and it may
be dominated by the contribution from the iteration error, cf. (2.32),
making r fluctuate wildly. These fluctuations do not provide any infor-
mation about the variations in ¢. Therefore it is not advisable to use
the predictive error controller (5.1) to calculate A, in this case. Hence,
we use the standard stepsize selection rule (2.22) whenever the previ-
ous stepsize was restricted by A ,. The test on conuv_restrict achieves this
change of controller in Listing 5.1.

ExaMPLE 5.6—Coordinated error and convergence control

Consider the van der Pol oscillator with ¢ = 10 (for the sqlution see
Figure 4.8). The problem was solved using HW-SDIRK(3)4. A mixed
absolute-relative 2-norm (2.14) with n = 10™* and y = |y| was used.
The tolerance was set to tol = 10~ and stepsize control according to
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Figure 5.10 The upper plot depicts the solution of the first component y;
when solving the van der Pol problem in Example 5.6. The curve looks erratic,
but this is only due to the time-distortion introduced by plotting y; as a func-
tion of integration step number. The lower plot shows the error estimate and
the estimate of the convergence rate. During the initial transient and the fast
state transition it is accuracy that limits the stepsize, while the stepsize is
held back to maintain acceptable convergence during the smooth part of the
solution. The coefficient ¢ in the stepsize-convergence model varies, and con-
sequently o sometimes “oscillates” around the set-point @, = 0.4, e.g. steps
25-60 and 180-240. During the state transition there are a couple of rejected
steps (indicated with crosses). The cause of these rejected steps is described
in Example 5.2.

Listing 5.1 (k1 = ky = 1), (5.24), and (5.25) was used with & = 0.8ol.
Fixed point iteration with o, = 0.4 was used at all integration steps,
and the norm of the iteration error was required to be less than 0.01 €.

The problem is mildly stiff during the smooth part of the solution,
and the stepsize has to be restricted to assure convergence in the fixed
point iteration. Figure 5.10 demonstrates how the controller uses the
stepsize for error-control and convergence control, cf. (5.25), durmg dif-
ferent parts of the integration.

Due to variations in the convergence rate estimate it is hard to keep
o close to the set-point o, = 0.4. Figure 5.11 demonstrates the relation
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100

10-1

10-2 101

Figure 5.11 The stepsize-convergence relation at step 30 of the integration
in Figure 5.10. The overall slope of the curve is about 1 confirming the lin-
ear stepsize-convergence dependence (5.17). The proportionality factor ¢ may,
however, vary and in this case we have several regions with different . These
regions change from step to step, making it difficult to keep & = .

between the stepsize and the estimate of the conyvergence rate. The data
are taken from step 30 in Figure 5.10. During the actual integration the
stepsize was h ~ 0.055 at this step, resulting in a ~ 0.60. In the next
step the controller reduced the stepsize to 4 ~ 0.037 to obtain o = o,.
The value of ¥, however, changed and the new stepsize led to o = 0.26.
The variations in ¢ in combination with the deadbeat control strategy
are responsible for the oscillations in the convergence control loop. O

Choice of Set-Point for the Convergence Rate

When restricting the stepsize to assure convergence in the equation
solver, an important question is what convergence rate, i.e. @,f, the
controller should aim for. Of course 0 < a.¢ < 1, but what value gives
the most efficient integration? This question can be addressed using an
idea due to Séderlind [Séderlind, 1986b)].

Assume m is the number of iterations needed to fulfill (5.13). Then,
using (5.13) and again substituting « for L,

04
v 27— lAnll 2 [|1E™]| ~ a™ || E°| (5.26)

where E° is the efrof in the initial guess Y°. From (5.26)

_ 0
s, log 7 —log|| B
log

3
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and, consequently, the number of function evaluations per unit step is
proportional to m, where (approximately)

__m _ logt —log||E?|
"R T T hloga

We would like to find the value of « that minimizes m. The conver-
gence « 1s proportional to A, therefore

_ log7 —log||E?
m ~ :
alog o

The starting value Y? is constructed using an interpolation polynomial,
which makes the initial error E° depend on 4 (and hence «). The de-
pendence is weak, and hence

_ 1
m~ — ,
o log o

(5.27)

where the negative sign is a consequence of assuming E° > 7. The
expression (5.27) has a minimum at o = el =~ 0.4, which suggests
choosing ’

Orer = 0.4. (5.28)

The function (5.27) is rather flat around the minimum (cf. Figure 5.12),
and any value 0.2 < o, < 0.5 would probably be acceptable, with
robustness favoring the lower values.

EXAMPLE 5.7—The effect of convergence rate set-point on efficiency
The van der Pol problem was solved with different values on @, us-
ing exactly the same setup as in Example 5.6. The resulting number
of function calls as a function of @, is shown in Figure 5.12. The val-
ues agree very well with the ones predicted by (5.27) (the expression
(6.27) was normalized with a constant that makes its minimum equal
the minimum number of function calls experienced in practice).

As described in Section 5.2 the equation solver includes a limit on
the number of iterations allowed. This makes the values experienced in
practice deviate from (5.27) for large a,r. The effect is readily visible in
Figure 5.12. oo ‘

Note that the convergence control is only active when convergence
restricts the stepsize, i.e. A, < h, in (5.25), and it is only in this case
that we try to achieve a convergence rate equal to @yes. O
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function calls

Figure 5.12 Total work (number of function calls) as a function of the con-
vergence rate set-point when integrating the van der Pol problem in Example
5.6. The equation solver includes a limit on the number of allowed iterations.
The crosses x’ and the rings ‘0’ correspond to setting this limit at 100 and
10, respectively. The actual number of function calls agrees very well with the
work predicted by (5.27) (shown as a full line). The deviation for large o, is
a consequence of limiting the number of iterations in the equation solver.

A Strategy for Choosing Equation Solver

To improve efficiency many implicit integration methods try to switch to
fixed point iteration during nonstiff regions of the differential equation.
The “optimal” switching points depend in a very complicated way on
both the differential equation and the integration method. Most strate-
gies therefore do not try to find these points, but rather aim at imple-
menting a simple but robust strategy that performs sufficiently well on
a large class of problems. The strategies described in [Shampine, 1981;
Ngrsett and Thomsen, 1986b] are representative. We will give a short
recapitulation and comment on a few issues sometimes overlooked.

The integration is normally started using fixed point iteration. The
stepsize will be small to resolve initial transients, and fixed point iter-
ation is likely to converge. In addition, if the problem never turns stiff,
the cost of forming the iteration matrix has been saved.

Switching from fixed point to modified Newton. A stepsize that is
held back to assure convergence in the fixed point iteration is an indica-
tion that it would be beneficial to switch to modified Newton iteration.
Shampine compares’the stepsize 4, from error control with the stepsize
hq from convergence control, and if the difference is too large a switch
is made [Shampine, 1981]. A problem is that what “large enough” is,
is in general unknown; it depends on the method as well as the future
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‘solution of the differential equation. Often the switch is done hoping
that the current observed behavior is part of a trend where the prob-
lem is becoming more and more stiff. By switching to modified Newton
iteration we will be able to anticipate this change more efficiently.

Suppose that to do the switch we require a possible stepsize increase
by a factor §. Consequently, we await a situation where h,/h, > ¢
[Shampine, 1981]. To make probable that the switch to modified Newton
will be profitable we would like to have £ large. It may, however, be
difficult to achieve h,./h, > & in practice, since the iteration error in
the equation solver will prevent r from becoming very small in the case
where convergence restricts the stepsize. In practice this puts an upper
limit on the choice of £.

Suppose convergence restricts the stepsize, and that the conver-
gence rate is kept close to &, i.€. gy = h,. In this case the standard
stepsize selection rule (2.22) is used to calculate A, cf. convrestrict in
Listing 5.1. Hence

1/k
: )
(— By 1/k
fr o ATmnt ( £ > (5.29)

'ny1

ho hn

and the value of r,,; determines if we will observe A,/h, > & or not. The
slow convergence in combination with 2, < h, suggest that the error
estimate will be dominated by the contribution from the iteration error,
cf. (2.32). This can be seen in Figure 5.10, where r ~ 7 (7 = 0.01¢).
Setting r,.1 = 7 in (5.29) is of course an oversimplification. The relation
(2.32), however, indicates that for the switching strategy to work in
practice the choice of & has to be related to quantities as

5 ) e 17k ) c 1/k
=(2) 52‘(n<b—é>m-luarefr> ‘

In the expression for £; we have assumed that & = @, and A = 7. In
the case of HW-SDIRK(3)4 and 7 = 0.01& we have &; = 1004 ~ 3.1
and &2 = 2.56Y4 =~ 1.3. In our simulations we have chosen & = 2.

The strategy proposed in [Ngrsett and Thomsen, 1986b] makes a
switch as soon as fixed point iteration fails to converge. Such a strategy
calls for a rather large o or poor convergence control. Otherwise it
may happen that the controller manages to keep o below 1, and the
switch to modified Newton iteration is never done.
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We prefer the strategy suggested by Shampine, provided & is chosen
in relation to 7 /g, a.er, and the method parameters 4, b, and b. Addi-
tional robustness is gained by requiring 4,/h, > & for a few consecutive
steps before doing the switch. Another possibility is to not require a fixed
value on A,/h, to make the switch, but rather accumulate recent values
on h,/h, and use that as a kind of “inefficiency measure”. A switch is
done when this measure indicates a too large inefficiency for using fixed
point iteration.

Switching from modified Newton to fixed point. In the nonstiff
case fixed point iteration is normally cheaper than modified Newton
iteration. Most switching strategies therefore try to facilitate the switch
from modified Newton to fixed point. To be able to decide if fixed point
iteration converges or not we need to know the norm of the Jacobian,
cf. (2.25) and (5.16). Some strategies recommend calculating the norm
directly [Shampine, 1981], while others estimate it through the ratio
between the residual and the displacement in the equation solver (2.36)
[Ngrsett and Thomsen, 1986b].

We have used the latter alternative with the g taken as the maxi-
mum over all iterations and all stages, cf. (2.36). For added robustness
we require S < 2 for a few steps before doing the switch. In addition,
at the switch the stepsize is reduced by the factor o, to assure good
convergence.

Hysteresis. All switching strategies need to include some kind of hys-
teresis. Otherwise it may happen that the solver toggles between fixed
point iteration and modified Newton iteration. Some common counter-
measures are:

e Do not allow a switch until the switching condition has been fulfilled
during a few consecutive steps (say 3). ‘

e  When switching from fixed point iteration to modified Newton iter-
ation a switch back is blocked for (say) 5 steps in order to let the
controller ramp up the stepsize and enter the region where g > 2
[Ngrsett and Thomsen, 1987].

e  When switching from modified Newton to fixed point iteration the
old Jacobian is stored. Should a switch back occur within not too
many steps then a new Jacobian need not be calculated to form the
iteration matrix [Shampine, 1981].
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ExXAMPLE 5.8—Switching equation solver

Again return to the van der Pol problem and the setup in Example
5.6. Figure 5.13 demonstrates some aspects of the switching strategy
described above. The number of integration steps is almost halved by
switching to modified Newton iteration during the mildly stiff parts of
the solution. A new iteration matrix was formed every integration step.

The integration starts using fixed point iteration. After the initial
transient the stepsize soon gets restricted by convergence (steps 12-22)
and the error estimate drops. At ¢ = 0.60 (step 23) r has been sufficiently
low for 3 steps and a switch to modified Newton is done. The controller
ramps up the stepsize and soon r ~ &£. For simplicity a new iteration
matrix is formed at every step, and as a consequence the convergence
is very good.

When the integration approaches the fast state transition the stiff-
ness drops. At ¢ ~ 6.7 (step 44) the stiffness estimate B has been below
2 for 3 steps and a switch to fixed point iteration is done. At first the
stepsize is restricted to assure convergence (steps 45-60), but during
the transition at 8.5 < ¢ < 9.4 (steps 61-109) it is accuracy that deter-
mines the stepsize. As the integration proceeds out on the flat part of
the solution, the stepsize is again restricted by convergence and a switch
to modified Newton iteration is done at ¢ ~ 9.9 (step 120). O

A Factorization/Evaluation Strategy for the Iteration Matrix

The last major component of the convergence control remaining to be
discussed is the administration of the iteration matrix in the modified
Newton iteration. Early implementations of stiff integration methods
formed a new iteration matrix at every step. For large systems this may
be the dominating part of the computations, and it soon became clear
that large savings could be achieved by using the same iteration matrix
during several integration steps.

The overall strategy is to use the stepsize to control the error and
then update the iteration matrix so that good convergence is achieved
with a small number of Jacobian evaluations and iteration matrix factor-
izations. The trade off between frequent changes to the iteration matrix
on the one side, and poor convergence on the other, is delicate. Both
extremes are expensive in terms of computation and the optimal bal-
ance depends on the integration method as well as on the problem size.
Therefore there is not one algorithm that solves all problems, but rather
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Figure 5.13 The upper plot depicts the solution component y; from the van
der Pol problem in Example 5.8. The erratic look of the curve is due to the time-
distortion introduced by plotting y; as a function of step number. The second
plot shows the error estimate. Except at fast transitions and when convergence
limits the stepsize, the error r is kept close to the set-point. The stepsize plot
clearly shows the regions where the stepsize is restricted by convergehce. The
lower plot depicts the convergence estimate o and the stiffness estimate 8. It
also indicates (vertical bars) where the standard stepsize selection rule has
been used due to A, < h, in the previous step (cf. conv_restrict in Listing 5.1).

147




i

Chapter 5 Control of Implicit Runge-Kutta Methods

strategies with tuning parameters that need to be adapted to different

applications.
We advocate a control strategy that permits the stepsize to change
at every integration step. Although the cost of factorizing the iteration
matrix can be greatly reduced by storing the Jacobian in Hessenberg
form [Enright, 1978; Varah, 1979; Hairer and Wanner, 1991, p. 132], it
is still, normally, unacceptable to factorize at every integration step. To
find a strategy that does not factorize at every stepsize change we turn
to (5.23), i.e.
Ohy
hl

as‘

+ ||t 6| -

For a stiff differential equation we expect this bound to be rather sharp,
i.e. v < 1 in (5.18), and any stepsize change will directly affect the
convergence rate. We monitor the relative stepsize change since the last
factorization, and when 6h,/h’ reaches a threshold ary a factorization
is done. The strategy is preventive in the sense that we try to avoid
convergence failures by factorizing whenever planning to do a stepsize
change that is likely to jeopardize convergence. Should poor convergence
be experienced despite 6h,/h' < ary, say @ > oyac, then this cannot
be blamed on the stepsize changes. Instead, cf. (5.23), it must be due
to a change in the Jacobian, and a reevaluation of J is called for. What
values on oy and aj,c that lead to efficient integration depend on the
differential equation. Typical values lie in the range [0, 0.5], where small
values correspond to regarding the iteration matrix operations as cheap.

The strategy is identical after accepted and rejected steps. A step
rejection is caused by a too large error estimate, which will be dealt with
by changing the stepsize and then retry. There is no reason for special
considerations regarding the iteration matrix.

The situation is, however, somewhat different if we fail to get ad-
equate convergence. If the iteration matrix used was based on an old
Jacobian it is natural to compute a new one. The difficult question is
whether the stepsize should be changed too. Here we will distinguish
between three different situations. Suppose we experienced divergence.
The analysis of Alexander [Alexander, 1991] points out that one inte-
gration step does not turn a rapidly converging process into a divergent
one, unless some ba§ic smoothness assumption is failing. He concludes
that apart from forming a new Jacobian, the stepsize should also be
changed. We change it based on (5.24).

The second situation is when the iteration is converging, but not fast
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‘enough to produce a solution within the allowed number of iterations.
If the iteration matrix is based on an old Jacobian we calculate a new
one but keep the stepsize unchanged. If on the other hand the iteration
matrix is based on current data, we have to change the stepsize, and
again this is done using (5.24).

The third situation is less common. It may happen that although the
iteration matrix is based on current data, and the convergence rate is
adequate (& < ayer), the equation solver still fails to produce a solution
within the allowed number of iterations. The reason is that the starting
values for the iteration are too far from the fixed point. In this case we
reduce the stepsize by the arbitrary factor 2. In all other situations we
keep the stepsize unchanged.

The strategy regarding the iteration matrix can be summerized as
in Listing 5.2. The listing also includes the strategy for choosing stepsize
after a convergence failure, as well as the restriction of the stepsize when
experiencing poor convergence in spite of an iteration matrix based on
current data. The quality of the convergence estimate may be poor and
as a result unreasonable stepsize changes should be discarded when
calculating A,.

EXAMPLE 5.9—Administrating the iteration matrix

To demonstrate the strategy regarding the iteration matrix we turn to
the stiff van der Pol oscillator (6 = 1000). The problem was solved under
the same conditions as in Example 5.1, i.e. we use modified Newton
iteration throughout. This time, however, we do not form a new iteration
matrix at every step.

Figure 5.14 depicts the result of the, rather arbitrary, choice ary =
ogac = 0.4. The number of function evaluations is approximately dou-
bled (7630 vs. 3678) compared to when forming a new iteration matrix
at every step, cf. Example 5.1. The number of Jacobian evaluations and
factorizations is, however, reduced from 339 down to 22 and 95, respec-
tively. In this case the exact figures are of no importance; they only
serve to demonstrate the very significant possibility of trading function
evaluations with operations on the iteration matrix.

During the stiff part of the solution (steps 35-220) there are quite a
few rejected steps (indicated with X’, convergence failures are indicated
with ‘0’). Once (steps 35-36) there are even repeated rejected steps trig-
gering the special restart strategy intended for the case of order reduc-
tion. The cause of all these rejected steps is the iteration error in the

equation solver. For HW-SDIRK(3)4 the value of ||(b — b)T27Y|| is ap-
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Figure 5.14 A demonstration of the strategy for adrmmstratmg the iteration
matrix discussed in Example 5.9. The parameters ary and ojac were set to
0.4. The upper plot shows the error and the stepsize, while the lower indicates
when a Jacobian evaluation and/or factorization of the iteration matrix was
done. The lower plot also depicts the estimate of the convergence rate. The
rejected steps during the stiff part are caused by the iteration error.
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Figure 5.15 A segment of the lower plot in Figure 5.14. At every step where
an operation was done on the iteration matrix we have plotted the correspond-
ing value of 6h,/h' {'0’) and the convergence rate estimate o (‘x’) one would
get if suppressing this operation. It is clear that the factorizations dbne dur-
ing the nonstiff period (steps 230-330) are unnecessary (v < 1 in (5.18)). In
contrast, every single factorization is important when ramping up the stepsize
(steps 330-350) and entering the stiff region.
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proximately 100, and with 7 = 0.01 £ the contribution from the iteration
error is large enough to cause “noisy” variations in r. The rejections can
be removed by reducing 7, cf. Figure 5.16 where 7 = 0.005 €.

As can be seen from Figure 5.14 there are many factorizations when
the stepsize changes fast. When the changes are more moderate the fac-
torizations occur less often, and it seems to be perfectly all right to allow
small stepsize changes without corresponding factorizations. In addi-
tion, the Jacobian evaluations are quite infrequent and mainly needed
during the stiff part. During the stiff part the convergence deteriorates
at a faster rate than what could be explained with 6A,/h’. When «
reaches ajpc = 0.4 the Jacobian is evaluated and the convergence rate
is immediately improved. The overall behavior agrees well with what
could be expected.

From the behavior in Figure 5.14 one may suspect that the iteration
matrix is factorized too often. The situation is clarified by Figure 5.15,
which depicts a segment of the integration in Figure 5.14. Whenever an
operation was to be done on the iteration matrix, we have calculated
oh,/h' (plotted as ‘0’) and the convergence estimate that one would get
if suppressing the operation (plotted as x’). It is clear that the factor-
izations during the nonstiff part of the solution (steps 230-330) are un-
necessary. The factorizations are triggered by 6h,/h’ > ary, but v«1
in (5.18) and the stepsize change does not affect the convergence (the
crosses lie on top of the « curve). The message is to change factoriza-
tion strategy when the problem is nonstiff (8 can be used to detect this
situation), or more naturally, switch to fixed point iteration as discussed
in Example 5.8, cf. Figure 5.17.

The situation is completely different when ramping up the stepsize
and entering the stiff part of the solution (steps 10-30 and 330-350).
As can be seen from the crosses in Figure 5.15 the convergence would
become poor if omitting any of the factorizations. It is interesting to note
how the convergence rate in case of suppressing the factorization (the
crosses) approaches the value for 6A,/h’ (the rings) as the integration
enters the stiff region. This is a consequence of v — 1 as ||h'J|| = oc.
In conclusion, we may say that in this case it is not a poor factorization
strategy that causes the many factorizations, but rather a strict limit on
how much the stépsize may increase in one integration step (the error
controller will not allow a stepsize change that would increase the error
by more than a factor of 10).

The value of 7 was lowered to reduce the effect on r from the iter-
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Figure 5.16 The setup here is similar to the one in Figure 5.14. The step
rejections during the stiff part were removed by lowering the iteration error
(z = 0.005 ). This, however, calls for better convergence, and aruy and ajac
were changed to 0.2. This increases the number of operations on the iteration
matrix.

ation error. As expected the number of rejected steps was reduced, but
as a side effect the number of steps with failed convergence. The reason
is the limit on a maximum of 10 iterations in the equation solver. Nor-

mally, 3-5 iterations are done per stage, but when convergence is poor

it may sometimes take more than 10 iterations to bring the iteration
error below 7. To improve the situation the values on ary and agjac
were lowered to 0.2, thus forcing a faster convergence. This removes
the nonconverged steps and the result is depicted in Figure 5.16. The
number of Jacobian evaluations doubled (41) and the number factor-
izations increased by approximately 30 % (129), while the number of
function evaluations dropped (from 7630 to 5852) due to the improved
convergence.

It is only necessary to use modified Newton iteration during the
stiff parts of the solution. Figure 5.17 shows what happens when we
introduce the previously discussed switching strategy, cf. Example 5.8,
and use fixed point iteration during the nonstiff parts of the solution. O
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Figure 5.17 The setup for this figure is almost identical to the one in Figure
5.16. The only difference is that modified Newton iteration was used only
during the stiff parts of the integration. The switching strategy from Example
5.8 was used.

5.4 The Complete Controller

The complete controller for an implicit Runge-Kutta method includes
three main parts:

e An error controller that chooses the stepsize based on the required
accuracy.

e A controller that supervises the convergence of the iteration in the

equation solver, and terminates when the iteration error is accept-
able.

e A convergence controller that chooses the most appropriate equation

solver and administrates the iteration matrix so that convergence is

~obtained in an efficient way. If needed, it also restricts the stepsize
not to jeopardize the convergence. ‘

The code for the error controller is outlined in Listing 5.1. Based on data
from previous steps the controller predicts changes in ¢ and thereby pro-
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if iteration successfully.completed then
Calculate 4,., cf. Listing 5.1
Calculate A, cf. (5.24)
if fresh.Jacobian and o > o, then
h := min(h,, hy)
else
h:=h,
endif
if a > ajazc then
Form new Jacobian and factorize iteration matrix
hLU = h
elseif lh - hLU'/hLU > LU then
Factorize iteration matrix
hLU = h
endif
else
Calculate A, cf. (5.24) 7
if diverging then
h:=h,
elseif fresh.Jacobian then
if o > o then

h:=h,
else

h:=h/2
endif

endif
if not fresh.Jacobian then
Form new Jacobian
endif
Factorize iteration matrix
endif

Listing 5.2 An outline of the code needed to implement the evaluation and
factorization strategy in modified Newton iteration. The stepsize choice after
a step with convergence failure is also described. The parameters ajuc and
oLU, govern when a new Jacobian is calculated and when the iteration matrix
should be factorized. Their values affect the efficiency of the integration, and

_hence need to be .chosen with care. The algorithm has to be augmented with
various safety nets, e.g. discard unreasonably large stepsize changes; protect
against underflow/overflow, etc.
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if iteration_successfully.completed then
Calculate h,, cf. Listing 5.1
Calculate hg, cf. (5.24)
h := min(h,, hy)

else
Calculate A, cf. (5.24)
if diverging then

h:=hg
else

h:=h/2
endif

endif

Listing 5.3 An outline of the code needed to coordinate the accuracy and con-
vergence requirement on the stepsize when using fixed point iteration. The
stepsize hg is calculated from (5.24). Again, in a real implementation vari-
ous safety nets have to be included, e.g. discard unreasonably large stepsize
changes when calculating A, protect against underflow/overflow, etc.

duces a new stepsize that is more likely to achieve r,.1 = € than the
stepsize suggested by the standard stepsize selection rule. The predic-
tive controller may be considered as a general improvement over cur-
rent stepsize selection rules, and we recommend using it no matter if
the convergence controller impose limits on small stepsize changes or
not. The controller includes logic that improves startup after rejected
steps, which is especially important in cases demanding large stepsize
decrease to bring a fast mode into the asymptotic region of the integra-
tion method. This situation may arise due to poor method properties.

The correct solution in this case is to change methods, i.e. use a stiffly

accurate integration method, instead of trying to improve the control.

The choice of strategy for the second part, the supervision of the
iteration error, is fairly standard, and was described in Section 5.2. The
end of that section gives specific details about the implementation. The
lack of novelty in our choice of control strategy does not imply supremity
of current algorithms, but rather demonstrates an uncertainty. The dy-
namic relation between iteration error and integration error is not well
understood, and on-going research may very well force a revision of this
part of the control strategy.

1
The third part, the convergence controller, is important mainly for
efficiency reasons. It should secure good convergence with as little com-
putations as possible. Listing 5.2 describes the strategy used in case of
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modified Newton iteration. The strategy for fixed point iteration is sim-
pler, and is shown in Listing 5.3. The strategy for changing equation
solver has to be added to what is described in Listings 5.1-5.3. This is
straightforward: after every accepted step we simply check whether the
switching conditions, cf. Section 5.3 are fulfilled, and if this is the case
a switch is made.

Controller Parameters

The complete controller includes several parameters that have to be set.
The parameters k; and k3 in the error controller are fairly independent
of integration method and differential equation. The choice 21 = k3 = 1
results in good overall performance. As set-point for the error control
we recommend € = 0.8¢0l, although not having done as extensive tests
as for the explicit case.

Turning to the parameters regarding the iteration error and the
convergence control it is no longer possible to-make the choice inde-
pendently of integration method and differential equation. Consider the
choice of 7. As noted in [Hairer and Wanner, 1991, p. 131] its value
affects the efficiency of the method. In addition, a large value on 7 re-
sults in a nonsmooth component in r that impairs the performance of
the stepsize selection rule. The choice 7 = 0.005 & works well for HW-
SDIRK(3)4. It is, however, not possible to directly translate this value
to other methods, cf. (2.33). A different method is likely to call for a
different value of 7.

The parameter values in the convergence controller, i.e. ajac and
Ly, can be used to optimize the performance of the integration method
for a class of differential equations. The decisions concerning the admin-
istration of the iteration matrix depend on the relative cost of evaluating
the Jacobian, of reducing it to Hessenberg form, of factoring the iteration
matrix, and of taking one iteration in the equation solver. If forming the
iteration matrix is cheap, this should be done often in order to maintain
good convergence, thus minimizing the total number of iterations. If,
on the other hand, the iteration matrix operations are expensive com-
pared to one iteration, we should instead try to minimize the number
of changes of the iteration matrix. For optimal performance a careful
tuning analysis will be required. ‘

Despite the complexity of the tuning of ajac and apy it is possible
to give some general recommendations. The maximum reasonable value
of aer (say 0.5), cf. Figure 5.12, sets an upper limit on ajac and apy.
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It is of no use having an iteration matrix strategy that accepts a con-
vergence rate that is worse than what is known to be efficient. Large
values on ajac and apy are only of interest when the administration
of the iteration matrix is expensive compared to one iteration, i.e. for
problems with many states and a full Jacobian. For small and medium
sized problems it is more reasonable to have (say) ajac = aLy = 0.1
or 0.2. Having ajac > apy is motivated when the Jacobian is stored on
special form, so that a factorization is relatively cheap compared to the
Jacobian evaluation. The choice of ajac and oy also affects the aver-
age number of iterations needed in the equation solver. A strategy that
accepts slow convergence thus has to be accompanied with fairly large
upper limit on the number of iterations.
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Conclusions

: ~

This thesis has presented a feedback control viewpoint of the algo-
rithms for supervision and parameter adjustment in numerical integra-
tion methods. It provides a different, but rewarding, perspective on some
of the central issues in the implementation of an integration method.
The methodology can be applied to any integration method. The de-
tailed treatment has, however, been focused on Runge-Kutta methods.
We have derived new controllers both for the explicit and the implicit
case. They give improved overall performance at little extra expense.

Methodology

Before turning to specific results there are a few general aspects of our
approach that we would like to stress:

e The approach taken in this thesis is traditional viewed as an ap-
plication of feedback control theory. It is, however, novel from the
numerical analysis point of view. The traditional design of stepsize
adjustment rules and supervision algorithms for numerical integra-
tion methods is based on heuristic principles and asymptotic argu-
ments. Our approach provides a framework where the problem can

“be addressed*in"a systematic and structured way.

e We have implemented the integration methods, control strategies
etc., in a common software framework. This allows for fair compar-
ative studies where parameters, strategies, etc., are varied, one at
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a time, under controlled experimental conditions.

e A small number of carefully selected test problems have been used.
They suffice for developing, testing, and verifying the control strat-
egies. The main objective has not been a performance/efficiency
study, but rather an investigation of how to design a coherent strat-
egy for the control of numerical ODE solvers.

Separating Process and Controller

A conceptually important step in our approach is the separation of pro-
cess (numerical integration method) and controller. We would like to
stress the benefits of this separation. A reasonably complete controller,
cf. Chapters 4 and 5, becomes rather involved, cf. Figure 5.1. Treat-
ing it as a separate object makes both the controller design and the
implementation more straightforward. The separation is a significant
advantage when tuning the controller for optimal performance, as well
as when trying to confirm that the code really implements the intended
algorithms. /

Improved Process Models

A first step in the control analysis is to obtain models that accurately
describe the input-output relations of the process. An important rela-
tion is the one between stepsize and error estimate. Our modeling, cf.
Chapter 3, has given the following insight:

e The static asymptotic stepsize-error model normally used is inap-
propriate in many situations. Dynamic models are needed.

e It is not possible to capture the stepsize-error behavior in one single
model. We have distinguished between three cases: the asymptotic
region, the nonasymptotic region (implicit methods), and. stepsize
restricted by numerical stability (explicit methods).

e In the asymptotic region we have r,,; = ¢@,h% The differential
equation influences the stepsize-error relation only through an esti-
mate ¢ of the norm of the principal error function. By modeling the
variations in ¢ we arrive at better predictions of the error resulting
from a specific stepsize choice.

e Inthe nonasymptotic region the error relates to the stepsize through
a different exponent than the value 2 normally assumed. In the case
of repeated rejected steps we estimate the value of the exponent and
use it in our model of the stepsize-error relation.
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e When the stepsize is restricted by numerical stability the stepsize-
error relation behaves very differently compared to the normal case.
We have derived a simple dynamic model that captures this behav-
ior. The parameters in the model depend on the coefficients of the
integration method and the dominating eigenvalues of the differen-
tial equation.

The models provide an accurate description of the stepsize-error rela-
tion. They have been verified by system identification techniques as well
as in numerical tests.

To be able to control the equation solver in an implicit method we
need a model that relates the convergence rate of the iteration to the
process input variables. A new model that describes the relationship
between the convergence rate and changes in the stepsize and the Ja-
cobian has been derived, cf. Chapter 5. The model has a structure that
makes it directly applicable in the design of the administration strategy
for the iteration matrix.

The Feedback Control Analysis

The new process models have been combined -with the standard con-
troller, allowing an analysis of the resulting closed loop system. The
analysis provides insight and suggests possible improvements to the
controller. In particular we have noted the following:

e The standard stepsize selection rule can be interpreted as a pure
integrating controller. This immediately suggests generalizations to
controllers with better stabilizing properties, e. g. PI or PID control.

e The standard controller is based on the static asymptotic process
model. The situations where the controller performs poorly are di-
rectly related to the static model not being able to accurately de-
scribe the process behavior.

e The standard choice of controller parameters is based on the idea of
instant correction (deadbeat control). Whenever there is a deviation
from the desired behavior, an attempt is made to fully correct this
in the following integration step. This is merely one possibility of

~many when deciding the dynamics of the control loop.
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Improved Control Algorithms and Strategies

Based on the knowledge we have acquired from the process modeling
and the feedback control analysis we have derived new and improved
control algorithms, cf. Chapters 4 and 5.

Explicit Runge-Kutta methods. The main complication in the choice
of stepsize for an explicit Runge-Kutta method is the change of process
dynamics when numerical stability restricts the stepsize. We have de-
signed a controller that can handle this and still retain good performance
in the asymptotic region. The controller is the equivalent of a PI con-

troller, i. e.
kr kp
£ s
Tntl 'n+1

Choosing the controller parameters as k; = 0.3/k and kp = 0.4/k pro-
vides good performance both for the standard case, and for the case
when numerical stability restricts the stepsize. -

Implicit Runge-Kutta methods. In most implicit methods the step-
size will not be limited by numerical stability. The controller can instead
be chosen to gain other properties. We have used the model derived for
the evolution of the principal error function to design a controller that
tracks changes in the differential equation and its solution. This con-
troller takes the form

hn € ko/k T ki/k
hn+1 h E—.—l (rn+1) (rn+1> hn (62)

It achieves substantially improved error control. Choosing the controller
parameters as k; = kg = 1 provides good overall performance.

The efficiency of an implicit integration method is closely related to
the control strategy used for its equation solver. Based on the model of
the equation solver dynamics we have designed a new strategy that:

e allows for “continuous” stepsize variations, and hence smoother er-
ror control, without excessive operations on the iteration matrix,

o implements a robust strategy for switching between fixed-point it-

~eration and niodified Newton iteration, ‘

e anticipates poor convergence by appropriately scheduling the oper-
ations on the iteration matrix, thus reducing convergence failures,
and
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e achieves efficient integration also when convergence restricts the

stepsize by an optimal choice of the set-point «.s for the conver-
gence rate.

Extensions and Future Research

There are several directions in which the results of this thesis can be ex-
tended. We have mainly studied Runge-Kutta methods, but the method-
ology used is not limited to this case. It is no doubt possible to derive
models for other types of integration methods, e.g. multistep methods.
Once a model is obtained it can be used to analyze and improve the
controller.

Another interesting question is to what extent the controller should
depend on the differential equation. We have been able to derive gen-
eral error controllers which do not rely on specific information about the
differential equation. This is not the case for the control strategy con-
cerning the equation solver. For efficiency this strategy should depend
on the properties of the problem, e.g. problem size, sparse/nonsparse
or banded Jacobian, cost of function evaluation compared to Jacobian
evaluation and factorization cost, etc. A controller that depends on the
process is quite common in control theory, e. g. adaptive controllers, self-
tuning controllers, gain-scheduling, etc. It is probably not possible to
directly apply any of these techniques, but the underlying ideas could
be exploited to obtain a controller that will adapt its strategy to the
structure of the differential equation being solved.

Many numerical methods, e. g. partial differential equation solvers,
optimization routines, etc., have a structure similar to that of an integra-
tion method. They all need supervision and sensible parameter choice
to function properly. It may be beneficial to investigate to what extent
the feedback control analogy could be used to improve efficiency and
accuracy also for these types of numerical methods.
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Some Common
Runge-Kutta Methods

This is a short summary of the main Runge-Kutta methods used and/or
mentioned in the text. Many of the methods include an imbedded error
estimator. We use the notation name(p;)p2, where name is the name of
a Runge-Kutta method and p,, ps are the orders of the two formulas.
The formula without parenthesis is the one recommended for solution
update.

In the methods with embedded error estimator we let y refer to the
low order formula and ¥ to the high order formula. The rational/poly-
nomial functions P(z) and P(z), cf. (2.18) and (2.19), are the updating

- formulas that resilt When applying the method to the linear test equa-
tion, i.e.y = Ay, z = hA. They relate to y and ¥, respectively. The
rational/polynomial function E(z) = P(z) — P(z), cf. (2.19), is the error
estimate for the same equation.
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Appendix A Some Common Runge-Kutta Methods

The methods are given in terms of their Butcher tableaux, i.e.

Ci1 Q11 Qiz2 ... Qig
C2 | Q21 Q22 ... Q2
Cs | Qg1 Qg2 Qs
Yy bl b2 bs
y | b1 bg bs

where

Y; = f(tn+cihn,yn+hn2ainj), i=1...s8
j=1

S
Ynil = Yn+hn ijYj

Jj=1
s ~
5’n+1 = yn'*'hnzijj
Jj=1
€nil = Yn+1 “5’n+1
tn+]_ = tn +hn.

A.1 Explicit Methods

Explicit Euler

Explicit Euler [Euler, 1768; Hairer et al,, 1987, p. 32] is the simplest ex-
plicit method. It is of first order and does not include an error estimator.

P(z)=1+=z
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‘Modified Euler

A.1 Explicit Methods

Modified Euler is a second order method without error estimator.

<m0

Midpoint Method

0
1

BO| bt

DO =

P(z) = 1+z+32°

The midpoint method [Hairer et al, 1987, p. 131] is a second order

method without error estimator.

L lNIH o

RKF1(2)

o= O

0

P(z) = 1+z+32°

RKF1(2) [Fehlberg, 1969; Hairer et al., 1987, pp. 174-175] is one of the
simplest methods including an embedded error estimator. The method
is a combination of explicit Euler and modified Euler.

0
1
Y

y

0 O
1 0
1 0
L1
2 2

P(z) =1+z
Pz) = 1+z+12?
E(z) = —-12°
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Appendix A Some Common Runge-Kutta Methods

RKF2(3)

RKF2(3) is an embedded Runge-Kutta method due to Fehlberg [Fehl-
berg, 1969; Hairer et al., 1987, pp. 169-170].

0|0 0 O

11100 P(z) = 1+z+12°
141 1 o A 3
211 1 P(z) =1+z+32%+ 1z
ylz &2 0 E(z) = -%2°

Vs § 3

RKF(2)3B

RKF2(3)B is an alternative order 2/3 method derived by Fehlberg [Fehl-
berg, 1969; Hairer et al., 1987, pp. 169-170]. Its error. coefficients are
more than 100 times smaller than the ones of RKF2(3).

0 0 0 0 0
% % 0 0 0
P(z) = 1+z+ 122+ L1758

27 | 189 729 =

| 8o 8o O O 2% 7104 . 4
214 1 650 Pz—1+z+ z+z— —_z

1|28 L o (2) 6 ) 1408
214 1L 650 E(z) = "2112Z + 1408z

Y | 881 33 801

A 41 800 -1

Yl ¢ O 53 7@

RKF4(5) - &

RKF4(5) is probably the most used method in the set of ‘embedded
Runge-Kutta methods designed by Fehlberg [Fehlberg, 1969; Hairer
et al., 1987, pp. 169-170].
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A.1 Explicit Methods

0 0 0 0 0 0 0
1 1
1 1 0 0 0 0 0
3 3 9
g 33 35 0 0 0 0
12 | 1932 -7200 7296
13 | 2197 2197 2197 0 0 0
439 3680 —845
1 216 -8 513 4104 0 0
1 -8 9 —3544 1859 -l1
2 27 2565 4104 40
25 1408 2197 —1
Y | 216 0 9565 404 2§ O
A 16 0 6656 28561 -9 2
Y | 135 12825 56430 50 55
- 1,2, 1,8, 1,4, 15
P(z) = 1+2z+52° + §2° + 572" + 1572
> _ 1.2 , 1.8, 1.4, 1.5 1 .6
P(Z)—1+Z+'2-Z +'GZ +-zzz +mz +mz

1 .5 1 .6
E(Z) = 7_862 —mz

DOPRI4)5

Dormand and Prince have derived a family of embedded Runge-Kutta
methods with stage reuse and local extrapolation. One of the most used
is DOPRI(4)5 [Dormand and Prince, 1980, method RK5(4)7M], [Hairer
et al., 1987, p. 171].

0 0 0 0 0 0 0 0
1 1
5 5 0 0 0 0 0 0
3 3 9
16 35 15 0 0 0 0 0
4 44 _56 32
5 45 15 9 0 0 0 0
8 | 19372 25360 64448 -212 0 0 0
9 | 6561 2187 6561 729
1 | 9017 -355 46732 49 5103 0 0
3168 33 5247 176 18656
1 35 0 500 125  —2187 1 g
384 1113 192 6784 84
5179 0 7571 393  -92097 187 1
Y | 57600 16695 640 339200 2100 40
a 35 500 125 —2187 11
Y | 384 0 1113 192 6784 sz O
1. 1.2, 1.8, 1.4, 1097 5 161 .6 1 .7
P(z) = 1+2z 327+ g2° + 232" + 1306002 + 200052+ 340062
T _ 1.2, 1.3 1.4 1.5 1 .6
P(Z)—1+Z+'2'Z +§Z +-2_4-Z +1§'O'Z +6_06Z

_ 97 5 _ 13 _6 1.7
E(2) = 1550002° ~ 250002 T 220062
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Appendix A Some Common Runge-Kutta Methods

VERNS5(6)

VERNS5(6) belongs to a family of Runge-Kutta methods designed by
Verner [Verner, 1978, Table 5]. It is intended to be used without local
extrapolation.

0 0 0 0 0 0 0 0 0

1 1

i5 5 0 0 0 0 0 0 0

1 -1 1

3 I i 0 0 0 0 0 0

2 —2 4 8

5 3T 5 T 0 0 0 0 0

2 40 _4 _56 54

50 33 T T Eh 0o 0 0 O
369 72 5380 —12285 2695

1 73 73 219 584 1752 0 0 0

8 | —8716 656 39520 416 52 0 0 0

9 891 297 891 11 27

1 | 8015 -9 -4219 5985 =539 693
256 i 78 128 384 3328
3 4 243 77 73

Y| & O s 1w 16 w6 O O

2 57 0 —16 1377 121 0 891 2

Y 540 65 2240 320 8320 35
_ 1,2,1,3, 1.4, 15 7 6

P(z)=1+z+ 52+ §2° + 922" + 1502° + 51502

P(z) = 1+z+32°+ 2% + h2* + 352° + =525 + a2
_ 1. .6 _ 1.1
E(2) = —53552° — qag?
DOPRI(7)8

DOPRI(7)8 is another method in the Dormand-Prince family [Prince
and Dormand, 1981; Hairer et al., 1987, p. 193]. It is designed to mini-
mize the error coefficients of the 8th order approximation.

4 The Butcher tableau of this method is a little too large to repro-
duce. We refer to [Prince and Dormand, 1981; Hairer et al., 1987, p.
195] for the coefficients. Moreover, the coefficents of DOPRI(7)8 are ra-
tional approximations with relative accuracy ~ 1078, which makes the
polynomials P(z) and P(z) deviate slightly from the expected Taylor ex-

pansions also for low order z-terms.
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A.1 Explicit Methods

+(1+7.7110 - 107°) 2+ (§ — 25991 107%8) 2% + (& - 5.1606 - 107%°) 2°
(& - 1.7147-107%) 2* + (& - 1.3876- 107"°) 25 + (4 — 2.2932 107%°) 5
(7 —3.0332-107%1) 27 + (4 +2.4267-1077) 28+ (& - 1.7467-1077) 2°
(b +4.1705-107°) 2%+ ( &y — 1.4102- 1078) 2™ + (5 — 2.1898 - 107°) 2™2
+(1-36853-107%) z+ (4 — 4.2503 - 107%) 2% + (4 - 2.2402 - 1071%) 2
+ (4 — 5.4901-107°) 2% + (& - 85307 107%) 25 + (& — 2.6136- 107%) 2°
+ (7 —2.1926-107%") 27 + (4 — 2.5859- 107%) 2® + (& — 3.6039- 107°) 2°
+
(

1 —3.3253-1078) 220+ (g - 66239 1071°) 211+ (4 — 2.2911- 109 ™2

E(z) = (44564-107%2 +1.6512. 107822 + 1.7242 . 1071%2% + 5.3186 - 1071%2*
— 5.3455- 1072925 1+ 3.2043 - 107212° — 8.4060 - 107222 7) +2.4267-107728
—1.7107-10772° +3.7424 - 10782 — 1.3439 - 10782 +1.0132 - 101012

A.2 TImplicit Methods

Implicit Euler

Implicit Euler is the simplest implicit method [Hairer et al., 1987, p.199].
It does not include an error estimator.

11

Implicit midpoint

The implicit midpoint rule is a combination of an explicit and an implicit
Euler step [Hairer et al., 1987, p. 199].

¥

1 \
2+2

2—z

P(z) =

= | o

y
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Appendix A Some Common Runge-Kutta Methods

Trapezoidal Rule

The trapezoidal rule is similar to the implicit midpoint rule, but here the
explicit and the implicit Euler steps are taken in reversed order [Hairer
et al., 1987, p. 199]. With stage reuse the Trapezoidal rule is a one-stage
method.

0|0 0
i%% P(z)=§izz
Y3 3

SIMPLE(2)3

SIMPLE(2)3 is a code developed by Ngrsett and Thomsen [Ngrsett and
Thomsen, 1984; Ngrsett and Thomsen, 1987]. It implements an A-stable
and B-stable (but not L-stable) SDIRK of order 2/3.

1% 0 o0
269 ‘;1 - P(z) = 36 — 24z — 1722
18 |08 6 O ~ 36 — 60z + 2522
_ _ Q.2 1 Q153
% T% _631_3 % 13(z) _ 216 — 324z + 18z< + 91z
o5 26 216 — 540z + 45022 — 12523
y 61 61 0 I ) _ -—623
LY 26 324 1 (2) = 216 — 540z + 45022 — 12523
61 671 11
HW-SDIRK(3)4

HW-SDIRK(3)4 is an L-stable implicit method developed by Hairer and
Wanner, [Hairer and Wanner, 1991, pp. 107].

1 1

1t o o o0 o0

3 1 1

1 3 3 0 0 0

11| 17 -1 1

2| 55 = 1 0 0

1871 -187 15 1

2 | 1360 3720 544 4

11 25 -a9 135 -85 1

“ ot 37 8 i6 12 4 |
59  -17 225 -85

Y| 8 s 3 1 0

5| 25 a9 135 -85 1

Y | 21 13 16 12 4
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A.2 Implicit Methods

768 — 9622 — 1623 + 102*

P(2) = 768 — 7682 + 28822 — 4857 + 324
Blz) - 3072 — 7682 — 38422 + 3228 + 2824
~ 3072 — 3840z + 192022 — 48023 + 60z% — 325
4 _ 5
() - 2824 — 10z

3072 — 3840z + 192022 — 48023 + 6024 — 325

A.3 Method Properties

An important property of an integration method is its stability region.
The stability regions of the methods listed above are depicted in Figure
Al

For the explicit methods, we are interested in the behavior when
stability limits the stepsize. In this case the stepsize-error relation can
be modeled as, cf. (3.22) in Chapter 3,

Gpa(q) = k(f((;qjﬁl)
with (3.23)
_ [ CEg/E, EPS _ [(Cp—Cg)/R, EPS
Bo = {(éEE —1)/k, EPUS’ b= {(Ci - Cf;+ 1)/k, EPUS
and (3.26)
~ E'(hsA) P'(h 1)
Cg(hsA) = Re (h A B, ,1)> Cp(hd) = <h AP(h z,))

The parameters By and ; vary along the border of the stability region,
cf. Figure A.2. As can be seen ¢ normally stays in the interval [1, 1.5]
when 6 = arg(hsA) varies from 7/2 to z. The variations in 1 are larger,
but it normally stays in [—1, 1] when 0 = arg(h A1) varies from 7/2 to 7.
When using XEPUS some of the low order methods (RKF(1)2, RKF(2)3,
and RKF(2)3B) have a ; value that gets larger than 1. The variations
are in general larger for (X)EPUS than (X)EPS.

"The values of ',Bf; and [, are of particular interest for 8 = 7, since
this is what is experienced when solving a differential equation domi-
nated by a negative real eigenvalue. The corresponding parameter val-
ues are listed in Tables A.1 and A.2 .
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Appendix A Some Common Runge-Kutta Methods

EXPEUL

Rl S
Fad P VSR
_____

RKFI(2) ~ --i---m--™ Pasea |
1011 T SSRRNE FR N S e — I — — 4
MODEUL ' f f
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}
Figure A.1 Stability regions of the explicit (upper plot) and the implicit
(lower plot) methods in Sections A.1 and A.2. Only the part of the stability
region that includes the origin is shown.
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EPUS

5

A.3 Method Properties

5

- Figure A.2 The parameters B¢ and 1 of the explicit methods in Section A.1
plotted as a function of 8 = arg(h;1). The upper two plots correspond to using
the method in EPS riiode, and the lower two plots to EPUS mode. The full
lines relate to the case when the high order formula is used for solution ‘update
(local extrapolation), and the dashed lines relate to the low order formula.
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Appendix A Some Common Runge-Kutta Methods

XEPS EPS

Method Bo B Bo b1
RKF12 1.00 0.000 1.00 -0.000607
RKF23 1.00 0.376 1.00 -0.333
RKF23B 1.31 0.0885 1.31 0.0708
RKF45 1.12 -0.0303 1.11 0.0704
DOPRI145 1.17 0.0450 1.20 0.468
VERN56 1.30 0.164 1.33 -0.103
DOPRI78 1.27 0.120 1.27 -0.113

Table A.1 The values for 8, and 3, (3.23) at the intersection of the boundary
of the stability region and the negativer real axis. The values are given for
error control in EPS mode.

XEPUS EPUS

Method Bo B1 Bo B1
RKTF12 1.00 1.00 1.00 0.999
RKF23 1.00 1.06 1.00 0.000 ,
RKF23B 1.46 0.633 1.46 0.606
RKF45 1.14 0.212 1.13 0.338
DOPRI45 1.21 0.306 1.25 0.835
VERN56 1.36 0.396 1.39 0.0766
DOPRI78 1.31 0.280 1.31 0.0133

Table A.2 The values for 8 and 8, (3.23) at the intersection of the boundary
of the stability region and the negativer real axis. The values are given for
error control in EPUS mode.
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List of Notations

A, b, c coefficients of Runge-Kutta method

Cg, Cp parameters in stepsize-error model on 85

e, e local truncation error and local truncation error estimate

E error polynomial/rational in discretization of test equation

h, hg stepsize, stepsize that puts A4 on 45

J, J Jacobian, mean value Jacobian

k exponent in stepsize-error model

ki, kp controller parameters (explicit case)

ki, ko controller parameters (implicit case)

M iteration matrix

p convergence order of integration method

P, P stability polynomial/rational in discretization of test equa-
tion

forward shift operator
norm of local truncation error estimate

stabilify region and boundary of stability region

accuracy requirement

Y stage values
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Appendix B List of Notations

o convergence rate estimate

oLy, OJAC controller parameters (implicit case)

O ref set-point for convergence rate

Jéi stiffness estimate

B1, Bo parameters in stepsize-error model on 85
diagonal element in 4

displacement

set-point for error estimate

parameter in error norm

parameter in covergence rate model
parameter in convergence rate model
parameter in strategy for switching equation solver
set-point for iteration error

principal error function

norm of principal error function estimate

4| © a9 Mm < I 0O D>

backward difference operator

“I think I should understand that better,” Alice said
very politely, “if I had it written down: but I'm afraid I
ca’n’t quite follow it as you say it.”

“That’s nothing to what I could say if I chose,” the
&:D%chess replied, in a pleased tone.
- “Pray dont trouble yourself to say it any longer than
that,” said Alice.

Lewis Carroll, Alice’s Adventures in Wonderland
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