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LECTURE NCOTES ON ALGEBRAIC METHODS IN CONTROL THEORY

— REALIZATION THEORY

Gunnar Bengtsson

Abstract

This report contains lecture notes on algebraic methods
in control theory, delivered at Department of Automatic
Control in Lund. A parallell treatment of the basic
realization theorem for state, fraction and general
operator representation of a linear time invariant
system is made, Relationships between them are also
established.




1. INTRODUCTION

A linear time invariant dynamic system can be described
in several different ways, leading to different frame-
works for algebraic manipulations in e.g. a regulator
synthesis procedure. For control design purposes, there
is clearly a need to know (a} relationships between
‘different types of representations of a linear system
{b) an algebraic framework to perform the formal mani-

pulations.

In this report, we intend to give a brief and selfcon-
téined survey of some different representations of a
linear time invariant dynamic system and the relation-
ships between them. This will be done using realization
theory, il.e. by describing the relationships between
external and internal descriptions of linear systems,.

and the conclusions that can be made from it.

Realization theory is basically an outgrowth of the work
on controllability and observability by Kalman [1]. A
rigorous (axiomatic) theory is given in Kalman [2] and
Kalman et al [3]. In this report we show how to arrive
to the basic realization theorem for different types of
linear systems. The results are taken from [3] (state
equations), [41 (fraction representations) and [5]
{(general operator representations). The proofs are more
or less standard for state and fraction representations,

but we offer a new (and somewhat more direct) procf of

the basic realization theorem for operator representations.




., SOME ELEMENTARY ALGEBRA
We will assume that the reader is familiar with elementary
algebra such as fields, rings etc. The following notations

are used for some common fields and rings.

R £ the field of real numbers
€ 2 the field of complex numbers
z 4 the ring of integers

Polynomial Matrices

Let K be an arbitrary field. A polynomial form with

coefficients in K is an expression of the form
Py +'pl g+ ... +p, S

where Py €K, n€Z and s is an indeterminate. With the
usual definitions of summation and multiplication of
polynomials, they form a ring, denoted Kis]. In the

sequel we will only use the ring R[s].

It is assumed that the readerris familiar with the elemen-
tary results on polynomials, We will concentrate our
effort on some useful results on matrices of polynomials.
A polynomial matrix P(s} is a matrix whose elements belong

to R[s]. An elementary row (column) operation on P(s) is

one of the following operations.

{a) multiply any row (column) with a real nonzero

number
(b) interchange any two rows (columns)

(¢} add a polynomial times one row {(column) to any
other row (column)




A polynomial matrix P(s) is said to be unimodular if
;P(s)_l exists and is also a polynomial matrix.

-gince

det (P(s)'l) = EE?iﬁTET

and P(s) "t is a polynomial matrix, it follows by the
Kramer's rule for the inverse that Pks) is unimoduiar
if and only if detP(s) is a nonzero real number. Any
sequence of elementary row operations performed on P(s)
gives as result a polynomial matrix of the form M{s}P{s)},
where M(s) is unimodular. Conversely, any unimodular
matrix M(s) can be written as a product of matrices

defining elementary row (column) operations.

Two polynomial matrices Pl(s) and Pz(s) are equivalent if
there are two unimodular matrices M(s) and N(s) such that

P, (s) = M(S)Pz(S)N(S). They are row equivalent, if there

is a unimodular matrix M(s) such that Pl(s) = M(S}Pz(s),
and they are column equivalent if there is a unimodular
matrix N(s) such that Pl(s}'= PZ(S)N(S). It is trivial

to show that all the conditions for an equivalence
relation are satisfied. '

The following theorem is basic:

Theorem 2.1 (Smith's form)

Any polynomial matrix P(s) is equivalent to a unigue

polynomial matrix of the form

O =
O

where 8i(s), i€ f1,2,...,r] are nonzero monic polynomials

(2.1)

such that &, (s) divides e, ,(s) (written ey (s)] €4 ().




Moreover, if Di(s) is the greatest common divisor of all
minors of order i, then
D; (s)

O

The polynomials ai(s) in the Smith's form of P(s} are
called the invariant factors of P{s). From the theorem

we immediately have

Corollary 2.1

Two polynomial matrices are equivalent if and only if they
have the same invariant factors, i.e. the same Smith's

form,

Let R{s), Pl(s) and Pz(s) be polynomial matrices. Then,
R(s) is a left divisor of Pl(s) if there is another

polynomial matrix ﬁl(s) such that P(s) = R(s)ﬁl(s). Also,
P, (s} and P,(s)are said tobe relatively left prime if the

only common left divisors are unimodular matrices. The

analogous definitions are made for right divisors.

Now

Theorem 2.2

Let Pl(s) and P2(s) be polynomial matrices of dimensions
r xm and r x s respectively. The following statements are

equivalent.

(i) A Pl(s) and-Pz(s) are relatively left prime
(ii) rank [Pl(s);Pz(s}] = r for all s € ¢
{(iii) [Pl(s);Pz(s)] has Smith's form [Ir 0]

(iv) There are polynomial matrices Xl(s) and X2(s) such
that
Pl(s)Xl(s) + PZ(S)XZ(S) =T

¥




The analoguous results hold for relatively right'prime

polynomial matrices (take transposes above).

Rational Matrices

Let K be aninfinite field. A quotient of the form

p(s) ' |
q(s) (2.2)
where p{s), g{(s) € Kisl, gl(s) % 0, 1is called a rational

form. The egquivalence classes {g%g% | p(s)ql(s) = q(s)pl(s)}
form a field denoted K(s). As a representative of the
equivalence class, we can take (2.2) where p(s) and g(s)
have no common factors and use the ordinary definitions of
summation and multiplications for rational forms. In the
sequel we only treat R(s). As in the polynomial case, we
assume that the reader is familiar with how to manipulate
rational forms and give only a result for matrices of

rational forms, i.e. rational matrices.

Let us first derive a form for rational matrices which
corresponds to the Smith's form in the polynomial case.

Let T(s) be a rational matrix and write

1 B -
T({g) = —— * P(S) {2.3)
d(s)

where d(s) is the least common denominator of all the
entries of T(s) and P(s) is a polynomial matrix. By multi-
plying P(s) from'left and right by unimodular matrices
M(s) and N(s}, we can transform P(s) to Smith's form
according to Theorem 2.1. Dividing each diagonal element
in the Smith's form by d{s), we then obtain the following

Theorem 2.3 (Smith-McMillan form)

Let T(s) be a rational matrix. There are unimodular




matrices M(s) and N(s) such that M(s)T(s)N(s) is of the

unigue form

£, (s)

w0

(2.4)

where ¢, (s), Ti(s) are monic nonzero relatively prime

polynomials such that ai(s)[ei+l(s) and Wi+l(s)[wi(s).

O

In the sequel a rational matrix T(s) represents the transfer
matrix for a linear dynamical system. Let us define the
characteristic polynomial and the order for such a matrix

in the following way. The characteristic polynomial of

a transfer matrix is

a(r(s)) 2

A R

. Wi(s) (2.5)

i
where Y, (s) are the denominator polynomials in the Smith-
~McMillan form for T(s). The order of a transfer matrix

igs defined as

n(T(s)) £ deg a(T(s)) (2.6)

i.e. the degree of the characteristic polynomial. Also, a
rational matrix T(s) is sald to be proper if the degree of
the denominator polynomial is greater or equal to the
degree of-the numerator polynomial for each element of
T(s).




3. DIFFERENTIAL EQUATIONS

Before going into the algebraic machinery, let us just
briefly describe some different ways to represent linear
timeinvariant differential equations. A differential

equation, written as

% (t)

I

A x(t) + B u(t) x(to) = X (3.1)

|

y () C x(t) + D u(t)
is said to be a state representation. Here, uf{t) € R,
v(t) € RP  and x(t) € RP are called the input, output

and the state vectors respectively; A, B, C and D are

real matrices of compatible dimensions.

A differential equation of the form

P(s) y(t) = A(s) u(t)
: (3.2)

-

dt

where P(s) and Q(s) are polynomial matrices with

det P(s) # 0 (the zero polynomial), is called a fraction

representation. Finally, a differential eguation of the

form
P(s) z(t) = Q(s) u(t)

y(t) = R(s) z(t) + D(s) u(t) (3.3)

4
dt

5 =

is called a general operator representation. In (3.3) P{s},

Q({s), R(s) and D(s) are polynomial matrices with elements
in R[s] such that det P(s) # 0. The vector z({t) is an

internal variable, called the partial state. Seemingly,

the operator representation (3.3) contains the state




representation as a special case. However, from this we can
not draw the conclusion that (3.3} is "more general" than

{(3.1). BAs will be seen, this conjecture is not true.

Algebraically, we represent the dynamical systems (3.1-3)

as

r: (4,8B,C,D) state representations
£: {P(s),Q(s)) fraction representations (3.4)

¥: (P(s),Q(s),R(s),D(s)) operator representations

For each of these representations we will define the

following

- a notion of equivalence, i.e. a transformation which

characterizes systems that are "the same”

~ a notion of characteristic polynomial, i.e. a polynomial

whose zeros determine the stability properties of the

system

- a notion of dynamical order,

Now, from standard theory for differential equations, it
follows that gi#en an input u(t) whose laplace transform
exists, there exists a unique solution y(t) to (3.1-3) for
_ o in (3.1), y1(0) in
{3.2) and zl(O) in (3.3). Hence, if we set these initial

conditions equal to zerco, the differential equations

each choice of initial conditions x

(3.1-3) also define a mapping from the input function u

to the output function y, called the input/oﬁtput nmap.

: representative'of this mapping is obtained by taking a
laplace transform which yields

y(s) = T(s) u(s) (3.5)

where
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T(s) = C(s—A)_l B + D
T(s) = P(s) T Q(s) (3.6)
T(s) = R(s) P(s) T Q(s) + D(s)

We call the matrix T(s) obtained in this way the transfer
matrix of the system. We see that a transfer matrix is

a rational matrix.

Conversely, given a rational matrix T(s), the problem of
finding a system I which corresponds to it is the '

realization problem. We may also regard the systems (2.4)

as different ways of rewriting a rational matrix T(s)

according to (3.6).

Remark

The argument s denotes some different things above. In the
d

‘a“ft‘.,
algebraic description (3.4), we let s be an indeterminate.

representation (3.2-3), s = In the corresponding
Taking the laplace transform in (3.5), s € C. However,
in the realization problem, the eguality (3.6) shall hold
with s being an indeterminate., The different interpreta-
tions of the argument s. do not pose any problem,
especially since we in the realization problem {(which is
the problem to be solved) always regard s as an indeter-

minate.




4., STATE REPRESENTATIONS

A state representation of a linear time invariant system

is thus
ﬁ = Ax + Bu
. (4.1)
y = Cx + Du

where the state x(t), the input u(t) and the output y(t)
take their values in R", R and RP respectively and
A, B, C and D are real matrices (linear maps) with
appropriate dimensions. Algebraically, we represent the

system by the quadruple of linear maps (matrices)

z: (A,B,C,D) (4.2)

The characteristic polynomial for I is

=g

d () det (s-2) (4.3)

and the order of Z, written n({X), is the integer n. Note

that n(z) = deg(a(s)) as:for*transfef'matficésﬁ'Furthérmore,

we say that two systems X (A,B,C,D) and Zl(Al,Bl,Cl,Dl) are
equivalent 1f they are related via a nonsingular state
transformation in (4.1), i.e. if there is a nonsingular

matrix T such that

{(4.4)
It is easily seen that this is an eguivalence relation.

l We regard X (A,B,C,D) as the internal description of the
system. The corresponding external description is the

transfer matrix T(s) defined by

T(s) = c:'(s—A)'l B + D _ (4.5)

11




Conversely, any system ¥ (A,B,C,D) satisfying (4.5) is

said to be a realization of T(s). A realization is

said to be minimal if its order is the least possible.
First; we have the following

PrOpositioh 4.1

Equivalent systems have the same transfer matrix, order

and characteristic'polynomial.
The trivial proof is omitted.
In order to establish the realization theorem we need two

further concepts. The system X(A,B,C,D) is said to be

controllable if

rank [B AB ... a1 B} = n

and observable if

where n is the order of Z. We note that the rank of these
matrices are uneffected by a nonsingular state transfor-
mation of the type (4.4).

Proposition 4.2

A system is controllable if and only if there is no
equivalent system of the form

A1 P B

A22 0

=
i
W
i
)
i

(c; ¢,) (4.8)

12



Proof

Let R be the column space of the matrix (4.6)}. By the
Cayleigh~Hamilton theorem AR < R, If thé system is not
controllable r = dim R < n. Moreover, R contains the
column space of B. Therefore, if we make a basis change
in the system X such that the r first basis vectors span
R, the transformed system must have the form (4.8). .
Conversely, since all equivalent systems yield the same
rank of the matrix {(4.6), it follows directly by
evaluating the rank in (4.6) with (4.8) that the system

is not controllable.

O
First, we must show that realizations éxist:
Proposition 4.3
Any proper T(s) has a realization ¥: (A&,B,C,D).
Proof
First write T (s} = Tl(s) + Dl where D1 is a real matrix
and Tl(s) is a strictly proper rational matrix. Also,
write T, (s) = E%ET P(s) where P(s) = Plsn—1 + stn—2-+..
+...+P  and d(s) = sn-+alsn_l-+...-+an is the least
common denominator of Tl(s)‘
Take
—allm ' ~a21m e —anIm Im
A= Im*"' 0 B= 9
0 ' Im 0 0
c=(p, P,...P ) D =Dy

It is easily verified that ¥(A,B,C,D} is a realization
of T(s)}.

13
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We are now able to state the basic realization theorem

for state representations:

Theorem 4.1

Let Z{(A,B,C,D) be a realization of T(s). Then

(i) ¥ is minimal if and only if it is controllable

and observable
(ii) All minimal realizations of T(s) are eguivalent

(iii) If ¥ is minimal, then d(Z) = d(T(s)} and therefore
n(z) = n(T(s)). |

Proof

(i) 1If ¥(A,B,C,D) is minimal but not controllable, there
is an equivalent gsystem of the form (4.8). Then,
Zl(All,Bl,Cl,D) is a realization of T(s) of less order,
which is a contradiction. Hence, I is controllable. By

symmetry ¥ is also observable.

Conversely, let Zi(Ai,Bi,Ci,Di), i=1,2, be two realiza-
tions of T(s) with z, controllable and observable and I,
minimal. As has been shown above, 22 is observable and
controliable. Since q and 22 are realizations of the

same transfer matrix:

-1 _ _ =1
Cl(s Al) B1 + D1 = Cz(s A2) 82 + D2
o L1 21 k~1 .
A power expansion (s-Ai) = I % Ai of both sides,
. b k=1 s '
yvields D, = D and
1 2
k _ k
C; A" By = C, A" B, k0 (4.9

Now, introduce




C.
1
C.A,
_ i1 _ n-1
Qi = : Ri = ABi AiBi <o AY By (4.10)
c,abt
. 12 J
where n > max (nl,nz) and n, = n(zi).
Using {4.9):
QRy = QyR, o (4.11)

Since Zl and 22 are controllable and observable, Ql.and Q2
has rank ny and n. respectively. Also, Rl and R2 has
rank ny and n2 respectively. This implies that n; = n,,

and Zl is minimal.

(id) Let Zi(Ai,Bi,Ci,Di) be two minimal realizations. It
has been shown above (i) that Dl = D2. Also, define-Qi and

Ri as in (4.10). Since both systems are contrcllable and

observable, we can take él = (Q? Ql)_l QT‘ and

R T, ~1
Ry = Rl(R1 Rl) .

By (4.11)

I

Q; Qy Ry By

Set

-3
I
X
ol

Again, using (4.11) we have

O
=
>
}....i
by,
e
I
0
o
g
N
v
B

15




16

which shows that the systems are eguivalent.

(iii) This part will be proven later.

From this theorem we can draw the following conclusions.
From (i) we see that the order reduction that is possible
in a nonminimal state representation is completely
described by the notions of controllability and observabi-
lity (via Prop., 4.2). Frbm (ii), it follows that our
notion of equivalence is rich enough to characterize all
minimal realizations of any given proper transfer matrix.
Finally, {(iii) relates the order and the characteristic
polynomial of a minimal system to the corresponding

concepts for the transfer matrix,




5. OPERATOR REPRESENTATIONS

Below, we treat two types of operator representations

for a linear system, the fraction representation and

the general operator representation. The reason why

we treat them separately is that the algebra becomes
much simpler for the first one. The fraction represen-
tation is also a sufficiently rich representation for

many applications.

Fraction Representations

The system is described by the differential relation

P(s)y = Q(s)u
_ {5.1)

=——@-—
at

where P(s) and Q(s}) are pxp and p xm polynomial matrices
such that det P{g) # 0 and s = é%
operator. The output y{t) and the input u(t) take their

is the differentiation
values in RF and R"™ respectively.

The system is thus represented by a pair of polynomial

matrices Z[P(s),Q(s)) subject to the conditions above.

The characteristic polynomial dy foxr X is defined by
A : _
d(Z) = r-+det P(s) (5.2)

where ¢ is a nonéero real number such that d(&) is monic.
The order of ¥ is the integer

n(z) = deg (a(z}) . (5.3)

Furthermore, we say that two fraction representations

17




Z[P(s),Q(s)) and Zl(Pl(s)’Ql(S)} are equivalent if
there exists a unimodular matrix M(s) such that '

M{s)Py(s) = P(s) ; M(s)Q, (s) = Q(s)

The external descrlptlon of the system Z(P(s} Q(s)] is

its transfer matrix
T(s) = P(s)"lQ(s) (5.4)

Conversely, any system E[P(s),Q(s)] satisfying (5.4) is
sald to be a (fraction) realization of T(s). The

realization is minimal if the order n({Z) is the least

possible.

First we have the analogy of Prop. 4.1 for fraction

representations

Proposition 5,1

Equivalent systems Z(P(s),Q(s)] have the same transfer

matrix, the same ch.p. and the same order. o
(The trivial proof is omitted.)
Also:

Proposition 5.2

Any rational matrix T(s) has a redlization r{P(s),Q(s)).

Proof

Write T(s) = d(s) R(s) where d{(s) is the least common
denominator and R(s) a polynomial matrix. Obviously,.
z{d(s)I,R(s)) is a realization.

o

The basic realization theorem for fraction representations

is now as follows.

138
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Theorem 5.1

Let Z[P(s),Q(s)) be a realization of T(s). Then

(i) ¥ is minimal if and only if P{s) and Q{(s} are

relatively left prime
(ii) All minimal realizations are equivalent

(iii) If £ is minimal, d{T(s)} = A(X¥) and therefore
also n{T(s)] = n(¥).

Proof

For convenience, we omit the argument s in polynomial and

rational matrices,

(i)  {(Only if) Let Z(P,Q) be minimal. Assume that P

and Q have a common left divisor D which is not unimodular,
i.e. P = DP4 and Q = DQ; where det D has degree at least
one. Then Zl(Pl,Ql) is also a realization with order

det det P,y
is a contradiction. Hence, P and Q@ are relatively left

< deg det P, 1i,e. X(P,Q) is not minimal which
prime.

(If) Let Zl(Pl,Ql) be a realization of T with Pl and Ql
relatively left prime and let 22(P2,Q2) be ‘a2 minimal
realization of T. As has been shown above, P2 and Q2 are
relatively left prime. Using Theorem 2.2, there are

polynomial matrices X and Y such that P2X + Q¥ = I, i.e.

_ -1
X+ 1Y = Py
NS S |
X+ P ¥ =P
P.X + Q.Y = PP T
1° 1™ 7 T1t2

which shows that P, P is a polynomial matrix. In the same

2
way one shows that PPy 1 is a polynomial matrix, i.e.
M= Ple_'l has a polynomial inverse and is therefore uni-

modular. Hence, det Pl = det Pz-r, where r = det M is a




nonzero real number. There follows n(Zl) = n(zz)

and hence Zl is minimal.

(ii) Let Zl(Pl,Ql) and Ez(Pé,QZ) be two minimal realiza-
tions of T. According to the if-art of the proof above,

there is a unimocdular matrix M such that Pl = MP2. Then

T = PglM—lQl P;le. A premultiplication with P2 yvields
Q1 = MPZ' i.e. Zl and 22 are equivalent.
(iii) Using Theorem 2.3, find unimodular matrices M and

N such that T = NDM and D is in Smith-McMillan form, i.e.

Take
r“l._ 0 1
Ql - ..er pxn
- O O
J
¢ ‘{‘1.. (m) 3
P, = ...‘Pr ‘ p'xp
1 o 1.
O M,

It fellows directly that D = PIlQl.
Take Z(PlN—l,QlM), noting that N and M are unimodular.

Then £ is a realization of T since

20




1,-1 -1

(PlN ) QlM = NPl QlM = NDM = T
Since, €, and Wi are relatively prime polynomials, there
are polynomials.xi and y; such that xiei +oysvs =1,

i=1,2,..,r, cf Theorem 2.2. Take

X, = X mxp

Yl= Q le.. px-p

It follows immediately that lel + PlYl = I and therefore
also (QlM)(M_le) + (PlN—l)NYl = I. Hence QM and PlN"l are
relatively left prime by Theorem 2.2 and therefore I is

minimal by (i) in the theorem. Now

1

il

a(z) det (le' )

o

r
= ror det P1 = : v, (s)

afr(s)).

Theorem 5.1 givés the same verifications of the validity
of the definitions of equivalence, order etc. as Theorem
4.1 for state representation, From (i} it follows that
the order reduction that is possible in a fraction repre-

sentation = {P(s),Q(s)) can be performed by removing left
divisors (which are not unimodular).from the pair
(P(s),0(s)). Condition (ii) implies that our definition
of equivalence is rich enough to generate all minimal
fraction realizations of the same transfer matrix T(s),

and condition (iii) implies that the definitions of

21
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order and ch.p. is compatible with the definition for a
rational matrix (and also for state representations by

Theorem 4.1 (iii)).

To see the relationship between the "redundance" concepts
in Theorem 4.1(i) and Theorem 5.1(i), let us consider the

following special fraction répresentation

{s-A)y = Bu L {5.5)

where A and B are real matrices. This representation

corresponds to (4.1) with C = 1I.

Proposition 5.3

The polynomial matrices (s—-A) and B are relatively left

prime if and only if (A,B) is controllable.

Proof

First, (S-A) and B are relatively left prime if and only
if rank [s-A2 B] = n Vs € € by Theorem 2.2.

(If) Assume (A,B) controllable but (s-A) and B are not
relatively left prime. Then there exists g € ¢ such
that rank [sy-A B] < n, implying that there exists a

nonzero vector  v € ¢ Such”that VT[sofA B] =0, i.e.
VT(SO-A) =0 and v'B = 0. Then vI[B AB...A""1 B} =
= [vTB SOVTB cen son'lvTB] = 0, which shows that rank
[B AB ... 8871 B] < n, which is a contradiction. Hence

(s-A} and B are relatively left prime.

(Only if) Assume that (s-A) and B are relatively left
prime but (A,B) is not controllable. Using Proposition 4.2,

there is a nonsingular matrix T such that

- A A B
oar~t = 11 “12 B 1

0 A22 0

Il
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Let s, be any eigenvalue to Aoy and let VOT be any (left)

eigengector corresponding to Sy i,e, vaTAzz = sovdr. Take
vl = [0 vgT1T. Then vTA =s vl and viB=0, i.e. 7
VT[So‘A Bl = 0. This shows that rank [sO-A B] < n, i.e.
that (s-A) and B are not relatively prime. This is a
contradiction and therefore (A,B} is controllable.

o
The relationship between the controllability of (A,B) and
the left primeness of the polynomial matrices (s-A) and B
goes still further. Consider {5.5) and assume that (A,B)

is not controllable. Using Proposition 4.2 we have

T(s~A)T"1Ty = TBu
s-Ryy TRy, By
Ty = u
0 s—A22 0

The greatest common left divisor of the polynomial matrices

on both sides is

n(s) =

0 s—A22

Removing this divisor, we get a minimal fraction represen-

tation:

s=Ry; TRy 1 | Ba
Ty = u

0 I 0
The greatest common divisor of (s-A) and B is then

1 (5.5)

from this we see that the greatest common divisor of s-A
and B corresponds directly to the uncontrollable part as
expressed by (4.8).
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The results above are valid for a representation of a

rational matrix T(s) in the form
-1
T{s) = P(s) “0Q(s)

By symmetry, we immediately can state the corresponding

results for representations of the form

T(s) =0y (s)Py(s)
1 1

which corresponds to an operator representation as

Pl(s)z = U

y = Ql(S) zZ

This is left as an exercise for the reader.

General Operator Representations

The system is described by the differential relation
- P(s)z(t) = Q(s)ult)
y(£) = R(s)z(t) + D(s)u(t) © (5.6)
N ,

4
at

where P(s}, Q(s), R(s) and D(s) are polynomial matrices
with det P(s) # 0. The input u(t), the output y(t) and the
internal variable_z(t) take their values in Rm; RP and
RY respectively. The internal variable z(t) is sometimes
called the partial state,

We represent the system (5.6) as

=: (P(s),Q(s),R(s),D(s})




The characteristic pblynomial'for ¥ is

a(s) & r.det »(s) (5.7)

where r is a nonzero real number such that 4(Z) is monic.

The order of £ is the integer
n(x) 2 deg (a(®)) (5.8)

Two systems I, (P;(s),0Q;(s),Ry(s),Dy (s)) and
£,(Py(8),0,(8) /R, (s) D,(s)) are Sald to be equivalent if

there ex1stun1tnmtrlces 11,12 of sultable 51zes, unimodular

matrices Nl(s), N2(s) and polynomial matrices X, (s) and

‘ sz(s) such that (omitting the arguments)

: I 010 I o |
Nlo 1 - N, X, 2 ]
0 PlIQl 0 P2IQ2
XlI---—i—— 0 1| = |=-=--~"- | -~
0--R1|13l 0 -R, | D,

This notion of equivalence needs some further comments.
The expansion with the unit matrix I, just means that we

add some auxiliary internal variables in El according to

El(t) = 0

Yielding e.g. for le

I 0 ){ %, (t) 0
1 . - u(t)
0 Py(s)|| zy(t) 0, (s)
- 2y (t) -
y() = (0 Ry(s)) + D(s)u(t)
: _ z; (t) '

The expansion 12 means the same thing for the system 22

Assuming these expansions are made, let the systems be

Bi(s)zy () = O) (s)ult) (5.10a)
2.3
Ly = R (s)8,(8) + Dy (s)ult) (5.10b)
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and

§2(5>%2(t) = éz{s)u(tj | (5.11la)

¥ = Ry(e)2,(t) + By(e)uie) S (5.11b)

Our notion of equivalence means that we obtain the system
I, from Zl by the following sequence of transformations

(1) Premultiply (5.10a) by the unimodular matrix Nl(s)

(2)  Add X, (s) (=P (s)z, (t) + 0; (s)u(t)) to (5.10b). Note
that the expression within paranthesis is zero by

{5.10a)
(3) Select a new internal variable‘§2(t) = Nz(s)-l

-(%l(t)-+X2(s)u(t)] where N, (s) is unimodular.

The external description of Z(P(s),Q(s),R(s),D(s)) is its

transfer matrix, i.e.
T(s) = R(s)P(s) 1Q(s) + D(s) (5.12)

Conversely, any system X{P(s),Q(s);R(s),D(s)) satisfying

(5.12) is said to be a realization. The realization is

minimal if its order n(X) is the least possible.

First the analogy of Proposition 4.1:

Proposition 5.4

Equivalent systems have the same ch.p., order and transfer

matrix.
The trivial proof is omitted.
The existence of realizations is_established in

Proposition 5.5

Any rational matrix has a realization X(P(s),Q(s),R(s),D(s)).




Proof

By proposition 5.2, there exists a fraction realization
z(P(s),0(s)). Then r(P(s),0(s);I,0) is an operator

realization.

The basic realization theorem for general operator

representations is now as follows.

Theorem 5.1

Let Z[P(s),Q(s),R(s),D(s)) be a realization of T(s). Then

(i) "y is minimal if and only if P(s),Q(s) are relatively

left prime and P(s),R(s) are relatively right prime

{(ii) 211 minimal realizations of the same T(s) are

equivalent

(iii) If T is minimal, then d(X) = a(T(s)) and therefore
also n() = n(T(s)}.

Proof

(i) (only if) Proven in the same way as the corresponding

part of Theorem 5.1.

(If) Assume that ¥:(P,Q,R,D) satisfies the primeness condi-
tions and let Zl(Pl,Ql,Rl,Dl) be minimal. We intend to

show that n((x) = n(Zl). rirst, El gsatisfies the primeness
conditions since otherwise its order can be reduced
according to above. Now, since I satisfies the primeness

conditions, we have

T = RP_lQ '+ D = ﬁ-l(f{Q + BD) (5.13)
where
71 = rp7 L (5.14a)

and both fraction representations in (5.14a) are minimal,
RP_l by assumption and PR by construction. Then by
Theorem 5.1{iii}
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det P = r-det P (5.14b)

for some nonzero real number r. Since both pairs (P,R) and -
(P,Q) are relatively left prime, there are polynomial ‘
matrices X, Y, X and ¥ such that {cf Theorem 2.2)

PX + QY = 1

(5.15)
PX + RY = I

Multiply the first expression from left by R and use (5.14a).
This yields

PRX + RQY = R

Then multiply from right by ¥ and substitute RY from (5.15),

i.e.
B(RXE + %) + (RQ)Y¥ = I

and by a straightforward manipulation
B(RXY + % - DY¥) + (R + BD) (YY) = I

By Theorem 2.2 and 5.1 it follows that (5.13) is a
minimal fraction representation. Since z, also satisfies
the primeness conditions it can be represented as in (5.13)
and since all minimal fraction representations have the
same order this implies that I and Xl have the same order

by (5.14b) and therefore ¥ is minimal.

(ii) Let T = PllQl be a minimal fraction representation.
According to above le(Pl,Ql,Ip,O) is a minimal (operator)
realization. Alsoc let X:(P,Q,R,D) be an arbitrary minimal
operator realizétion. We intend to show that Z ~ Zl which
in turn implies that all minimal (operator) realizations

are equivalent since ¥ is arbitrary. First,

T = RP 10 + D = ﬁ'l(ﬁQ + PD) (5.16)
where

RP =P "R (5.17)




and both are minimal fraction representations. Now, by (i)
above P, RQ + PD are relatively left prime and therefore
(5.16) is a minimal fraction representation. Hence, by
Theorem 5.1 (ii), there exists a unimodular matrix N
such that
NP = P, |
. . (5.18)
N(RQ + PD) = Ql

Moreover, introduce polynomial matrices X, ﬁ, Y and Y as

]
H

XR + YP
{(5.19)

el
e
+
o
[
I
=

which is possible according to Theorem 2.2,
Using (5.17)-(5.19) it is trivial to show that the following
matrix identity holds

X Y | 0}I 0 10 I 0 | ol[x Y IYQ
| | | |

-P. NR | 0}10 P | gl =10 P, lQli-T ® |-D (5.20)

B T | e e . [ T

I 0 | Ijt0 -R | D 0 ~I | 010 0 | I
Moreover, using (5.18) and (5.19)

X Y R -Y I +XY-v%

-P, NR P X 0 N

The righthand sidé_is unimodular and therefore the matrix
X b4
-Pl NR

is also unimodular. Moreover, using (5.19)

X  YP x 1-%xr) (1 -x)[o0o I

-I R : -1 R 0 T -1 R
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which shows that .

X YP

-I R

is unimodular. Hence (5.20) implies that X ~ I, which
shows the result.

(iii) Follows trivially from the fact that a minimal
operator realization can always be taken as a mihimal
fraction realization and the result holds for the latter,
cf Theorem 5.1. This alsc proves Theorem 4.1(iii).

As before, Theorem 5.2 (i) shows that the orxrder reduction

of a nonminimal system r(P,Q,R,D) is performed by removing
1éft divisors from the pair P(s),0(s), yielding P(s),0(s),
and thereafter rémoving right factors from the pair P(s),R(s),
or the other way around. Condition (ii) implies that our
notion of equivalence is rich enough to be able to generate
all possible minimal realizations of any transfer matrix
T(s), and condition (iii) implies that the definition of
ch.p. and order is compatible with that of a rational

matrix.

Furthermore, an‘operator representation of the form

(s=2) z({t) = Bu(t)

y = Cx(t) +_Du(t)

corresponds to the state representation (4.1}). In this
case, minimalit§ is equivalent to s-A, B being relatively
left prime and s-A, C being relatively right prime.rUsing
Proposition 5.3 we see that these conditions are equivalent
to {(A,B) being controllable and (A,C) being observable.
Hence, there is a direct relationship between the
redundancy concepts in Theorem 4.1(i) and Theorem 5.2(i}.

As was shown in the preceding section, this relationship




between controllability and observability and the primeness
conditions goes still further. The greatest common left ‘

divisor of (s-A) and B represents the "uyncontrollable part"
of ¥, cf. (5.5) and (1.8). Quite analogously, the greatest
common right divisor of s-A and C represents the "unobserv-
able part" of I.
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6. COMMON FEATURES

The realization theorems above imply that we established
_bijections between the equivalence classes under (state)
equivalence, (fraction) equivalence and (operator)
equivalence for minimal systems by the transfer matrix.

Denote these equivalence classes

{ ES} set of equivalence classes for state

representations

{E.} set of equivalence classes for fraction

representations

{E_} set of equivalence classes for operator

representations

For either type of representation we have shown that

0 all equivalent systems havé the same transfer

matrix T(s)
o all minimal realizations of T(s) are equivalent

which establish the biljections for minimal systems and

proper transfer matrices (T(s) was assumed to be proper in

the state representation). The bijections are illustrated

below. -
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Moreover, for either type of representation we have shown
that

a(z) = a(r(s))

n(z) = n{T(s))

It

which also means that the notions of characteristic poly-
nomial and order are invariant under the bijections above
(note that equivalent systems always have the same

characteristic polynomial and the same order).

This feature thus holds for minimal systems with proper
transfer matrices. The extension to minimal systems and
nonproper transfer matrices is easily made by first

writing

T(s) =.Tl(s} + D{s)

where Tl(s) is strictly proper and D(s) a polynomial matrix, .
and then letting £{A,B,C,D(s)) be the state realization
where X {(A,B,C,0) is a minimal realization of jﬂs). If the
equivalence between representations of the form’
E(A,B,C,D(s)) are expressed in the same way as in (4.4)

with D replaced by D(s), all what have been said above

still holds.

For nonminimal system, Rosenbrock [5] has established the

bijection between.{ES} and {E,} by proving that

0 within each eguivalence class under operator
equivalence there is a representation of the form
Z(s~A,B,CfD(s)). '

o All representations of the form Z(s—A,B,C,D(s))
within the same equivalence class under operator

equivalence are related via a transformation of the

type (4.4) (allowing D to be a polynomial matrix).
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