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Box 118
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email: {rantzer,mikaelj }@control. lth. se

1. Introduction

A powerful model class for nonlinear systems is the class of piecewise affine
systems fSontag, 1981; Pettit and Wellstead, 1995]. Such systems arise natu-
rally in many applications, for example in presence of saturations. Piecewise
affine systems can also be used for approximation of other nonlinear systems.

A new framework for stability analysis of piecewise affne systems was de-

veloped in [Johansson and Rantzer, 1996] and similar ideas were reported in

[Pettersson, 1996]. It was suggested to search for piecewise quadratic Lyapunov
functions using convex optimization. The approach is considerably more pow-
erful than ordinary quadratic stability [Corless, 1994] and another special case

is polytopic Lyapunov functions, as defined in [Blanchini and Miani, 1996] and
the references therein.

In this paper, the method is developed further, to treat performance anal-
ysis and optimal control. \Me show that several concepts from linear systems
theory, such as observability Gramians, linear quadratic regulators and L2
induced gain can be generalized using the framework of piecewise quadratic
Lyapunov functions.

Quadratic control of piecewise linear systems has earlier been addressed
in [Banks and Khathur, 1989]. The treatment was there based on backward
solutions of Riccati differential equations, and the optimum had to be recom-
puted for each new final state. It is also known that the L2 gain of a nonlinear
system is determined by a Hamilton-Jacobi-Bellman equation or inequality

[van der Schaft, t992]. The linear matrix inequalities presented here give piece-
wise quadratic upper and lower bounds on the solutions to these inequalities
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and can be viewed as alternative numerical methods based on finite difference
schemes [James and Yuliar, 1995].

An important feature of the approach is that a local linear-quadratic anal-
ysis near an equilibrium point of a nonlinear system can be improved step
by step, by splitting the state space into more regions, thereby increasing the
flexibility in the nonlinearity description and enlarging the validity domain for
the analysis. In principle, any smooth nonlinear system can be approximated
to an arbitrary accuracy in this way, so the tradeoff between precision and
computational complexity can be addressed directly.

The paper is organized as follows. The basic setup for system representation
and stability analysis is described in Section 2. This analysis is refined in
the next section, to estimate the transient properties of the system. Optimal
control problems are studied in Section 4 and applied to gain computations
and other integral quadratic constraints in Section 5. Simplex partitions are
discussed in Section 7 and used to prove a converse theorem on existence of
piecewise quadratic Lyapunov functions.

2. Stability Analysis

Consider piecewise affine systems of the form

tæ:a¿lA¿ælB;u
lg:"rIC¿æ*D;u

Here, {Xr}rq C IR' is a partition of the state space into a number of closed
(possibly unbounded) polyhedral cells. The index set of the cells is denoted 1.
Let æ(t) € U¿çyX¿ be a continuous piecewise C1 function on the time interval

[ú0, út]. \Me say that æ(ú) is a trajectory of. the system (1), if for every t e lto,tt)
such that the derivative å(ú) is defined, the equation ù(t) : A¿r(t)*a¿* B¿u(t)
holds for all i with æ(t) e X¿. Given u : 0, the system is said to have an
attracti,ae slidi,ng mode ai æs, if there exists a system trajectory with æ(ú1) : not
but no trajectory with æ(ús) - ns.

We let Io Ç I be the set of indices for the cells that contain origin, and
It Ç I be the set of indices for cells that do not contain the origin. It is assumed
thai a¿ - ci:0, i e .Io. For convenient notation, we introduce

C¿ ci

B¿

0

D¿

foræeX¿

Ii]

(1)

(2)
B¿

Ði

,Ã,i

Õ¿

A¿ ai

00

åi:Ã¿ælB¿u

U:Õ¿æiD¿u

2

Then

for æ e X¿.



The cells are polyhedrons, so we can construct matrices

Er: ¡8, "tl F;: lF¿ l¿l

with e¿ : 0 and f¿ : 0 for i € .I¡ and such that

E¿n>0
Fræ: F¡n

0 > A'rP¿* P¿A¿+ EtiUiEi

01P¿-E'¿W¿E1

0 > A'¿P¿t P¿Ã¿+ E'¿UíE:

a<P¿-Eiwnù,

æeX¿, ie I
æeX¿ÀX¡ i,je I

,ieIo

ielt

(3)

(4)

The vector inequality z ) 0 means that each entry o1 z is non-negative. Con-

struction of the constraint matrices E¿ and 4 will be further discussed in
Section 7. The following result on stability analysis was proved in [Johansson
and Rantzer, 1997].

PRoposrrroN 1-PIECEwISE Quaonarlc STABILITY
Consider symmetric matrices T, U¿ and W¿, such that U¿ and W¿ have non-
negativeentries,while P;: FTTF¿foti e Io andP¿: FTTF;fori e I
satisfy

(5)

(6)

Then æ(ú) tends to zero exponentially for every continuous piecewise Cr tra-
jectory in U¿a¡X¿ satisfying (1) with u:0 for ú ) 0. n

Remark L Note that the assumption that the system equation holds for ali
¿ > 0 prevents application to trajectories ending in attractive sliding modes.
It is however possible to modify the result to cover also such cases. n

In the absence of attractive sliding modes, the above conditions assure that

V(æ) : æ'P;æ æ€.X¿, ie I (7)

is a Lyapunov function for the system. Atty level set of V þ) that is fully con-

tained in the cell partition U¿6¡X;, is a region of attraction for the equilibrium
æ : 0. In particular, if U¿etX¿ covers the whole state space, then the system

is globally exponentially stable.
Proposition 1 can be used for systematic analysis of nonlinear systems

based on piecewise approximations. A linear model valid locally around an

equilibrium point can be refined by splitting the state space into more regions,

each with different affine dynamics. Splitting a given partition also increases

the flexibility of the piecewise quadratic Lyapunov function. The approach is

illustrated in the following example.

3



t2

t1

Figure 1" Simulations (full) and Lyapunov function level surfaces (dashed)

Exaupls l-PlpcpwrsE LrNÐAR ANALysrs
Simulations indicate that the following nonlinear system is stable

ùt : -2æt * 2æz j sat(æp2)æ1

'i:z: -2æt - sat(æp2)(*, + 4*r).

We would like to verify exponential stability of the origin by computing a
piecewise quadratic Lyapunov function for the system. A simple technique for
rigorous analysis of the system is to explore bounds on the nonlinearity

p^in l sat(æp2) 1p,no,

and re-write the model as the differential inclusion

0

æ
-22
-20

* + p(t) æ

10
-1 -4

(8)

with p,,¿n f p(t) 3 p^o,.We notice that analysis using global model based on
the bound -1 < p(t) < 1is futile, since p(ú) - -1 gives the unstable system

æ
-32
-1 4

æ

Taking the step from linear analysis to piecewise linear analysis, we can obtain
a refined model by exploring the fact that

0(sat(æ1*r)1L

in the first and third quadrant, and

-1 <sat(æ1æ2)(0

in the second and fourth quadrant. This observation motivates a model with
four regions, each covering one quadrant. The dynamics in each region is given
by a linear differential inclusion on the form (8). To assure stability of the
original system, we search for a piecewise quadratic Lyapunov function that
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is simultaneously valid for all extreme systems in each region [Johansson and
Rantzer, 1997]. Note that one of the extreme systems in the second and fourth
quadrant is unstable. The numerical routines return the Lyapunov function
with the level curves indicated in Figure 1. This proves global exponential
stability. n

3. Transient Analysis

The objective of this section is to refine the stability analysis by estimating
the "ouput energy" Irl_olU(t)l'd,t as a function of the initial state æ(0). Such
an estimate can be obtained using a minor modification of the Lyapunov in-
equalities, taking the output function into account.

THpoRru l-Upppn Bouwp oN TRANSTENT
Lef æ(t) with æ(0) e X¿o, t(*) : 0 be a continuous piecewise C1 trajectory
of the system (1) with u : 0 for f ) 0. Consider symmetric matrices 7 and
(4, such that IJ¿ have non-negative entries, while P¿: FITF¿ and 4 : FiTF¿
satisfy

0 ) P¿A; + A|P¿ + ClCi + EtiUiE¿

A > P¿Ã¿ + Ã!¿P¿ + Õ'¿Õt + E'rU;E;

ielo
ielt

ieI

Then

l,* wro, < N æe)t n,æ@)

¡
Proof. It foliows directly from the two inequalities that

o > P¿Ã¿ * A'¿P; + C:q + EIUÆ:

Multiplying this inequality from left and right by æ and removing the nonneg-
ative terms including [/¿ gives

0 > 2æ(t)' Páç¡Ã;çt¡æ(t) + ly(t)l'

where i(t) is chosen so that X¿þ) ) æ(ú). Integration from ú : 0 to ú : oo gives
the desired result. n

A lower bound can be obtained similarly.

Tuponnu 2-LowsR BoUND oN TRANSTENT
Let æ(t) with æ(0) , X;o, t(oo) :0 be a continuous piecewise C1 trajectory of
the system (1) with u : 0 for ú ) 0. Consider symmetric matrices S ar'd W¿,
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fr2

u(t)'

r,1

Figure 2 Trajectory of a simulation (left) and corresponding output (right)

10

t

such that W¿have non-negative entries, while Oi -- F:SF1 and O¿: F\SF¿
satisfy

0 < O;A¿ + A!åq + C'iCi - E'¿WiEi

0 < ÕiÃi I Ã'¿O¿ + CIC¿ - E'nWuEo

ielo
ielt

Then

sup æ(O)'Oi.Ø(0) < l"* lul'dt
S,W;

Proof. The proof is analogous to the previous one

Ex¿.rr¡pr,s 2-TnausrENT rN Flownn Ex¿,upln
Consider the piecewise linear system with the cell partition shown in Figure 2

(left) and dynamics given by the matrices

At: A" - -0.1
-1

Ar: As- -0.1
-5

,5

-0.1

1

-0.1

and C¿: [1- 0], i e /. The trajectory of a simulation with initial value
æo : (1, 0 )' moves towards the origin in a flower-like trajectory, as shown
in Figure 2 (left). The corresponding output is shown in Figure 2 (right). This
output has the total energy "ff lUl'dt: 1.88, while solving the linear matrix
inequalities in Theorem 1 and Theorem 2 with the initial cell partition gives
the estimate 0.60 < ff lul" dt < 2.50.

To improve the bounds, we introduce new cells by repeatedly splitting every
cell in two. This simple-minded refinement procedure, illustrated in Figure 3,

is repeated three times yielding the bounds shown in Table 1. Note that the
bounds on the output energy optimized for the initial state (1,0) match closely
over the the whole state space, giving good estimates of the output energy
also for other initial states. The computation time for the final partition is
comparable to the computation time for a simulation giving the same accruacy.
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-.1. -. -

fr2 t2

-1 -¡

t*r-lo1r1

Figure 3 Upper (full) and lower (dashed) bounds on the storage function com-
puted in Example 2. The bounds get increasingly tight when we move from I cells
(left) to 16 cells (right).

Number of Cells Lower bound Upper bound

4

8

16

32

0.60

1.33

1.65

1.78

2.50

2.18

1.98

1.88

Table 1 Lower and upper bounds for output energy.

It should be noted that systems with discorttinuous dynamics require special
attention in analysis and simulation. All simulation examples in this paper
were performed in Omsim fAndersson, 1994] with proper treatment of discrete
events.

In duality with transient estimation, which can be viewed as an observ-
ability problem, one may also consider reachability. The problem is then to
estimate the input energy lí l"(t)l2dt that is needed to reach a certain state
æ(r) starting from æ(0) : 0. However, rather than the reachability problem,
we will next consider a more general class of optimal control problems.

4. Piecewise Linear Quadratic Optimal Control

Consider the following general forrn of optimal control problem.

Minimize [f, L(æ,u)dt

subject to
ie(t): f (æ(t),u(t))
æ(0) : æo

It is well known that solutions of this problem can be characterized in terms

ta
I
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of the Hamilton-Jacobi-Bellman (H-J-B) equation

o : inr (#rr",u) + r,ç,,u¡)

In fact, by integrating the inequality

,.ffr@,u)+L(æ,u)

assuming that æ(oo) : 0, we get

v(*o)- v(o) : - 
lo* frr{*,ùat < l,

Væ,u

L(æ,u)dt

(e)

( 10)

(11)

Hence, every V that satisfies (10) gives a lower bound on the optimal value of
the loss function. In fact, the maximization of V(æs) - y(0) subject to (10)
is a convex optimization problem in I/ with an infinite number of constraints
parameterized by æ and ø. The objective of this section is to solve this problem
in some special cases.

Let us consider the case where / is piecewise linear and -L is piecewise
quadratic. Then, the objective is to bring the system to æ(oo) : 0 from an
arbitrary initial state æ(0), while limiting the cost

l,*J(æs,u) -- (*'Qr* + u'R;u) dt

Here i(ú) is defined so that æ(t) e X;1t¡. Under the assumption that

Qn : 
lQo' :]

P¿A¿iA!¿P¿*Q¿-E\U¿E¿

B'nPu

P¿Ã¿ -f Ã!rP, + Q, - E'ounùn

B'nPo

for i € -Io

this can be done in analogy with the previous results as follows

THnonpu S-LownR Boulo or{ Oprr\dAr Cosr
Consider symmetric matrices 7 and [/¿, such that U¿ have non-negative entries,
while P¿: FITF¿ and 4 : FiTF; satisfy

0<

0<

P¿B¿

R¿

P,B,

R¿

ielo

ielt

Then, every continuous piecewise C1 trajectory æ(t) of (1) with æ(oo) : 0,

æ(0) : rs e X;, satisfies

J(*o,") > 
îî,T 

æ'sP;oæs

I



If the H-J-B equation (9) holds, then I/ has a decay rate given by -L(æ,u),
which is typically negative, so I/ may serve as a Lyapunov function to prove
that the control law is stabilizing.

However, if only the inequality (10) holds, for example as a result of solving
the matrix inequalities in Theorem 3, then there is now guarantee that the
control law (12) is even stabilizing. Still, this control law will be the basis for
our further analysis.

In analogy with ordinary linear quadratic control, we therefore introduce
the following notation.

n
Proof. It follows directly from the two matrix inequalities in Theorem 3 that

I P¿A¿ -r Ã!,Pn + Qn - E¡u,En P,Bt1o<l - | iel- L B'¿P, R¿ j

Multiplying from left and right by (*,r) and removing the nonnegative terms
including [/¿ gives

0 < zr' nÃ¿æ I ætQ¿æ * ut R¿u : fr {r, Unæ) + æ,Q¿æ { ut R¿u

Integration from 0 to oo gives the desired result. n
Theorem 3 gives a lower bound on the minimal value of the cost function -I.

It is natural to also search for a control law that achieves a low cost. Consider
the control law obtained by the minimization

hr (#r(æ,u) t L(*,ù) (12)

L¿: -R;t glPt

&: A¿ I B¿L¿

Q¿ : Q¿ T P¿B;R¡I B,nP¿

The control law can then be written as

u(t): û'(t) :: L¿n

It should be noted that even if the piecewise linear dynamics A¿æ is continuous
'in æ, the control law may be discontinuous and give rise to attractive sliding
modes.

THnonprvr 4-Uppnn Bour{p oN OprrMAL Cosr
Assume that the system 'i: : A;æ, æ e X¿ is asymptotically stable and has no
attractive sliding modes. Consider symmetric matrices ^9 and Iz[, such that
W¿ have non-negative entries, while O¿ : FIS F¿ and O; : FIS F¿ satisfy

0 > O¿A¿ + A!¿O¿ * Q¿ -f E'¿WáE: i e Io
o > Õ¿& + $Õn -f Q¿ -l E',wuùu i e It

L¿: -R¿t B'¿P;

&:Ãr+BiLi
Qo: Qn + PiB¿Rir B,iPi

æ€X¿

I



Then for every initial state æs

J(æs,ût) < ¡5!, 
æ'so¿oæs

Proof . Analogous to the proof of Theorem 3

Exrirrpln 3-LQ ConrRor, oF AN Iuvnnrno Pnnrulul¿
Consider the following simple model of an inverted pendulum

æ1æ 2

,i:z: 
-0.7æz *sin(ær)+z (13)

We are interested in applying the proposed technique to find a feedback control
that brings the pendulum from rest at the stable equilibrium (z-,0)' to the
upright position (0,0)' while minimizing the criteria

J(æ,u) -- I:,4æ?(t) 
+ 4n,(t)2 + uzilt.

A piecewise linear model of the system (13) can be constructed by finding
piecewise affi.ne bounds on the system nonlinearity sin(æ1). For the purpose
of this example, we divide the interval [-4,4] into five segments and compute
the bounds illustrated in Figure a (left). This description of the system non-
linearity induces the partition shown by dotted lines in Figure a (right). The
partition can be viewed as a simplex partition in the æ1 variable, while æ2 is
independent of the partition. \Me apply Theorem 3 to compute a lower bound
on the achievable performance as J(æs,u) 2 L5.2.

It is easy to verify that the closed loop system obtained by applying the
control suggested in Theorem 4 has no attractive sliding modes. To illustrate
the use of local analysis, we compute a piecewise quadratic Lyapunov func-
tion for the closed loop system using Proposition 1. The level surfaces of the
Lyapunov function are shown in Figure a(right). The guaranteed region of at-
traction is given by the outermost level set, which contains the initial value
æo: (T,0)'. Theorem 4 can now be applied to compute the upper bound on
the performance to be J(æs,z) < 16.6. We conclude that both the optimal and
the computed control law satisfy

L5.2 < J(æs,u) < 16.6

The level surfaces of the upper and lower bounds on the value function is shown
in Figure 5. Although the bounds are valid for all initial values within the
estimated region of attraction, they match most closely for the optimized initial
value. In addition, the computed control law is evaluated on the pendulum
model (13) by simulation. The value of the loss function computed in this way
is J(rs,u) : L5.4. n

10



t,,.,,,,.,.,...,.,,,,,:.,,.,.,.,

t2
fr1

0.8

-0.8

-1

-4 -2 -1 12 12 44
fr1 t1

Figure 4 The left figure shows bounds on the system nonlinearity. The right figure
shows the region of attraction for the closed loop system, as estimated by a piecewise

quadratic Lyapunov function.
fr2

-2 -1 4
t1

Figure 5 Lower (dashed) and upper (full) bounds on the optimal cost.

5. Input-Output Gain

As a another application of the central idea, we shall compute bounds on the
-L2 induced gain of a piecewise linear system as u¡ell as other integral quadratic
constraints.

Tnnonpvr 5-Upppn Bour.lo oN ¿2 Garn
Suppose that the system Consider symmetric matrices T, U¿ and Ir7¿ such that
(J¿ and W¿have non-negative entries, while P¿ : FIT F¿ and 4 : FiT F¿ satisfy

0>
P¿A; I A!¿P¿ + CIC¿ + E'¿U;E¿

B'tP,

0<P¿-E|WiEi

P¿B¿

-121

P¿B¿

-'y2I

fori€.Isand

^ I P¿A¿ I A!¿P¿ -l CiC; + ElUiEíu> II, BiP¿

0 < P;- E'.W¿E;

--------f----i

:'---i:;
:: '--i--------
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for i €.I1. Then every continuous piecewise C1 trajectory æ(t), ¿ € [0,2] with
æ(0) : 0 satisfies

1"" 1""
lul2dtlal'dt s f

!
The best upper bound on the -L2 induced gain is achieved by minimiztng 1
subject to the constraints defined by the inequalities.

Proof. It follows as in the proof of Theorem 3 that

Integration from 0 to r gives

o a * @' P;*) + lul' - t'lul'

0 > æ(r)'P;æ(r) +
1""

A¿: A¿ + ¡2 B¿B'¡P,

Q¿: C'¿C; - ¡2 P¿B;B':P¿

(lul' - flul2)dt > lul' - 12lul2)dt
1,"

and the proof is complete. !
In analogy with the previous section, it is possible to compute a lower bound

from an explicit formula for u. To verify that a given number 7 is smaller than
the L2 gain, one may introduce

and apply the following result.

Tnnonnu 6-LowpR BoUND oN ¿2 G¡.rr.r

Consider positive scalars 7i, symmetric matrices S, U¿, W¿, su.ch that U¿ and
W¿have non-negative entries, while O¿: FISF¿, Or: FiSfi satisfy

( o > on'qo + A:P¿ + Et¿u¿Eå
{ fori€Io
|.0 < 

"r 
Q¿ * O; - E|WáE1

o>Õ¿&+n¿Õ¿+E'iuiù¿

01r¿Q¿*Õ¿- E'rWrEt

&: Ã, + {'B¿B'.P¿
Qr: Õ'¿Õt - {'P¿B¿B|P¿

forií-ll

A > ætsÕioæ¡ for some io e I and some æo e X;o

Assume that the state æ6 is reachable from zero in finite time and that the
system i¿ : Ææ has no attractive sliding modes. Then

lul2dtl"' lnro",' l,
T

for some urUrT

L2



n

Proof. Let r : max;6¡{r¿}. Select u(t) Íor ú € [0, ús] such that ø(ú6) : æo â,nd

for ú ) ús use the control law z(ú) :¡2BlP¿æ(ú). Define

v(t): n(t)'Õ¿æ(t) æ(t) e x¿

Then V(to) ( 0 and V'(t) <0 for ú ) úe. Hence

ts

(lul' - t'l"l') dt - r-L t: v(t)dt

ts

(lyf - t'l"l') dt - v(to)(r - ts)lr

The right hand side is positive for sufficiently large ? so the statement is
Iproved. n

Exauplp 4-Anuysrs oF A SATURATED CoNTRoL SysrEM
Consider the control system shown in Figure 6. The output of the system Gt(r)
is subject to a unit saturation. The closed loop dynamics is piecewise affine,
with three cells induced by the saturation limits u : *.L. We set r : 0 and

T
d

Figure 6 Saturated control system.

estimate lhe L2 induced gain from the disturbance d, to the output g. Consider
the transfer functions

l,' lnr - f ø') or, l,

Gr(") :5"rffi, G,("): *#*o

.1,

uu

Estimating the gain using a quadratic storage function fBoyd et aJ.,1994] does
not yield a feasible solution. Using the computations of Theorem 5 we obtain
the upper bound 9.63. A lower bound on the induced gain is computed using
Theorem 6 to 4.81. n

6. Validation of Integral Quadratic Constraints

The results of the previous section can be generalized in a natural way to
validate or invalidate arbitrary integral quadratic constraints (IQC's) for the
nonlinear system.

G'(") Gr(")

13



TupoRnu 7-V¡.lioATroN o¡' INrpcui, Qu,a.oRATIc Cor.rstR¿rNr
Consider symmetric matrices T, U¿ and W¿ such that U; and lrtrl¿ have non-
negative entries, while Pr: plf F, satisfy

0 r lc! o1 ,lt' ol * I 
P;Ã;-r Ai!,_+ EtíuiÛ¿ p;B¿l

-Lo rJ Lo rJ L B"P¿ o l
for i € -L Then every continuous piecewise C1 trajectory æ(t), ¿ € [0,r] with
æ(o) : o, Jo (l'l' +lul'z)dt ( oo satisfies

,.1, [i[:]l .lil,',\)"

Proof. Multiplying from left and right by (æ,2) gives

o=lï]'*[;] _'fi{,,n,r)

and the result follows by integration over [0, *]. ¡
Notice that IQC's with a frequency dependent weight instead of the con-

stant matrix M can be verified with the same theorem by first introducing a
state space realization of the weight and include these dynamics in the system
description.

Instead of asking a yes/no-question about the validity of a particular IQC
one may try to validate the inequality

Uo-/-l uM dt
7u ^lu

for as small values of 7 as possible. Assume thal M22 ) 0 and that an upper
bound on the optimal 7 has been found using Theorem 7. A lower bound can
then again be obtained based on a "control law" defined in term of the matrices
P¿. Let u : L¿æ be defined by minimization of the expression

g UM + 2æ'P¿(Ãiæ -f B¿u)
^lu ^{u

with respect to u. Define "\ and Q¿ as

&: Ã, + BiLi a, : liil * li;,1+ ze,ra, + B¿Li)

Then we get the following analogy of Theorem 6
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THnoRnu 8-IlrvA.r,rDATIoN or lwtncR,t l Qu,o,on¡.rIc CoNSTRAINTS
Consider positive scalars 7i, symmetric matrices S,U¿rW¿, stch that [4 and

W¿have non-negative entries, while Õr: piSp, satisfy

0>O¿A¿+"4ioi+E':U;E¿

01r¿Q¿IO¿- E|W;E;

0>Õr&+A'¿O¿+E'iU¿Ei

o <r¿Q¿rÕ¿- E'rwuù,

foriel¡

fori€1r

0 > r'oÕ¿"æ6 for some io € I and some æo e X¿o

Assume that the state æs is reachable from zero in finite time and that the
system i¡ : &n has no attractive sliding modes. Then

, - l" [i[;ì] *li:,"\1" for some urUrT

7. Simplex Partitions

So far, we did not pay much attention to the partitioning of the state space and
the specification of the matrices E¿ and 4. For a piecewise linear system, with
a given state space partition for the dynamics, it is natural to so the initial
analysis using the same partition for the Lyapunov function or loss function.
However, there are many examples where a more refined partition is needed

for the analysis. The purpose of this section is to introduce some convenient
concepts for this purpose and discuss their properties.

Ãn n-d,imens'ional polytope is defined as the convex hull of a finite number
of corner points in IR". It is called an n-dimens'ional simpler if the number
of corner points is n, * 1. Note that any polytope which is not a simplex can
be partitioned into two polytopes, each with fewer corners than the original
one. Repeating this procedure eventually generates a partition of the original
polytope into simplices (See Figure 7).

A simple and flexible \May to partition the state space is to divide it in to
simplices. In fact, every region with continuous boundary can be approximated
by a polytope built from a finite number of simplices.

Let X C IR' be a polytope with the simplex partition X : l)¿etX;, where
all the simplices have nonempty interior and æ : 0 is a simplex vertex. Let
t/ott/rt... ,up with z6 : 0 be the collection of vertices and define

V:lvo
V:luo

up

up
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Figure 7 Simplex partition of a compact domain of the state space.

Then, each æ has a unique representation as a convex combination æ : Ðt"=o zt"ut,

wilh z¡ ) 0 for all k, Dnzn: l and zk l0 if and only if un € X¿. Define
z:[0zt...zp]'. Then

Ug

æ:))z
æ:Vz

æ€X¿ ie I
æeX¿ ie It

For each simplex X¿, define an entraction matrir t¿ ç p(r+t)x(n+t) of X¿ as
follows. The,k:th row of t;is zeto for all & such that u¡ / X¿ and the remaining
rows of t¿ ate equal to the rows of an identity matrix.

The extraction matrix then has the property thal, z : t¿t'¿z for all z coÍ-
responding to æ e X¿. In addition, the matrix lt¡ í" invertible, due to the
nonempty interior of X¿. Let E¿ and 4 be defined by

F, : lA Iol S¿(l S¿)-'

Er: t:lîr)
for all i e I. Then (3) and (4) are implied by the following proposition.

PnoposrrroN 2

E¿æ:t'nz F¿n:[2, ,o]' foræ€ X¿,ie I (14)

In particulat, e¿:0 and l¿:0 for i e -Io. n
Proof . Let 2 -- lro "r. 

. . . 
"o]'. 

Then

æ:lZ:Vt;t'¿z
z : t¿tlz : t¿ (Vt;)-t ,

F¿n : l0 lol z : fz, "o)'_ r0l
E;æ : r: 

l;,)n 
: slz

The last column of F¿, denoted fi, is identical to lhe z that corresponds to
t : [0. . .01]' - us. Hence l¿ : [0. . .0]'. n
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Remarlc 2. In applications, it is often advantageous to extend the F¿ further,
sothat F¿æ:lrr...zpfrt...*n)'. ¡

Polyhedral Partitions
As a generalization of "polytope", that also allows corners at infinity, X¿ C n"
is called a polyhedronril every æ e X; can be written as

+ t zkuk ( 15)
k=ql\

wilh z¡ > 0, Ðl=ozk:1. The vectors r.4¡...,1/q aÍe finite vertices, while
l/q+t j. .. ,up define vertex directions at infinity. A general'ized s'impleø is a poly-
hedron with p: 2.

Let X : U¿etX; be a polyhedron partitioned into generalized simplices,
each with nonempty interior. Let the partition be given by the finite vertices
t/ott,rt. . . aun_wit¡ uo - 0 and the infinite vertex directions uqlLt. . . ,up.Then,
with y, l, E¿ and F¿ defined as in the previous subsection, all the earlier
statements remain valid, except that the identity Ðn zn: 1 does not include
terms with ,b > q.

Partitioning a Subspace of the State Space

In some cases, it is natural to partition only a subspace of the state space. This
can be done conveniently by replacing æ with Cæ lor some matrix C e lRrnxu

everywhere in the discussion of simplex partitions. Then L/o¡ . . . ,uo e R

Cæ:))z æ€X¿ ie I
and Proposition 2 holds with

q

,:Ð
/c=O

p

zkuk

_ l04: 
Lo

E¿: €'¿F¿

0 a0
(v

10IP
t¿ t,)-'

8. Approximation of Smooth Systems

One motivation for the study of piecewise linear systems is that they can be
used to approximate smooth nonlinear systems. The purpose of this section
is to show how the approximation error can be explicitly taken into account,
in order to generate formal results also for smooth systems. Moreover, we
prove a converse result for smooth nonlinear systems on the existence and
computability of piecewise quadratic Lyapunov functions.

In [Johansson and Rantzer, 1997], it was suggested that upper and lower
bounds of the smooth nonlinearity are used in each polyhedral region. Stability
of the original system follows if it is possible to find a Lyapunov function that
is valid for the bounding systems in all regions. Another good alternative,
particularly for multivariable nonlinearities, is to use a norm bound of the
approximation error in the following manner.
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Tunonnu 9

Let æ(t) be a piecewise C1 trajectory of the system ¡ : f @) and assume that

ll@)-A¿æ-a¿l<e¿læl ieI
If there exist numbers 7r ) 0, symmetric matri ces U¿ and V with non-negative
entries, and a symmetric matrix ? such that P¿: FITF¿ and P¿: FTTF¿
satisfy

ETUiEi { P¿ 1yI
-ETUø: > AT Pn * P¿A; ! 2e¿1¿I

fori€16and

ETU¿Û,<P¿<-y¿I

- ETUE, > ÃT Po + PiÃi | 2eyI

for i € fi, then æ(ú) tends to zero exponentially.

Proof. Define

Vç*¡:æ'P¿æ æ€x;, ie I
The inequalities (16) and (18) imply that

"rl*l' SVçæ¡ < "rl*l'
for some c1,c2 ) 0. Let the approximation error be

( 16)

( 17)

( 1s)

( 1e)

(20)

ã'¿(æ): f@)-A¿r,-ø¿
0

æeX¿,i€I

Then, (17) and (16) together with the assumption lã¿(æ)l < .ulrl imply that

d-..
AVøl 

: *(P¿Ã¿ + 'ÃiP¿)æ + 2rr P¿ã¿(æ)

< -2(r,t, + ó)læ l' + zttlæl 'lã'¿(æ)l (21)

< -61*12 < -6V(æ)lc2 (22)

for some 6 > 0. This proves the exponential decay. n
Theorem 9 quantifies the trade-off between computational effort and preci-

sion in the analysis. If no solution to the above inequalities is found, one may
refine the state space partition for the piecewise linear system approximation
and the piecewise quadratic Lyapunov function, and try again.

It is natural to ask how restrictive this approach is, compared to a theorem
based on arbitrary continuous Lyapunov functions. The answer is given by
the following result, showing that in principle, whenever a Lyapunov function
exists, there also exists a solution to the relevant matrix inequalities.
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Tunonnu 10
Let f €. CI(X,IR') and assume that 0f l0æ is bounded on X. Suppose that the
system * : Í(r) is globally exponentially stable. Then for every sufficiently
refined partition {Xt}{=, with corresponding matrices En, Fu and A¿: f (.¿),
there exists a solution 1t,U;,[J¿,V,V and ? to the inequalities (16)-(19). !
Proof. First note that by a standard converse Lyapunov theorem, see Theo-
rem 3.12 in [Khalil, 1996] for example, there exists a C1 Lyapunov function
V(æ) that satisfies

"tl*l' SV(æ) 1c2læ12

AV
A* Í(*) S - ""1*l'

AV <.nl*l
0æ

for some positive constants cL¡c2¡cs¡c4.The function V can be approximated
by a function V of the form (20) by letting P, : Ff TF¿ with f defined by
(1a) and

? : [1 . . . L]' lV (u1) . . . v (",)l I 2 + IV (ut) . . . v (",))' lt . . . L] I 2

Then

V(rt) - T¿¿ :: V(ru), i e I

and 7 and ôV l0æ become arbitrarily accurate approximations of V and 0Vlôæ
as the partition is refined. Let y be defined by the size of 7. For sufficiently
small approximation errors e¿ the inequalities (23) and (2a) imply that

(23)

(24)

"tl*l' <2-
2

lilP¿lil
æ

æ

2e¿1¿

2cz

2)lil
æeX¿

æ

reX¿

What remains is to find [J¿, [J¿, W¡ and W¿ with non-negative entries such that
(16)-(19) hold. By the C1 condition on /, it can be assumed without restriction
that I/ and 7 are quadratic and positive definite in a neighborhood of æ : 0.

Hence U¿ and W¿ are not needed and can be put to zero. In the regions that
do not contain the origin, 7 is lin"ut, ,o Ú¿ and W; exist by Farkas lemma

[Schrijver, 1986]. This completes the proof. n

9. Conclusions

A flexible and powerful approach to analysis and optimization of control sys-
tems has been developed using a combination of piecewise linear system de-
scriptions and picewise quadratic Lyapunov functions and loss functions.

]'rÃT P'+ P¿Ã¿
1
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Local analysis of nonlinear systems near an equilibrium is usually done
based on linearization. The linear approximation is good close to the equi-
librium and there is a powerful theory for control and performance analysis
of linear systems. However, as the region of investigation is extended, it be-
comes desirable to take the nonlinear effects more explicitly into account. Using
the framework of this paper this can be done incrementally. Starting from the
purely linear analysis, one can add more and more partitions of the state space
in order to extend the investigated region of state space, piece by piece.
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