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A Model-Based Control System Concept

Karl-Erik Arzén

Department of Automatic Control
Lund Institute of Technology
Box 118, 221 00 Lund, Sweden

Abstract: A new concept for distributed control systems is outlined. The
concept is based on a plant database containing descriptions of the plant
together with the control system. The database is object-based and supports
multiple view of an objects. A demonstrator is presented where a DCS
system of this type is emulated. The demonstrator contains a number of
control, monitoring, and diagnosis applications that execute in real time
against a simulation of a Steritherm sterilization process.

1. Introduction

The evolution of industrial control technology during the last 30 years has
moved in the direction of computer-based implementation and integration
of functionality (Lukas, 1986). Analogue controllers have been replaced by
digital controllers. Discrete controllers are replaced with distributed control
systems (DCSs) that also includes the functionality of relay systems and pro-
grammable logic controllers (PLCs). Supervisory control and monitoring is
integrated with the low level continuous control loops, interlocking logic,
and sequence logic. On the higher levels of the DCS, information man-
agement systems provide plant-wide services such as planning, scheduling,
and optimization.

The process operation tasks, i.e., control, monitoring, fault detection, diag-
nosis, scheduling, planning, production optimization, etc., interact strongly
with each other and should not be treated as individual problems (Pekny et
al, 1991). The interaction may involve exchange of information between the
tasks or the fact that most of the tasks are based on some, implicit or ex-
plicit, description or model of the process. However, all too often the tasks
are treated individually resulting in poor process operation. There are two
major reasons for this. The first is the lack of unified theoretical frameworks
and design methodologies for integrated process operation. An example of
a problem that remains to be solved are how control and on-line diagnosis
should be combined. The second problem is the lack of integrated environ-
ments where the operation tasks can be designed, and implemented. The
latter problem is the topic of this paper.

Current DCSs focus almost entirely on process operation. However, there
is a clear need to integrate also other plant activities such as plant design,
control system design and configuration, plant maintenance, and re-design.
For example, the process knowledge, e.g., dynamic models, derived dur-
ing plant design is only marginally accessible during plant operation. The
heuristic plant knowledge obtained from experience by operators is only
seldomly fed back to the plant designers.




A result of the lack of plant integration is that process knowledge is spread
out, duplicated, and documented in a variety of different forms and places,
e.g., in CAD systems, in various documents and manuals, in plant engi-
neering and design databases, in the models of process simulators, in the
knowledge base of real-time expert systems, and in the DCS database. To
retain consistency among all this information is very difficult. An example
of the strive towards integrated representation of plant information is the
CALS (Computer-aided Acquisition and Logistic Support) project initiated
by the US Department of Defense (Smith, 1990). The ultimate goal of CALS
is to develop integrated product databases that will contain the informa-
tion needed for the design, manufacturing, and maintenance of complex
industrial systems with the primary applications in the weapons industry.

Plant integration has hitherto mainly been adopted by the manufacturing
industry where, e.g., CIM has become a well-known acronym. However
as competition increases integration will also be necessary in the process
industry. For example, due to economic constraints and safety regulations
future chemical plants will be more closely coupled with fewer intermediary
storages. This puts higher demands on integrated control and supervision
in order not to jeopardize safety. Increased quality considerations according
to, e.g., ISO 9000 also increases the demand for integration. Process indus-
try, in general, also becomes more customer oriented with requirements on
production of smaller volume, high valued added products. The CIM type
integrated manufacturing is often named CAPE (Computer-Aided Plant En-
gineering) or CAPO (Computer-Aided Process Operation) in the process
industry (Reklaitis and Spriggs, 1987).

This paper presents an overview of a new concept for DCSs developed
within the KBRTCS (Knowledge-Based Real-Time Control Systems) project
(Arzén, 1990; Arzén et al, 1990) performed between 1988 and 1991 as a part
of the Swedish National Information Technology Research Programme, IT4.
The partners of the project have been the Department of Automatic Control
at Lund Institute of Technology, Asea Brown Boveri, and during parts of
the project, SattControl, and TeleLogic. The aim of the project has been to
develop a concept for future generations of DCSs based on a plant database
containing a description of the plant together with the control system. This
plant database, in the sequel referred to as the knowledge base, constitutes
a single representation for “all" the information needed for the different
phases of a plant life cycle, e.g., design, operation, maintenance, etc. The
background and further motivation for the project is given in Section 2.

The project has focussed on the structuring concepts needed in the knowl-
edge base. The knowledge base is essentially object-oriented with classes,
objects (i.e., instances), and hierarchical objects. The knowledge base also
contains objects representing systems by which is meant flows of mass, en-
ergy, or information in the process. The knowledge base supports multiple
representations, or views, of a single physical object. In order to hold to-
gether different views of the same object the concept of multi-view objects
has been defined. The control system concept is overviewed in Section 3.

Steritherm, a sterilization process from Alfa-Laval has been used as a test
process in order to evaluate the concept on a "real” process that is represen-
tative for a large class of industrial processes. As a means for visualizing
the concept a demonstrator has been developed. The demonstrator imple-
mented in G2 from Gensym Corp (Moore ef al, 1990) contains the knowledge
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Conventional
control system

Figure 1. Add-on solution for real-time knowledge-based systems

base containing the plant and control system description, an operator inter-
face, a process engineer interface, and a graphical browser for inspecting the
knowledge base. Within the knowledge base different control, monitoring,
diagnosis, and planning applications have been implemented. These in-
clude Grafcet-style sequential function charts for the sequence control logic,
rule-based monitoring, fault-tree based off-line diagnosis, on-line diagnosis
based on quantitative constraint models, on-line diagnosis based on qual-
itative signed directed graph models, alarm analysis based on functional
models, and order scheduling. The demonstrator is described in Section 4.

2, Background and Motivation

When the KBRTCS project started in 1988 its main focus was real-time
knowledge-based systems. For a long time there has been a strong inter-
est in knowledge-based systems (KBSs) within the process industry. Many
applications of different types including expert control, fuzzy control, on-
line monitoring and diagnosis, off-line trouble-shooting, and planning, have
been proposed and tested in pilot projects. Systems that are in regular, day-
to-day operation are still not common. The major reason for this is the lack
of integration between KBSs and conventional control system (Arzén, 1989;
1991a).

The interest in the process industry for knowledge-based systems has cre-
ated a market for expert system tools specially aimed at real-time, on-line
applications. Today several such tools exist with G2 as a good example.
Usually, these tools are separate, “add-on" systems that have an on-line in-
terface to the control system as shown in Fig. 1. Through the interface,
process measurements and events are transferred to the expert system for
analysis. The output from the expert system is advice to the user, usually
the process operator, and parameter changes to the control system.

Although, in many cases the only possible solution, the “add-on" solution,
has many problems. The major problems stem from the fact that the systems
are different. The systems come from different suppliers, require different
expertise, use different hardware and software and above all, in many cases
have different end-user interfaces. The interface between the KBS and the
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control system is separate from the control systems internal communication
network and may cause communication bottlenecks. Furthermore, large
amounts of data and information such as process parameters and schematics
are represented redundantly in both systems causing problems with main-
taining consistency.

With this as a background the goal of the project was initially to spec-
ify a new concept for DCSs that allowed the merging of the functionality
of current DCS systems with the functionality of real-time expert system
tools. This new DCS was termed a knowledge-based control system (KBCS).
The aim of the concept was to combine the strong features of real-time ex-
pert system tools such as explicit knowledge representation, support for
representing heuristic knowledge, object orientation and support for rule-
based reasoning, support for temporal reasoning and for reasoning about
dynamic environments, and user-friendly interfaces, with the strong fea-
tures of modern distributed control systems such as support for algorithmic
representation of control logics, speed, distribution, good graphical operator
interfaces, and hardware and software reliability. The time horizon before
DCSs of this type would emerge was estimated to be 10-15 years.

However, gradually the focus of the project was widened to also include
integration of other types of information and knowledge than the traditional
expert system type “heuristic knowledge" and to look upon other techniques
than knowledge-based. Hence, in retrospect the real focus of the project
has been to find a system architecture that supports the representation and
real-time manipulation of a large variety of different types of information
concerning the

» design of the plant and the control system,

e  process components, raw materials, and products,
¢ plant documentation,

» simulation of the plant,

¢ plant operation, e.g., continuous control, sequence control, monitoring,
on-line diagnosis, etc.,

e maintenance, and the
¢ long-term planning,

Hence, the project aims to cover so disparate items such as on-line infor-
mation and documentation systems, 3-D geographical process descriptions,
process models that could have different usages, e.g., simulation, diagnosis,
etc., and on different forms, e.g., quantitative models, qualitative models,
functional models, etc., control and monitoring algorithms, heuristics for
process operation and monitoring, etc.

The main reason for the widened scope of the project was the insight that
the problems with redundant information stored in more than one place
with accompanying problems of consistency are general problems in pro-
cess design, operation, and maintenance. Another common factor is the use
of models. Models of various forms, e.g., quantitative, qualitative, static,
dynamic, topological, functional, behavioral, etc., and of various degrees of
detail are used, explicitly or implicitly, in almost all phases of a plant’s life
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cycle. Models are used off-line as a means for designing the plant and the
control system as well as on-line as a part of the controllers and the diagno-
sis systems. Ideally one would like to have one “high-fidelity" model from
which all other models could be automatically generated. This is, however,
hardly realistic. Therefore the knowledge base must support multiple mod-
els of the plant, each intended for a specific task. In the Al community
a similar situations exist for knowledge representation. A single uniform
all-purpose knowledge representation technique does not exist. Knowledge
representation and use cannot be completely separated.

The main part of the project has focussed on the internal structure of the
knowledge base. With the large amount of information of different kind
that should be represented in the knowledge the right choice of structuring
mechanisms is essential. The structuring mechanisms form the backbone
of the knowledge base onto which the various pieces of information can be
attached.

Maintaining the knowledge base cosistent is important. Automatic meth-
ods for ensuring consistency in knowledge bases of the kind envisioned in
this project do not exist.. The approach to support consistency-is instead to
store all information regarding an entity in one place in the knowledge base
and thereby simplify for the users to keep the information consistent.

3. The Concept

The KBCS concept is based on a knowledge base that is shared between all
the users of the systems. The knowledge base should have the potential to
represent what today is found in

e conventional DCS systems, e.g, descriptions of control logic, alarm
logic, operator interfaces, real-time and historic data;

e CAD systems, e.g., electrical drawings, 3-D object descriptions;

¢ information management systems, e.g., descriptions of higher level su-
pervisory and planning functions;

¢ on-line documentation systems, e.g., various manuals, data sheets;

e design databases, e.g., process component information, product infor-
mation;

» plant simulators, e.g., dynamic models; and

s real-time knowledge based systems, e.g., qualitative models and heuris-
tics.

Since DCS systems are distributed it is clear that the knowledge base cannot
be one physical unit. Instead it must be distributed onto multiple nodes of
the DCS. For example, due to real-time requirements the dynamically up-
dated parts of the knowledge base, e.g., sensor signals must reside at the
place where they are most frequently used. It is also clear that different
implementation techniques, e.g., real-time databases, hypertext databases,
relational data bases, object-oriented databases, etc., must be used to imple-
ment the various part of the knowledge base, However, what is important is

5



Process
enginears

Maintenance
Operators ?sonnei
Dasigners
Elecricians (rmsaanlcal. process,
control system, ...}
Process
Figure 2. The knowledge base
Component
descrpi\gﬁons Maodals Systems :
Documents PLC code Kn’ow‘edge Base
Control Diagnosis Contents
Represented procedures components
by * ] -~ *
Equations
Objects / R”(\ ) Knowledge Base
Bimaps oy Language
V Procedures
Multi-view objects

Figure 3. Knowledge base contents and language

that the knowledge base appears to the users as a single, uniform database
according to Fig. 2.

Some parts of the knowledge base are executable, i.e., they consist of control
code, logic, etc., that should be executed on-line. Other parts are of a more
static nature, e.g., documents. The contents of the knowledge base are
represented by a knowledge base language that contains objects, multi-view
objects, rules, equations, procedures, text, bitmaps, etc., as built in data and
program structures, see Fig. 3.

Two sources of influence for the knowledge base language have been Sat-
tLine from SattControl (Eimquist, 1991) and G2, Sattline is a DCS from
SattControl that is based on an object-based language that contains control
logic descriptions together with the operator interface description. Sattline
is programmed from the operator stations and the executable code is being
distributed out to the control units. G2 is based on a hybrid programming
language that combines objects, rules, procedures, and equations.

User interfaces: Each user of the KBCS interacts with the system via his
custom user interface. These interfaces are designed to meet the require-
ments from different users regarding what information that should be pre-
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sented and how it should be presented. Through the custom interface a user
has access to the parts of the knowledge base that are needed for him to
fulfill his normal tasks. Personal preferences on how the information should
be presented, e.g., in terms of picture layout, types of interaction facilities,
etc., are also reflected in the custom user interface. The definitions of de-
fault versions of the custom user interfaces for the different user groups are
a part of the knowledge base.

Knowledge base browser: In addition to the custom interfaces all users
also have access to the knowledge base browser. The browser constitutes
a common, user-independent graphical interface through which the entire
contents of the knowledge base is made available to the users. The graph-
ical presentation of the knowledge base contents, ie., the objects and their
connections, is the same for all users when seen through the browser. This
presentation format is a default format that constitutes a common reference
frame for all users. In the custom interfaces, however, the same knowledge
base object may be presented differently to different users.

Tools: The knowledge base is accessed through tools. The tools are of two
main types: design tools and realization tools. Design tools are used to
support the different designers when they build up the knowledge base.
The design tools are either application independent or specific to an appli-
cation, e.g., to a specific diagnosis methodology. The design tools are tightly
connected to the custom user interfaces for the designers using the design
tools. Realization tools extracts the executable elements of the knowledge
base language, compiles them to a form better suited for efficient execution,
and distributes them to the processors where they should execute. The
realization tools also set up the communication links between different pro-
cessors and between the processors and the user interfaces. The tools and
knowledge base architecture is shown in Fig. 4.



The tools could also include, e.g., simulators that operates on simulation
equations in the knowledge base or optimization routines. There is a trade-
off between whether a task should be represented within the knowledge
base itself, i.e,, expressed in terms of the knowledge base language or if it
should be implemented by a tool that operates on the knowledge base.

Structuring concepts

The structuring concepts used with the knowledge base are objects, hierar-
chical objects, systems, and views.

Objects: Objects are the basic and most general knowledge representation
formalism used in the concept. Object-oriented representation and pro-
gramming have proven to be very powerful paradigms. A major strength
of objects is that they represent a concept with its associated characteris-
tics as a single entity. In the project the usual meaning of object-oriented
programming is used with class definitions, inheritance of attributes, and
methods.

Objects may represent physical entities, e.g., process components, as well
as abstract entities, It is natural to also view the built-in data and program
structures in the knowledge base language as objects.

An object may have an associated graphical representation, i.e., an icon. This
icon is used to represent the object when the object is seen from the knowl-
edge base browser. Objects have relations to other objects. The relations
may also have graphical representation. i, they are drawn as connections
between the objects. Connections may represent physical connections, e.g.,
pipes or wires, or abstract relations. Using connected objects various types
of graphical structures can be represented, e.g., process schematics, electrical
circuit drawings, graphs, etc.

A problem with object-oriented structuring is that it is highly application
dependent. For a given problem, e.g., diagnosis or simulation, it is quite
easy to find classes and objects that naturally match the problem at hand.
However, another application, e.g., planning, dealing with the same physical
process might require another, quite different, class and object structure. A
situation arises where the users need to represent the same physical entity,
e.g., a process component, as several objects in the knowledge base, each
with its own class definition, attributes, graphical icon, and connections
and relationships to other objects. This situation conflicts with the ambition
that the same knowledge should only be represented once in the knowledge
base, and all knowledge pertaining to the same object should be maintained
as one localized unit.

Hierarchical objects: A hierarchical, or composite, object is an object that
has an internal structure of, usually interconnected, objects representing
the subparts of the object. The composite object has an icon and may be
connected to other objects. When, however, the composite object is zoomed
in upon or “opened” the internal structure of the object is shown according
to Fig. 5.

Hierarchical decomposition is quite natural in a plant database. A plant
consists of processes. A process consists of subprocesses or unit processes.
A unit process consists of process components, etc. However, in the same
way that the class structure is application dependent, the decomposition
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Figure 5. Unit-2 is a composite object that internally consists of Unit-2-A and Unit-2-B.

hierarchy is also application dependent. A single hierarchical decomposition
of a plant does not exist. Instead, the purpose for which the knowledge
should be used determines the appropriate hierarchy levels.

Systems: A continuous process can be divided into a number of systems.
The systems correspond to the different flows of material, energy, or in-
formation in the process. The most important system is the main system.
In a pulp process this would correspond to the pulp system that describes
how wood chips are converted to pulp, flowing through the process from
the impregnation vessel, through the continuous digester, oxygen bleacher,
diffuser bleacher, etc. In the Steritherm case the main system is the milk
system.

The main product system is the raison d’étre for the process. In order for
this system to function properly a number of support systems must exist.
Examples of support systems are the electrical system, the steam system,
the pneumatic system, the hydraulic system, the control system, etc. The
control system has a special role. The control system in the knowledge
base constitutes a description of the actual control system that controls and
monitors the process.

Structuring plant knowledge according to systems has many advantages. It
well reflects the situation of today in the process industry. Different user
groups work with different systems in the process. For example, the main
system, the electrical systems, and the control system are the responsibil-
ity of the operators and process engineers, electricians, and the instrument
engineers, respectively. Furthermore, different systems are documented sep-
arately.

A system is naturally represented by a composite object. The internal struc-
ture of the object consists of process, subprocesses, or process components
that are a part of this system. It is unusual that, e.g., a process component
is a part of only one system. For example, a pump may be a part of the
main system. However, the pump has a power supply and is therefore also
a part of the electrical system. Furthermore the pump may be water-cooled
and, hence, a part of the cooling water system. In each of the systems that
a component is a patt of it, it may have a different graphical representation,
different attributes, and different relations with other objects. The situation
is shown in Fig. 6.
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Views: A system oriented plant decomposition structures the knowledge
base after the physical systems of the process. An object that appears in
multiple systems needs to be described differently in each system as already
pointed out. This is, however, not enough. It is often necessary to be able
te describe an object appearing in one system in more than one way at the
same time, It is also necessary to describe an entire system in more than
one way at the same time.

The different ways of describing an object are named the views of the object.
Each view represents the object in a particular context. Describing an object
from several views is a way of structuring the knowledge about an object
into “natural” parts, i.e., to structure the representation of knowledge about
the object. In software terminology, the term view can also be used in
connection with how information is presented to different users. In the
concept the latter meaning of view is named user view. User views are
what the different users see of the knowledge base through their custom
user interfaces. There may be a one-to-one correspondence between the
views in the knowledge base and the user views but it is not necessary.

A very simple example of when an object needs to be represented from
different views is a electrical circuit consisting of a battery and a lamp.
This is represented by an electrical system object. The electrical system
object can, e.g., be described in terms of its internal structure as described
by an electrical circuit schematic. This consists a topological view of the
object. It may also be of interest to have a functional view of the circuit that
leaves out implementation details. Furthermore, one may want to describe
the object geographically in terms of its size, shapes, coordinates, etc. The
situation is shown in Fig. 7. The electric circuit is represented by three
views: a geographical view, a topological view, and a functional view. The
object representing the battery is a part of all these three views. Therefore,
the battery also has three views and in each of these it can have different
attributes.

Which views that are used to a large degree depend on the application.
However, the topological, functional, and geographical views are of a more
general nature and probably apply to processes in general, independently of
the application. One should have in mind that these views are not always
applicable, and that others always exist. It should also be remembered that
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Figure 7. Different views of a simple electrical system.

all views do not occur on all levels in the plant hierarchy and that in a
particular application perhaps only a very small number of views are used.

An example of other views is shown in Fig. 8. Here, a digraph view
is used to describe the causal relationships among process variable in a
system and a constraint equation view is used to describe the governing
equation constraints in the system. Both the digraph view and the constraint
view could be the basis for different model-based diagnosis schemes as will
be shown in Section 4. Note here that the sensor objects appear in the
topological view. They also appear as nodes in the digraph view and as
failure assumptions in the constraint view.

Multi-view objects

The problem with objects that need to be represented in more than one way
at the same time is solved using multi-view objects. A multi-view object
can be seen as a meta-object that groups together all the representations,
i.e., views, of an object. Each view is represented by an “ordinary” object,
i.e, it is defined in a class definition, has attributes, may be composite, has
relations to other objects, etc. The relationship between multi-view objects
and “ordinary” objects is shown in Fig. 9.

Multi-view objects are used to represent everything that needs more than
one representation in the knowledge base. For example, systems are repre-
sented by multi-view objects. The views of the multi-view object represent
the views of the system, i.e., the topological view, the functional view, etc.
Process components that are part of more than one system or of more than
one view of the same system is represented by multi-view objects. Each
view of the multi-view object represents the process component in a partic-
ular context.

Multi-view objects can also be composite. For example, the multi-view
object representing the entire plant is composed of the multi-view objects
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Figure 9. The relationship between ordinary objects and multi-view objects

representing the different systems in the plant.

Multi-view objects are defined in multi-view class definitions. The multi-
view class definition defines the views of the multi-view object. The defini-
tion includes the names of the views and what classes these views should
be instances of. A multi-view class can be derived from another multi-
view class. In that case the class inherits the views of its superior class.
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The multi-view class definition also defines which attributes that should be
shared between the views. This is performed through an attribute equiva-
lence declaration. The attribute equivalence declaration specifies that two
or more attributes from different view objects should be equivalent, ie,
treated as one shared attribute.

Consider the following simple example where a temperature sensor is rep-
resented by a multi-view object with three views. The first view represents
the sensor in the process schematic, ie., in the topological view of, say,
the main system. The second view represents how the sensor is physically
realized, in this case as a thermo-element that is connected to an analog
input at the controller IO card. The third view represent the sensor in a
causal signed digraph model that is used for on-line fault diagnosis. The
class structure for the temperature sensor example is shown in Fig. 10.
Class definitions for ordinary objects are shown as empty triangles. Class
definitions for multi-view classes are shown as triangles with three circles
in them. In this example we assume single inheritance only, i.e, we have
two class hierarchies. T44 is an instance of the multi-view class Diagnosed-
temperature-sensot.

Muiti-view objects are also used to handle the problem with multiple hierar-
chical decompositions of a plant. Since each view of a muiti-view object can
be a composite object it is possible for a multi-view object to have different
internal structure in its different views. Note that the multi-view objects
themselves are not part of the object hierarchy, except indirectly through
their views. The knowledge base is structured into a set (forest) of hierar-
chies (trees). Each tree contains a hierarchical decomposition of the plant
that fits a certain application. Hence, the different trees can have different
structure. However, generally their overall structures resemble each other,
e.g., the root object in each tree is usually a description of the entire plant
or some system n the plant whereas the leaf nodes are descriptions of the
process components. The multi-view objects bind together objects from the
different trees as a spider’s web according to Fig. 11.

The motivation for multi-view objects is the need to have multiple repre-
sentations in the knowledge base for the same object, in the same time as
the entire object with all its representations is represented by one object.
The solution usually applied in the object-oriented community for an object
that in the same time can be seen as different objects is multiple inheritance.
. Using multiple inheritance each part of the object can be defined in a sepa-
rate class definition. The entire object is then defined by a class that inherits
from all the separate classes. The difference with between this and multi-
view objects is that an instance of a class derived from multiple classes is
still only one object that only may appear in one context. In Struss (1987)
an alternative implementation of views is described. Here views are used
to represent different aspects of process components, e.g., electrical aspects,
thermal aspects, mechanical aspects, etc. All object attributes, connections,
and connection terminals are parametrized by views. Different views can
also have different internal structure.
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Figure 10. Multi-view classes and objects for a temperature sensor
4, Demonstrator

In order to better visualize the KBCS concept a demonstrator has been de-
veloped. The demonstrator has been implemented in G2. Although G2
was originally developed as a real-time expert system environment the cur-
rent functionality of G2 allows it to be used as a general prototyping tool
for general on-line applications combining conventional programming tech-
niques with knowledge-based programming techniques. The goals of the
demonstrator is o

» visualize the KBCS concept by

- mimicing the internal structure of a KBCS knowledge base in G2
including multi-view objects, systems, etc.,

- showing the different interfaces to the KBCS, ie., the knowledge
base browser and the different user interfaces;

14




Figure 11. Multiple hierarchies

*  show how the concept can be used to structure information and knowl-
edge concerning a realistic, industrial process, and

s show how different applications can be implemented in the KBCS.

The demonstrator does not show the distributed aspects of the KBCS con-
cept, i.e., how executable code is extracted from the knowledge base, com-
piled, and distributed to controller units. Also the demonstrator does not
show the designer’s interface to the knowledge base and the tools that sup-
port the designers entering information into the knowledge base.

Steritherm

Steritherm from Alfa-Laval is used as the example process in the project.
Steritherm is a process for UHT (Ultra High Temperature) sterilization. A
UHT product is a liquid that has been subjected to a continuous flow heating
process at a high temperature for a short time, normally 135-140 degrees C
for a few seconds. The purpose of the process is to kill all micro organisms
in the product. If the sterilized product is packed during aseptic conditions,
it can be stored at room temperature during a long time. The most common
product is milk but it is also possible to process cream, coffee, dressings,
sauces, etc. In Steritherm the product is heated indirectly in plate heat
exchangers until the temperature reaches the sterilization temperature. The
product is maintained at this temperature for a few seconds. Then it is
cooled in further heat exchangers and pumped to the packing machine. Fig.
12 shows a schematic of Steritherm. From a system point of view Steritherm
contains a main system, a warm water system, a cold water system, a steam
system, two electrical systems, a pneumatic system, and a control system.

Steritherm is a continuous process with large sequential elements. It has
four main phases: sterilization, production, intermediate cleaning, and final
cleaning. Before production starts the process is sterilized. This is done
by pumping hot water through the main system. Normally production
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STERITHERM PROCESS

Figure 12. Steritherm schematic (taken from the G2 demonstrator).

goes on for 6 to 8 hours before the burn-on that takes place in the heat
exchangers has reached the level where production has to be stopped and
the process cleaned. Intermediate cleaning is a fast but not so accurate
cleaning procedure that does not require the process to be resterilized.

The G2 demonstrator

The G2 demonstrator consists of the following parts:
o the knowledge base,

s the operator interface,

e the process engineer interface, and

o the real-time simulation model of Steritherm.

The operator and process engineer interfaces consist of a set of pre-defined
pictures that have been designed to meet the demands of the different user
categories. In addition to their custom interfaces both the operator and the
process engineer can chose to look at the contents of the entire knowledge
base through the knowledge base browser. The operator interface is partly a
subset of the process engineer interface, i.e., the process engineer has access
to all the information that the operator has.

Demonstrator Scenario: Although Steritherm is the focus of the demon-
strator, the actual scenario consists of a small dairy. The dairy contains three
Steritherm process (of which only one is simulated) with different capacities.
The products are packed by five packing machines, see Fig. 13. The dairy
can produce four different UHT products: milk, low fat milk, strawberry
flavored milk, and low fat strawberry flavored milk.

The dairy is controlled by a distributed KBCS consisting of two supervi-
sory units (KBSU), four controller units (KBCU), two operator stations, one
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Figure 14, KBCS scenario

process engineer station, and one designer station. The supervisory units
perform the supervisory control, monitoring, and planning functions of the
KBCS. They also contain the knowledge base. The four controller units are
dedicated to Steritherm-1 (S1), 52, S3, and the raw product storage tanks.
It is assumed that the packing machines have their own controllers that are
only loosely interfaced to the KBCS. The situation is shown in Fig 14.

Steritherm simulator: A real-time simulation of one of the Steritherm pro-
cesses implemented using G2's built-in simulation facilities is used as a
replacement for a real process (Christiansson and Ericsson, 1989). The sim-
ulation is object-oriented with objects representing heat exchanger sections,
pumps, valves, tanks, sensors, etc. The flow and pressure simulation is static
and the temperature and level simulation is dynamic. The mechanical reg-
ulators that are part of a Steritherm process, e.g., constant pressure valves,
are also simulated. In the simulation it is possible to introduce various
sensor and process faults. Altogether around 400 variables are simulated.
The static properties of the simulation model have been tuned against real
process data.
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The Knowledge Base
The knowledge base part of the G2 demonstrator consists of:

e the Class definitions,
e the Multi-view class definitions, and

¢ the Object Space.

The class definitions contain the definitions for all the “ordinary objects"
in the knowledge base. Ordinary objects are implemented as G2 objects.
Hence, the class definition for knowledge base objects is equivalent to the
G2 class definition. The class definitions are organized into a graphical tree
structure that shows the inheritance hierarchy. The knowledge base contains
250 class definitions.

Multi-view class definitions contain the definitions for the multi-view ob-
jects. Multi-view class definitions are organized into a tree structure in the
same way as ordinary class definitions. Multi-view objects are not directly
supported by G2. A multi-view object and the objects representing the dif-
ferent views of the multi-view object are all G2 objects. The relationships
between a multi~view objects and its views are represented by G2 relations,
a built in feature for expressing relationships between objects. The number
of multi-view class definitions and, hence, the number of multi-view ob-
jects is relatively small. The reason for this is that only a limited number of
multi-view objects have been modeled.

The object space contains the instances, i.e. it contains the multi-view objects
representing process units or components, and the “ordinary” composite
objects that are the roots in the hierarchical decompositions of the plant.
Multi-view objects representing systems or subsystems are contained in the
multi-view objects representing the process units.

Composite objects are represented as G2 objects that have subworkspaces.
The internal structure of the composite object is represented as intercon-
nected objects placed at the subworkspace.

When the knowledge base is inspected through the browser the user has
access to set of navigation tools. It is possible to zoom in on a composite
object and have the subworkspace of the object shown, thus moving one
hierarchical level down. Tt is also possible to move upwards in the decom-
position hierarchy either one level at a time or muitiple levels at a time. It
is possible to move between different views of a multi-view object and to
the multi-view object itself. From both “ordinary" objects and multi-view
objects one can go to the class definitions. By selecting a class definition
one gets a menu of all instances of the class. Finally, it is possible to move
chronologically backwards to the 10 last visited objects in the knowledge
base.

The top-level object in the knowledge base is a multi-view object repre-
senting the entire dairy. The dairy contains multi-view objects representing
the main system, the 10kV electrical system, the 380V electrical system, the
control hardware system, and the control software system. The number
of systems and the number of views for the systems at the dairy level are
quite small. Steritherm-1 is also represented by a multi-view object. Here
the system and view structure is richer as shown in Fig. 15.
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Figure 15. The Steritherm-1 multi-view object

The other objects that have been modeled as multi-view objects are a few
process components only, e.g., some heat exchanger sections, a temperature
transmitter, a pump, a valve, etc. This is by far not a complete list of what
really ought to be modeled as multi-view objects. However, they serve as
a set of examples of how muiti-view objects could be used. .

The Operator Interface

The operator interface is one example of what a user interface might look
like. The basic idea is that the information presented in the operator inter-
face is generated from the contents of the knowledge base.

The organization of the operator interface is shown in Fig. 16. The top panel
contains a set of mailboxes where warning messages, alarms, production
messages, system messages, etc., are indicated. By clicking on the mail box
the operator opens it and there he can read the messages, scroll through
the contents of the mailbox, acknowledge messages, etc. The right hand
side panel contains buttons. By clicking on the buttons the user selects the
picture he wants to see in the picture area.

Currently the operator can select to see six different pictures. In Fig. 16, a
process schematic of Steritherm-1 is shown in the picture area. The other
pre-defined pictures are a dairy overview schematic, a matrix display show-
ing the interconnections between tne dairy units, a matrix display showing
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Figure 16, Operator interface set-up

sequence control information about the Steritherms, the sequential function
chart containing the sequence control logic for Steritherm-1, and a produc-
tion scheduling display showing the output of the production scheduling
presented on Gantt diagrams.

By clicking on the top-most button (the door) the operator enters the knowl-
edge base browser. It is also possible for the operator to enter the knowl-
edge base at a specific place. For example, from the PID controllers in the
Steritherm schematic it is possible to enter the knowledge base at the PID
object.

The Process Engineer Interface

The process engineer interface has the same organization as the operator
interface. The difference is that the process engineer has access to more
information. In addition to the operator pictures the process engineer can
see a signal analysis display where he can plot different signals, a product
following display that shows the output from the product following ap-
plication, a diagnosis display that shows more detailed information about
the on-line monitoring and diagnosis applications, and a hardware display
through which he can check the status of hardware units, communication
units, etc.

The process engineer interface is shown in Fig. 17. The picture area here
shows the Steritherm-1 sequential function chart.
Applications

A number of control, diagnosis, and scheduling applications have been im-
plemented. The focus has been on non-conventional approaches to on-line
model-based diagnosis. Three such applications have been implemented:
DMP, MIDAS, and MFM.

The applications are:
20




Figure 17. Process engineer inferface

e PID control,

»  sequence control implemented using Grafcet-style sequential function
chart formalism,

e rule-based burn-on monitoring,

e model-based diagnosis based on quantitative governing equations ac-
cording the the Diagnostic Modeling Processor (DMP) method,

e model-based diagnosis based on qualitative causal digraphs and event
models according to the MIDAS formalism,

e  Multi-level Flow Model (MFM) based alarm analysis,
s fault tree based off-line diagnosis,

e  heuristic production scheduling, and

» a product following system.

PID control: The PID controllers are implemented as G2 objects. The PID
algorithm is represented by a G2 procedure that is executed when the con-
troller is sampled.

Grafcet: The sequence control logic has been implemented using Grafcet
formalism (David and Alla, 1992). Steps are represented as objects. The
steps contains actions that are performed when a step is active, Examples
of actions are open a valve, start a pump, etc. Steps can have an internal
structure of substeps, i.e., they can be macro-steps. Transitions are also rep-
resented as objects. Associated with each transition is a condition that is
tested when the step preceding the transition is active. When the transi-
tion condition becomes true the preceding step is deactivated and the step
succeeding the transition becomes active. Alternative and parallel paths are
allowed (Arzén, 1991b).
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Rule-based monitoring: G2 rules are used to monitor the burn-on that
occurs in the heat exchangers. Burn-on is detected by monitoring the mean
values and trends of differential pressure sensors and control signals. This
is expressed as G2 rules that operate apon time histories.

DMP: The Diagnostic Model Processor method (DMP) (Petti and Dhurjati,
1991; Petti 1992) is based on quantitative constraint equations called model
equations written on residual form. The equations may contain anything
that can be calculated at run-time including past sensor values, mean values,
etc. Usually the equations represent some kind of static or dynamic balance
equation.

Associated with each equation are tolerance limits which represent the ex-
pected (fault free) upper and lower values of the residual for which the
equation is considered satisfied. Also associated with each equation is a
set of assumptions which if satisfied guarantee the satisfaction of the equa-
tion, e, the residual is close to zero. The model equations are updated
continuously. Since the residuals are not uniform in magnitude, they are
transformed into a metric between —1 and 1 which indicates the degree to
which the model equation is satisfied: 0 for perfectly satisfied, 1 for severely
violated high, and —1 for severely violated low.

Model equations and assumptions are represented as objects. The depen-
dence of a model equation on an assumption is indicated by a dependence
connection. Associated with the dependence is sensitivity information, i.e.,
sensitivity derivatives or heuristically chosen numbers, that indicate how
sensitive an equation is to a deviation in an assumption.

Conclusions about the satisfaction of each assumption (fault state) is made
by combining the evidence from the model equations. This so called failure
likelihood is calculated for each assumption as a weighted sum of the trans-
formed residuals of the model equations that the assumption affects with
the sensitivities taken as the weights. The failure likelihood is interpreted
as indicating a likely condition of the assumption failing high as the value
approaches 1 and a likely condition of the assumption failing low as the
value approaches —1.

DMP allows the detection of non-competing multiple faults. It is based on
taking snapshots of the plant status and checking the satisfaction of dy-
namic and static quantitative balances. It has relations both to parity space
approaches to fault detection (Gertler, 1991) and artificial neural networks.

The DMP models of Steritherm contains 25 model equations and 17 assump-
tions. The DMP network, shown in Fig. 18, is represented as one view of
the Steritherm-1 multi-view object.

MIDAS: MIDAS (Model Integrated Diagnosis Analysis System) is an ap-
proach to model-based, on-line diagnosis developed at MIT by Kramer,
Oyeleye, and Finch, (Oyeleye, 1989; Finch, 1989). MIDAS is based based on
qualitative causal reasoning about deviations from a nominal steady-state.
MIDAS starts with a library of signed directed graph (SDG) models for dif-
ferent process component. An SDG describes the variables of the process
components as nodes and the qualitative relationships between the vari-
ables as arcs between the nodes. Nodes have the qualitative states 0, +, or
— depending on if the process variable is zero, positive, or negative. An arc
between two nodes n1 and n; has the sign +(-) if an increase in ny causes
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Figure 18. The DMP model with only a few of the dependencies shown. The
model equations are arranged in a circle. The assumptions are the objects in the
center with an A in them.

an increase (decrease) in ns. Included in the SDG is also the set of root
causes that might affect the process.

Using the SDG model library an SDG model for the entire process is con-
structed. A problem with SDG models is that they are ambiguous. In many
situations it is impossible to decide whether an variable really will increase
or decrease. To overcome this problem the SDG model is analyzed and ad-
ditional non-physical arcs are inserted into the graph, thus converting it to
an Extended SDG (ESDG). The actual model that MIDAS uses on-line dur-
ing diagnosis is an event graph model. This can be derived automatically
from the ESDG. The event graph consists of events, ie., qualitative state
transitions, root causes, and links connecting events with other events and
with the root causes. The qualitative state of a variable is either high, nor-
mal or low, compared to the nominal steady-state value. That is, for every
measured variable, i.e., sensor, four events are possible: a transition from
normal to high, from high to normal, from normal to low, and from low to
normal. Each root cause is connected to the event that should be the first
symptom of the fault. The links between the events express possible fault
propagations, i.e., chains of events. The links may have conditions attached
to them telling when they are valid and what diagnostic conclusions that
may be drawn when two events are linked together. The Steritherm event
graph is shown in Fig. 19.

Every sensor has an associated monitor which is responsible for detecting
state changes, i.e. events, concerning the variable. The monitors contain
information about the threshold levels, hysteresis, filtering, etc. When an
event has been detected it is sent to the event interpreter. It is also possible
for the event interpreter to perform interrogation, i.e., ask a monitor to
predict an event that has not yet occurred. When the event interpreter
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Figure 19, Steritherm event graph model.

receives an event it tries to, based on the information in the event graph,
link the new event with clusters of old events. The clusters also contain
hypothesized root causes that may have caused the events in the cluster.
Based on incoming events clusters can be merged or split. The set of clusters
is called the hypothesis model. The off-line modeling part of MIDAS and
the on-line diagnosis is shown in Fig. 20.

In the MIDAS model only about two thirds of Steritherm has been modeled.
The SDG consists of 68 nodes and 11 root causes. The SDG, ESDG, and
event graph models are all different views of the Steritherm-1 multi-view
object. A detailed description of the G2 implementation of MIDAS is given
in (Nilsson, 1991). A comparison between DMP and MIDAS is given in-
(Nilsson et al, 1992),

MIDAS is based on qualitative causal reasoning. It can handle multiple non-
competing faults. On purpose the order of events or time between events
is not taken into account during the diagnosis.

MFM-based alarm analysis: Multi-level flow models (MFM) (Lind, 1990)
is a modeling technique used to explicitly represent means-end information.
A process is described in terms of the goals that the process is intended
to fulfill, the abstract functions available for fulfilling the goals, and the
components realizing the functions. Goals are associated with functions
or network of functions through achieve relations and functions can be
conditioned by other goals via condition relations. MFM contains a number
of pre-defined energy and mass flow functions including sources, transports,
barriers, storages, balances, sinks, etc. These are described by a graphical

language.
MFM models can be used as the basis for various monitoring and diagnosis
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tasks, e.g., measurement validation (Larsson, 1992a), fault diagnosis (Lars-
son, 1992b), and alarm analysis (Larsson, 1991). The demonstrator contains
an MFM model of Steritherm that is used for alarm analysis. The flow net-
work representing the thermal energy flow part of this model is shown in

Fig. 21,
25




The task of the alarm analysis is to decide if an alarm is a primary alarm or
if might be a secondary alarm. It is based on a set of generic assumption
on how faults can propagate from flow function to flow function. Some
primary faults in some types of flow functions may cause secondary faults
in the connected functions, while faults in others may not. When the alarm
state of a function is unknown the missing value is deduced using a conse-
quence propagation strategy.

The MFM model is represented as one view of Steritherm-1. It contains as
subparts the MFM mass flow view of the main system and the MFM mass
flow views of the water system.

Fault tree based diagnosis: When a serious alarm occurs in a Steritherm
process the safety logic in the control system automatically shuts down the
process. The task of finding the cause of the alarm is therefore performed
off-line. The fault tree based diagnosis application uses fault trees that
associate an alarm with possible function faults such as a fault in the steam
system, a pressure fault, etc., and that associate the function faults with the
physical component faults that may have caused the function faults. The
fault trees are represented graphically by interconnected fault objects. They
- are traversed giving advice and instructions to operators or maintenance
personnel doing the troubleshooting.

Heuristic production scheduling: The production scheduler is a simple
scheduler application where the aim is to correctly schedule orders com-
ing to the dairy. An order is represented by a G2 object with attributes
containing information about the order number, the product type, the cus-
tomer name, the volume of the order, the package size of the product, the
paper quality, the ceadline when the order must be delivered, the accumu-
lated volume that has been produced of an order, and the priority of the
order.

The scheduler’s output is a schedule that specifies which sterilization and
packaging machines should be used, and at what times, to produce each
order. The schedule tries to meet deadlines and to use the sterilization
machinery as efficiently as possible. The schedule is presented in two Gantt
diagrams, ‘one showing the coarse schedule for the coming week and the
other showing the detailed schedule for the current day. Colour is used to
show what type of milk that is produced and the different operating modes
of the Steritherms (sterilization, production, AIC, CIP). The daily schedule
is shown in Fig. 22. The x-axis shows the hours of the day and the y-axis
the production resources, i.e., the Steritherms and the packaging machines.

Product following: A simple product following system has been devel-
oped. Its intended use is quality follow-up. The idea is to be able to record
how the milk has been treated as it flows through the process. Objects rep-
resenting a certain volume of milk are dynamically created at the inlet to
Steritherm, with the creation rate depending on the production. The objects
have attributes representing temperatures, pressures, etc,, in the different
parts of the process. Originally the attributes have no values. As the milk
flows through the process the attributes are gradually filled in with actual
processing data.
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Figure 22. Daily schedule

Demonstrator summary

The goal of the demonstrator is to give a vision of how a future KBCS
might look like. Several control, monitoring, and diagnosis applications
have been implemented. The main motivation for the applications have
been to test how the different process models that the methods are based on
fit with the object-system-view knowledge base structure. In many cases
the functionality of the applications overlap, i.e, both DMP and MIDAS
perform on-line diagnosis and are both capable of diagnosing essentially the
same type of faults. In a real system probably only one diagnosis method
would be implemented. The demonstrator has also served as testbench in
which alternative diagnosis have been evaluated. This has a strong value
in itself.

5. Conclusions

A new concept for DCSs has been outlined. The concept is based on a
database or knowledge base containing different descriptions or models of
the plant including the control system. The paper has focused on the struc-
turing mechanisms needed in the knowledge base. The plant description
is centered around the systems in the plant by which is meant the flows of
mass, energy, and information. In order to handle information that must be
represented in more than one way at the same time the concept of multi-
view objects has been defined.

To verify and visualize the concept a demonstrator has been implemented.
The demonstrator contains the knowledge base and two user interfaces. The
demonstrator has been applied to the control, monitoring, diagnosis, and
scheduling of a small dairy consisting of Steritherm processes. The demon-
strator applications has focused on different approaches to model-based
on-line diagnosis. It has been possible to evaluate different approaches to
diagnosis on the same process.
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The development of a new DCS generation is a major involvement. Require-
ments on backward compatibility makes it unlikely that a new DCS will be
developed from scratch. Instead DCS system will hopefully gradually de-
velop along the direction pointed out in the project. The development of
integrated DCSs is not an issue for the traditional DCS developers only. It
clearly also affects the developers of CAD systems, documentation systems,
etc. Therefore it is important that standards are defined that allows an open
system approach. A step in this direction is the Express language for data
modeling (Schenck, 1990) and the CALS project.

A question of more philosophical nature is if it at all possible to gather
“all" plant information in a single database. It is quite clear, even from
the relatively small Steritherm example, that the amount of information is
enormous. However, an integrated DCS would be of great value also if only
parts of the information would be included, e.g., the information concerning
only the plant operation.
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