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Abstract. It is shown how first-order performance estimation of high-order adaptive optics (AO) systems may be efficiently
implemented in a hybrid numerical simulation by the use of 1) sparse matrix techniques for wavefront reconstruction, 2)
undersampled pupil-plane turbulence-induced aberrations, and 3) analytical models that compensate – in the limit of infinite
exposure time – for the errors introduced by undersampling. A sparse preconditioned conjugate gradient (PCG) method is
applied for wavefront reconstruction, and it is seen that acceptable AO performance may be achieved at a relative error tolerance
of 0.01, at which the computational cost of the sparse PCG scales approximately asO(n1.2), wheren is the number of actuators
in the system. Estimations of adaptive optics performance for extremely high-order systems are presented, including multi-
conjugate and laser-guide-star-based systems. The scaling laws for AO performance with telescope diameterD and turbulence
outer scaleL0 coupled with the use of laser guide stars are also investigated. It is shown that a single or a small number of laser
guide stars (LGS) may still provide a useful level of compensation to telescopes with diameters in the range 30–100 m, ifL0

is on the order of or smaller thanD. The deviations from Kolmogorov theory are also investigated for LGS AO. To the best
of the author’s knowledge, results presented for an = 65 282 case represent the largest multi-conjugate adaptive optics system
simulated in full to date.
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1. Introduction

The technology of adaptive optics (AO) is attaining an increas-
ingly more prominent role in ground-based optical astronomy
as the next generation of telescopes and instrumentation is be-
ing planned. It is clear (Gilmozzi 2000; Ragazzoni et al. 2000;
Snel & Ardeberg 2002; Hawarden et al. 2002) that a near-
diffraction-limited mode of imaging will be required of future
ground-based telescopes with aperture diameters ranging up-
ward from tens of meters to∼100 m, in order to enable such
science as will be unique to that large a telescope and thereby
justify the staggering costs involved. AO systems, as generi-
cally outlined in Fig. 1, are thus moving toward becoming an
integral part of a telescope, and may rightfully claim to be one
of the important “raisons d’ˆetre” for future extremely large tele-
scopes (ELTs). It can be problematic, however, to study and
design adaptive optics systems when the required order of the
system, as represented henceforth by the total number of ac-
tuatorsn, becomes very large. The computational cost for a
conventional wavefront reconstruction algorithm, a simple
matrix-vector multiplication, is of the orderO(n2) floating
point operations and the cost for the matrix inversion required
to prepare the estimator scales asO(n3). Sincen scales lin-
early with the surface area of the telescope aperture, the com-
putational costs for these two actions will scale asO(D4)
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andO(D6), whereD is the diameter of the telescope. Hence it
is clear that, at some point, a practical problem will arise both
in simulation and real-time control of the system asD grows
large. These scaling laws are illustrated in numbers in Table 1.

Current AO systems in use for astronomical purposes range
from ordersn of a few tens to∼1000 actuators, where sim-
ulations are easily manageable. One may estimate that ELTs
with diameters in the 30–100 m range will require adaptive op-
tics systems of ordersn = 103∼106, depending on what de-
gree of correction is desired and whether multi-conjugation
and tomography – multi-conjugated adaptive optics (MCAO)
– are to be employed. Apart from the real-time computational
load becoming overwhelming toward the high end, previous
simulation techniques have been unable to efficiently estimate
long-exposure performance with sufficient accuracy for a large
range of telescope diameters. Modeling efforts of adaptive op-
tics systems may be loosely grouped into two categories: 1)
analytical models predicting the long-exposure performance of
the system as a function of system and observation parameters
(Ellerbroek 1994; Rigaut et al. 1998; Tokovinin et al. 2001;
Owner-Petersen & Goncharov 2002), and 2) Monte-Carlo-type
simulations that mimic the spatial and temporal behavior of the
system by applying spatial algorithmic actions each discrete
time step exactly as they would be applied in a live run of
the system (Flicker et al. 2000; Fusco et al. 2001; Le Louarn
2002; Ellerbroek 2002). In the first case, spatial-temporal ana-
lytical models of the system’s various components (cf. Fig. 1)



1178 R. C. Flicker: Efficient high-order adaptive optics modeling

Real−time
computer

Corrected
phase

Focal plane
image

Tip/tilt
mirror

sensor
Wavefront

Deformable
mirror

Aberrated
phase

Atmospheric
turbulence

Adaptive Optics

Telescope

Reference star

Fig. 1. Generic adaptive optics schematic, introducing the chief com-
ponents that must be incorporated into a first-order simulation of the
system: the reference beacon (“guide star”), atmospheric turbulence,
the telescope, wavefront sensor, deformable mirrors and a real-time
control computer.

are integrated into the analytical formalism of a performance
estimator, which generally amounts to a collection of inte-
grals that may be evaluated numerically for a given set of sys-
tem and observational parameters. Such models can be made
very fast and powerful when focusing on a particular aspect
of the system, by introducing approximations in areas that are
tangential or unimportant to the specific subject of the study.
Analytical performance estimators become increasingly com-
plicated, however, when many aspects of the system are to be
modeled simultaneously to augment the generality and accu-
racy of the results. Apart from the computational issues aris-
ing thus for very high-order systems, it is generally difficult
to find analytical descriptions of closed loop spatial-temporal
statistics that are both accurate and computationally tractable.
For these reasons, full-fledged analytical models of closed loop
AO systems have not yet been applied to extremely high-order
systems. By contrast, the Monte-Carlo-type simulation is only
required to model open loop turbulence, and closed loop prop-
erties will be emergent upon closing the loop in the numerical
simulation. In a Monte Carlo simulation, long-exposure results

are obtained only after allowing the system to run in a closed
feedback loop for many cycles until a statistically significant
average is obtained. In either approach, however, it has been
the case that extremely high-order systems face computational
bottlenecks in the dealing with very large matrices that require
storage beyond the capabilities of ordinary computers – and
even granted storage, handling of and performing computations
with such unwieldy data objects becomes time-consuming to
the point of scientific analysis being rendered infeasible.

It has been recognized that the spatial interaction between
wavefront sensors (WFS) and deformable mirrors (DM) in
adaptive optics systems may in a linearized model be described
by a very sparse linear system. This means that the influ-
ence of a single actuator on the DM is registered only by a
small number of WFS elements (sub-apertures). Sparse matrix
methods that exploit the sparseness of the system to econo-
mize on computations have been applied to the inverse prob-
lem of wavefront reconstruction by, notably, Cochran (1986)
in early investigations and Ellerbroek (2002) (E02) and Gilles
et al. (2002) (GVE02) more recently. The adaptive optics per-
formance estimation model to be investigated in this paper
differs from the latter two on a number of important points.
Whereas E02 uses a Cholesky factorization solver, the sim-
ulation of the current study employs a sparse preconditioned
conjugate gradient (PCG) method for efficient wavefront re-
construction. This is also the approach of GVE02, although
they apply it within a multi-grid framework to increase effi-
ciency further. The PCG has a couple of advantages over the
Cholesky solver: 1) numbering, which may be important to op-
timize efficiency of a Cholesky solver (Cochran 1986), does not
matter in the PCG; 2) the PCG allows real-time tuning of the
regularization strength (see Sect. 3) to optimize performance,
and 3) speed may be traded against accuracy by varying the
PCG relative error tolerance, by which it may be pushed to
outperform even an optimally ordered Cholesky solver. But
whereas GVE02 is an open loop simulation focusing on the
wavefront reconstruction performance, the simulation of this
paper goes on to incorporate this algorithm into a complete
closed loop AO simulation model similar to that of E02. The
engine of the simulation is a Monte-Carlo-type simulation, but
unlike E02 the current simulation is divided into two parts per-
taining to the low and high spatial frequency content of the at-
mospheric turbulence, which are treated fundamentally differ-
ently. Only the turbulence that lies within the domain of spatial
frequency attenuation of the AO system is processed through
the Monte Carlo simulation, which greatly reduces comput-
ing demands. The effect of the unprocessed high spatial fre-
quency content are computed analytically in the limit of infinite
exposure time, and depending upon their nature these correc-
tions are added to the simulation either in the loop or in post-
processing the final result. This renders the simulation very fast
and economic, and permits efficient parameter studies of ex-
tremely high-order adaptive optics systems. The simulation al-
lows for artificial reference beacons – laser guide stars (LGS),
multiple reference beacons for atmospheric tomography and
multiple deformable mirrors for multi-conjugation. MCAO on
telescopes as large as 100 m thus becomes possible with rela-
tively modest computing resources.



R. C. Flicker: Efficient high-order adaptive optics modeling 1179

Table 1. Computational requirements for various orders of adaptive optics systems.D andd are the telescope diameter and the inter-actuator
distance given in meters,NDM andNWFS are the number of DMs and WFSs (>1 implies MCAO),n is the total number of actuators, the column
“ c = Es” gives the required real-time processing power in Gflops for the matrix-vector multiplication, the column “comp.E” gives the required
number of floating point operations×109 for computing the reconstructor, and the last column gives the required storage space forE in Gb. A
Shack-Hartmann type WFS with a Fried geometry of actuators was adopted for the calculations, so that the total number of measurements is
m ≈ 2n, and the wavefront reconstruction rate was set to 1 kHz. An inter-actuator distance of one meter corresponds roughly tor0 at 2.2µm,
andd = 0.25 approximately tor0 at 0.7µm.

D (m) d (m) NDM NWFS n c = Es comp.E storage (Gb)
50 1 1 1 2000 8 8 0.03
50 1 2 5 4000 77 61 0.3

100 1 1 1 8000 123 484 0.5
100 1 2 5 16 000 1234 3876 5
50 0.25 1 1 32 000 1974 31 006 8
50 0.25 2 5 63 000 19 739 248 050 80

100 0.25 1 1 126 000 315 83 2× 106 126
100 0.25 2 5 252 000 315 827 16× 106 1263

Section 2 introduces the linearized description of wave-
front sensing and reconstruction which has become one of the
most commonly used formalisms for astronomical adaptive op-
tics systems, and is often used as the canonical starting point
for modeling. The sparse matrix methods to be applied to the
wavefront reconstruction algorithm are described in the first
part of Sect. 3, and the second part describes the details of the
Monte Carlo simulation. In Sect. 4 some sample numerical re-
sults are presented for a number of elementary adaptive optics
configurations, including the use of laser reference beacons and
multi-conjugation.

2. Linearized model

2.1. Wave-front sensing

One may without much loss of generality adopt a wavefront
sensor model that partitions the telescope pupil plane into a
uniform grid of sub-apertures, within which individual wave-
front measurements are made on the part of the wavefront in-
cident on the sub-aperture. To start off as generally as possible,
the responsesi from the sub-aperturei centered on the pupil
plane coordinatexi to a static phase aberrationφ present in the
telescope pupil plane may be described by a non-linear func-
tionalJ

si = J[Pi exp(
√
−1φ)], (1)

wherePi = Pi(x) is the aperture transmission function of sub-
aperturei andJ encodes all the steps of modulation, image
formation, detector response and signal processing. Although
an authentic description, this is a few orders too general and
not very useful for practical analysis. It is usually the case,
however, and indeed a desirable feature of closed loop adap-
tive optics systems for successful calibration and implementa-
tion, that the response becomes essentially linear withφ within
a limited range of operation. Within this linear range, one may
study much simplified heuristic WFS models based on what

the resultant measurement signal actually represents. One such
representation which will be appropriate in the following is

si ∝
∫

dyP(xi , y)Dφ(y), (2)

whereD is a linear differential operator. This Fredholm equa-
tion of the first kind covers the two most common WFS types –
the gradient sensors (e.g. Shack-Hartmann, lateral shearing in-
terferometer) and the curvature sensors (Beckers-Roddier) – by
setting, respectively,D = ∇ andD = ∇2. The closed loop WFS
signal consists of the turbulence-induced open loop phase aber-
rationφ minus the phase correctionϕ applied by the adaptive
optics. Under certain conditions one may assume thatϕ is a
linear superposition of the DM influence functionsg j accord-
ing to

ϕ(x) =
∑

j

cjg j(x), (3)

wherecj is the jth actuator command signal. The validity of
this assumption is limited, as some DMs (e.g. electrostatic
membrane and bimorph mirrors) may have influence functions
extending nonlinearly over many actuators, and even well lo-
calized influence functions have a tendency to deviate slightly
from perfect linearity. It has been found, however, that within
the linear range of the WFS (3) is usually a sufficiently good
approximation which leads not only to accurate simulation re-
sults but also sufficiently accurate wavefront reconstruction in
real AO systems. Introducing a discrete description ofφ over a
total ofN computational mesh points,φ(x) =

∑N−1
j φ jδ(x−x j),

one may write the WFS interaction equation as

si ∝
N−1∑
j=0

φ j

∫
dyP(xi , y)Dδ(y − y j) (4)

−
n−1∑
j=0

cj

∫
dyP(xi , y)Dg j(y) (5)

=

N−1∑
j=0

φ j Bi j −
n−1∑
j=0

cjGi j , (6)
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with the matrix elements defined by

Bi j =

∫
dyP(xi , y)Dδ(y − y j), (7)

Gi j =

∫
dyP(xi , y)Dg j(y). (8)

The closed loop WFS response to optical phase aberrations in-
troduced by the atmosphere and by the deformable mirror may
thus be written on vector form as

s= Bφ +Gc+ n, (9)

where s is the m-element column vector of WFS measure-
ments,c the n-element vector of DM actuator commands,G
the m× n DM interaction matrix (m rows,n columns),B the
m×N phase interaction matrix andn am-element vector of ad-
ditive noise on the measurement signal.G andB are Jacobian
type matrices,G = ∂s/∂c andB = ∂s/∂φ, encoding informa-
tion on the geometry of WFS sub-apertures and DM influence
functions. WhereasB is of primarily academic interest,G is a
calibration matrix that defines the fundamental interaction be-
tween the deformable mirror and the wavefront sensor. It may
be obtained column-wise by poking the DM actuators one by
one and measure the response in the sensor (hence called the
“poke-matrix” by some authors).

2.2. Wave-front reconstruction

To spatially control an adaptive optics system, the inverse prob-
lem posed by the linearized interaction Eq. (9) must be solved
for the command signal vectorc. Requiring the reconstruction
to be a linear mapping, the solution may be stated on the gen-
eral form

c = Fs, (10)

where F is a spatial-temporal filter. Defining the open loop
measurement signals0 = Bφ + n, one finds upon combining
(10) and (9)

c = (FG− I )−1Fs0. (11)

From here it is not clear how to proceed in the general case to
derive the filterF that is closed loop optimal. Ellerbroek (1994)
shows that an optimal estimator may be derived by separating
spatial and temporal variables by the splittingF = f E, wheref
is a scalar temporal filter andE the spatial reconstruction ma-
trix, and then imposing the constraintEG = I to linearize the
spatial component of (11). For reasons of sparseness and com-
putational efficiency (see Sect. 3), only open loop wavefront
reconstruction shall be considered here. Open loop estimators
may be sought by solving the simplified interaction equation

s= Gc+ n (12)

for the command signal vectorc. To date, a commonly used
technique is to ignore the noise component and invert the inter-
action matrixG by singular value decomposition (SVD) and fil-
tering, whereupon wavefront reconstruction may be conducted

by the simple matrix-vector multiplicationc = Es. The compu-
tational costs associated with this type of wavefront reconstruc-
tion are listed for an assortment of AO and MCAO configura-
tions in Table 1. The SVD estimator is a least-squares solution
which minimizes the merit function||s− Gc||2. There are sev-
eral reasons to look beyond the SVD estimator, however, and
consider adding a few layers of sophistication:

1. For very high-order systems it might be necessary to filter
many modes which, even though poorly sensed, may con-
stitute a non-negligible fraction of the modal content of the
turbulence-induced aberrations. Indiscriminate filtering of
singular modes will gradually reduce the modal efficiency
of the wavefront reconstruction.

2. The least-squares estimator minimizing||s−Gc||2 is a purely
geometric reconstructor that does not take into account po-
tentially useful a priori knowledge about statistics of the
noise in the WFS or turbulence in the atmosphere, which
could help to condition the over-determined system and im-
prove performance and robustness.

3. As explicit matrix inversion, a full SVD is anO(n3) compu-
tation that takes no advantage of sparseness. For extremely
high-order systems, a computational problem will arise in
real-time control as well as in simulations.

One may solve the inverse problem posed by (12) by a
Bayesian approach that delivers a least-squares estimator
weighted by noise statistics and regularized by open loop tur-
bulence statistics. This estimator is derived in Appendix A,
and the regularized inverse problem is given by the expres-
sion (A.10)

(GTC−1
n G+C−1

c )c = GTC−1
n s, (13)

whereCn = 〈nnT〉 is the WFS noise covariance matrix and
Cc = 〈ccT〉 is the actuator command signal covariance ma-
trix. By inverting the left-hand matrix one obtains the stan-
dard Wiener filter, sometimes referred to as the maximum
a posteriori (MAP) estimator (Fusco et al. 1999). Assuming
Kolmogorov turbulence statistics, one may estimateC−1

c by
projecting the turbulence onto a Zernike modal basis, for which
the covariances were worked out by Noll (1976). Introducing
the pupil-plane phase basesH and Z of DM influence func-
tions and Zernike modes, a turbulence-induced phase aberra-
tio φ may be described in either base asφ = Hc = Za, wherea
is the vector of Zernike coefficients. Forming the inverse com-
posite mappingc = (ZT H)−1a it is clear thatCc in general can
only be found up to least-squares fit, but its inverse has the ex-
act representation

C−1
c = HTZC−1

a ZTH, (14)

which is accurate up to the numerical orthonormality of the
Zernike modes inZ, andCa = 〈aaT〉. It may be noted for future
reference that the DM interaction matrix may be represented by
the composite mappingG = AH.
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Fig. 2.Upper left – Fried geometry of WFS sub-apertures and DM ac-
tuators; upper right – the natural numbering of the actuators. Lower
left – heuristic model for a Fried geometry interaction; numbers indi-
cate thex- andy-component of the gradient registered in respective
sub-aperture as a result of poking the central actuator. Lower right –
numerical weights for the discrete definitionC of the Laplacian cur-
vature operator, for an internal, edge and corner point of the mesh.

3. Efficient performance estimation

3.1. Sparse wave-front reconstruction

Crucial to the numerical simulation to be presented here is
the use of sparse matrix methods for wavefront reconstruc-
tion, which in turn relies on the matrices involved actually be-
ing sparse. So far nothing has been said about the morphol-
ogy of the interaction matrixG or the covariance matricesCn

andCc, and what about them might potentially invite the use
of sparse techniques. The particular form of these matrices
depends strongly upon the type of wavefront sensor and de-
formable mirror being used, and their relative geometry as em-
bodied in the interaction matrix. For the high-order AO appli-
cations we wish to investigate, it is reasonable to make the fol-
lowing assumptions:

– The influence functionsg j(x) are localized, extending no
further than the immediate nearest neighbor.

– A Fried or Hudgin geometry of actuators and sub-apertures
in perfect alignment (no DM-to-WFS misregistration).

– Identical influence functions,g j(x) = g(x) ∗ δ(x− x j), with
perfectx andy symmetry.

The first assertion comes from the difficulty of building bi-
morph or electrostatic membrane DMs of very high order.
This makes it plausible that piezostack, electrostatic PMN

(lead-magnesium-niobate) or MOEM (micro-opto-electro-
mechanical) type DMs will be employed for high-order sys-
tems, whose actuators have a well localized influence and pro-
duce thus a sparse WFS response. For manufacturing reasons,
it is also reasonable to assume a square geometry of DM ac-
tuator and WFS sub-aperture patterns such as e.g. the Fried
configuration drawn in the upper part of Fig. 2 – hexagonal
patterns are a possible alternative with some attractive fea-
tures, but they would not affect the sparse wavefront recon-
struction to be presented here dramatically, only complicate the
numerical analysis considerably. In both the Fried and Hudgin
configurations the inter-actuator and sub-aperture spacings are
matched, with the actuators positioned either at the corners of
the sub-apertures (Fried) or along the sides (Hudgin) bisect-
ing the sub-aperture. As a final assumption, a Shack-Hartmann
type wavefront sensor shall be adopted, which measures a two-
component gradient in each sub-aperture. It is clear from these
assumptions that the interaction matrixG will have no more
than eight nonzero entries per column (i.e. per actuator), mak-
ing it and its covarianceGTG very sparse. The drawing on the
lower left of Fig. 2 illustrates the idealized heuristic interac-
tion model that was adopted based on these assumptions: any
given actuator on the DM will producex- andy-gradients of
equal amplitude but alternating sign in the sub-apertures that
lie within the actuator’s region of influence.

To quantify the sparseness of a matrix one may define
the degree of sparsenessχ as the number of zeros divided
by the total number of elements – the sparser a matrix, e.g.
the closer to oneχ becomes, the greater the gain of sparse
methods over explicit ones. Assuming the noise in different
sub-apertures of the WFS to be uncorrelated,Cn will be di-
agonal with the individual sub-aperture variancesσ2

i on the
diagonal, makingCn a maximally sparse full-rank matrix. If
in addition the sub-aperture noise variances are all the same
σ2

i = σ2
n (as follows upon assuming identical detector pixels

and ignoring the effects of partial illumination at the edge of
the aperture), thenC−1

n = σ−2
n I , where I is the identity ma-

trix. The regularization termC−1
φ = 〈φφT〉, however, is a full

matrix and some approximation must be employed to render
it sparse. It was demonstrated by Ellerbroek (1986, 2002) that
approximating the Kolmogorov turbulence power spectrum by
Φ(κ) ∝ κ−11/3 ≈ κ−4, whereκ is the radial component of the spa-
tial frequency, yields a sufficiently sparse approximation toC−1

φ

of the form

C−1
φ ≈ αCTC, (15)

whereC is the discrete matrix representation of the Laplace
curvature operator∇2 andα a scalar parameter. By Taylor ex-
pansion, a second-order accurate finite-difference approxima-
tion to the two-dimensional Laplacian is given by

∇2φ(x, y)
∣∣∣
k,l
=

(
∂2φ

∂x2
+
∂2φ

∂y2

)∣∣∣∣∣∣
k,l

∝ φk+1,l + φk−1,l − 4φk,l + φk,l+1 + φk,l−1, (16)

where the paired indices (k, l) refer to the discretex- andy-
coordinates (xk, yl) in the pupil plane. Hence,C will have no
more than five nonzero elements per column, which makes
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Fig. 3. Modulus ofGTG +CTC for n = 69 andn = 877.

it and CTC very sparse matrices as soon as the order of the
system reaches nontrivial proportions. It was also verified by
Ellerbroek (2002) that simple boundary conditions such as mir-
roring or protruding from the center produce sufficiently good
results that one need not look into more sophisticated extrapo-
lations at the edge of the pupil (the drawing on the lower right
of Fig. 2 illustrates the boundary conditions applied here for
edge- and corner points). This and the fact that the turbulence
approximation 11/3 ≈ 4 works admirably are not so surpris-
ing, since the role of the regularization termC−1

c was never to
perfectly tell the system exactly how to reconstruct turbulence
from WFS signals. Its main job is merely to support the in-
version by smoothing out singularities and, in the presence of
noise, to provide some additional advice on what to do, in a
statistical sense, with noisy measurements. Multiplying out the
noise varianceσ2

m, the approximate wavefront reconstruction
equation with all sparse matrices is thus finally obtained as

(GTG + αCTC︸           ︷︷           ︸
A

)c = GT s. (17)

whereα ∝ σ2
mr5/3

0 , andr0 is the Fried parameter governing the
turbulence strength. The resultant system matrixA = GTG +
αCTC is shown in Fig. 3 for two systems with eight (n = 69)
and 32 (n = 877) sub-apertures across the telescope aper-
ture. For then = 877 actuator systemA attains a sparseness
of χ = 98.6%, which already suggests the use of a sparse
algorithm to economize on computations, even though con-
ventional reconstruction would not be a computational prob-
lem at this level. A useful feature of implicit wavefront recon-
struction schemes is that small adjustments may be made to
the constituent matrices in order to optimize the reconstruc-
tion in real-time. Equation (17) provides a clear example: as
was mentioned in the introduction, the influence of the regular-
ization term is controlled by a single parameterα, which may
be adjusted on the fly to match the current atmospheric seeing
and WFS noise conditions – in explicit wavefront reconstruc-
tion one would have to recompute the reconstructorE by SVD
or matrix inversion each time an adjustment was made (with a
Cholesky solver one would need to compute the factorization
again).

Fig. 4. Required computing time logt as a function of the order logn
of the system for explicit (pluses) matrix-vector multiplication and
sparse (diamonds) PCG wavefront reconstruction algorithms. Slopes
extrapolated from the last two data points are indicated next to each
data set, where the two values for the PCG, 1.56 and 1.18, correspond
to relative error tolerances of 10−6 and 10−2.

Conjugate gradient (CG) methods provide a quite gen-
eral means to solve linear systems of the form (17) by it-
eration. Given an initial guess for the solution vectorc, the
CG algorithm generates a succession of orthogonal search di-
rections that produce gradually improved estimatesc∗, and
the recurrence may be terminated when sufficient accuracy
is achieved. For the numerical simulation of this study, the
preconditioned conjugate gradient (PCG) method described in
Press et al. (1992) was employed. The PCG algorithm deviates
from the CG only by both sides of (17) being pre-multiplied by
the inverse of a “preconditioning matrix”̃A, which was taken to
be simply the diagonal part of the system matrixA. The PCG
algorithm turns out to be particularly suitable for sparse sys-
tems, as the matrixA is only referred to by its multiplication
with a vector, which can be very efficiently implemented for
a properly stored sparse matrix. The sparse storage scheme
adopted for this study, the row-wise format described in e.g.
Pissanetzky (1984), is in fact constructed such that the effi-
ciency of the matrix-vector multiplication is optimized with
respect to sparseness. A representative benchmarking of the
sparse PCG applied to the current task of AO wavefront recon-
struction is shown in Fig. 4. Error tolerances of 10−6 and 10−2

were bench-marked, where the latter leads to the PCG compu-
tational cost scaling almost linearly (exponent 1.18) withn. As
is shown in Sect. 4, other error sources present in the adaptive
optics system relax the requirements on precision in the recon-
struction algorithm, such that a remarkably large intrinsic error
(e.g.∼10−2) may be tolerated without significant loss of AO
performance.

3.2. Monte Carlo simulation

The numerical Monte Carlo simulation is of the type de-
scribed in, e.g., Flicker et al. (2000), as originally devised
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Fig. 5. Flow diagram of the hybrid numerical simulation.

by Rigaut (1999) for MCAO feasibility studies at the Gemini
Observatory. The designation “Monte Carlo” is here used in
its loosest sense, that the statistically averaged result is ob-
tained after processing a large number of random inputs. Its
main components are sketched in Fig. 5, which reflects the sys-
tem architecture as depicted in Fig. 1. The main differences
in the current study from previous applications of the algo-
rithm lies within the propagation module, the WFS module
and the wavefront reconstruction algorithm that was described
in the previous Section. The atmosphere is modeled by a fi-
nite number of infinitesimally thin layers of turbulence pro-
ducing pure phase aberrationsφ, that are stacked vertically at
varying altitudes above the telescope. The phase aberrations
obey von Kármán statisticsΦφ(κ) ∝ (κ2 + κ2

0)−11/6, with an
outer scaleL0 = κ

−1
0 ranging between 25–100 m in the various

simulations presented in Sect. 4. The propagation operatorK
would in the general case be a Fresnel propagator that prop-
agates a plane wave over the atmospheric aberrationsφ and
the adaptive phase correctionsϕ into a residual complex aber-
rated waveε in the telescope pupil plane. Under assumptions
of weak and not extremely high-altitude turbulence, however,
one may forego a wave optical description and model propa-
gation geometrically as the linear addition of phase perturba-
tions. This neglects the effects of scintillation, which are small
at near-infrared wavelengths, 1–2.2µm, but become important
at visible wavelengths and when high a degree of correction is
the goal (Sasiela 1994; Flicker 2001).

The WFS module is of a fundamentally different function in
this simulation than previous ones. Rather than building a wave
optical model for a sub-aperture of the Shack-Hartmann sensor,
the WFS signals is here obtained from the residual phaseε di-
rectly by a sparse matrix-vector multiplication,s= G0ε. This is

made possible by undersampling the turbulence-induced phase
aberrations in the pupil plane – undersampling in this con-
text meaning neglecting spatial frequencies above the cut-off

frequency of the DM, which is set by the inter-actuator dis-
tanced. This allows the representation in the telescope pupil
plane of a DM actuator and a WFS sub-aperture by one single
phase-element (pixel). Hence the mappingH : c 7→ ϕ from
DM commands to wave-fronts becomes the identity, where-
uponG = AH = A, according to the discussion directly follow-
ing Eq. (14). Equating phase and actuator commands, it follows
from the interaction Eq. (12) that both are mapped into WFS
signals by the interaction matrixG. Hence the WFS model
s= G0ε, where the subscript zero denotes the pupil-plane inter-
action, in order to distinguish it from conjugate-plane interac-
tions that enter intoG when looking to MCAO configurations.
Undersampling this coarsely is a rather crude approximation
that will not produce very accurate results unless compensated
for. Two obvious errors thus unaccounted for are the fitting
of DM influence functions to phase aberrations and the spatial
aliasing of high spatial frequencies in the WFS. Presently, only
simple analytical models are applied to account for the fitting
error phase varianceσ2

⊥ in the limit of long exposure time, and
the contribution to the WFS measurement signal from spatial
aliasing (see next section). The remainder of the simulation se-
quence sketched in Fig. 5 is straightforward. Noise and aliasing
vectorsn andr are added to the obtained WFS signal

s= G0ε + n+ r, (18)

and the sum is pre-multiplied byGT to prepare the vectorb
that is input into the sparse PCG wavefront reconstruction al-
gorithm. The PCG delivers the required actuator adjustmentc,
which is added to the current shape of the DM by a standard in-
tegrating controller over a scalar gaing. The operatorT shifts
the turbulence screens according to wind velocity vectors be-
fore evaluating performance in terms of the field-dependent
pupil-plane residual phase varianceσ2

ε. It merits comment that,
in this hybrid model, aliasing enters the interaction on exactly
the same basis as noise, although with different spatial statis-
tics.

3.3. Fitting and aliasing compensation

It remains to be investigated how first-order system errors such
as servo-lag and anisoplanatism are affected by the truncation
of high spatial frequencies, but it is verified in Sect. 4 that
these effects are minor. The DM fitting error will here be ap-
proximated as the total phase variance deriving from spatial
frequencies higher than the cut-off frequencyκc of the DM,
κc = (2d)−1. Integrating the Kolmogorov power spectrum given
by Noll (1976) outside the controlled frequency domain gives

σ2
⊥ =

0.023

r5/3
0

∫
A

dκ κ−11/3, (19)

whereκ = |κ| is the radial component of the spatial frequency
vectorκ and the regionA is the complement of the centered
square with side (d

√
2)−1. Evaluating the integral in cylindrical
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coordinates (κ, θ) and observing the radial symmetry gives

σ2
⊥ = 8× 0.023

r5/3
0

∫ π/4

0
dθ

∫ ∞

κ(θ)
dκ κ−8/3 (20)

=
24
5
×

0.023

r5/3
0

× (d
√

8)5/3
∫ π/4

0
dθ cos5/3θ (21)

≈ 0.414

(
d
r0

)5/3

, (22)

where the azimuthal integral was numerically integrated
to 0.663, and the cosine derives from the boundaryκ(θ) of A
in the intervalθ ∈ [0, π/4] described in polar coordinates as
κ(θ) = (d

√
8 cosθ)−1. This 5/3’ s power lawσ2

⊥ = a(d/r0)5/3

may be applied with various coefficientsa that better approx-
imate the real fitting of different types of influence functions.
Coefficients for the most common types are listed in e.g. Hardy
(1998), but in this paper the value 0.414 as derived in (22) will
be used throughout. This result applies less well in the case of
multi-conjugation, but it shall be used nevertheless as a rough
approximation – the method in Rigaut et al. (2000) could plau-
sibly lead to a better estimation in this case.

The WFS spatial aliasing error is produced by some of the
high spatial frequency content of the atmospheric turbulence
being folded into the interval [−κc,+κc] by the discrete sam-
pling of the wavefront. Since those high frequencies that pro-
duce aliasing remain largely unattenuated by the AO system,
open loop statistics may be employed to represent aliasing to
first order. Approximating the Shack-Hartmann WFS by an in-
finite array of gradient sub-apertures of linear dimensiond, the
aliasing measurement signalm⊥ as a function of the pupil plane
coordinatex may be expressed as

m⊥(x) =
∐∐( x

d

)
×

[
Π

( x
d

)
∗ ∇φ⊥(x)

]
, (23)

where asterisk (∗) denotes convolution,Π is the square win-
dowing function defining one sub-aperture,φ⊥ is the high-
frequency component of the phase and the replicating function
(theshah) was defined as

∐∐( x
d

)
=

+∞∑
m=−∞

+∞∑
n=−∞

δ
( x
d
−m,

y

d
− n

)
. (24)

As the shah is its own Fourier transform (Bracewell 1994), the
spatial Fourier transform of the measurement becomes

m̃⊥(κ) =
∐∐

(κd) ∗
[
sinc(κd) iκφ̃⊥(κ)

]
(25)

=

+∞∑
m=−∞

+∞∑
n=−∞

ik sinc(km) sinc(kn) φ̃⊥(k), (26)

where the aliased frequency vectork was defined as

k = (km, kn) =
(
κx −

m
d
, κy −

n
d

)
, (27)

and sinc (x) = sin (πx)/ (πx). The phase spectrum may be writ-
tenφ̃⊥ = |φ̃⊥| exp(iψ) whereψ is the phase shift of the complex
spectrum̃φ⊥. Whereas the modulus|φ̃⊥| inherits the Gaussian
statistics ofφ, ψ ∈ [0, 2π] is uniformly distributed and inde-
pendent of|φ̃⊥|. Hence the expectation value ofφ̃⊥ may be split

Fig. 6. Residual phase varianceσ2
ε and number of PCG iterations ver-

sus the PCG relative error tolerance, for the 12×12 Shack-Hartmann
test configuration in conventional AO (dotted lines) and MCAO
(dashed lines) mode. In the top field, a field-weighted average (pluses),
an unweighted average (diamonds) and the on-axis value (asterisks)
are plotted for comparison.

into the separate expectations〈|φ̃⊥|〉〈exp(iψ)〉, where the statis-
tics ofψ lead to the condition〈
exp

[
i(ψmn− ψm′n′ )

]〉
= δmm′δnn′ . (28)

Substituting the von K´armán spectrum from (Winker 1991;
Noll 1976) forΦφ⊥ , the power spectral density (PSD)Φm =

〈|m̃⊥|2〉 of m⊥ evaluates to

Φm⊥(κ) =
∑
m,0

∑
n,0

[
k2

m
k2

n

]
sinc2 (km) sinc2 (kn)

× 0.023r−5/3
0 (k2

m+ k2
n + κ

2
0)−11/6, (29)

where|κx|, |κy| ≤
√

2κc. Rather than applying an analytical re-
constructor as in (Rigaut et al. 1998) for computing the alias-
ing phase variance, the PSD (29) will here be used to generate
the aliasing vectorr indicated in (18) by Fourier transform of
β
√
Φm⊥ , whereβ is a complex-valued white noise. By doing so,

the WFS aliasing is propagated through the PCG wavefront re-
constructor to produce a resultant effect on the DM commands
that observe the proper propagation properties.

4. Model implementation

Simulation results for a number of different AO and MCAO
configurations are presented at the end of this section. Of par-
ticular interest are the results concerning extremely high-order
systems, and the investigations into scaling laws for AO per-
formance with telescope diameterD and with turbulence outer
scaleL0. The simulations all employ a generic four-layer at-
mospheric model, with parameters as summarized in Table 2.
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The altitudeh refers to the level above the telescope site, and
the fractional turbulence strengthfl per layerl is defined as
fl = cl/

∑
l cl , where thecl are the coefficients of theC2

n de-
compositionC2

n(h) =
∑

l clδ(h − hl). In terms of the 0th tur-
bulence momentµ0 =

∫
dh C2

n(h), these coefficients are given
by cl = µ0 fl . The wind speedsvl were given random direc-
tional vectors from a uniform distribution. It should be noted
that, although this toy atmospheric model does not derive from
real measurements, it was contrived to be conservative with re-
spect to reported atmospheric conditions at most good astro-
nomical observing sites, without for that reason being overly
pessimistic. Where nothing else is stated, other observation and
simulation parameters assumed the values listed in Table 3.
Only a 2-DM case was considered for the MCAO simulations,
and the guide star magnitudes were all set to 10 in order to
suppress the effects of photon noise (CCD read-out noise was
not included in the simulation) – the main effects investigated
for this study were the errors associated with LGS (cone ef-
fect), MCAO (tomographic error) and the outer scale of turbu-
lenceL0.

4.1. Efficiency optimization

In order to optimize the efficiency of the PCG wavefront re-
construction algorithm, its required accuracy in an AO sim-
ulation was metered versus its relative error tolerance. Since
the error tolerance determines when to terminate the recur-
sion, it directly governs the computational cost for wavefront
reconstruction. The somewhat surprising results are shown in
Fig. 6, where the upper part plots the residual pupil plane
phase varianceσ2

ε versus PCG error tolerance, and the lower
part plots the average number of required PCG iterations.
Both a conventional AO (dotted lines) and a MCAO (dashed
lines) system of the same order (the 12×12 Shack-Hartmann
used for the comparison in Fig. 7) were tested for compar-
ison. It is seen that over a range of 107 increase in the er-
ror tolerance, over which the PCG iteration count drops by
roughly a factor of 100, there is very little loss of AO per-
formance – superimposed upon a very mild and gradual in-
crease inσ2

ε there is an irregular jitter of comparable or even
larger magnitude. With turbulence variations sufficiently av-
eraged (100 independent atmospheric realizations with 2000
Monte Carlo cycles averaged within each), this jitter can only
be numerical, pertaining to the inner machinations of the PCG.
The investigation of AO performance versus PCG error toler-
ance was discontinued at a value of 0.2, as at this level the

Table 2.Discrete 4-layer model for atmospheric turbulence –h is the
layer altitude,C2

n/µ0 = f is the fractional turbulence strength per layer,
andv is the wind speed.

Layer h (m) C2
n/µ0 v (m s−1)

1. . . . . . 0 0.50 15

2. . . . . . 3000 0.25 25

3. . . . . . 6000 0.15 35

4. . . . . . 12 000 0.10 25

Table 3.Observational and system simulation parameters.

Simulation parameter Value
Imaging wavelength λim 2.2µm
Sensing wavelength λs 0.7µm
Outer scale L0 50 m
Fried parameter (at 0.5µm) r0 0.17 m
Central obscuration 0
LGS altitude H 90 km
DM conjugation:

DM1 h0 0
DM2 h1 10 km

WFS integration time:
Shack-Hartmann τ 1 ms
Tip-tilt sensor τT 10 ms

Guide starV magnitude:
NGS m∗ 10
Tip-tilt m∗ 10
LGS m∗ 10

Sky brightness msky 20.5 mag/arcs2

Fig. 7.Comparison between simulation results (phase variance – solid;
Strehl ratio – dotted) for the hybrid simulation of the current study
(diamonds) and a more accurate wave optical simulation with well-
sampled turbulence (pluses). Dashed curves show for comparison the
hybrid simulation result without fitting and aliasing compensation.

computational cost of the PCG reconstruction in the case of the
conventional AO system was already down to a single PCG it-
eration upon the initial guess. The simulation results presented
in this section were produced at a PCG relative error tolerance
of 0.01, where the scaling withn for large systems is approxi-
matelyO(n1.2) as shown in Fig. 4.

4.2. Model validation

The efficient simulation model was corroborated for realism
and accuracy versus a full-fledged wave optical Monte Carlo
simulation of similar type, where all the first-order errors (fit-
ting, aliasing, servo-lag, anisoplanatism and noise) are mod-
eled with high accuracy. For the comparison, a small test con-
figuration (12× 12 Shack-Hartmann WFS,n = 137) on an
8-m telescope was simulated, and the comparison is shown in
Fig. 7. Looking to the curves of residual phase varianceσ2

ε
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(solid lines) versus angle from the guide star, it is observed
that the efficient simulation is afflicted with a bias of approxi-
mately 0.04 rad2. The majority of this offset is due to the ana-
lytical fitting and aliasing compensation, which in their approx-
imation do not exactly reproduce the conditions in the more
accurate simulation. There is an additional variation across the
field, and at the edge of the field the discrepancy is close to
0.1 rad2, but looking to the Strehl curves (dotted lines) this dis-
crepancy translates to less than 5% relative deviation over the
range of values plotted (35 arcsec), with a field average of 3%.
These numbers are quite tolerable for a first-order performance
estimation model, and it may be concluded that undersampling
the frequency content of the atmospheric turbulence to first or-
der has no or only a negligible impact on the errors associ-
ated with anisoplanatism, servo-lag and noise. While small in
the present context, these discrepancies may not be completely
insignificant for a tight error budget as far as the design of
a real system is concerned. For that purpose one would need
to look into second-order corrections to improve upon the ac-
curacy of the model, if the current hybrid algorithm is to be
used. Presently, no higher-order correction schemes have been
investigated. Keeping in mind that fitting and aliasing are given
by analytical approximations and that scintillation remains un-
accounted for, simulation results for a number of relevant AO
and MCAO configurations are presented in the following.

4.3. Laser beacons and multi-conjugation

Concerning laser guide stars and multi-conjugated systems, a
few special considerations must be taken in order to ensure that
these are efficiently implemented without losing accuracy in
the simulation.

1. For the case of laser guide star (LGS) adaptive optics, the
propagatorK must include a scaling procedure in order to
account for the cone effect that arises when using a refer-
ence beacon at a finite altitude. The horizontal scaling of
the atmospheric turbulence is accomplished by rebinning
the phase screens (which are periodic) onto a finer mesh
and resample at new coordinates by cubic spline interpola-
tion. Tip and tilt modes were filtered from the measurement
signal s rather than being projected out of the controlled
subspace of the interaction matrixG, which would render
it non-sparse, and a NGS employed for tip-tilt sensing.

2. For the case of multi-conjugated adaptive optics (MCAO),
the interpolation described above would be subject to alias-
ing effects at the edges of the DMs if applied thereto, and
should be avoided if possible. Accuracy in the wavefront
sensing is thus retained by having the guide star positions
on the sky observe integer pixel shifts on the conjugated
DMs. The integrated DM correction in the direction of any
guide star may then be obtained by adding the DM shapes
conformally without interpolation.

3. For the case of LGS MCAO, the pixel scales at the conju-
gated DMs were reduced by the geometric factor 1− hk/H,
for a LGS at the rangeH and a DM at the rangehk. By
having the LGS positions on the sky correspond to integer
pixel shifts on the conjugated DMs with this reduced scale,

Fig. 8. On-axis residual phase varianceσ2
ε versus telescope diameter

D for LGS AO, for a range of outer scalesL0. Low- and high-order
AO systems withd = 0.8 m (solid) andd = 0.5 m (dashed) are both
shown for comparison.

the DM phase may be summed as in the NGS MCAO case
and only the turbulence interpolated. Differential tilt is in
this case obtained from three tip-tilt NGS, and compensated
using a separate control loop (Ellerbroek & Rigaut 2001).

4.4. Sample numerical results

As the diameter of the telescope apertureD approaches the
turbulence outer scaleL0, low-order modes responsible for a
large fraction of the turbulent energy such as tip and tilt, defo-
cus, astigmatism etc. become de-weighted relative to higher or-
der modes within the aperture. AlthoughL0 is a poorly known
quantity at most sites and times, its value seems to be of critical
importance to the design and performance of ELTs. Predictions
based in Kolmogorov theory do no longer apply, but it has not
been investigated extensively how the characters of angular and
focal anisoplanatism scale to ELTs, especially when it comes
to tomography and MCAO. Figures 8 and 9 plot the residual
phase varianceσ2

ε for two conventional LGS AO systems with
d = 0.8 m andd = 0.5 m as the telescope diameter was varied
throughD = [10, 30, 50, 100] m. Since performance is mea-
sured only on the axis of the LGS, angular anisoplanatism is not
present, and for the relatively benign observation scenario cho-
sen (near-infrared, bright guide stars – see Table 2) the noise
error is negligible and the servo-lag error small. The dominant
error sources in Figs. 8 and 9 are therefore DM fitting and LGS
focal anisoplanatism, and for smallD (≤10 m) the cone effect
is mild enough compared to the fitting error that no variation
with L0 is observed. According to Kolmogorov theory, the fit-
ting error does not vary with telescope diameter when aper-
ture filtering is not taken into account (and only weakly when
it is), and the induced phase variance due to the cone effect
should scale asD5/3 (Fried & Belsher 1994). The increase in
σ2
ε in Fig. 8 therefore chiefly reflects the cone effect, but in

part also the much smaller variations of the servo-lag, alias-
ing and reconstruction errors that arise with the departure from
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Fig. 9. Same data as in Fig. 8 re-plotted on logarithmic axes to show
the differing slopes.

Kolmogorov statistics when the telescope diameter approaches
the outer scale. As seen from the log-log presentation, however,
the residual phase variance for the various cases still scales very
much like a power law with a varying exponent. By assuming a
power law relation of the formσ2

ε ∝ Dγ and fitting straight lines
to the logarithmized data in Fig. 9, one may obtain the expo-
nentγ. The exponents for the current data are listed in Table 4,
and the deviations from the 5/3’s law predicted by Kolmogorov
theory are seen to be significant.

This is partially due to the finite outer scale, but as may
be inferred from the two columns of the table, also depen-
dent upon the inter-actuator densityd. Not simply does the AO
residual phase variance depend upon the outer scale, but more
precisely it depends upon the resultant spatial statistics as the
turbulence is projected onto the influence functions of the DM
(or equivalently, the controlled modes of the wavefront esti-
mator). The smaller the inter-actuator distanced, the higher
the spatial cut-off frequency of the deformable mirror and the
closer to the real turbulence spectrum the system operates.
Thatγ decreases whend increases can be understood in terms
of the AO system addressing less of the high spatial frequency
content of the atmosphere as the order of the system goes down.
With a finite outer scale, the deviations from Kolmogorov
statistics then become increasingly more prominent among the
low spatial frequencies that are compensated by the system.
It may be inferred by numerical evaluation of turbulence inte-
grals (Sasiela 1994) that include a finite outer scale, that the
contribution toσ2

ε due to focal anisoplanatism will be reduced
at largeD and smallL0 as compared to Kolmogorov theory.

Table 4.Estimated exponentsγ in a power-law fit ofσ2
ε ∝ Dγ.

Exponentγ
L0 (m) d = 0.5 m d = 0.8 m

100 1.58 1.27
50 1.47 1.20
25 1.29 0.99

Where this effect becomes significant, the scaling withD will
start to deviate from a simple power law. There is an indication
to this effect by the presence of an inflection point in some
of the curves. The current sparse data does not allow a de-
tailed analysis of this phenomenon, however, and a discussion
of thereof is in any case beyond the scope of the present study1.

A series of MCAO cases with two DMs, conjugated to
zero and 10 km, and either five NGSs or five LGSs in a
X-like geometry with a base of 40′′ were simulated subject
to the same variations inL0 and d as the single LGS sim-
ulation. The tomography algorithm employed was the lin-
ear MAP estimator described in Sect. 2.2, which is derived
in Appendix A. The results are given in Table 5, in the form
of the field-averaged Strehl ratiōS (left column) and the
relative deviation over the fieldδS/S̄ (right column). The
Strehl ratios were computed from the phase variance in the
extended Mar´echal approximation,S R ≈ exp(−σ2

ε), which
means that entries below 0.2 are somewhat underestimated.
For MCAO, no analytical predictions for the tomographic er-
ror in Kolmogorov theory have been produced, leaving lit-
tle by which to compare these results. It may be conjectured,
however, that the instance of tomography should help to mit-
igate the cone effect even further upon the aid lent by the fi-
nite outer scale. Comparing with the values in Fig. 8, it is
seen that the sensitivity toL0 is stronger in the MCAO case,
plausibly due to the larger field over which MCAO attempts
to compensate turbulence. The gain toward lowL0 is how-
ever also larger for LGS MCAO than LGS AO, indicating a
very nonlinear coupling betweenL0, D and the instance of
tomography and multi-conjugation – which is why results
for ELTs are very difficult to infer with any confidence from
simulations at smaller scales. It is seen that, contrary to some
claims in the literature based on very conservative estimations
or extrapolations, a small number of LGSs may actually pro-
vide a useful level of compensation on telescopes as large
as 30–50 m, if not close to diffraction-limited. For higher LGS
performance the LGS density must be increased in order to re-
duce the tomographic error due to focal anisoplanatism, which
means a larger number of LGSs if a given field of view is
to be maintained. Tilt anisoplanatism in LGS-based MCAO
systems will reduce performance somewhat with respect to
NGS MCAO, as discussed in Ellerbroek & Rigaut (2001).
Regarding concerns occasionally voiced that LGS tomogra-
phy, tilt anisoplanatism aside, would be implicitly less accu-
rate than NGS tomography, no such effect has been ever ob-
served by the author of this paper. It has been verified in a
designed test simulation that, if the turbulence was confined
to the union volume spanned by the cones (i.e. no unsampled

1 To the best of the author’s knowledge, the analytical results re-
ferred to here do not yet exist in the published literarure, although
they are relatively straightforward to obtain. While the analysis of
Sasiela (1994) is based in the Rytov approximation, less sophisticated
Fourier domain methods that do not account for scintillation may also
be used to compute turbulence-induced phase variances. The spatial
frequency attenuation by the aperture is accounted for in Fourier do-
main by a complex filtering function, and focal anisoplanatism may be
estimated for a layered turbulence profile by summing over the layers
with a varying argument in the aperture filtering function.
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Table 5.Strehl ratio simulation results for 2-DM MCAO system with 5 NGSs or 5 LGSs and three different turbulence outer scalesL0. For the
cased = 0.5 m (left-hand side of table), the square field of view defined by the guide stars measured 40 arcsec in the NGS case and 36 arcsec
in the LGS case. For thed = 0.8 m case, the field was 67 and 60 arcsec for the NGS and LGS simulations.

d = 0.5 m Strehl ratio and uniformity
D (m) n L0 (m) 5 NGS 5 LGS

10 898
100
50
25

0.76 0.024
0.76 0.023
0.77 0.023

0.62 0.136
0.68 0.090
0.69 0.083

30 6402
100
50
25

0.66 0.085
0.69 0.068
0.73 0.043

0.19 0.179
0.30 0.146
0.46 0.097

50 16946
100
50
25

0.63 0.095
0.68 0.062
0.72 0.039

0.02 0.097
0.06 0.089
0.24 0.056

100 65282
100
50
25

0.43 0.096
0.47 0.060
0.62 0.036

d = 0.8 m Strehl ratio and uniformity
n 5 NGS 5 LGS

394
0.55 0.063
0.55 0.059
0.56 0.053

0.45 0.120
0.46 0.093
0.49 0.084

2489
0.49 0.090
0.49 0.087
0.52 0.062

0.18 0.502
0.25 0.383
0.40 0.182

6402
0.46 0.119
0.47 0.095
0.52 0.063

0.05 0.355
0.14 0.236
0.27 0.173

24074
0.41 0.161
0.48 0.087
0.53 0.056

turbulence), LGS and NGS tomography become exactly equiv-
alent. The poorer performance of LGS tomography in a real
scenario is solely due to the loss of information that a focused
sensor beam must contend with, and minimizing this informa-
tion loss by increasing the LGS density will gradually improve
LGS MCAO performance. It remains to be proven however,
that an ELT in the range 30–100 m will be able to deliver near-
diffraction-limited performance under wind buffeting and me-
chanical flexure, which may be a larger obstacle to overcome
than adaptive optics performance.

5. Conclusions

First-order performance estimation for adaptive optics
systems may be accomplished efficiently with a hy-
brid numerical simulation that combines the accuracy
and realism provided by a Monte-Carlo-type simulation
with analytical compensation tools where the former was
compromised in order to increase efficiency. Systems with
∼105 degrees of freedom, including multi-conjugate and
laser-guide-star-based systems, may be efficiently investigated
thus using a current standard personal computer. Results were
presented for a number of AO and MCAO configurations,
demonstrating that the turbulence outer scaleL0 has a signif-
icant impact on performance when the telescope diameterD
approachesL0. LGS MCAO systems are seen to be more
sensitive toL0 than conventional LGS AO systems, and the
gain also larger in MCAO asL0 becomes smaller. To the best
of the author’s knowledge, the results for then = 65 282 case
represent the largest MCAO system simulated in full to date,
although the simulation approaches presented in Ellerbroek
(2002) and Gilles et al. (2002) are of comparable capabilities
and efficiencies. Future extensions of the simulation will
proceed to refine the fitting error estimation and include
scintillation effects.
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Appendix A: Derivation of maximum a posteriori
estimator

The open loop interaction equation may be written

s= Gc+ n, (A.1)

from which we wish to estimate the optimal command vectorc∗
that maximizes the a posteriori conditional probabilityP(c|s):

c∗ = arg max
c

P(c|s). (A.2)

A standard procedure to findc∗ that shall be used here is to
solve∂P(c|s)/∂c = 0 for c. From Bayes’ theorem of condi-
tional probabilities we have that

P(c|s) = P(c)
P(s|c)
P(s)

, (A.3)

whereP(s) = 1 since this is the measured data andP(c) is
the so-called Bayesian prior, which contains the a priori in-
formation on the statistics ofc that will regularize the solu-
tion. Assuming the wave-front sensor sub-aperture noise to
be of Gaussian statistics with zero mean and standard devia-
tions{σi}m−1

i=0 , it is seen by rearranging (A.1) thats−Gc shares
the statistics ofn. Assuming further the noise to be uncorre-
lated between sub-apertures,〈ninj〉 = δi jσ

2
i , the likelihood term

P(s|c) evaluates to

P(s|c) =
m−1∏
i=0

P(si |c) (A.4)

=

m−1∏
i=0

∆s

σi

√
2π

exp

− 1

2σ2
i

[si − (Gc)i ]2

 (A.5)

= |Cn|−1

(
∆s
√

2π

)m

exp

[
−1

2
(s−Gc)TC−1

n (s−Gc)

]
,

whereCn = 〈nnT〉 is the noise covariance matrix. For mathe-
matical stringency, the term∆sspecifies the scale of discretiza-
tion, as the probability would always be zero if thesi ’s took on
continuous values. Invoking the central limit theorem to bear
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on refractive index fluctuations in the atmosphere, the open
loop statistics ofc may likewise be assumed to be Gaussian.
In analogy with (A.5) we may thus write down the prior term
directly as

P(c) ∝ exp

(
−

1
2

cTC−1
c c

)
, (A.6)

whereCc = 〈ccT〉 is the actuator command signal covariance
matrix. This gives the a posteriori probability

P(c|s) ∝ exp

[
−1

2
(s−Gc)TC−1

n (s−Gc)

]

× exp

[
−1

2
cTC−1

c c
]
. (A.7)

Maximizing the probability is equivalent to minimizing the
negative of its logarithm, so a local minimum is given where
for all vectorsu

∂

∂c
ln P(c|s) · u

= lim
ξ→0

ln P(c+ ξu|s) − ln P(c|s)
ξ

= 0. (A.8)

It is seen that lnP is quadratic inc, so taking the derivative
will result in a linear equation that should be easy to solve.
Evaluating the limit gives

∂ ln P
∂c
· u = (GTC−1

n Gc+C−1
c c−GTC−1

n s) = 0, (A.9)

and a non-trivial solution for allu requires that

(GTC−1
n G+C−1

c )c = GTC−1
n s, (A.10)

from which one may writec∗ = E∗s and identify the MAP
reconstructor asE∗ = (GTC−1

n G+C−1
c )−1GTC−1

n .
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