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Abstract. It is shown how first-order performance estimation of high-order adaptive optics (AO) systems midigibathy
implemented in a hybrid numerical simulation by the use of 1) sparse matrix techniques for wavefront reconstruction, 2)
undersampled pupil-plane turbulence-induced aberrations, and 3) analytical models that compensate — in the limit of infinite
exposure time — for the errors introduced by undersampling. A sparse preconditioned conjugate gradient (PCG) method is
applied for wavefront reconstruction, and it is seen that acceptable AO performance may be achieved at a relative error tolerance
of 0.01, at which the computational cost of the sparse PCG scales approximad¢h}gswheren is the number of actuators

in the system. Estimations of adaptive optics performance for extremely high-order systems are presented, including multi-
conjugate and laser-guide-star-based systems. The scaling laws for AO performance with telescopelimmietambulence

outer scald, coupled with the use of laser guide stars are also investigated. It is shown that a single or a small number of laser
guide stars (LGS) may still provide a useful level of compensation to telescopes with diameters in the range 30-Lg0 m, if

is on the order of or smaller thad. The deviations from Kolmogorov theory are also investigated for LGS AO. To the best

of the author’s knowledge, results presented far-a65 282 case represent the largest multi-conjugate adaptive optics system
simulated in full to date.

Key words. instrumentation — adaptive optics — methods — numerical

1. Introduction andO(D®), whereD is the diameter of the telescope. Hence it

] . ) . . is clear that, at some point, a practical problem will arise both
The technology of adaptive optics (AO) is attaining an increag; simylation and real-time control of the systemgrows
ingly more prominent role in ground-based optical astrononiyrge These scaling laws are illustrated in numbers in Table 1.
as the next generation of telescopes and instrumentation is beé--rent AO systems in use for astronomical purposes range
ing planned. Itis clear (Gilmozzi 2000; Ragazzoni et al. 20085m ordersn of a few tens to~1000 actuators, where sim-
Snel & Ardeberg 2002; Hawarden et al. 2002) that & négations are easily manageable. One may estimate that ELTs
diffraction-limited mode of imaging will be required of future,ith diameters in the 30-100 m range will require adaptive op-
ground-based telescopes with aperture diameters ranging 44 systems of orders = 10°~10f, depending on what de-
ward from tens of meters t9100 m, in order to enable suchyree of correction is desired and whether multi-conjugation
science as will be unique to .that large a telescope and thergm tomography — multi-conjugated adaptive optics (MCAO)
justify the staggering costs involved. AO systems, as genefiyre to he employed. Apart from the real-time computational
cally outlined in Fig. 1, are thus moving toward becoming 88, hecoming overwhelming toward the high end, previous
integral part of a telescope, and may rightfully claim to be ongmjation techniques have been unablefficiently estimate
of the important “raisons @fre” for futu.re extremely large tele- long-exposure performance withfigient accuracy for a large
scopes (ELTs). It can be problematic, however, to study apghge of telescope diameters. Modelirfpets of adaptive op-
design adaptive optics systems when the required order of fhe systems may be loosely grouped into two categories: 1)
system, as represented henceforth by the total number of a5 tical models predicting the long-exposure performance of
tuatorsn, becomes very large. The computational cost forfie system as a function of system and observation parameters
conventional wavefront reconstruction algorithm, a S'mpEllerbroek 1994; Rigaut et al. 1998; Tokovinin et al. 2001;
matrix-vector multiplication, is of the orded(n’) floating Guner-Petersen & Goncharov 2002), and 2) Monte-Carlo-type
point operations and the cost for the malrix inversion requirggh|ations that mimic the spatial and temporal behavior of the
to prepare the estimator scales @gr’). Sincen scales lin- system by applying spatial algorithmic actions each discrete
early_W|th the surface area of the te_lescopt_a aperture, trle CQife step exactly as they would be applied in a live run of
putational costs for these two actions will scale @D")  the system (Flicker et al. 2000; Fusco et al. 2001; Le Louarn
2002; Ellerbroek 2002). In the first case, spatial-temporal ana-
* e-mail:ralf@astro.lu.se lytical models of the system’s various components (cf. Fig. 1)
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Reference star §+3 are obtained only after allowing the system to run in a closed
= feedback loop for many cycles until a statistically significant
\T/ average is obtained. In either approach, however, it has been

the case that extremely high-order systems face computational
bottlenecks in the dealing with very large matrices that require

storage beyond the capabilities of ordinary computers — and

even granted storage, handling of and performing computations
with such unwieldy data objects becomes time-consuming to

the point of scientific analysis being rendered infeasible.

It has been recognized that the spatial interaction between
wavefront sensors (WFS) and deformable mirrors (DM) in
adaptive optics systems may in a linearized model be described
by a very sparse linear systenThis means that the influ-
. ence of a single actuator on the DM is registered only by a
| ] Aberrated small number of WFS elements (sub-apertures). Sparse matrix
] phase Adaptive Optics methods that exploit the sparseness of the system to econo-

mize on computations have been applied to the inverse prob-

Deformable lem of wavefront reconstruction by, notably, Cochran (1986)
mirror in early investigations and Ellerbroek (2002) (E02) and Gilles

et al. (2002) (GVEO02) more recently. The adaptive optics per-
formance estimation model to be investigated in this paper

Atmospheric
turbulence vy

Telescope

Real-time
computer

;’ﬁ’rt("': differs from the latter two on a number of important points.
Whereas E02 uses a Cholesky factorization solver, the sim-
Wavefront ulation of the current study employs a sparse preconditioned
sensor conjugate gradient (PCG) method fdifieient wavefront re-
if;’;g'ep'a”e construction. This is also the approach of GVE02, although

ciency further. The PCG has a couple of advantages over the
Cholesky solver: 1) numbering, which may be important to op-
timize dficiency of a Cholesky solver (Cochran 1986), does not
matter in the PCG; 2) the PCG allows real-time tuning of the
Fig. 1. Generic adaptive optics schematic, introducing the chief corregularization strength (see Sect. 3) to optimize performance,
ponents that must be incorporated into a first-order simulation of thad 3) speed may be traded against accuracy by varying the
system: the reference beacon (“guide star”), atmospheric turbuler_p@G relative error tolerance, by which it may be pushed to
the telescope, wavefront sensor, deformable mirrors and a real-t'mﬁperform even an optimally ordered Cholesky solver. But
control computer. . - . .

whereas GVEOQ2 is an open loop simulation focusing on the

wavefront reconstruction performance, the simulation of this

paper goes on to incorporate this algorithm into a complete
are integrated into the analytical formalism of a performancéosed loop AO simulation model similar to that of E02. The
estimator, which generally amounts to a collection of intengine of the simulation is a Monte-Carlo-type simulation, but
grals that may be evaluated numerically for a given set of sysilike E02 the current simulation is divided into two parts per-
tem and observational parameters. Such models can be madtgng to the low and high spatial frequency content of the at-
very fast and powerful when focusing on a particular aspaoispheric turbulence, which are treated fundamentafifgrei
of the system, by introducing approximations in areas that agtly. Only the turbulence that lies within the domain of spatial
tangential or unimportant to the specific subject of the studyequency attenuation of the AO system is processed through
Analytical performance estimators become increasingly cotire Monte Carlo simulation, which greatly reduces comput-
plicated, however, when many aspects of the system are targe demands. Thefiect of the unprocessed high spatial fre-
modeled simultaneously to augment the generality and acquiency content are computed analytically in the limit of infinite
racy of the results. Apart from the computational issues armxposure time, and depending upon their nature these correc-
ing thus for very high-order systems, it is generallyfidult tions are added to the simulation either in the loop or in post-
to find analytical descriptions of closed loop spatial-temporatocessing the final result. This renders the simulation very fast
statistics that are both accurate and computationally tractatdlied economic, and permitstieient parameter studies of ex-
For these reasons, full-fledged analytical models of closed lompmely high-order adaptive optics systems. The simulation al-
AO systems have not yet been applied to extremely high-ordews for artificial reference beacons — laser guide stars (LGS),
systems. By contrast, the Monte-Carlo-type simulation is onhgultiple reference beacons for atmospheric tomography and
required to model open loop turbulence, and closed loop propultiple deformable mirrors for multi-conjugation. MCAO on
erties will be emergent upon closing the loop in the numericilescopes as large as 100 m thus becomes possible with rela-
simulation. In a Monte Carlo simulation, long-exposure resultsvely modest computing resources.

| 1) they apply it within a multi-grid framework to increaséie

Corrected
phase
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Table 1. Computational requirements for various orders of adaptive optics sysiearsdd are the telescope diameter and the inter-actuator
distance given in meterdlpy andNyes are the number of DMs and WFSsY implies MCAQ),n is the total number of actuators, the column

“c = ES’ gives the required real-time processing power in Gflops for the matrix-vector multiplication, the column ‘€bgiges the required

number of floating point operationsl® for computing the reconstructor, and the last column gives the required storage spade @ip. A
Shack-Hartmann type WFS with a Fried geometry of actuators was adopted for the calculations, so that the total number of measurements is

m =~ 2n, and the wavefront reconstruction rate was set to 1 kHz. An inter-actuator distance of one meter corresponds meuajtty2om,
andd = 0.25 approximately ta@, at 0.7um.

D(m) d(m) Npw Nwrs n c¢=Es comp.E storage (Gb)
50 1 1 1 2000 8 8 0.03
50 1 2 5 4000 77 61 0.3
100 1 1 1 8000 123 484 0.5
100 1 2 5 16 000 1234 3876 5
50 0.25 1 1 32000 1974 31006 8
50 0.25 2 5 63000 19739 248050 80
100 0.25 1 1 126000 31583 x10° 126
100 0.25 2 5 252000 315827 $610° 1263

Section 2 introduces the linearized description of wavéie resultant measurement signal actually represents. One such
front sensing and reconstruction which has become one of tepresentation which will be appropriate in the following is
most commonly used formalisms for astronomical adaptive op-
tics systems, and is often used as the canonical starting paint | dy P(xi, y)D¢(y), (2)
for modeling. The sparse matrix methods to be applied to the
wavefront reconstruction algorithm are described in the firsthereD is a linear diferential operator. This Fredholm equa-
part of Sect. 3, and the second part describes the details oftthe of the first kind covers the two most common WFS types —
Monte Carlo simulation. In Sect. 4 some sample numerical fifte gradient sensors (e.g. Shack-Hartmann, lateral shearing in-
sults are presented for a number of elementary adaptive opterferometer) and the curvature sensors (Beckers-Roddier) — by
configurations, including the use of laser reference beacons aetting, respectively) = V andD = V2. The closed loop WFS
multi-conjugation. signal consists of the turbulence-induced open loop phase aber-
ration ¢ minus the phase correctignapplied by the adaptive
optics. Under certain conditions one may assume ¢hist a

2. Linearized model linear superposition of the DM influence functiopsaccord-
ing to

w(x) = > ¢ig;(), (3)

One may without much loss of generality adopt a wavefront j

sensor model that partitions the telescope pupil plane intq\Rqrec, s the jth actuator command signal. The validity of
uniform grid of sub-apertures, within which individual waveinis assumption is limited, as some DMs (e.g. electrostatic

front measurements are made on the part of the wavefrontifamprane and bimorph mirrors) may have influence functions

cident on the sub-aperture. To stafft@s generally as possible,eyanding nonlinearly over many actuators, and even well lo-

the responsg from the sub-aperturecentered on the pupil .yjizeq influence functions have a tendency to deviate slightly

plane coordinatg; to a static phase aberratigrpresentin the ¢om perfect linearity. It has been found, however, that within

t_elescope pupil plane may be described by a non-linear fuRGz jinear range of the WFS (3) is usually afaiently good

tional 7 approximation which leads not only to accurate simulation re-

sults but also dficiently accurate wavefront reconstruction in

real AO systems. Introducing a discrete description ofer a

total of N computational mesh pointg(x) = 3" ¢;6(x—x;),

whereP; = P;(x) is the aperture transmission function of subene may write the WFS interaction equation as

aperturei and g encodes all the steps of modulation, image |,

formation, detector response and signal processing. AIthOl-[gll"bC Z¢ifdy P(xi,y)Do(y — yj) (4)

an authentic description, this is a few orders too general and =

not very useful for practical analysis. It is usually the case, hel

however, and indeed a desirable feature of closed loop adap- _ Z ijdy P(xi,y)Dyi(y) (5)

tive optics systems for successful calibration and implementa- 0

tion, that the response becomes essentially lineargwtithin N-1 ne1

a limited range of operation. Within this linear range, one may _ Z ;Bij — Z ¢;Gij.
j=0 j=0

2.1. Wave-front sensing

s = J[Piexp(v-1¢)], )

(6)

study much simplified heuristic WFS models based on what
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with the matrix elements defined by by the simple matrix-vector multiplicatiom= Es. The compu-
tational costs associated with this type of wavefront reconstruc-

Bij = fdy P, 9)Ds(y - y;), (7) tion are listed for an assortment of AO and MCAO configura-
tions in Table 1. The SVD estimator is a least-squares solution

Gij = fdy P(X..y)Dy;(y)- 8) which minimizes the merit functiofs — Gc|_2. There are sev-
eral reasons to look beyond the SVD estimator, however, and

The closed loop WFS response to optical phase aberrationscl%r-]S'der adding a few layers of sophistication:

troduced by the atmosphere and by the deformable mirror may

thus be written on vector form as 1. For very high-order systems it might be necessary to filter
many modes which, even though poorly sensed, may con-
s=B¢+Gc+n, 9) stitute a non-negligible fraction of the modal content of the

turbulence-induced aberrations. Indiscriminate filtering of
where s is the m-element column vector of WFS measure-  singular modes will gradually reduce the modfil@ency

ments,c the n-element vector of DM actuator command, of the wavefront reconstruction.
themx n DM interaction matrix (n rows,n columns),B the 2. The least-squares estimator minimizisgGc|? is a purely

mx N phase interaction matrix amdam-element vectorofad-  geometric reconstructor that does not take into account po-
ditive noise on the measurement sigr@landB are Jacobian  tentially useful a priori knowledge about statistics of the

type matricess = ds/dc andB = Js/d¢, encoding informa-  nojse in the WFS or turbulence in the atmosphere, which
tion on the geometry of WFS sub-apertures and DM influence could help to condition the over-determined system and im-
functions. WhereaB is of primarily academic interesf is a prove performance and robustness.

calibration matrix that defines the fundamental interaction b&: As explicit matrix inversion, a full SVD is a@(n3) compu-
tween the deformable mirror and the wavefront sensor. It may tation that takes no advantage of sparseness. For extreme|y

be obtained column-wise by poking the DM actuators one by high-order systems, a computational problem will arise in
one and measure the response in the sensor (hence called thgs3|-time control as well as in simulations.

“poke-matrix” by some authors).

One may solve the inverse problem posed by (12) by a
2.2. Wave-front reconstruction Bayesian approach that delivers a least-squares estimator

weighted by noise statistics and regularized by open loop tur-

To spatially control an adaptive optics system, the inverse prqfyience statistics. This estimator is derived in Appendix A,
lem posed by the linearized interaction Eq. (9) must be solvgfy tne regularized inverse problem is given by the expres-
for the command signal vecter Requiring the reconstructiongjgp, (A.10)

to be a linear mapping, the solution may be stated on the gen-
eral form
(G'ClG+Clc=G'C s, (13)
c=Fs, (10)
where F is a spatial-temporal filter. Defining the open IooWherecn N .<nnT) is the WFS noise covariance m.atnx and
measurement signah = By + n oné finds upon combining%.C - <C.CT> 'S the actuator commaqd signal covariance ma-
(10) and (9) ' trix. By_mvertmg the Ieft-r_\and matrix one obtains the s_tan—
dard Wiener filter, sometimes referred to as the maximum
c=(FG-I1)'Fs. (11) a posteriori (MAP) estimato_r (_Fusco et al. 1999). Assuming
Kolmogorov turbulence statistics, one may estimage by
From here it is not clear how to proceed in the general casePt@jecting the turbulence onto a Zernike modal basis, for which
derive the filtet that is closed loop optimal. Ellerbroek (19943he covariances were worked out by Noll (1976). Introducing
shows that an optimal estimator may be derived by separatthg pupil-plane phase basesandZ of DM influence func-
spatial and temporal variables by the splittfig: fE, wheref tions and Zernike modes, a turbulence-induced phase aberra-
is a scalar temporal filter arfl the spatial reconstruction ma-tio ¢ may be described in either basefas Hc = Za, wherea
trix, and then imposing the constrailBG = | to linearize the is the vector of Zernike cdicients. Forming the inverse com-
spatial component of (11). For reasons of sparseness and cBasite mapping = (Z"H)*a it is clear thatC in general can
putational éiciency (see Sect. 3), only open loop wavefrorinly be found up to least-squares fit, but its inverse has the ex-
reconstruction shall be considered here. Open loop estima@gsrepresentation
may be sought by solving the simplified interaction equation
-1 T —1-T
Ss=Gc4n (12) C. =H ZC;*Z'H, (14)
for the command signal vectaxr To date, a commonly usedwhich is accurate up to the numerical orthonormality of the
technique is to ignore the noise component and invert the internike modes iZ, andC, = (aa'). It may be noted for future
action matrixG by singular value decomposition (SVD) and filreference that the DM interaction matrix may be represented by
tering, whereupon wavefront reconstruction may be conductbe composite mapping = AH.
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65 66 67 68 69 (lead-magnesium-niobate) or MOEM (micro-opto-electro-
58 59 60 61 62 63 64 mechanical) type DMs will be employed for high-order sys-
49 50 51 52 53 54 55 56 57 tems, whose actuators have a well localized influence and pro-
0 41 42 43 44 45 46 47 48 duce thus a sparse WFS response. For manufacturing reasons,
31032 33 34 35 36 37 38 39 it is also reasonable to assume a square geometry of DM ac-
22 23 24 25 26 27 28 29 30 tuator and WFS sub-aperture patterns such as e.g. the Fried
1314 15 16 17 18 19 20 21 configuration drawn in the upper part of Fig. 2 — hexagonal
6 7 8 s 10 11 12 patterns are a possible alternative with some attractive fea-
2 3 4 s tures, but they would notfgect the sparse wavefront recon-

struction to be presented here dramatically, only complicate the
= numerical analysis considerably. In both the Fried and Hudgin
configurations the inter-actuator and sub-aperture spacings are
matched, with the actuators positioned either at the corners of
the sub-apertures (Fried) or along the sides (Hudgin) bisect-
ing the sub-aperture. As a final assumption, a Shack-Hartmann
type wavefront sensor shall be adopted, which measures a two-
component gradient in each sub-aperture. It is clear from these
assumptions that the interaction mat@xwill have no more
than eight nonzero entries per column (i.e. per actuator), mak-
[ ing it and its covarianc&' G very sparse. The drawing on the
lower left of Fig. 2 illustrates the idealized heuristic interac-
Fig. 2. Upper left — Fried geometry of WFS sub-apertures and DM ation model that was adopted based on these assumptions: any
tuators; upper right — the natural numbering of the actuators. Lowgiven actuator on the DM will produce andy-gradients of
left — heuristic model for a Fried geometry interaction; numbers indéqual amplitude but alternating sign in the sub-apertures that
cate thex- andy-component of the gradient registered in respectifz within the actuator's region of influence.
sub-aperture asa result of poking the_c_e_ntral actuator. prer right — To quantify the sparseness of a matrix one may define
numerical weights for t_he discrete definiti@hof the ITapIaC|an cur- e degree of sparsenegsas the number of zeros divided
vature operator, for an internal, edge and corner point of the mesh. .
by the total number of elements — the sparser a matrix, e.g.
the closer to ongs becomes, the greater the gain of sparse
methods over explicit ones. Assuming the noise ifiedént
sub-apertures of the WFS to be uncorrelateg will be di-
agonal with the individual sub-aperture varianegson the
diagonal, makingC, a maximally sparse full-rank matrix. If
in addition the sub-aperture noise variances are all the same
3.1. Sparse wave-front reconstruction o? = o2 (as follows upon assuming identical detector pixels

Crucial to th ical simulation to b ted h and ignoring the ffects of partial illumination at the edge of
rucial to the numerical simufation 1o be presented nere g, aperture), the€;* = o521, wherel is the identity ma-

the use of sparse matrix methods for wavefront reconstrygs e regularization ternﬁ:;l — (44T, however, is a full

tion, which in turn relies on the matrices involved actually b% trix and some approximation must be employed to render
ing sparse. So far nothing has been said about the morprho parse. It was demonstrated by Ellerbroek (1986, 2002) that

ogy of the interaction matri or the covariance matrices, approximating the Kolmogorov turbulence power spectrum b
andC., and what about them might potentially invite the us%p g g P b y

"~ 0Oelsewhere '

3. Efficient performance estimation

) . >D(k) o« kY3 ~ k4, wherex is the radial component of the spa-
of sparse techniques. The particular form of these matri frequency, yields a sficiently sparse approximation @
depends strongly upon the type of wavefront sensor and @ihe form ’ 4
formable mirror being used, and their relative geometry as em-
bodied in the interaction matrix. For the high-order AO applE,* ~ oC'C, (15)

cations we wish to investigate, it is reasonable to make the fol- ) ) ) )
lowing assumptions: whereC is the discrete matrix representation of the Laplace

curvature operatov? anda a scalar parameter. By Taylor ex-
— The influence functiongj(x) are localized, extending nopansion, a second-order accurate finitéedence approxima-
further than the immediate nearest neighbor. tion to the two-dimensional Laplacian is given by
— A Fried or Hudgin geometry of actuators and sub-apertures P 0%
in perfect alignment (no DM-to-WFS misregistration).  v%(x, y)lkl = (_2 + _2)
— Identical influence functions,(x) = g(x) = 6(x — X;), with ' 9x= 0y )|y,
perfectx andy symmetry. o Prr1l + P11 — Akl + Pii1 + Pri-1s (16)

The first assertion comes from theffdiulty of building bi- where the paired indicek,() refer to the discrete- andy-
morph or electrostatic membrane DMs of very high orderoordinatesX, ¢) in the pupil plane. HenceZ will have no
This makes it plausible that piezostack, electrostatic PMMNore than five nonzero elements per column, which makes
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Fig. 3. Modulus ofG'G + CTC for n = 69 andn = 877.
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Fig. 4. Required computing time Idgas a function of the order lag
it and CTC very sparse matrices as soon as the order of tplethe system for explicit (pluses) matrix-vector multiplication and
system reaches nontrivial proportions. It was also verified B§2arse (diamonds) PCG wavefront rec'onstruct_ion' algorithms. Slopes
Ellerbroek (2002) that simple boundary conditions such as mﬁ)gtrapolated from the last two data points are indicated next to each
roring or protruding from the center producefstiently good data se_t, where the two values for the PCG, 1.56 and 1.18, correspond
) - to relative error tolerances of 10and 102.
results that one need not look into more sophisticated extrapo-
lations at the edge of the pupil (the drawing on the lower right
of Fig. 2 illustrates the boundary conditions applied here for
edge- and corner points). This and the fact that the turbulence Conjugate gradient (CG) methods provide a quite gen-
approximation 113 ~ 4 works admirably are not so surpris€ral means to solve linear systems of the form (17) by it-
ing, since the role of the regularization te@p* was never to eration. Given an initial guess for the solution vectorthe
perfectly tell the system exactly how to reconstruct turbulen€& algorithm generates a succession of orthogonal search di-
from WFS signals. Its main job is merely to support the inections that produce gradually improved estimatesand
version by smoothing out singularities and, in the presencetbg recurrence may be terminated wherffisient accuracy
noise, to provide some additional advice on what to do, inis1 achieved. For the numerical simulation of this study, the
statistical sense, with noisy measurements. Multiplying out thgeconditioned conjugate gradient (PCG) method described in
noise variancer2, the approximate wavefront reconstructiofress et al. (1992) was employed. The PCG algorithm deviates
equation with all sparse matrices is thus finally obtained as from the CG only by both sides of (17) being pre-multiplied by
the inverse of a “preconditioning matrix¥, which was taken to

(G'"G+aC'C)c=G's. (17) be simply the diagonal part of the system matixThe PCG
S algorithm turns out to be particularly suitable for sparse sys-

tems, as the matriA is only referred to by its multiplication
wherea o« o2rg/?, andry is the Fried parameter governing thavith a vector, which can be venyffigiently implemented for
turbulence strength. The resultant system makix G'G + a properly stored sparse matrix. The sparse storage scheme
aCTC is shown in Fig. 3 for two systems with eight € 69) adopted for this study, the row-wise format described in e.g.
and 32 o = 877) sub-apertures across the telescope apBissanetzky (1984), is in fact constructed such that tfie e
ture. For then = 877 actuator system attains a sparsenes<iency of the matrix-vector multiplication is optimized with
of y = 98.6%, which already suggests the use of a sparegspect to sparseness. A representative benchmarking of the
algorithm to economize on computations, even though cosparse PCG applied to the current task of AO wavefront recon-
ventional reconstruction would not be a computational probtruction is shown in Fig. 4. Error tolerances of4@nd 10?2
lem at this level. A useful feature of implicit wavefront reconwere bench-marked, where the latter leads to the PCG compu-
struction schemes is that small adjustments may be maddaional cost scaling almost linearly (exponent 1.18) witlAs
the constituent matrices in order to optimize the reconstrig-shown in Sect. 4, other error sources present in the adaptive
tion in real-time. Equation (17) provides a clear example: aptics system relax the requirements on precision in the recon-
was mentioned in the introduction, the influence of the regulatruction algorithm, such that a remarkably large intrinsic error
ization term is controlled by a single parametewhich may (e.g.~1072) may be tolerated without significant loss of AO
be adjusted on the fly to match the current atmospheric seeggformance.
and WFS noise conditions — in explicit wavefront reconstruc-
tion one V\_/ould have to recompute the reconstruEtoy SVD 32 Monte Carlo simulation
or matrix inversion each time an adjustment was made (with a
Cholesky solver one would need to compute the factorizatidine numerical Monte Carlo simulation is of the type de-
again). scribed in, e.g., Flicker et al. (2000), as originally devised
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£ =K (@.0) made possible by undersampling the turbulence-induced phase
aberrations in the pupil plane — undersampling in this con-
text meaning neglecting spatial frequencies above the f€ut-o
frequency of the DM, which is set by the inter-actuator dis-
tanced. This allows the representation in the telescope pupil
plane of a DM actuator and a WFS sub-aperture by one single

Propagation

_E oise) s =s+n phase-element (pixel). Hence the mapphihg ¢ — ¢ from
§ DM commands to wave-fronts becomes the identity, where-
T uponG = AH = A, according to the discussion directly follow-
> S =S+r ing Eq. (14). Equating phase and actuator commands, it follows
8 from the interaction Eq. (12) that both are mapped into WFS
S signals by the interaction matri®. Hence the WFS model
£ s = Gpg, Where the subscript zero denotes the pupil-plane inter-
2 b action, in order to distinguish it from conjugate-plane interac-
> B tions that enter int& when looking to MCAO configurations.
(Sparse PCG) Ac =D Undersampling this coarsely is a rather crude approximation
c that will not produce very accurate results unless compensated
for. Two obvious errors thus unaccounted for are the fitting
@”Ol ¢=¢+gc of DM influence functions to phase aberrations and the spatial
[0) aliasing of high spatial frequencies in the WFS. Presently, only
simple analytical models are applied to account for the fitting
Advance turbulenc@ ¢=T(9) error phase varianee€? in the limit of long exposure time, and

the contribution to the WFS measurement signal from spatial

aliasing (see next section). The remainder of the simulation se-

guence sketched in Fig. 5 is straightforward. Noise and aliasing

vectorsn andr are added to the obtained WFS signal

by Rigaut (1999) for MCAO feasibility studies at the Gemini

Observatory. The designation “Monte Carlo” is here used #= Ggs+ n+r, (18)

its loosest sense, that the statistically averaged result is ob-

tained after processing a large number of random inputs. dsd the sum is pre-multiplied b@" to prepare the vectdn

main components are sketched in Fig. 5, which reflects the sygt is input into the sparse PCG wavefront reconstruction al-

tem architecture as depicted in Fig. 1. The maifiedences gorithm. The PCG delivers the required actuator adjustrment

in the current study from previous applications of the algevhich is added to the current shape of the DM by a standard in-

rithm lies within the propagation module, the WFS modulegrating controller over a scalar gajinThe operatof shifts

and the wavefront reconstruction algorithm that was describie turbulence screens according to wind velocity vectors be-

in the previous Section. The atmosphere is modeled by affire evaluating performance in terms of the field-dependent

nite number of infinitesimally thin layers of turbulence propupil-plane residual phase varianeg It merits comment that,

ducing pure phase aberratiopsthat are stacked vertically atin this hybrid model, aliasing enters the interaction on exactly

varying altitudes above the telescope. The phase aberratitiressame basis as noise, although witfiedent spatial statis-

obey von Kirman statisticsD,(k) o (k? + x3)7¥6, with an ftics.

outer scaldg = /<51 ranging between 25-100 m in the various

simulations presented in Sect. 4. The propagation opefator, o L .

would in the general case be a Fresnel propagator that prgp‘?' Fitting and aliasing compensation

agates a plane wave over the atmospheric aberraficarsd |t remains to be investigated how first-order system errors such

the adaptive phase correctiopsnto a residual complex aber-as servo-lag and anisoplanatism affeeted by the truncation

rated wavee in the telescope pupil plane. Under assumptio$ high spatial frequencies, but it is verified in Sect. 4 that

of weak and not extremely high-altitude turbulence, howevehese &ects are minor. The DM fitting error will here be ap-

one may forego a wave optical description and model propsoximated as the total phase variance deriving from spatial

gation geometrically as the linear addition of phase perturlfgequencies higher than the cufdrequencyx. of the DM,

tions. This neglects thefects of scintillation, which are small x, = (2d)~2. Integrating the Kolmogorov power spectrum given

at near-infrared wavelengths, 1-2i, but become important by Noll (1976) outside the controlled frequency domain gives

at visible wavelengths and when high a degree of correction is

the goal (Sasiela 1994; Flicker 2001). o2 = 0.023f 113 (19)
The WFS module is of a fundamentallyffdirent functionin ~*+ 53 J, ’

this simulation than previous ones. Rather than building a wave °

optical model for a sub-aperture of the Shack-Hartmann sensanerex = |«| is the radial component of the spatial frequency

the WFS signas is here obtained from the residual phas#i- vectorkx and the regionA is the complement of the centered

rectly by a sparse matrix-vector multiplicatian: Goe. Thisis  square with sided vV2)~*. Evaluating the integral in cylindrical

Fig. 5. Flow diagram of the hybrid numerical simulation.
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coordinatesk, §) and observing the radial symmetry gives 1.2¢ o N i . w1
/4 oo -t o g
o= ex e f d | e (20) B oo TS e e
o 0 «(0) wge 0.81 ]
24 0023 /4 & eb ]
= — X — X (d \/§)5/3f do co</3p (21) 8 0.6: ]
S ro/3 0 g . ]
0 o 041 -
5/3 2 [F===F===t===g-==t-=-=F===k===&d
zo.414(9) 22) & oo YT orooroomoomemer o
ro ’ T Koo [ [P [P % K- ¥ ¥ ]
where the azimuthal integral was numerically integrated 00 k ‘ ‘ ‘ ‘
to 0.663, and the cosine derives from the boundé#y of A 10°F >~ N E
in the intervalé € [0, /4] described in polar coordinates as B T -~ 1
x(6) = (dV8cow)t. This §3' s power lawo? = a(d/rg)*® s ™. Toew 1
may be applied with various ctiicientsa that better approx- ;{3 i B . |
imate the real fitting of dferent types of influence functions. LcB) 10 el T N E
Codficients for the most common types are listed in e.g. Hardy r R 1
(1998), but in this paper the value 0.414 as derived in (22) will i oy * ]
be used throughout. This result applies less well in the case of oL | | | s |
multi-conjugation, but it shall be used nevertheless as a rough ) 5 4 2 0
approximation — the method in Rigaut et al. (2000) could plau- 10 10 10 10 10
sibly lead to a better estimation in this case. Fig. 6. Residual phase variane€ and number of PCG iterations ver-

The WFS spatial aliasing error is produced by some of tfes the PCG relative error tolerance, for thex12 Shack-Hartmann
high spatial frequency content of the atmospheric turbuleni€gt configuration in conventional AO (dotted lines) and MCAO
being folded into the interval-jie, +c] by the discrete sam- (dashed lines) mode. In the top field, a field-weighted average (pluses),

pling of the wavefront. Since those high frequencies that pr%l’_l unweighted average (diamonds) and the on-axis value (asterisks)
L . are plotted for comparison.

duce aliasing remain largely unattenuated by the AO system,

open loop statistics may be employed to represent aliasing to _

first order. Approximating the Shack-Hartmann WFS by an iinto the separate expectatiofis, |)(exp(i/)), where the statis-

finite array of gradient sub-apertures of linear dimensigine tics ofy lead to the condition

aliasing measurement sigmal as a function of the pupil plane

coordinatex may be expressed as (€xpli(mn = Yrmm)]) = SmmOnrr- (28)
X X Substituting the von EKfman spectrum from (Winker 1991;
m. (x) = LU(H) % [H(H) * me(x)], (23)  Noll 1976) for d,,, the power spectral density (PSB), =

i S (/M. %) of m, evaluates to
where asterisk+) denotes convolutiorlI is the square win- (m. % +

dowing function defining one sub-apertug, is the high- _ K2 . .
frequency component of the phase and the replicating functi%)ﬁ‘*('() B ZZ k2 Sing (k) sinc” (k)
(theshal) was defined as

m#0 n£0

x 0.023%3(kG, + K + 15) ™°, (29)

X = (X
m(a) - Z Z 6(6 B m,% B n). (24)  wherelkyl, lk,| < V2« Rather than applying an analytical re-
Meoon=—eo constructor as in (Rigaut et al. 1998) for computing the alias-
As the shah is its own Fourier transform (Bracewell 1994), tlieg phase variance, the PSD (29) will here be used to generate
spatial Fourier transform of the measurement becomes the aliasing vector indicated in (18) by Fourier transform of
B+/®m, , WhereB is a complex-valued white noise. By doing so,

m, () = [1I(xd) = [SinC(Kd) iKai(K)] (25) the WFS aliasing is propagated through the PCG wavefront re-
+00 4o _ constructor to produce a resultafiiset on the DM commands
= Z Z ik sinckm) sincks) ¢ (K), (26) that observe the proper propagation properties.
M=—00 N=—00
where the aliased frequency vectowas defined as 4. Model implementation
K= (Km, kn) = (KX - g”‘y - g) (27) Simulation results for a number offtérent AO and MCAO

configurations are presented at the end of this section. Of par-
and sinck) = sin (rx)/ (7x). The phase spectrum may be writticular interest are the results concerning extremely high-order
teng, = |4, | exp(iy) wherey is the phase shift of the complexsystems, and the investigations into scaling laws for AO per-
spectrum?ﬁl. Whereas the modulu5l| inherits the Gaussian formance with telescope diametarand with turbulence outer
statistics ofg, ¥ € [0, 2] is uniformly distributed and inde- scaleLy. The simulations all employ a generic four-layer at-
pendent of¢, |. Hence the expectation value®f may be split mospheric model, with parameters as summarized in Table 2.
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The altitudeh refers to the level above the telescope site, afeble 3. Observational and system simulation parameters.

the fractional turbulence strength per layerl is defined as

1185

fi = ¢/ X ¢, where thec are the cofficients of theCﬁ de- Simulation parameter Value
compositionC2(h) = ¥, ¢é(h — h). In terms of the Oth tur- Imaging wavelength Aim  2.2um
bulence momento = [dhC(h), these cofficients are given Sensing wavelength s 0.7um

by ¢ = uofi. The wind speeds, were given random direc- Outer scale Lo 50m

tional vectors from a uniform distribution. It should be noted Egi?rzféi?c?re;ti((?r: 0Am)  To 0'37 m

that, although this toy atmospheric model does not derive from LGS altitude Y 90 km

real measurements, it was contrived to be conservative withre- 5, conjugation:

spect to reported atmospheric conditions at most good astro- DM1 ho 0

nomical observing sites, without for that reason being overly DM2 hy 10 km
pessimistic. Where nothing else is stated, other observationand  WFS integration time:

simulation parameters assumed the values listed in Table 3. Shack-Hartmann T 1ms

Only a 2-DM case was considered for the MCAO simulations, Tip-tilt sensor 7 10 ms

and the guide star magnitudes were all set to 10 in order to  Guide staV magnitude:

suppress theffects of photon noise (CCD read-out noise was NGS m. 10

not included in the simulation) — the maiffects investigated Tip-tilt m. 10

for this study were the errors associated with LGS (cone ef- LGS m 10 2
fect), MCAO (tomographic error) and the outer scale of turbu- Sky brightness Myy 20.5 magarc
lenceLy. [T

4.1. Efficiency optimization

(rad?)

-
&)

o,

£

In order to optimize thefciency of the PCG wavefront re-
construction algorithm, its required accuracy in an AO sim-
ulation was metered versus its relative error tolerance. Sinceg |
the error tolerance determines when to terminate the recur-$
sion, it directly governs the computational cost for wavefront &
reconstruction. The somewhat surprising results are shown in3 o
Fig. 6, where the upper part plots the residual pupil plane g
phase variance? versus PCG error tolerance, and the lower

part plots the average number of required PCG iterations. - )
Both a conventional AO (dotted lines) and a MCAO (dashed
lines) system of the same order (thexI2 Shack-Hartmann

used for the comparison in Fig. 7) were tested for compar-
ison. It is seen that over a range of"lidicrease in the er- Fi9. 7.Comparison between simulation results (phase variance — solid;

ror tolerance, over which the PCG iteration count drops %rehl ratio — dotted) for the hybrid simulation of the current study

roughly a factor of 100, there is very little loss of AO pert iamonds) and a more accurate wave optical simulation W|tr_1 well-
. . sampled turbulence (pluses). Dashed curves show for comparison the
formance — superimposed upon a very mild and gradual

S, . . .. |Ijiybrid simulation result without fitting and aliasing compensation.
crease irno; there is an irregular jitter of comparable or even

larger magnitude. With turbulence variationdigiently av- . L
eraged (100 independent atmospheric realizations with 2(ﬁ%nputatlonal cost of the PCG reconstruction in the case of the

Monte Carlo cycles averaged within each), this jitter can onf?nventional AO system was already down to a single PCG it-
be numerical, pertaining to the inner machinations of the PcJation upon the initial guess. The simulation results presented
The investigation of AO performance versus PCG error toIéP—th'S section were produced at a PCG relative error tolerance

ance was discontinued at a value of 0.2, as at this level f0-01, erre the scaling withfor large systems is approxi-
matelyO(n™<) as shown in Fig. 4.

lance o

o
fo ¢ ‘
P

0 10 20 30 40
Off-axis angle (arc sec)

Table 2. Discrete 4-layer model for atmospheric turbulendeis the 4.2. Model validation

layer altitudeC2?/uo = f is the fractional turbulence strength per layer, ) ) ) )
andv is the wind speed. The dficient simulation model was corroborated for realism

and accuracy versus a full-fledged wave optical Monte Carlo

Layer h(m) Cl/uo o(ms? simulation of similar type, where all the first-order errors (fit-
1 0 050 15 ting, aI_iasing, servo-lag, anisoplanatism_ and noise) are mod-
5 3000  0.25 o5 eled with high accuracy. For the comparison, a small test con-
_ 6000 0'15 35 figuration (12< 12 Shack-Hartmann WFS$) = 137) on an

""" ' 8-m telescope was simulated, and the comparison is shown in
4...... 12000 0.10 25

Fig. 7. Looking to the curves of residual phase varianée
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(solid lines) versus angle from the guide star, it is observed 8/ L L1‘ L S T T ]
that the dicient simulation is filicted with a bias of approxi- O S A
mately 0.04 ratl The majority of this @set is due to the ana- 5 f|x [ —25m ’ ‘ :

=

Iytical fitting and aliasing compensation, which in their approx- =
imation do not exactly reproduce the conditions in the more §
accurate simulation. There is an additional variation across thes | ,
field, and at the edge of the field the discrepancy is close to>
0.1 rad, but looking to the Strehl curves (dotted lines) this dis-
crepancy translates to less than 5% relative deviation over theZ |
range of values plotted (35 arcsec), with a field average of 3%.% P E— g% 15%Stehl
These numbers are quite tolerable for a first-order performance | 1
estimation model, and it may be concluded that undersampling = R SRS ]
the frequency content of the atmospheric turbulence to firstor-  ,[#~ L o L L
der has no or only a negligible impact on the errors associ- 20 40 60 80 100
ated with anisoplanatism, servo-lag and noise. While small in Telescope diameter D (m)

the present context, these discrepancies may not be completely

insignificant for a tight error budget as far as the design bfg- 8 On-axis residual phase varianag versus telescope diameter
&)r LGS AO, for a range of outer scalés. Low- and high-order

. f
a real system is concerned. For that purpose one would ng% Systems withd = 0.8 m (solid) andd = 0.5 m (dashed) are both
to look into second-order corrections to improve upon the ag- comparison. ‘

curacy of the model, if the current hybrid algorithm is to be

used. Presently, no higher-order correction schemes have been

investigated. Keeping in mind that fitting and aliasing are given ho pm phase may be summed as in the NGS MCAO case
by analytical approximations and that scintillation remains un- 54 only the turbulence interpolated.fBrential tilt is in
accounted for, simulation results for a number of relevant AO s case obtained from three tip-tilt NGS, and compensated
and MCAO configurations are presented in the following. using a separate control loop (Ellerbroek & Rigaut 2001).

al'phase
.
/

4.3. Laser beacons and multi-conjugation
) _ ) _ 4.4. Sample numerical results
Concerning laser guide stars and multi-conjugated systems, a

few special considerations must be taken in order to ensure thatthe diameter of the telescope apertireapproaches the

these are fiiciently implemented without losing accuracy irfurbulence outer scaleo, low-order modes responsible for a
the simulation. large fraction of the turbulent energy such as tip and tilt, defo-

cus, astigmatism etc. become de-weighted relative to higher or-
1. For the case of laser guide star (LGS) adaptive optics, ttier modes within the aperture. Althougikis a poorly known
propagatofX’ must include a scaling procedure in order tquantity at most sites and times, its value seems to be of critical
account for the conefiect that arises when using a referimportance to the design and performance of ELTs. Predictions
ence beacon at a finite altitude. The horizontal scaling bésed in Kolmogorov theory do no longer apply, but it has not
the atmospheric turbulence is accomplished by rebinnibgen investigated extensively how the characters of angular and
the phase screens (which are periodic) onto a finer mdshal anisoplanatism scale to ELTs, especially when it comes
and resample at new coordinates by cubic spline interpota-tomography and MCAO. Figures 8 and 9 plot the residual
tion. Tip and tilt modes were filtered from the measuremephase variance? for two conventional LGS AO systems with
signal s rather than being projected out of the controlled = 0.8 m andd = 0.5 m as the telescope diameter was varied
subspace of the interaction matf which would render throughD = [10, 30,50, 100] m. Since performance is mea-
it non-sparse, and a NGS employed for tip-tilt sensing. sured only on the axis of the LGS, angular anisoplanatism is not
2. For the case of multi-conjugated adaptive optics (MCAQ)resent, and for the relatively benign observation scenario cho-
the interpolation described above would be subject to aliagen (near-infrared, bright guide stars — see Table 2) the noise
ing efects at the edges of the DMs if applied thereto, araror is negligible and the servo-lag error small. The dominant
should be avoided if possible. Accuracy in the wavefromirror sources in Figs. 8 and 9 are therefore DM fitting and LGS
sensing is thus retained by having the guide star positioitgal anisoplanatism, and for sm&l (<10 m) the cone féect
on the sky observe integer pixel shifts on the conjugatésimild enough compared to the fitting error that no variation
DMs. The integrated DM correction in the direction of anyvith L is observed. According to Kolmogorov theory, the fit-
guide star may then be obtained by adding the DM shape®y error does not vary with telescope diameter when aper-
conformally without interpolation. ture filtering is not taken into account (and only weakly when
3. For the case of LGS MCAQO, the pixel scales at the conjit-is), and the induced phase variance due to the céizete
gated DMs were reduced by the geometric facteri/H, should scale a®®3 (Fried & Belsher 1994). The increase in
for a LGS at the rangél and a DM at the rangbx. By o2 in Fig. 8 therefore chiefly reflects the conffegt, but in
having the LGS positions on the sky correspond to integeart also the much smaller variations of the servo-lag, alias-
pixel shifts on the conjugated DMs with this reduced scaleg and reconstruction errors that arise with the departure from
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o ——owl f Where this &ect becomes significant, the scaling widhwill
el *.-»] startto deviate from a simple power law. There is an indication
to this @fect by the presence of an inflection point in some

of the curves. The current sparse data does not allow a de-
tailed analysis of this phenomenon, however, and a discussion
of thereof is in any case beyond the scope of the present’study
A series of MCAO cases with two DMs, conjugated to
zero and 10 km, and either five NGSs or five LGSs in a
X-like geometry with a base of 40were simulated subject
to the same variations ihg andd as the single LGS sim-
ulation. The tomography algorithm employed was the lin-
ear MAP estimator described in Sect. 2.2, which is derived
in Appendix A. The results are given in Table 5, in the form
of the field-averaged Strehl rati§ (left column) and the
relative deviation over the fieldS/S (right column). The
Strehl ratios were computed from the phase variance in the
Fig. 9. Same data as in Fig. 8 re-plotted on logarithmic axes to shewtended Magthal approximationSR =~ exp(—aﬁ), which
the difering slopes. means that entries below 0.2 are somewhat underestimated.
For MCAO, no analytical predictions for the tomographic er-
ror in Kolmogorov theory have been produced, leaving lit-
Kolmogorov statistics when the telescope diameter approacHedyy which to compare these results. It may be conjectured,
the outer scale. As seen from the log-log presentation, howevnvever, that the instance of tomography should help to mit-
the residual phase variance for the various cases still scales vegage the coneféect even further upon the aid lent by the fi-
much like a power law with a varying exponent. By assumingrite outer scale. Comparing with the values in Fig. 8, it is
power law relation of the forrr? o« D and fitting straight lines seen that the sensitivity thy is stronger in the MCAO case,
to the logarithmized data in Fig. 9, one may obtain the expplausibly due to the larger field over which MCAO attempts
nenty. The exponents for the current data are listed in Tabletd, compensate turbulence. The gain toward loyis how-
and the deviations from thg®s law predicted by Kolmogorov ever also larger for LGS MCAO than LGS AO, indicating a
theory are seen to be significant. very nonlinear coupling betweel,, D and the instance of
This is partially due to the finite outer scale, but as mdgmography and multi-conjugation — which is why results
be inferred from the two columns of the table, also depef@r ELTs are very diicult to infer with any confidence from
dent upon the inter-actuator dengityNot simply does the AO simulations at smaller scales. It is seen that, contrary to some
residual phase variance depend upon the outer scale, but ng&&#ns in the literature based on very conservative estimations
precisely it depends upon the resultant spatial statistics as @&xtrapolations, a small number of LGSs may actually pro-
turbulence is projected onto the influence functions of the D¥ide a useful level of compensation on telescopes as large
(or equivalently, the controlled modes of the wavefront es@és 30-50 m, if not close to fifaction-limited. For higher LGS
mator). The smaller the inter-actuator distamtehe higher performance the LGS density must be increased in order to re-
the spatial cut-§ frequency of the deformable mirror and théluce the tomographic error due to focal anisoplanatism, which
closer to the real turbulence spectrum the system operaf@éans a larger number of LGSs if a given field of view is
Thaty decreases whathincreases can be understood in ternf® be maintained. Tilt anisoplanatism in LGS-based MCAO
of the AO system addressing less of the high spatial frequerfgystems will reduce performance somewhat with respect to
content of the atmosphere as the order of the system goes doWaS MCAO, as discussed in Ellerbroek & Rigaut (2001).
With a finite outer scale, the deviations from KolmogoroRRegarding concerns occasionally voiced that LGS tomogra-
statistics then become increasingly more prominent among tH#, tilt anisoplanatism aside, would be implicitly less accu-
low spatial frequencies that are compensated by the systéatie than NGS tomography, no sucffieet has been ever ob-
It may be inferred by numerical evaluation of turbulence int&erved by the author of this paper. It has been verified in a
grals (Sasiela 1994) that include a finite outer scale, that #@signed test simulation that, if the turbulence was confined
contribution too? due to focal anisoplanatism will be reducedo the union volume spanned by the cones (i.e. no unsampled

at largeD and smallLy as compared to Kolmogorov theory:
g 0 P g Y To the best of the author’s knowledge, the analytical results re-

ferred to here do not yet exist in the published literarure, although
they are relatively straightforward to obtain. While the analysis of
Sasiela (1994) is based in the Rytov approximation, less sophisticated
Fourier domain methods that do not account for scintillation may also

2
€

Log o

1.0 1.2 1.4 1.6 1.8 2.0
Log D

Table 4. Estimated exponentgin a power-law fit ofo2 o« D?.

Exponenty be used to compute turbulence-induced phase variances. The spatial
Lo(m) d=05m d=08m frequency attenuation by the aperture is accounted for in Fourier do-
100 1.58 1.27 main by a complex filtering function, and focal anisoplanatism may be
gg 1‘21; (1)58 estimated for a layered turbulence profile by summing over the layers

with a varying argument in the aperture filtering function.
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Table 5. Strehl ratio simulation results for 2-DM MCAO system with 5 NGSs or 5 LGSs and thfisgatit turbulence outer scales For the
cased = 0.5 m (left-hand side of table), the square field of view defined by the guide stars measured 40 arcsec in the NGS case and 36 a
in the LGS case. For thet= 0.8 m case, the field was 67 and 60 arcsec for the NGS and LGS simulations.

d=05m Strehl ratio and uniformity d=0.8m Strehl ratio and uniformity
D (m) n  Lo(m) 5NGS 5LGS n 5NGS 5LGS
100 0.76 0024 0.62 0136 055 0063 045 0120
10 898 50 0.76 0023 0.68 0090 394 0.55 0059 0.46 0093
25 0.77 0023 0.69 0083 056 0053 049 0084
100 066 0085 019 0179 049 0090 0.18 0502
30 6402 50 0.69 0068 0.30 Q146 2489 049 0087 0.25 0383
25 0.73 0043 046 0097 052 0062 040 0182
100 0.63 0095 0.02 0097 046 0119 0.05 0355
50 16946 50 0.68 0062 0.06 0089 6402 047 0095 0.14 0236
25 0.72 0039 0.24 0056 052 0063 0.27 0173
100 0.43 0096 041 0161
100 65282 50 0.47 0060 24074 0.48 0087
25 0.62 0036 0.53 0056

turbulence), LGS and NGS tomography become exactly equAppendix A: Derivation of maximum a posteriori
alent. The poorer performance of LGS tomography in a real estimator

scenario is solely due to the loss of information that a focuse
sensor beam must contend with, and minimizing this informdy’
tion loss by increasing the LGS density will gradually improvg — G¢ 4 n, (A.1)
LGS MCAO performance. It remains to be proven however,

that an ELT in the range 30—100 m will be able to deliver nedfom which we wish to estimate the optimal command vector
diffraction-limited performance under wind fieting and me- that maximizes the a posteriori conditional probabif{g|s):
chanical flgxure, WhICh may be a larger obstacle to overcor&e: arg maxP(cls). (A.2)
than adaptive optics performance. c

e open loop interaction equation may be written

A standard procedure to find. that shall be used here is to
solve gP(c|s)/dc = O for c. From Bayes’ theorem of condi-
tional probabilities we have that

First-order performance estimation for adaptive optics P(slc)
systems may be accomplishedfigently with a hy- P(cls) = P(c) RS’
brid numerical simulation that combines the accuracy _ o .
and realism provided by a Monte-Carlo-type simulatiowhereP(s) = 1 since this is the measured data &?(@) is
with analytical compensation tools where the former wadBe so-called Bayesian prior, which contains the a priori in-
compromised in order to increasdfieiency. Systems with formation on the statistics of that will regularize the solu-
~10° degrees of freedom, including multi-conjugate an@on. Assuming the wave-front sensor sub-aperture noise to
laser-guide-star-based systems, mayflieiently investigated be of Gaussian statistics with zero mean and standard devia-
thus using a current standard personal computer. Results wisras{oi}™!, it is seen by rearranging (A.1) that- Gc shares
presented for a number of AO and MCAO configuration#)e statistics oh. Assuming further the noise to be uncorre-
demonstrating that the turbulence outer sdajéhas a signif- lated between sub-aperturésn;) = 6ijo7, the likelihood term
icant impact on performance when the telescope dianizteP(sIc) evaluates to

approached . LGS MCAO systems are seen to be more m-1

sensitive toLg th_an conventional LGS AO systems, and the(gc) = H P(slc) (A.4)

gain also larger in MCAO ako becomes smaller. To the best i=0

of the author’s knowledge, the results for the- 65282 case

5. Conclusions

(A.3)

represent the largest MCAO system simulated in full to date,™ As 1 2

although the simulation approaches presented in EIIerbro:ell__[ mex T 252 [s - (Go)l } (A-5)
(2002) and Gilles et al. (2002) are of comparable capabilities':O ' '

and dficiencies. Future extensions of the simulation will As \™ 1

proceed to refine the fitting error estimation and includé|cn|_l(\/—2—ﬂ) exp{—i(s—Gc)TCgl(s—Gc)},

scintillation efects.
whereC, = (nn') is the noise covariance matrix. For mathe-
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with additional computing resources. continuous values. Invoking the central limit theorem to bear
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