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1 INTRODUCTION

The purpose of thermal insulations of buildings and other construc-
tions, which maintain a temperature different from the surroundings,
is to decrease the inevitable heat loss. A layer of insulation mate-
rial is, wherever it is feasible, placed along the boundary of the
construction.

Let us now assume that we have a given amount of the insulation
material at our disposal in a particular case. The question arises
how to distribute the insulation over the different parts of the
boundary surface. It is clear that one should use more insulation
on parts that are more exposed to the surrounding. The thickness

of the insulation layer will then in general vary over the boundary
surface. The insulation material is to be distributed over the
boundary surface so that the total heat loss is minimized.

The optimization problem is often trivial. For example, the thick-
ness of the insulation layer shall of course be constant for a wall
of a building except for corner regions, where the situation is
more complicated. The optimization. problem arises, when the heat
flow through the insulation is coupled to a multi-dimensional heat
flow process in solid regions outside the insulation. Corner re-
gions and other cases, for which the heat flow pattern is more
complex, also pose an optimization problem.

An important case is the insulation of buildings and other struc-
tures along surfaces that border on the surrounding ground. The
surfaces, over which the insulation is to be distributed in an
optimal way, are the ground plate of the building or the walls
and floor of the cellar. Other equally jmportant cases are under-
ground constructions such as district heating pipes, culverts and
caverns.

A lot of systems for interseasonal storage of sensible heat in a
large ground volume have been proposed and contemplated during the

last years of energy crisis. A considerable thermal insulation



against heat losses to the ground surface and the surrounding
ground is usually necessary. The amount of insulation material
may become an economically important factor for the system. Then
it is valuable to know how to distribute the insulation in an
optimal way.

Let us directly in this introduction illustrate the theory and the
results, which are presented in this paper, with an example. Consi-
der a long house. The ground plate of the house lies directly on
the earth. Between the plate and the ground surface there is an in-
sulation layer. The thickness of the insulation layer is in the
optimal case variable along the surface. Figure 1 shows a vertical
cross-section of the house and the ground.

ground plate
insulation

Figure 1 Introductory optimal insulation problem.

A given amount of insulation material is to be distributed along
the ground plate so that the heat loss is minimized. The house is
assumed to be quite long so that the heat flow process in the
ground below the house is essentially two-dimensional in the plane
of Figure 1.

The width of the house is 10 m (L=5 m). The thermal conductivity
of the insulation material is 0.05 of that of the ground below the



house (xi/xo = 0.05). We have at our disposal a certain volume of
insulation material, which corresponds to a thickness dm, if the
insulation were distributed uniformly along the ground plate.

There is a certain minimal value for the mean insulation thickness
dp We have from formula (6.8) for a plate on the ground:

dosp = 0.05 - 5(1 - %)= 5.4 cm (1.1

Let us first assume that the given dm is precisely equal to this
value: dm=dmin = 5.4 cm. The thickness d of the optimal insulation
shall then from formula (6.7) vary along the boundary -5 <X <5
according to:

dx) = 0.25 -(1 - V1 - §)%)  -5exes

(,=0.054 m) (1.2)

The insulation thickness is zero at the center x=0. It increases
to a maximum value of 0.25 m at the edges x= *5 m of the ground
plate. Curve II in Figure 2 shows this optimal insulation distri-
bution.

Suppose next that we have an amount of insulation that corresponds
to a higher dm equal to say 15+5.4 cm. It is shown in the paper
that the excess insulation above the critical amount dmin shall be
distributed evenly along the insulation surface. The insulation
thickness shall then in this case of optimal insulation vary as:

d(x) = 015+ 0.25(1 - V1 - (8)%)  -5¢x¢5

(d,=0.15 + 0.054 m) (1.3)

Suppose finally that the available insulation volume corresponds
to a dm below the critical value 5.4 cm. Then we must not put any
insulation at all along a certain segment around the mid-point x=
0. A1l insulation is to be placed along the remaining parts closer



to the edges of the ground plate. The precise form of the optimal
thickness curve is not discussed in this study. This is deferred
to a later study.

Figure 2 shows how the insulation thickness shall vary along the
ground plate in the three discussed cases in order to obtain mini-
mal total heat loss to the ground.

& (m) .
\ A o.05
105 Ao

I: dy,=204 cm
OI: d,=54cm

M: dy, <54 cm

» x (M)

Figure 2 Optimal insulation thickness d for a ground plate for
three different values of mean insulation thickness dm'

The optimal insulation theory leads to quite simple formulas for
the heat loss from the insulated area. This provides the second
theme of this study. The concept of insulating soil thickness is
introduced. The insulating capacity of the ground below the build-
ing depends on the solution of a multi-dimensional heat flow prob-
lem. The soil is from an insulating point of view replaced by a



single thickness. This is elaborated in sections 13 and 14.

Let us note that the insulating soil thickness for our considered
case (L=5 m) is from (13.4):

Lug=L-F=5 -%F=309m (1.4)

The insulating capacity of the soil below the ground plate corre-
sponds therefore to a soil layer with a thickness 3.9 m. The assump-
tions and precise meaning of this arediscussed in the following.

There are some basic assumptions in this study. The heat flow prob-
lem is a steady-state one. This is not a severe restriction, since
the net heat loss from a superimposed periodic heat flow process

is zero. The finite thickness of the insulation layers are neglected.
They are considered as an infinitely thin surface with a finite
thermal resistance. This is a common and quite reasonable approxi-
mation. The thermal conductivity in the soil may have different
values in different parts of the soil.

There are a lot of problems to which this optimal insulation theory
may be applied. We will in this paper study cases, for which the
whole heat loss surface is covered by insulation. Another study
will be devoted to cases, when only a part of the heat loss surface
is to be insulated. We also plan to treat cases, where the insula-
tion boundary is chosen in an optimal way.
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2 OPTIMIZATION PROBLEM

Let V denote the heat flow region of our optimization problem. The
volume V may be the ground below a house. In general, V may be any
region of solid material.

The boundary surface of V consists of two parts So and S]. The
surface S1 is the boundary area of the building or other structure
which is to be insulated in an optimal way against heat losses out
into the heat flow region V. The remaining part S0 of the boundary
surface of V will normally border on the ambient air.

The thermal conductivity A may vary in any way throughout V. The
temperature at the boundary S0 is given as T=To. Along the surface
S1 there is an insulation layer with varying thickness. Outside the
insulation on the building side there is a prescribed temperature
T=T]. We assume that To and T] are constants. The extension of the
theory to cases of variable prescribed temperatures on S0 and out-
side the insulation at $1 is deferred to later studies. Other cases
with more complicated boundary conditions on So and other possibi-
lities are also left to later studies.

Figure 3 shows the considered type of heat flow process.

S Ty

Figure 3 Considered type of heat flow process. S7 is covered by an
insulation layer of variable thickness, which is to be
chosen so that the heat loss over S7 into V is minimized.



In the example of Figure 1 V is the ground below the house. The
ground plate of the house represents the surface S], while the
ground surface outside the house is So.

The temperature T(x,y,z) satisfies the steady-state heat conduc-
tion eguation:

Y (AVT) =0 - in V (2.1)
Here V = (é% s é% s é%) denotes the gradient operator. On the

boundary So we have:

T=T, on S, (2.2)

Let xﬁ be the thermal conductivity of the insulation material. The
varying thickness of the insulation layer is denoted d. The func-
tion d is defined over the surface S]. We have the boundary condi-

tion:
T,-T
o1 _ 1
A n —)\.i - on S-I (2.3)
o7

Here Bn is the outward normal derivative. The boundary condition
(2.3) means that the finite thickness of the insulation layer is
neglected. The layer is treated as an infinitely thin layer with
a finite thermal resistance d/A;.

The rate of heat loss from the building over S1 into V is denoted
Q] (9/s). With a surface integral over S] we have:

0, - gx%& (2.4)

Consider a certain insulation thickness distribution d over S]. Let
dm denote the corresponding mean insulation thickness:

12



f d-das=d - ff as (2.5)
51 5

The integral on the right of (2.5) is the area of the surface S,.
The quantity dm is a measure of the total amount of insulation
material.

The heat loss 01 decreases, if the insulation is increased through-
out 51. The optimization is always made for a fixed amount of insu-
lation material, i.e. for given dm.

We have the following optimization problem. The heat loss Q] of the
heat flow problem (2.1)-(2.3) is to be minimized for different
choices of insulation thickness d over S1. The only restriction on
the function d on S] is that its mean value dm is prescribed - see
(2.5). It should perhaps also be mentioned that d must be positive
throughout S].

13
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3 CRITERION FOR OPTIMAL INSULATION

In order to get the optimal distribution of the insulation material
along S] one has to compare different distributions and in particu-
lar study what happens to the heat loss, when the insulation mate-

rial is redistributed.

Let d be any insulation distribution on S]. The corresponding tem-
perature T satisfies (2.1)-(2.3). Let &d be a small change of the
insulation thickness:

d »d +6d on $4 (3.1)

The function 0d is arbitrary on S]. The heat loss Q] changes to a
new value, which depends on the choice of function 8d. The change
contains linear terms in 8d, quadratic terms and so on. The first-
order approximation means that only the linear contribution is re-
tained. This is a reasonable approximation for a sufficiently small
function &6d. Let 601 denote the first-order variation or change of
Qq in the change (3.1).

It is shown in the appendix that

(1-14080; = - ff 8 dh? gs (3.2)
51

This formula is remarkably simple. It provides the whole basis of

the optimal insulation theory of this paper. The derivation of the
formula involves variational calculus, vector analysis and a spe-

cial thermodynamical concept, the thermality. The details are pre-
sented in the appendix.

Formula (3.2) involves only the given change &d and the boundary
heat flow A g% of the original problem. The usefulness of the
formula is due to the fact that the new temperature solution after
the change (3.1) is not at all involved. We do not have to solve
the new problem in order to get the new heat loss (in the first



order for small Od).

The optimization is done with the subsidiary condition of a pre-
scribed mean insulation thickness dm according to (2.5). Let d be
the optimal insulation distribution over S]. The tilde sign ~ will
be used to denote the optimal case. The corresponding temperature
field is T. Formula (3.2) is of course applicable to the optimal
case T, when the heat loss is minimal. The change 6Q] must in this
case be non-negative for any permissible redistribution 6d of the
insulation over S]. The mean thickness dm is constant:

f 6d-ds=0 | (3.3)
31

We must have the inequality

) 5d , 3\ T2 4o .
{f] Magasso (3.4)

for any 6d that satisfies (3.3). We will show that this implies
that the heat f]mﬂxg%-is constant over S;. The integral (3.4)

vanishes due to (3.3), if A.ﬁT

B0 is constant over S].

Suppose now that X.g% is not copnstant over 51. We single out two
small areas on S] such that ).g%-is greater throughout the first
area than throughout the other one. Let 6d be a variation which is
positive on the first area, negative on the second, and zero else-
where so that (3.3) is satisfied. Then from (3.2) 6Q] would become
negative. The optimum assumption is violated. We may conclude that

oT .
}‘E'ﬁ is constant over 51.

We have arrived at the important conclusion that the optimum ther-
mal insulation requires that

AL - a on's; (§0) (3.5)



Here 9 is a constant.

There is another restriction that has not been discussed yet. The
insulation thickness d (and d+6d) must be positive throughout S].
Our conclusion (3.5) is only valid over theﬂpart of S], where d is
strictly positive. In an area of A], where d is zero, we can only
have positive variations §d »0. Only half of our argument is so to
speak valid. In areas, where d is zero we can merely conclude that

ol .
Agsﬁ cannot exceed the constant value Q:

~

)\% < q on a part of S; with d=0 (3.6)

Optimization cases, where d is zero on a part of 51, will not be
dealt with in this study. They will be the topic of another paper.

Condition (3.5) gives, except for the complication (3.6), a general
criterion for optimal insulation. The insulation is to be distri-
buted so that the heat flow is the same in all parts of the insula-
ted area ST‘

This general criterion is intuitively reasonable. Suppose you have
a higher heat loss at one point on S] than at another one. It is
then natural to remove some insulation from the latter point and
use it to increase the insulation at the first point. But this re-
distribution will change the whole heat flow problem and in parti-
cular the heat flow through the rest of Sy. The advanced mathema-
tical technique is required to really prove that the total heat
loss will diminish for the considered redistribution of the insula-
tion.

The criterion (3.5) provides an important guide-line in practical
insulation problems. Consider an area S] which is exposed to an
indoor air with the temperature T+ The heat flux lé;; is propor-
tional to the surface temperature. We can conclude that optimal
insulation is equivalent to a constant surface temperature.

An insulation is not.optimal if the surface temperature varies.






4 BASIC CONSTANT-FLOW SOLUTION

The optimal solution T shall have a constant heat inflow over S].
The value of the constant is to be adjusted so that the mean in-
sulation thickness becomes equal to the prescribed value dm. We
have to solve the following problem:

V-(AVT) =0 inV

~

A= q on s, (4.1)

T=T, on S,

The function (f-To)/q] shall be zero on So and have unit heat flow
on S;. The essence of (4.1) is therefore to solve the heat flow
problem for unit heat flow on S] and zero temperature on So'

We will solve this problem in a dimensionless form. Let L be any
Tength of the heat flow problem. We introduce dimensionless coor-
dinates with x' = % and so on. The scaled volume is denoted V'.
Let xo be a reference thermal conductivity. We use the dimension-

less conductivity ' = &
0

We get the following heat flow problem:

' (XV'u) =20 in V'
)\'.g,:_,_:] on S; (4.2)
u=20 on 56

The solution of this problem will be called the fundamental con-
stant-flow solution.

The optimal temperature T of (4.1) is from (4.2) given by:

19



o qL
Txys2) = Tg + 5= s e P (4.3)

On the boundary S] we must also satisfy the original boundary con-
dition (2.3):

¥ d L0 _
T+ T );Sﬁ = T] on S] (4.4)

Insertion of (4.3) and (3.5) gives:

N L T 4.5
+ + .
o )\o u )\'i q-l 1 ( )

This formula shows how d is to be chosen in order to minimize the
heat loss. The optimal distribution d is determined by the values
of the basic constant-flow solution u on S1.‘The constant 9, is
determined by the prescribed mean insulation thickness dm. let u

m
be the mean value of u over 51:

S 4= S uds (4.6)

T
m

Then we have, if we take the mean value of (4.5) over S]:

To* 5 Un * = 4 =Ty (4.7)

From (4.8) and (4.5) we get the optimal insulation:

20



d=q + M Lu - M Lu (4.9)
o o

We finally have the restriction that d cannot be negative. The
smallest value for d is obtained for the highest u. Let Unax be
the maximum value of u on S]. Then we have the condition

d_ + bi L{u -wu

n . m " Ymax) = 0 (4.10)

This is a requirement on the prescribed mean insulation thickness

-

21
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5 BASIC FORMULAS
We will in this paragraph summarize the basic formulas and results.

Let L be a reference length of the heat flow problem. The coordi-
nates are scaled with this length to a dimensionless formulation.
Let ho be a constant reference thermal conductivity. The dimen-

sionless thermal conductivity is then A =-L—.
0

The basic constant-flow solution u satisfies (4.2). The maximum
and average values of u on S1 are denoted Uy

ly.

ax and Un respective-

The prescribed mean insulation thickness dm must satisfy:

d > d . =Z\_iL-(u - Uy

m - min T X max m) (5.1)

The results to be presented in the following are only valid, if
inequality (5.1) is fulfilled. The optimization problem for small-
er d  is deferred to a later study. We will only mention that, in
such a case, the optimal insulation is zero for some internal re-
gion of Sy. An example is indicated as III in Figure 2.

The optimal insulation distribution on S, is from (5.1) and (4.9):
~ )\-i ~
d=dy - dpt X; L-u .
(5.2)
U=u -u

at the maximum point of u and positive elsewhere. The insulation
thickness d is proportional to U in the limiting case, when dm =
dmin‘ The proportionality factor contains the length L and the

conductivity ratio xi/xb. The insulation thickness is in the Timit-
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ing case zero at UsUp oy and positive elsewhere.

a

It is important to note that any additional insulation dm-dmin is
to be distributed evenly over S].

The heat loss q].(J/mzs) through S] is given by the simple formula

T.-T
1 0
qy = T (5.3)
1 fﬂ . L Un
Ay Ao

This is an important formula. The heat flow q is equal to the tem-
perature difference T1-T0 divided by a thermal resistance. The
first term d /A; is the thermal resistance of an insulation layer
with a thickness dm equal to the mean insulation thickness. The
second factor L-um/)\O may be interpreted as a mean thermal resist-
ance of the soil. The equivalent thickness is L'um and the thermal
conductivity is xo. Figure 4 illustrates the heat loss formula
(5.3).

dm L'Um

Figure 4 Heat loss formuia (5.3). The soil may be regarded as a
layer with the thickness Loug-

The temperature distribution is:

~ L X y .z
T(Xsy:z) = TO + T(; u(t ) '[' ’ 'L‘) (5‘4)



6 ANALYTICAL SOLUTIONS

The optimal thermal insulation problem is solved, when the appro-
priate basic constant-flow solution u is determined. There are
some cases, when it is possible to solve the problem analytically.
The heat flow problem is more complicated than normally due to the
mixed boundary conditions. The solution u is prescribed on one
part of the boundary, while the normal derivative is prescribed on
the remaining part. We will in this section present two important
analytical solutions. The remaining part of this study will be de-
voted to numerically obtained results.

The two solutions that are presented here are derived in (¥). We
will not repeat the derivations here.

section below a long building - see Figure 1. The ground plate has
the width 2L. The ground occupies the region -ec<¢x<cce , z<20. The
plate 1ies along z=0, -L «¢x <L. The thermal conductivity in the
ground is lo'

The corresponding constant-flow solution u(x,z) shall satisfy:

2 2

§%+—§-ﬁ3—=0 -0 X Lo (6.1)
X 4

z¢0

The boundary conditions are:

u(x,0) =0 x>1, xe-1 (6.2)
bu

=1 -1 ¢x <1 (6.3)
[ z=0

(%) Johan Claesson: Theory of optimal thermal insulation.
Mathematical Physics, Lund, Sweden. To appear.
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The heat flow problem is illustrated in Figure 5.

u=0

[ 1

(jl M 11/$X
C

Figure 5 Basic constant-flow problem for a long plate on the
ground.

The solution to problem (6.1)-(6.3) is:

u(x,z) = \/>f2 +x%22 4+ f 42 (6.4)

2_,2
fF = T+z°-x

The temperature u{0,z) vertically downwards from the center of the
plate is shown in Figure 7. The derivative %% 'Z=0 at the ground
surface is shown in Figure 8.

The optimal insulation distribution is determined by the values of
u along the ground plate. We have, when x is replaced by the dimen-
sionless variable x/L:

2
u(%,o) =\ 1 - fz -Lexel (6.5)

This function is shown in Figure 6.

In particular we have the maximum and mean values:

26
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Umax =1 Um =7 (6'6)

The optimal thermal insulation distribution d is from (5.2) and
(5.1):

~ A‘I

~ _ AL _ X
d=d dmin+)\0|‘(1 1 [-2) - (6.7)

Figure 2:1,1I shows the character of the optimal insulation distri-
bution. The formula is only valid, when the mean insulation thick-
ness dm exceeds the minimum value:

d 2d . =—=L(-% (6.8)

71Ty
o @ g (6.9)
m,L .
Ri Ao 4

The other case, for which there is a relatively simple analytical
solution, has cylindrical symmetry. Again, the ground plate lies

The radius of the disc is R.

The basic constant-flow solution is a function of the depth z and
of the radial distance r from a vertical axis through the center
of the disc: u=su(r,z). The disc 1ies along z=0, 0%r<R. The tempera-
ture distribution along the disc for the basic constant-flow solu-
tion becomes:

u(r,0) =

diro

1-5 04r<R (6.10)
R .

-4 (6.11)

Airo
=
3
]
4

max

27
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The optimal thermal insulation distribution d is then:

~ Ao 2 r

The formula is as usual only valid when the mean insulation thick-
ness dm exceeds the minimum value:

= .2
dy ® doip = X;- T (6.13)
The heat loss q, (J/mzs) becomes:

T,-T
gy = gt (6.14)
MmLR - ;
i Ao

S

W)
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7 NUMERICAL PROCEDURE

The basic constant-flow problem will be solved numerically for a
lot of different cases in the following. The steady-state tempera-
ture field is determined with finite differences. Overrelaxation
is used.

The accuracy of the numerical method has been tested against some
analytical solutions.

In the first test we have used the exact solution for the long
plate on the ground - see Figures 1 and 5. The defining conditions
are {6.1), (6.2) and (6.3). The analytical solution is given by
(6.4). The ground regioh is divided into a rectangular mesh. The
mesh distances are variable in the horizontal and in the vertical
directions. Smaller distances are used near the edge of the plate.
The mesh size is quite large far away from the plate. Figures 6,7,
and 8 show a comparison between the analytical solution and the
numerically computed one. Figure 6 shows the temperature distribu-
tion along the ground plate. This is the most important quantity,
since it gives directly the optimal insulation distribution. The
numerical accuracy is quite good. The largest errors occur at the
edge (x=1). The maximum absolute error is in this case about 0.03.
The mesh consisted of 39x26 points. Figure 7 shows the temperature
distribution vertically downwards from the mid-point of the plate.
Figure 8 shows the heat flow through the ground surface.



— analyt. solution

+ num. solution

u (O,z) — analyt. solution

6} + num. solution

— analyt. solution

+ num. solution

T ES— 4

Figures 6,7,8 Numerical accuracy for the case of a plate on
the ground.
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The mesh consisted of thirty-nine points in the horizontal direc-
tion. Thirteen of these covered the length 0<x<1 of the plate.
Coarser mesh divisions have also been tested. A particularly im-
portant quantity is u,- We got the following relative errors for
Uy for different meshes:

Total number of mesh points  39x26 19x13 17x12 15x11

Number of cells along the
ground plate 13 6 5 4

Error for Un 2.6% 6% 8% 16%

The finest mesh with an error of 2.6% is quite satisfactory. This
mesh precision has been used in all two-dimensional cases (plane
and cylindrical). A mesh precision that corresponds to 5 cells
along the ground plate has been used in the three-dimensional cases.
The error of 8% for U is judged to be acceptable.

It may be noted that the relative error at the edge of the plate
was quite high for all mesh divisions. The influence from this
error becomes smaller, when more cells are used. The reason for
this edge error seems to be the complex character of the heat flow
at the immediate vicinity of the edge of the plate.

The boundaries far away from the plate region pose no difficulty.
We assume zero heat flow at x=10 and at z=-10 (L=1). The change of
the solution, when these boundaries are moved to x=20 and z=-20,
is quite negligible.

The discussed comparison concerns a plane two-dimensional case. We
have also compared the numerical results with the analytical solu-
tion for the circular disc on the ground. This is a problem with
cylindrical symmetry. Using the fine mesh, the error was 4%.

Invariably, the numerical computations give values above the exact
ones.

In order to get a truely three-dimensional test case we have used



32

a well-known analytical solution for the temperature distribution
in the ground below a rectangular plate which is kept at constant
temperature T], while the ground surface outside the plate is kept
at a temperature To' The mesh consisted of five cells below the
plate in the shortest direction. The numerically computed vertical
flow at the mid-point of the rectangular plate deviated by 2% from
the analytical value. The error in cell number four from the cen-
ter was 8%.

From these comparisons between numerical and analytical values we
estimate that we have the following accuracy. The errors in the

two-dimensional cases (plane and cylindrical) are for u and Un

less than 2% and 4% respectively. The error in u along gixis less
than 3% except for the immediate vicinity of edges and corners.

The errors for Uax and u, are 2% and 10-15% respectively in the
three-dimensional computations. The error for u is less than 10%

except for the immediate vicinity of edges and corners.

The basic constant-flow solution has been determined for about 60
different cases. The results are given in the following paragraphs.
A computer run of a two-dimensional case (including cylindrical
cases) requires 0.5-5 minutes on a UNIVAC 1108. The mesh has in
these cases consisted of from 39x26 to 50x80 points. A computor run
of a three-dimensional case requires 2-7 minutes. The mesh has con-
sisted of about 6000 points.
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We will in this paragraph study the problem how to insulate a ground

plate in an optimal way. The ground plate has a rectangular shape with

the sides 2L and 2L1, where L13L. See Figure 9.

Ly

Figure 9 Rectangular ground plate with the sides 2L and 2L1.

The ground fills the half-space z 20. The problem is scaled with

- the length L. The fundamental constant-flow solution u(x,y,z) shall

satisfy:
2 2 2
O°u . du , Bu
s + +=~==0 z<0
o2 by2 62

At the ground surface we have the boundary conditions:

L L
gi‘-:] z=0, -14x<1,-r]-<y<t1-

u=20 z=0, x and y outside ground plate

(8.1)
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The solution depends on the shape parameter L]/L. The problem has
been solved numerically for L]/L=1, 1.5, 2, 3, 5. The results are
shown in Figure 10. The diagrams show the optimal insulation func-
tion ﬁ=umax—u as a function of x/L for different y/L. The accuracy
of the values is distinctly lower near the edges of the plate. These

results with Tower accuracy are given with dashed Tines.

Figure 11 shows the mean value U, as a function of L1/L, while

Figure 12 shows u u

max -m°
Let dm be the prescribed mean insulation thickness over the ground

plate. Our results below are as usual only valid if

d =2d . —ML-

m -~ min T \o (Unpax™ (8.3)

Upp)

The factor u u_ is given in Figure 12.

max_ “m
The optimal insulation thickness over the ground plate is now

~ )\' —~
d=d -d. +—LT (8.4)
)\0

The insulation thickness varies as i, which is given in Figure 10
for different L1/L. The excess insulation above the minimum value,

d -d

m~dmine 18 to be distributed evenly over the plate.

The limiting case L]/L =oc0 gives the previous two-dimensional
case, which was solved analytically. The values of U for small

y/L are rather close to the two-dimensional case,which is given

by (6.5) and (6.6). We see from Figure 10 for L,/L=3 and 5 that
the solution in the central region (y/L <1.5 and y/L< 2.5 respec-
tively) is not far from the two-dimensional one. The value of u,
for L]/L=5 is from Figure 11 um=0.78. This value is however per-
haps 10% too high, since the two-dimensional value is um='%==0.785.
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Y/L=295
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Figure 10 The optimal insulation function U for a rectangular
plate on the ground. Each diagram refers to a certain
shape L1/L.



0 1 1 1

3 4
L,/L

Figure 11 The mean value up as a function of the shape L]/L of
the rectangular plate.

3 4
L,/L

Figure 12 The quantity u . -u, as a function of the shape L]/L of

the rectangular plate.



The heat loss (J/mzs) of the optimally insulated plate is given

by formula (5.3):

The function u, is shown in Figure 11.
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9 OPTIMAL INSULATION OF A CELLAR

The cellar or underground basement of a building has a floor and
walls that border on the surrounding ground. The geometry is too
complicated to allow any analytical determination of the corre-
sponding basic constant-flow solution. We have to resort to nume-
rical calculations.

A system for heat storage in the ground is another case with the

same geometry. The storage region may be quite large. It is very

important to insulate the storage thermally as well as possible.

Heat storage systems is therefore an jmportant application of the
optimal insulation theory.

We will here consider three geometries for the cellar. The simplest
case is a long house for which we study a vertical cross-section.
We get a two-dimensional heat flow problem. The cross-section of
the cellar is rectangular. We will use the denomination cellar
cross-section for this case. The second case concerns a cellar of
cylindrical shape. The cylindrical region may be used for heat
storage. Finally we will study the most important case, when the
cellar has the shape of a parallelepiped.

Figure 13 shows the first case of a_cellar_cross-section. The
problem is two-dimensional in the vertical plane. The width of the
house is 2L. The height of the cellar is H. The problem is symmet-
rical relative to the dashed vertical line of Figure 13. Qur task 1is
to determine the optimal thermal insulation along the horizontal

and vertical boundary of the celiar. Our problem is as usual scaled
with the length L. The boundary curve is determined by a coordinate
s, which runs from s=0 to s=1+ %—. See Figure 13. The starting

point s=0 gives the mid-point of the floor of the cellar. The corner
between the floor and the wall corresponds to s=1. The vertical wall
of the cellar corresponds to 12s=1+ %. The coordinate s is also

shown explicitely in Figure 13.
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L L S=1+%

i

Figure 13 A cellar with a rectangular cross-section.
Two-dimensional case.

The basic constant-flow solution u shall satisfy the Laplace equa-
tion Au=0 in the ground outside the cellar. The temperature shall
be zero at the ground surface. At the vertical and horizontal boun-
dary of the cellar the normal derivative is g% = 1. The solution u
depends on the shape parameter H/L. The problem has been solved for
several values of H/L. The insulation is determined by the optimal
insulation function ﬁ=umax—u along the boundary of the cellar. The
results are shown in Figure 14. Each curve gives the optimal insula-
tion function for a certain H/L. The curve H/L=0 gives the previous
case of a plate on the ground. The left part of the curves, O04s «1,
gives the distribution on the floor from the mid-point to the corner.
The right part, T=s<1+H/L, gives the values of U upwards along the
vertical wall of the cellar.

Figures 15 and 16 show Uy, and Unax~Up @s @ function of the shape
H/L. The mean 1nsu1at1on thickness d must as usual exceed d n=

LA /h (u max Y )
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Figure 14 The optimal insulation function U for the cellar cross-
section.
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Figure 15
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Umax—Un
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Figure 16

The mean value Up for the cellar cross-section.

.0 10 20

H
L

The quantity u for the cellar cross-section.

max~Ym
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The optimal insulation is from (5.2):

d - d Mo g
=dp - dn * X; Lu (9.1)

The insulation thickness d is equal to a constant part dm'dmin
plus hi/ko-L-ﬁ, where U is shown in Figure 14. The insulation d
is directly proportional to the optimal insulation function U in
the Timiting case dm=dm1n' Figure 17 shows the optimal insulation
distribution in such a case (H/L=0.8, dm=dmin’ in/xo=1). The in-
sulation thickness is zero at the center of the floor of the cellar
(s=0). The thickness increases to d=u=0.61 at the corner between
the floor and the wall. The thickness increases along the wall from
d=U=0.61 to d=ii=1.5 at the edge between the cellar and the ground
surface. Figure 17 shows the shape of the optimal insulation dist-
ribution for dm=dm1n' An additional amount of insulation dm'dmin

is to be distributed evenly over the cellar surface.

18 , GROUND SURFACE

CELLAR H/L=8 4

I
!
l 1.6
|
!

Figure 17 Optimal thermal insulation along a cellar cross-section
for dy=dpin. (LAj/Ao=1).
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Figure 18 shows the second case, when the cellar or heat storage

and the height is H. The problem is to insulate the bottom surface
and the vertical envelope of the cylinder in an optimal way.

-

Figure 18 Cellar or heat storage region of a cylindrical shape
with radius R and height H.

The problem is scaled with the length R. The basic constant-flow
solution u depends on the shape factor H/R. The problem has been
solved numerically for several values of H/R. The optimal insula-
tion function U, which is defined on the cylinder surface, is shown
in Figure 19. The independent variable s is defined by the small
figure. The center of the bottom surface of the cylinder corre-
sponds to s=0. The values of { for O=s=1 show the radial increase
along the bottom surface. The distribution upwards on the cylind-
rical envelope is given for 1=s=21+H/R. The curve H/R=0 gives the
previous case of a circular disc on the ground.
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Figure 19 Optimal insulation function for a cylindrical cellar
or heat storage.

The insulation distribution is not monotonously increasing'for say
H/R=2. There is a local maximum at the corner s=1. This is reason-
able, since the protruding corner region is more exposed to the
surrounding soil.

Figure 20 and Figure 21 show U and Unax~Ym for different shapes
H/R.



46

n|T

Figure 20 The mean value U for different shapes H/R of the
cylinder.

x|z

Figure 21 The quantity u for different shapes H/R of the

-y
. max -m
cylinder.

The optimal insulation distribution d is given by the basic formu-
las and Figures 19-21. The results are only valid, if d > nin
according to (5.1) and Figure 21. The optimal insulation distribu~
tion is given by formula (5.2) and Figure 19. The heat loss is de-

termined from formula (5.3) and Figure 20.
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Figure 22 Cellar or heat storage with the shape of a
parallelepiped.

The height of the cellar is H. The horizontal cross-section has a
width 2L and a Tlength 2Ly, where Ly2L. There are two symmetry
planes: x=0 and y=0 - see Figure 22. We need only to consider the
problem for x>0, y=0, and z=0.

The basic constant-flow solution has been computed numerically for
three different cases L]/L=1, 2, 5. The height was H/L=0.4 in all
three cases.

We are interested in the optimal insulation function ﬁ=umax-u for
the three rectangular surfaces. The floor rectangle of the cellar

is defined by z= -H/L, O0<x <1, and 0 <y <L]/L. The two wall rect-
angles are given by y=L1/L, 0<x <1, =H/L<2z2<0 and x=1, OtyAL]/L,
-H/L <« z <0 respectively - see Figure 22. The computed values for

the three rectangles are shown in Table 1.



.20 .50 .70 .85 .95
20 0 06 14 .23 32 48 53 65
.50 .06 2 9 .27 .35 .50 .54 .66

x .70 14 19 24 .32 39 52 56 66

.85 .23 .27 .32 .38 4 .55 .59 .68
.95 .32 .35 .38 .44 .49 .58 .61 .69

.48 .50 .52 .55 .58 -.35

.83 .54 .56 .59 61 -.25

.65 .66 .66 .68 .69 -.10

L= H/L = 0.4

¥
25 75 1.20 1.50 1.70 1.85 1.95
.20 .00 .03 n .21 .30 4 .51 .69 .75 .88
.50 .09 a2 .19 .27 .36 .46 .54 N 77 .8%
x 70 19 21 27 35 .42 51 59 74 78 89
.85 .31 .33 .38 .44 .50 .58 .64 77 .81 91
.95 .42 .44 .48 .53 .58 .64 .70 .80 .84 -92
.64 .65 .67 .70 73 .77 .80 -.35
72 72 74 76 .78 81 84 -.25
.87 .87 .87 .88 -89 .9 .92 -.10
z
LiL=2 H/L = 0.4
y
1.00 2.50 3.25 3.75 4.20 4.50 4.70 4.85 4.95
.20 .00 .04 .09 .14 .23 .34 .44 .55 .65 .84 9 1.04
.50 .10 .14 8 .23 3 41 .49 .60 .69 .86 .92 1.08
x .70 .22 .25 .29 .33 .40 .48 .56 .65 .73 .89 .94 1.08
.85 .36 .38 42 .46 .51 .58 .65 .72 .79 .92 .97 1.07
.95 .48 .50 .83 .57 .52 .67 3 .79 .85 .95 .99 1.08
74 .76 7 .79 .82 .85 .88 .92 .95 -.35
.84 .85 .86 .87 .89 .91 .93 .96 .99 -.25
1.01 1.02 1.02 1.03 1.03 1.04 1.05 1.07 1.08 -.10

L-|/L =5 H/L = 0.4

Table 1 Optimal insulation function U for a cellar with the shape
of a parallelepiped.
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The coordinates x,y, and z of the mesh points are shown outside
the three rectangles.

The values of Un and Unax Uy fOr the three cases are given in
Table 2.

L]/L 1 2 5

Uy 0.48 0.66 0.80 H/L=0.4

Unax U 0.39 0.45 0.46

Table 2 The mean value Un and the quantity u for a

parallelepipedic cellar.

max "~ Ym
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10 OPTIMAL INSULATION OF A CULVERT

Heated pipes, tunnels, ducts, and culverts in the ground may have
considerable heat losses due to their long extension. It is valu-
able to know how to insulate the heated region in the ground in an
optimal way. The heat flow problem is two-dimensional in the ver-
tical plane perpendicular to the duct in the ground.

We will here study the case, when the cross-section of the insulat-
ed region is rectangular. We will talk about a culvert in the
ground. See Figure 23.

7, 7

A

Figure 23 Culvert or tunnel in the ground with rectangular
cross-section.

NN

The height of the culvert is H, and the width is 2L. The upper
surface of the culvert lies at a depth D below the ground surface.

The problem is to determine the optimal insulation distribution
along the culvert surface, i.e along the rectangle. We need only
to consider the right half of the culvert and the ground due to
symmetry. See Figure 24. The problem is scaled with the Tength L.
We introduce a coordinate s along the rectangular boundary curve
of the culvert. The starting point s=0 is the center of the lower
boundary 1ine. The lower corner is given by s=1. The vertical side



52

sezstt 4

H
=1+
S *1

J

S=1

S=0

_s‘._.__
|

Figure 24 The right half of the culvert and the ground. The
coordinate s gives the position along the rectangular
boundary curve.

is represented by lsssl+ %3 where s=1+H/L gives the upper corner.
The center of the upper surface is given by s=2+H/L.

The basic constant-flow solution u is zero at the ground surface.
The normal derivative at the rectangular boundary of the culvert
is equal to +1. The solution u depends on the two shape parameters
H/L and D/L. The limit D/L=0 gives the previous case of a rectang-
ular cellar.

The optimal insulation function U is defined along the curve 0<s&
2+H/L. The numerically computed results are shown in Figures 25-
28. The figures refer to H/L=0.2, 0.5, 1.0, and 2.0 respectively.
The four curves in each figure refer to different depths D/L. The
dashed curve refers to the 1imit D/L=0, which is the previously
studied case of a rectangular cellar.
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H/L=02

c

H/L=05

Figure 26 Optimal insulation function for a culvert.




e

Figure 27 Optimal insulation function for a culvert.

20 |

H/L=2,

=

Figure 28 Optimal insulation function for a culvert.

‘54



The mean value ugy and the quantity Upax~Ym 278 shown in Figures
29 and 30 as functions of the geometrical parameters H/L and D/L.
The 1imiting case D/L=0 corresponds to a rectangular cellar. The
values of Un differ due to the fact that we did not include the
upper surface in the previous case with cellar. The values of U
become consistent if, in the cellar case, the upper boundary is
attributed the constant value G=umax and this is included in the
mean value. This upper part corresponds to the horizontal part of

the dashed lines in Figures 25-28.

The optimal insulation distribution d and the heat loss q, are
given by the basic formulas (5.2) and (5.3) provided that (5.1)
is valid.
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D/L

Figure 29 The mean value Un for a culvert.

D/L

Figure 30 The quant1ty‘umax-um for a culvert.
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11 TWO REGIONS OF SOIL

The thermal conductivity in the ground has been constant in the
cases that we have discussed so far. But the optimal insulation
theory is valid for a variable thermal conductivity through the
heat flow region. It is quite common that the soil consists of
different strata with different thermal conductivities. The dif-
ference in conductivity is considerable between soil and rock.

We will here only consider one particular case. The ground con-
sists of granite rock except for a relatively thin covering soil
layer of for example moraine. This case is quite common in Sweden.
The moraine has the thermal conductivity KO, and the underlying
granite the higher conductivity 3%0.

We will study the optimal insulation of a cellar with the height
H. The cellar is built down to the granite. The thickness of the
moraine stratum is therefore also H.

The first numerical computation concerns a rectangular cellar. We
have previously studied this case for constant thermal conductivi-

ty in the ground - see Figure 13. The width of the cellar is again
2L. The situation is shown in Figure 31.

\\\SQ\\\ \\\<

Figure 31 Rectangular cellar in a ground.of granite (3A\g), which
is covered by a moraine layer (Ay).
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The problem is scaled with the length L. The dimensionless thermal
conductivity N\' = X/)U is equal to +1 in the moraine and +3 in the
granite. The basic constant-flow solution satisfies (4.2). The
normal derivative of u is now equal to +1 on the vertical boundary
against the moraine, and + %-on the bottom of the cellar that bor-
ders on the granite.

Figure 32 shows the computed optimal insulation function for H/L=
1. We have in this case:

up=0-59 u u =0.12 (11.1)

max_ ‘m

H/L=10 7

Figure 32 Optimal insulation function for a rectangular cellar on
a granite ground with a layer of moraine. The dashed
curve refers to the homogeneous ground.
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The dashed 1line shows the same case for a homogeneous ground - see
Figure 14. The higher thermal conductivity in the granite increases
considerably the heat loss through the floor of the cellar. The
relative amount of insulation to be put on the floor increases
therefore. This is shown by the two curves.

Our second numerical study concerns a cylindrical cellar. The ra-
dius is R. The situation is essentially shown in Figure 18. The
upper layer of the soil is again moraine with a conductivity xo.
Downwards from the depth H the ground consists of granite with the
thermal conductivity 3%0. The circular bottom of the cellar borders
on the granite, while the vertical envelope borders on the moraine.

Figure 33 shows the computed optimal insulation function for H/R=
0.4 and 1.0. We have in this case:

H/R 0.4 1
Un .22 .33

(11.2)
Unax~Ym .079 .026

The dashed lines in Figure 33 show the same case for a homogeneous
ground from Figure 19.

The shape of the curves (dashed and full lines) changes drastically
between the two cases. The difference is most pronounced for the
deeper cellar H/R=1.0. The optimal insulation thickness d is rela-
tively constant over the bottom surface of the cylinder. There is

a local maximum at the corner. Then the insulation U decreases up-
wards to a minimum for s=1.35, i.e. at the depth 0.65H below the
ground surface.

This example illustrates that there may be a drastic change of the
optimal insulation, when the soil contains different parts with
highly different thermal conductivities.
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Figure 33 Optimal 1'nsu1§t1'on function for a cylindrical cellar
in a ground with moraine and granite. The dashed curves
refer to the homogeneous ground.



12 EFFECT OF GROUND WATER

Moving ground water, which is not too far below the insulated struc-
ture, will change the heat flow problem. The effect depends strongly
on the velocity of the ground water flow.

We will here only consider one simple situation. We take the two-
dimensional case with a rectangular cellar. The water table lies
at a depth D below the floor of the cellar. We will consider the
extreme case of a strong ground water flow. The velocity of the
water is sufficiently high to keep the temperature equal to the
ambient level T, in the ground water. We get a Tower boundary at
the horizontal water table, which lies at the depth D+H below the
ground surface. The temperature on this boundary is the same as at
the ground surface. This horizontal Tine is in the previous gene-
ral description to be included in the boundary surface So' The
situation is shown in Figure 34.

2L
/x V4
H/
//‘///////éD
z /7 e L T=To LA L Water
i Y Vv /_r »~,2 ., -, table
,/47——// ,/ 7 -— /’/ // e
////////’////z/,///’/

Figure 34 Rectangular cellar on a ground with a strong ground
water movement.

The basic constant-flow solution u is zero at the water table.
Figure 35 shows the computed optimal insulation function for H/L
=0.4 for three different depths D. The dashed 1ine shows the case
without the ground water disturbance from Figure 14.



Figure 35 Optimal insulation function for a rectangular cellar,

when there is a strong ground water movement.

We also get:
D/L 0.4 0.6 1.2 o
Un 31 .42 .63 91

Unax~Ym .080 .14 .26 .39

(12.1)
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13 INSULATING SOIL THICKNESS

Formula (5.3) for the heat flow 9 through the optimally insulated
surface 51 is an important one:

T.-T

_ 1 0

— 4+
xi xo

The quantity 9 is the heat flow per unit time and unit area. The
total heat loss through the insulated area S] per unit time, Q1,
is:

Here A] denotes the area of the insulated surface S].

The expression for 4 is a temperature difference T]-To divided by
a thermal resistance.

Consider now the following one-dimensional steady-state heat flow
process. We have a slab of the soil material with a thickness L-um.
The thermal conductivity is Ay- The thermal resistance is then
Lum/xo..To this soil we add a slab of the insulation material. The
thickness is dm, and the thermal conductivity is Ki. The thermal
resistance of the insulation slab is dm/xi. We have obtained a
composite slab - see Figure 4.

dm L‘Um

Figure 4 Heat loss formula (13.1). The soil may be regarded as
a layer with the thickness Lup.
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The total thermal resistance of the composite slab is Lum/7\0 +
dm/xi. The temperature difference over the slab is T]-TO. The heat
flow in steady-state is equal to the temperature difference over
the slab divided by the thermal resistance of the composite slab.
We get precisely the expression of formula (13.1).

The soil is, for an optimally insulated surface S], equivalent to
a slab with the thickness L-um from a heat loss point of view. Here
L is the length that is used to obtain a dimensionless formulation.

L-u (13.3)

It must E? emphasized that the surface $ is insulated in an opti-
mal way d according to formula (5.2). A soil layer of the insulat-
ing soil thickness together with an insulation layer of constant
thickness, equal to the given mean thickness dm, gives the same
heat Toss qq-

The introduced concept provides a simple and tangible way to assess
the thermal insulation capacity of the ground.

Another way to express the thermal insulating capacity is to use
the so-called "k"-value. We note that the equivalent k-value of
the soil is

Ao
Tu_

m

We have in the previous paragraphs computed the insulating soil
thickness L-um in several important cases. These are a plate on
the ground (two-dimensional), a disc on the ground, a rectangular
ground plate, cellar cross-section, a cylindrical cellar, a cellar
with a parallelepipedic shape, a culvert, and some cases with va-
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riable conductivity and with ground water effects. The results
concerning the insulating soil thickness L~um are summarized be-

Tow.

Plate on the ground
(two-dimensional)

2L
uy= F20.785  (13.4)

S
T ’“

Circular disc on the ground

CE?—R—T U= 4 20.424  (13.5)
77

Rectangular ground plate

/
/ / 7 LAl 152 3 s
Z u, | .52 .61 .66 .72 .78

L (13.6)
Ly
Cellar cross-section H/L{ .0 .05 .1 .2 4 6 .8 1.0
u .81 .84 .85 .87 .91 .95 1.0 1.1

2L

H/L]1.5 1.8 2.0
7
O uy fe 13 1 (13.7)

D




Cylindrical cellar or heat

storage

H/RfO .2 .4 .6 .8 1.0
u, | .42 .44 .45 .47 .50 .54
H/R]1.5 1.8 2.0
u, |.63 .69 .72 (13.8)
Parallelepipedic cellar
//4 /// //q H/L=0.4
Ry S p— o j
T L]/L|1 2 5
HI u, .48 .66 .80 (13.9)
Voo L] ey
L
Ly
Culvert D/L
.2 .5 1.0 2.0
— H/L .2].63 .84 1.1 1.5
/ D// 5171 .91 1.2 1.6
W 1.0].8 1.0 1.3 1.8
2.011.2 1.4 1.7 2.2
/
2L // (13.10)
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Cellar cross-section,
granite and moraine

2L
/; : ' . Hoq. 2
—i\ H{ -L-]. Um—0.59 (13.]])
\ 34,
\\ \\\\
Cylindrical cellar,
granite and moraine
' R H/R=0.4 : u =0.22
| H/R=1 @ u. =0.33
g ey (13.12)
H iR ,\<
] 310 &
iFEF\\i N j\\\\\
Cellar cross-section,
strong ground water flow
2L
H/L=0.4
|~ ﬂ// D/LJ0.4 0.6 1.2 ©°
W// 7 u: 0.31 0.42 0.63 0.91
D
(13.13)
- //7—7 /////1'_,////, //%—,//,
, ,

[P S,
’ /



Graphs of u. have been given previously for the rectangular ground
plate (Figure 11), the cellar cross-section (Figure 15), the cy-
lindrical cellar (Figure 20) and the culvert (Figure 29).

The given data provide a lot of information on the insulating ca-
pacity of the ground. The insulating soil thickness for a plate on
the ground s L-0.785. A circular disc has the distinctly smaller
value R-0.424. This illustrates the difference between two- and
three-dimensional situations. A quadratic ground plate has Lum=L-
0.52 (L]/L =1).

The difference between two and three dimensions is also illustra-
ted, when we compare Un for the rectangular and cylindrical cel-
lars. The insulating thickness is roughly twice as big in the plane
case.

The values for the rectangular ground plate and the parallelepiped-
ic cellar (H/L=0.4) are rather close to each other.

The influence of granite below the moraine is rather strong in the
considered example. The insulating thickness is diminished from

1.1 L to 0.59 L, when the moraine below the rectangular cellar is
replaced by granite. The effect is similar for a cylindrical cellar.

It is of interest to compare the magnitude of the two thermal re-
sistance terms in the denominator of (13.1). Let deq be the thick-
ness of the insulating material that corresponds to the thermal
resistance Lu /A  of the soil:

AsL
= ——1-—-
deg T Un (13.14)

The insulating soil thickness Lug is to be multiplied by the ther-
mal conductivity ratio xi/xo in order to give the insulating ca-

pacity of the soil expressed as a thickness deq of the insulating

material.
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14 FIRST-ORDER GROUND HEAT LOSS FORMULA

We have hitherto studied the optimal insulation problem. Let us
now instead assume that we have an arbitrary insulation distribu-
tion d over the insulation surface 51. The most important partic-
ular case is when d is constant over S]. Let dm be the mean insu-
lation thickness for the distribution d. The quantities d and dm
are of course equal, when d is constant over S].

Let d as usual be the optimal insulation distribution correspond-
ing to the same mean insulation thickness dm. The function d is
given by the basic formula (5.2). The two insulation distributions
d and a'havehFhe same mean value over S]. We may regard d as ob-
tained from d in a variation:

d=d+(d-d =d+bsd ons, (14.1)

The insulation thickness is changed by an amount 6&d =d - d at
each point on S].

The heat Tloss Q] increases from the minimal value for the optimal
insulation to a higher one, when the insulation is changed from d
to d. Formula (3.2) gives the first-order contribution to this
change as an integral of q?-ﬁd over S1. The heat flow a9 is cons-
tant over S, in the original optimal insulation case. The first-
order change of the heat loss is thus proportional to the integral
of 6d=d-d over S]. But this integral vanishes, since we have the
same mean insulation thickness in the two cases. We have arrived
at the important conclusion that the first-order change of the
heat loss is zero. We have the following theorem.

Let d be an arbitrary ig}u]ation distribution over S] with the
mean thickness dm. Let d be the optimal insulation distribution
with the same mean thickness d The heat loss Q1 through the sur-
face S] is then, up to the f1rst order in the change of the insu-
lation thickness from d to d, the same in the two cases:
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T.-T
o~ _ 1 0
Q]—A]q] = A] -a-——-——-—-m 4 (14.2)

— t — (arbitrary insulation)
A Ao

Here A] is the area of the insulated surface S]. The total tempe-
rature difference is T]-TO. The thermal conductivity of the insu-
lation is li. The corresponding constant-flow solution is scaled
with L, and it has xo as reference thermal conductivity. The mean
value of the constant-flow solution u over S] is Up-

It must be pointed out that formula (14.2) is only a first-order
approximation. It may be completely useless, if the variation d-d
is large.

The case of constant insulation thickness d over S] is of partic-
ular interest. The first-order approximation of the heat loss is
then with formula (14.2):

T,-T
1 0 . .
Q=A N (constant insulation (14.3)
T d + -1 Un thickness)
Ao

The simplicity of this formula is noteworthy. The heat loss 01 is
equal to the area A] times the thermal conductivity Ai of the in-
sulation times the quotient of the temperature difference Ty-T, and
a length. The Tength in the denominator is equal to d plus a cons-
tant. The constant is equal to the insulating soil thickness Lu,
times the conductivity correction xi/xo from soil to insulation
material. The insulating effect of the ground is accounted for by
the addition of the length hiLum/xo to the insulation thickness d.

It is not possible to give any general rule for the accuracy of
formula (14.2) and in particular of (14.3). The accuracy increas-
es, when the relative variation (d-d)/d decreases. The accuracy
of formula (14.3) increases, when the thickness d increases.



The accuracy of (14.3) has been tested for some cases. The heat

loss Q] has been computed numerically for constant insulation thick-
ness over S]. We will -denote this loss Q],const‘ The corresponding
heat loss for an optimal insulation is denoted Q]’0 . We have in

the previous section given a lot of data for Q] op° Formula (14.3)

means that Q],const is approximated with Q],op (for d=dm).

The two heat losses Q],op and Ql,const are compared for

(T4 T,)
ol o .y 1a (14.4)

This is not any restriction, since other cases are obtained by a
simple scaling.

We have the following results in different cases. The values
Q],const are computed numerically, while the values Q],op are ob-
tained from the previous paragraphs.

Our first comparison concerns the_plate_on_the_ground (two-dimen-

sional). The insulation thickness is a multiple of the minimum
value dmin' We got the following results:

u,=0.806 4/ din Ql,op Q1,const Inc;ease
AL
. M 1 0.986 1.107 12
dnin=0-2081" 5 2 0.818 0.870 6.4
3 0.699 0.727 4.0
5 0.542  0.553 2.0
10 0.346  0.349 0.9

The values of Q refer to the right half of the plate. The values
for up, and dm are not the analytical ones. We have instead used
the values that we got in a numerical simulation of the optimal
case. We think that it is more reasonable to base a comparison
completely on numerical values, since these tend to give similar

numerical errors.

We see from the table above that the error in formula (14.3) is



12%, when the insulation thickness is equal to the special value
dmin‘ A three-fold increase of the insulation diminishes the error
to 4%. The error is only 0.9% for an insulation thickness of 10 -

dmin'

um=0.440 d /d

R . Increas
m’ “min is0p Q1,const n g ase

.R
i 1 4.871 5.318 9.2
diyip=0-2049 X 2 3.697  3.856 4.3
3 2.979  3.054 2.5
5 2.146  2.171 1.2
10 1.262  1.267 0.4

For a_cylindrical cellar with H/R=0.4 we got:

um=0.447 dm/dmin Q],op Q],const Inc;ease
AsL
N 1 7.231  7.985 10.4
dpin=0.3347 X, 2 5.065 5.29]1 4.5
3 3.897  3.994 2.5
5 2.666 2.696 1.1
10 1.490 1.495 0.3
For a_guadratic_plate_on_the ground we got (Ly=L):
um=0 516 dm/dmin Q1,op Q],const Inc;ease
AL
- N 1 1.384  1.489 7.7
dppin=0.2065 X 2 1.076  1.118 3.9
3 0.881  0.902 2.4
5 0.646 0.653 1.1
10 0.387 0.389 0.5




um—0.660 dm/dmin Q],op Q],const Inc;ease
o 02685 1" 1 2.163  2.339 8.1
min e 2 1.682  1.751 4.1

3 1,376 1.410 2.5

5 1,009 1.021 1.2

10 0.605 0.608 0.5

The heat losses for these caées of quadratic and rectangular plates
refer to one fourth of the plate (with a total length ZL] and a
total width 2L).

We have in the special situation, when dm=dmin,studied some addi-
tional cases.

dy=dmin HIL  dpin A Q1,op Q1,const Inc;ease
i
0 0.2081 0.986 1.107 12
0.2 0.307 1.020 1.221 20
0.4 0.386 1.084 1.280 18

The given heat losses refer to the right half of the cellar.

dm=dm1'n H/R dmin xo Q1,op Q],const Inc;ease
i
0 0.2049 4.871 5.318 9
0.2 0.2900 6.053 6.835 13
0.4 0.3350 7.231  7.985 10
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For a culvert with D/L=0.2 we got:

dy=dps HL dpin A Q1,op 9, const Inc;ease
D/L=0.2 i
0.5 0.723 1.743 1.982 14
1.0 0.815 1.791 2.039 14

The given heat losses refer to the right half of the culvert.

A11 given values of heat losses are computed under assumption
(14.4). The heat losses for other cases are obtained in the follow-
ing way. The values are multiplied by the scale factor KO(T]—TO)/L
and by an area scaling factor. In the three-dimensional cases the
scale factor for the area is Lz. In the plane two-dimensional cases
we have to multiply by the factor L, instead of L2.

We are now able to give some guide-lines on the accuracy of formula
(14.3), where the heat loss for constant insulation thickness is
approximated by the corresponding optimal insulation heat loss. The
insulation thickness is d. The mean insulation thickness dm is
equal to this value d. Let dmin be the limiting case for the opti-
mal insulation. We know that an interior part of Sl is to be Teft
uninsulated, when d is less than dmin‘

We can say that formula (14.3) underestimates the heat loss with
roughly 10%, when the constant insulation thickness d is near dmin'
This underestimation falls to roughly 6, 4, 2, and below 1%, when
the insulation d is near z'dmin’ 3'dmin’ s'dmin’ and 10°dmin
pectively. The value of dm.in has been given for different cases in
the foregoing. ‘

res-

The comparisons of this section are of great interest from another
point of view. It is in many applications customary to use a con-
stant insulation thickness over the insulation surface 51. A most
pertinent question is how much one gains, when the insulation is
distributed optimally instead. This question is readily answered.
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The gain is roughly 10% when the insulation thickness is near the
limiting case d The gain drops to roughly 6, 4, and 2%, when
nin® 3'dmin’ and s'dmin respec-
tively. The gain is therefore negligible for an insulation thick-
ness above say 3'dmin'

min’
the insulation thickness is near 2-d

It should be remembered that the gain may become considerably high-
er, when the thickness lies below dmin’ i.e, when parts of the
surface are to be uninsulated. The optimal insulation theory is

more important in these cases. But this is deferred to a later study.
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15 EXAMPLES

A11 examples and illustrations of the optimal insulation theory
have been put off to this section. They are quite important for
a proper appreciation of the presented theory.

SI-units are used consistently.

The thermal conductivity of soil and rock material ranges from Ro
=0.8 to  A,=3.5 J/ms°C. The conductivity of the insulation mate-
rial lies in the region Ki=0.1 to 0.03. The thermal conductivity
ratio Ki/lo will 1ie between 0.01 and 0.1.

The examples will follow the different headings of the preceding
sections.

i s 0 e e B o e

Example Al. Two-dimensional. Optimal insulation distribution.

The two-dimensional case of a plate on the ground is shown in
Figure 1. The problem is solved analytically in section 6. Let us
take:

Ap=2 I/ms®C  X,=0.05 J/ms°C
= = - = 0
2l=10m  d.=0.1Tm  Ty-T =10 °C

Then we have:

, _0.05 .y Ty
(6.8): doip = 5= 5-(1 - §)=0.027 m

(6.7): d=0.073+0125 + (1-V1-%% m

The second part of d is given in Figure 14 for H/L=0. The optimal
insulation function U is to be multiplied by the scale factor 0.125.
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10

=25 J/ms
. " LT
005 "7 13

The minimum insulation thickness dmin is well below the given dm,
so all of the plate is to be covered by insulation. There is a
constant part dm'dmin=0'073 m. On top of this there is an variable
insulation, which is zero at the center x=0. This part increases
to 0.125 m at the edges x= ¥5 m. The optimal insulation thickness

is 0.073 m at the center. It increases to 0.198 m at the edges.
Example A2. Two-dimensional. Minimum insulation criterion.
Let us illustrate criterion (6.8)

Ny
> = L+(1- Ik
dm dmin - xd L-(1 4)

A certain part around the center of the plate is to be left un-
insulated, if this inequality is not fulfilled.

A Moo
X o
d_ > 0.021°L
2L=10 m: g, * 0.1 m
A
B <1< 0.03
>\0
d, * 0.0064:L
2L=10 m: d, * 0.032 m
c Moo
. 'i—.; - -
d_ = 0.0021-L

2L=10 m: dy = 0.011 m



The minimum insulation dmin increases with L and with the quotient
xi/xo.

Example A3. Circular plate.
The insulation forms a circular disc on the ground. The radius of
the disc is R. The analytical solution of this case is given in

section 6. Let us take:

No=1-1 J/ms®c X;=0.04 J/ms°cC
_ _ T o]
R=6.77 m d =0.1m T-T,=15 °¢

The minimum insulation thickness is from (6.13):

_0.04 , L2
dm'in -'T-.'T- 6.77 ﬁ—0.052 m

Our theory is applicable, since dm >dmin‘ The optimal insulation
distribution is from (6.12):

d=0.088+0.157:(1 - V1 - (g% m

The insulation thickness ranges from 0.048 m at the center of the
disc to 0.205 m at the circumference. The heat loss through the
disc is given by (6.14):

7 423 J/s

Example A4. Quadratic plate.
This case is shown by Figure 9 with L]=L. Let us take:

- 0 - 0 t_1e 0
Xo—].1 Jd/ms~C Xi-0.04 J/ms~C T] To-lS C
2L=12 m 2L]=12 m dm=0.1 m
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The minimum insulation thickness is from (5.1) and Figure 12:

_0.04 . . _
dmin =TT 6 - 0.21 = 0.046 m

The insulation distribution d is given by (5.2):
d=0.054 +0.218 -

The two~-dimensional distribution ﬁ(%, {) is given by Figure 10.
The heat flow per unit time through the insulated surface is from
Figure 11:
- 15 -
Q = 144 * 51— = 405 J/s
oor t T 052

Example A5. Rectangular plate.
The case is shown in Figure 9. Let us take:

_ 0 _ 0 T -1 O
X0—1.1 J/ms”C X1-0.04 J/ms-C T] To-ls o
2L=8.50 m 2L1=17 m dm=0.l m

The minimum insulation thickness is from (5.1) and Figure 12:

_ 0.04 | . _
dm'in = m— 4.25 0.26 = 0.040 m

The insulation distribution d is given by (5.2)

~

d = 0.060 + 0.155 * U

Here U is given by Figure 10 for L]/L=2. The heat flow per unit
time through the insulated surface is from Figure 11

0y = 144 - 7T = 428 J/s

m"'T—T—‘ 0.66
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Commentary.

Examples A3, A4, and A5 treat the problem of a plate on the ground.
The plate area is the same in all cases, but the geometry differs.
The heat losses from the plates are 423 J/s (circular plate), 405
J/s (quadratic plate) and 428 J/s (rectangular plate, L]/L=2).

It is obvious that the loss from the circular plate should be the
smallest one. However, the circular case is solved analytically,
while the other two cases are based on a three-dimensional numeric-
al calculation.

According to the considerations in chapter 7, there is an estimat-
ed error in u, of about 10-15% in the three-dimensional calcula-
tions. The calculated values of U, are always too high. This means
that, in the three-dimensional cases, Q] is attributed a value that
is about 5-8% too low. A correct value for the square plate should
probably be something 1ike 425-440 J/s. The conclusion is that the
difference in heat loss between a circular plate and a quadratic
one is just a few per cent.

In the comparison of the quadratic plate and the rectangular one,
we may compare the results 405 J/s and 428 J/s directly, since
both values contain approximately the same error. The difference
in heat loss between the two geometries is about 6%.

Example A6. Long rectangular plate.

This case could be a building without cellar (see Figure 9). Let
us take:

_ 0 - 0 T 1z O
10-1.1 J/ms”C Ai-0.04 J/ms”C T1-To=15 °C
2L=10 m 2L1=50 m (L]/L=5) dm=0‘]3'm

The minimum insulation thickness is from (5.1) and Figure 12 (LI/
L=5)



_0.04 . _
dmin = TT 5 0.25 = 0,045 m

The insulation distribution d is given by (5.2):

d=0.08 +0.182 - U

Here U is given by Figure 10 (L1/L=5). The heat flow per unit time
through the insulated surface is from (13.2) and Figure 11:

Q] = 10-50 - = 1100 J/s

b+ - 0.78

15B. Cellars

Example B1. Cellar cross-section.

The cellar cross-section has a rectangular shape. See Figure 13.
The results refer to the two-dimensional cross-section for a long
house. The results will not be valid for the end regions of the
long house, where three-dimensional effects must be considered.
Let us take:

_ 0 = (o} T = o
Ko-l.] J/ms~C K1-0.04 J/ms~C T1-Tp=15 7°C
2L=12 m H=2.4 m (H/L=0.4) dm=0.12 mn

The minimum insulation thickness dmin is given by (5.1) and Figure
16:

_0.04 , . _
dnin = ™ 6 + 0.39=0.085m

The insulation distribution d is given by (5.2):

d=0.035+0.218 -7 m

Here U is given by Figure 14 with H/L=0.4.



The insulation thickness at the edge of the cellar is:
0.035 + 0.218 - 1.3 = 0.32 m

Formulas (13.2) and (13.7) give the heat flow per unit time through
the insulated area:

T,-T

0y = (2L42H) + g2 = (12+4.8) * gry—seggy = 32 I/sm
ot [Nz S S
1

0

Example B2. Cellar cross-section used for heat storage. Two regions
of soil.

The situation is shown in Figure 31. The granite bedrock is covered
by a layer of moraine with a thickness H. The cellar is built down
to the bedrock. Let us assume that the cellar shape is used for
heat storage. The temperature difference T]—T0 is relatively high.
Let us take:

_n [o] _ 0 T - 0
XO-1.1 J/ms™C ki-0.04 J/ms"C TI T0-50 c
2L=10 m H=5 m (H/L=1.0)  d =0.20m

The minimum insulation dmin is given by (5.1) and (11.1):

_0.04 | . . )
dnin = T ° 5+ 0.12 = 0.022 m

The optimal insulation distribution is from (5.2):
d=0178+0.18 - ¥

The optimal insulation function U is shown in Figure 32, The insu-
lation thickness at the edge of the storage is

0.178 + 0.182 - 0.72 = 0.31 m
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Formulas (13.2) and {11.1) give the heat flow per unit time through
the insulated area

Q = (10+10) * gpy—>gygy = 130 /sm
0.08 *TTT

Example B3. Cellar cross-section. Strong ground water effect.

We take example B1 with the ground water complication. There is a
strong ground water flow below the cellar and the temperature of
the water is the same_as that of undisturbed ground (T=T0). See
Figure 34, The depth to the ground water table is D=2.4 m (D/L=0.4)

The data are the same as in example Bl.

Formulas (5.1) and (12.1) give

C0.08°6 .y o .
dm,in *TT— 0.08 = 0.017 m

The optimal insulation distribution d is:

d4=0.103+0.218 - U m
The optimal insulation function is given in Figure 35 with D/L=0.4.
The insulation thickness at the mid-point of the cellar floor (s=0),

at the corner in the ground (s=1), and at the corner at the ground
surface (s=1.4) are:

d=0.103m

d=0.103 + 0.218 * 0.17 = 0.140 m

d=0.103 + 0.218 - 0.40 = 0.190 m
respectively.

The heat loss is from (13.2) and (12.1):
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Q) = (12 + 4.8) * 2oy = 5¢ J/sm
0oF T
Example B4. Cylindrical cellar.

This case could be an example of a heat storage. See Figure 18.
Let us take:

A =1.1 d/ms° A;=0.04 J/ms°C T,-T,=20 o
R=6 m H=2.4 m (H/R=0.4)  d =0.15m

The minimum insulation thickness is given by (5.1) and Figure 21:

_0.04 , - . _
d =TT 6 ' 0.34 =0.074 m

The optimal insulation distribution d is given by (5.2):
d=0.076+0218G m

Here U is given by Figure 19 with H/R=0.4. The insulation thick-
ness at the edge of the cellar is

0.076 + 0.218 + 0.78 = 0.25 m

The heat flow per unit time through the insulated surface is given
by (13.2) and Figure 20:

O = (6% 4 270 6 - 2.4) Bl < 660 U/
0,08t T
Example B5. Cylindrical cellar. Two regions of soil.

The figure at formula (13.12) shows the considered case. The ther-
mal conductivity of the granite bedrock is 3%0.
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Let us take essentially the same values as in the preceding example
B4:

Ap=11 J/ms°cC A =3.3 J/ms°C T,-T,=20 oc

granite
R=6 m H=2.4 m (H/R=0.4) dm=0.]5 m

2;=0.04 J/ms®cC

The minimum insulation thickness is given by (5.1) and (11.2) with
H/R=0.4:

0.017 m

dmin = T.-T— « 6 * 0.079
The insulation distribution d is given by (5.2):

~ ~

d=0.133+0.218u m

Here U is given by Figure 33 (H/R=0.4). The insulation thickness
at the edge of the cellar (s=1.4) is

0.133 + 0.218 * 0.30 = 0.20 m

The heat flow per unit time through the insulated surface is given
by (13.2) and (11.2):

20

0 = (6 +2m- 6 - 2.4): e = 820 J/s
008t T
Example B6. Cylindrical heat storage.
This case is shown by Figure 18. Let us take:
Ao=1.1 9/ms°C A;=0.04 J/ms°C T,-T,=55 °%C
R=30 m H=7.5 m (H/R=0.4) d =0.3m

The minimum insulation thickness is given by (5.1) and Figure 21,
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d . =ﬁ—°30'0.34=0.37m

Since dm >dmin’ the condition for the presented theory of optimal
insulation is not fulfilled. We just know that a certain central
part of the bottom must not be insulated. The condition (5.1) is
fulfilled for soils with a higher thermal conductivity. For example,
for a granite ground with k0=3.5 J/msoc we get:

0.0 _ B
dpin = & * 30 + 0.34 = 0,12 m (<d =0.30 m)

Example B7. Parallelepipedic cellar.

This case is a cellar with a square bottom. The bottom area is the
same as in example B4. The height is about the same. Let us take:

_ 0 -n 0 T -on ©
Xo-1.1 J/ms”C K1-0.04 J/ms™C T T0-20 C
2L=10.63 m 2L]=10.63 m L]/L=1
H=2.13 m H/L=0.4 dm=0.15 m

The minimum insulation thickness is given by (5.1) and Table 2
(L]/L=])

- 0.04 . -
dnin =TT * 5.32 + 0.39m = 0.075 m

The insulation distribution d is given by (5.2):
~ ~
d =0.075 + 0.193U m

Here U is given by Table 1 (Ly/L=1).

The heat flow per unit time through the cellar is from (13.2) and



Table 2 (Ll/L=])'

Q, = (10.63% + 4 - 10.63 + 2.13)" 20 = 670 J/s
1 015, 5.32 . o.48
o tTT O

Example B8. Parallelepipedic cellar.

This case is a cellar with a rectangular bottom. The size of the
bottom is identical to the plate in example A6. We have:

_ 0 _ o] i o]
Ap=1.1 Jd/ms™C Xi—0.04 J/ms-C T-I To-15 C
2L=10 m 2L]=50 m L]/L=5
H=2 m H/L=0.4 dm=0.]3 m

The minimum insulation thickness is from (5.1) and Table 2 (L]/L=
5, H/L=0.4):

_0.04 . )
dmin *TT 5 0.46 = 0.084 m

The insulation distribution d is given by (5.2):
d=0.046 +0.182 i m

Here U is given by Table 1 (Ly/L=5, H/L=0.4). The heat flow per
unit time through the cellar is from (13.2) and Table 2:

Oy = (10 * 50 + 2+(10+50)2)* gyg—p> = 1600 J/s

m'f’!r:ﬁr‘ 0.80
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13C. _Culverts

Example C.

The culvert geometry is shown in Figure 23. Let us take:

_ 4] _ o] I ]
Ao=1-2 3/ms°C X;=0.04 J/ms°C T,-T,=13 %
2L=8 m H=4 m D=4 m
d =0.10 m

We have H/L=1 and D/L=1. The minimum insulation thickness dmin is
from (5.1) and Figure 30:

=094 . 4. 0,61 =0.081 m

The optimal insulation distribution becomes:
~ ~
d=0.019+0.133 um

Here U is given by Figure 27 (D/L=1, H/L=1). The insulation thick-
ness at the center of the bottom surface (s=0), at the lower corner
(s=1), at the upper corner (s=2), and at the center of the top
surface (s=3) becomes:

d=0.019m

d =0.019 + 0.133 * 0.51 = 0.087 m

d=0.019 + 0.133 - 1.06 = 0.160 m

d=0.019 +0.133 - 0.99 = 0.151 m
respectively.

The heat loss per unit time from the insulated culvert is from
(13.2) and Figure 29:

—_—
w

Q) = (28 + 2:4) - = 45 J/sm

0.10

-m'l‘ ‘].34

ﬂ-ﬁ



The insulating soil thickness Lum is a fundamental quantity. It
represents the insulating capacity of the soil. We will in this
section give explicit values for this length in various cases. All
values are taken from section 13.

We note that the heat loss Q] is immediately obtained from Lum. We
have from (13.1) and (13.2):

The quantity

E]>'
3 {0

represents an equivalent "k"-value of the soil.

Ground plate
(Two-dimensional)

2L=10 m: Lum=3.9 m

Circular disc

R=5 m: Rum=2.1 m

Rectangular ground plate

2L =10m 2L, (m)! 10 20 50

u, (m| 2.6 3.3 3.9

Cellar cross-section

2L=10 m H=0 : Lum=3.9 m



2L=10 m H=2 m : Lum=4.6 m
2L=10 m H=5 m : Lum=5.5 m
2L=10 m H=10m : Lum=7.0 m

Cylindrical cellar or heat storage

R=5 m H=0 m : Rum=2.1 m
R=5 m H=2 m : Rum=2.3 m
R=5m H=5 m : Rum=2.7 m
R=5 m H=10m : Rum=3.6 m

We note that the insulating soil thickness is roughly twice as big
in the plane case of a cellar cross-section as in the correspond-
ing (R=L) cylindrical case.

Parallelepipedic cellar

2L=10 m 2L]=10 m Lum=2.4 m
H=2 m 2L1=20 m Lum=3.3 m
2L]=50 m Lum=4.0 m

We note that the difference between the parallelepipedic cellar
and the corresponding ground plate is quite small.

Cellar cross-section, granite and moraine.

(n = 3 = 3,)

granite moraine

2L=10 m H=5 m : Lum=3.0 m

We note that the introduction of the granite bedrock diminishes
Lum from 5.5 m to 3.0 m.

Cylindrical cellar, granite and moraine

R=56 m H=2 m : Rum=1.1 m
H=5 m : Rum=1.7 m
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Cellar cross-section, strong ground water effect

2L=10 m D=2 m : Lum=1.6 m
H=2 m D=3 m : Lum=2.1 m
D=6m : Lum=3.2 m
D=oo m : Lum=4.6 m
Culverts
2L=10 m H=1 m : Lum=3.2 m
D=1m H=2.5m : Lum=3.6 m
H=5 m : Lum=4.3 m
2L=10 m H=1m : Lum=4.2 m
D=2.5m H=2.5 m : Lum=4.6 m
H=5 m : Lum=5.5 m

Let us note that the insulating soil thickness is directly propor-
tional to the scale L (or R). Other values than 2L=10 m are imme-
diately obtained by proportionality.

We will with some examples illustrate the approximate first-order
heat loss formula and the results of section 14. We have now in-
stead a constant insulation thickness d over the insulation surface
S

]o

The heat Toss over 5 is approximated with formulas (14.2) and
(14.3):

Here Lu, is the insulating soil thickness. Numerous examples were
given in 15D. We will use the following values in the examples be-



low:

A=2 I/ms’C A;=0.04 J/ms’C T,-T4=15 %C
Example E1. Plate on the ground. Two-dimensional.
Let us take:

2L=10 m d=0.10m

The heat loss is approximately with (14.2):

0,210 * g5 = 3 I/ms
otz 12

The corresponding d . is from (5.1) and (6.8):

_0.04 . q.Tye
dmin = '—2—— 7 5 (] -4) 0.021 m

The given d is about s'dmin'
tion 14 an underestimation with about 2%.

The value Q]z34 is according to sec-

Example E2. Rectangular ground plate.
Let us take:
2L=10m 2L4=20 m d=0.05 m
The heat loss is approximately with (14.2) and (13.6):

15

Q;=10-20 * ,
o0dt T —

= 1030 J/s

The corresponding d

hin is from (5.1) and Figure 12:
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~0.04 . -
dm'in_T 5:0.265 = 0.027 m

The thickness d is about twice dmin’ so the error for the heat loss
is about 6%.

Example E3. Cylindrical heat storage.
Let us take:
R=20 m H=4 m d=0.30 m
The heat Toss is approximately with (14.2) and (13.8):

Qy #(1-20% + 27 -20-4)- 15

Tt —

= 2200 J/s

The corresponding dmin is from (5.1) and Figure 21:

_0.04 - . )
dmin = = 20 0.29 =0.12 m

The error in Q] is about 5%.

Example E4. Culvert.
Let us take:

2L=4 m H=2 m D=2 m d=0.50 m
The heat loss is approximately with (14.2) and (13.10):

15
Q.lss(4+2+4+2)' 750 7°T3° 13 J/ms
[ S



The corresponding d .. is from (5.1) and Figure 30:

0.04

d —2-0— .2 - 0.60 = 0.024

min -

The thickness d is more than ten times dmin’ so the error for Q1 is
less than 1%.
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16 CONCLUDING REMARKS

The heat losses for the optimal insulation and a corresponding
constant-thickness distribution are compared in section 14 for
several cases. The gain in the optimal case is 10%, or less for the
considered cases. This moderate gain applies to smaller building
structures which are well insulated. The gain is small if the heat
flux across the non-optimal insulation is relatively constant.

The insulating soil thickness is a very useful concept for these
smaller structures. The simple heat loss formula in section 14 is
quite accurate.

The optimal insulation theory is more important for larger structures.
An inner protected part of the boundary surface is to be left
uninsulated. These situations are not dealt with in the present paper.
So there remains a large number of basic cases to be investigated.

The current ideas to construct large heat storage systems in the
ground will provide another set of important applications of the
optimal insulation theory.

The insulation layers do not always 1ie along the boundary between
the structure and the ground. They may for example be put directly
on the ground surface immediately outside the structure. These cases
provide an almost infinite variety of other configurations for the
insulation sheets. A1l such cases may be analysed with the aid of the
present theory.

There is a whole field of pertinent cases that require an analysis
with the aid of this optimal insulation theory. Some generalizations
of the theory will be necessary.



Appendix.__First-order_variation_of heat_loss.

We will in this appendix derive the fundamental formula (3.2),
which is the basis for the optimal insulation criterion. The deri-
vation is done for a somewhat more general heat flow problem than
that of (2.1)-(2.3).

We have an original heat flow problem in a volume V with the boun-
dary surface S. The thermal conductivity A may be variable through
V. The temperature solution T satisfies the heat conduction equa-

tion:

V-(AVT) = 0 in v (A1)

Along the boundary S there is an insulation layer with the thick-
ness d and thermal conductivity li. Qutside the insulation layer
there is a prescribed temperature f. The boundary condition on S
is then:

T+z— A 5 ° f on S (A2)

The prescribed temperature f may be any function over S. The thick-
ness d may also be variable over S. In particular we have a pre-
scribed boundary temperature f at points, where d is-zero.

Consider now the following new heat flow problem. The thickness of
the insulation layer is at each point on S changed from d to d+ 6d:

d —»d+ 0d on S (A3)
The function Od is arbitrary over S, except for the condition that
d + 6d is non-negative. We have a new solution to this changed heat

flow problem:

T—T+ &7 in V (A4)
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The temperature change satisfies:
V. (AVBT) =0 inV (A5)

The new temperature T + OT satisfies (A2), when d is replaced by
d + 8d. The difference between the boundary condition in the two
cases is:

d x—ig-Tl MaZ 5" x—@l onsS  (A6)

The further analysis is based on a special thermodynamical concept;
namely the so-called thermality. This is developed in (%). The
thermality transfer is equal to the temperature in centigrades times
the heat transfer. It represents the first-order term of the entropy
transfer and is an expansion of the centigrade temperature divided
by the absolute temperature level.

The thermality consumption in our original heat flow process is
by definition given by:

5T
r=/£ fadlds (A7)

The corresponding thermality consumption in the new heat flow prob-
Tem is:

' fffxm LILIDIgPRE (A8)

We will first derive a formula for the first-order variation of the

(%) Johan Claesson: Thermodynamics of sensible heat storage systems.
Thermality concept. August 1979. Department of Mathematical Phys1cs,
Lund, Sweden.



thermality in the change (A3). From this we will get the desired
formula (3.2) for the first-order variation of the heat loss.

The change of thermality consumption in the heat flow process,
when the insulation thickness is changed according to (A3) is from
(A7) and (A8):

rer = ff (T+—§; Adhal

&7
L d s (A9)

Here (A2) has been inserted in the integral.

We need the following identity:

f!T)\“; ds = //va-(TAV(éT)) dv =
=fvffv-(m ATT) d v = ff6T AL (A10)

Gauss”™ formula and the identity
V(T AV (BT)) =AVT VBT = V - (6T VT) (A11)
have been used in (A10). Formulas (A1) and (A5) are used in (Al11).

The integrand of (A9) becomes with (A10):

)\36}(61‘+~)\-?-7\65:) (A12)

The second factor of (A12) coincides with the first two terms of
(A6).

The other two terms of (A6) are therefore of major interest to us.
We aim to derive an expression for the first-order variation of [
in the change (A3). This means that only first-order terms in 0d



are to be retained. The change of temperature 6T is of the first
order. The fourth term of (A6) is therefore of the second order.
Hence it is neglected.

The first-order variation 8" is then from (A6), (A12) and (A9):
i _ _ ff 0d 01,2 :
8l = fsfﬂ(}\s_) ds (A13)

This is a fundamental formula. Its simplicity is note-worthy. The
change of thermality is determined by the given change &d of in-
sulation thickness and by the heat flow ).g% of the original prob-
lem. The important thing is that the temperature O&T 1is not involv-
ed. We need not solve the new problem in order to determine the
first-order thermality change.

Let us now consider the more special case, when S consists of two
parts S, and Sl. The prescribed temperature f is T] on S] and To
on So. Then we have:

re= ff A ds f/T A as = (1T (A14)

We have used that the surface integrals over S] and S of )‘6"
gives Q4 and -Q] respectively. Here Q is the heat f10w through
Sq as defined by (2.4).

The variation of [ is therefore given by:
6= (T,-T,) B0, ~ (A15)

We are in this study only considering cases, when the insulation
is changed on S1» i.e. 6d=0 on So+ We finally have from (A15) and
(A13):

(Ty-T,) 6Q; = - jj X— (AghZas (A16)
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SUMMARY

The thermal insulation of a building structure against the surrounding
ground poses an optimization problem. How is a given amount of
insulation material to be distributed along the boundary surface
between building and ground in order to minimize the heat losses?

A mathematical theory for the optimization problem is presented. The
basic criterion is that the heat flux across the insulation is to be
constant along the insulation surface.

The optimal insulation distribution has been computed explicitly in
several cases: Rectangular plate on the ground for different shapes,
circular disc on the ground, cellar (parallelepipedic shape),
rectangular cellar cross-section (two-dimensional case), and
cylindrical cellar or heat storage. The optimal distribution is also
given for a culvert of rectangular cross-section for different heights,
widths, and depths below the ground surface. A few cases, for which
the ground consists of two Tayers (granite under a top layer of
moraine), have been analysed. Finally, some cases with a cooling
ground water stream below the insulated cellar are dealt with.

The ground below and around the building structure gives a thermal
insulation. The magnitude of the insulation capacity of the ground is
obtained from the solution of a multi-dimensional heat flow problem.
The presented theory provides an equivalent mean insulation soil
thickness. This insulating soil thickness is given for the discussed
cases (plate on the ground, cellar, culvert).

The insulating soil thickness makes it possible to give a simple
approximate formula for the heat Toss to the ground for any insulation
distribution.

The presented formulas and results are illustrated by numerous
examples.
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