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Adaptive Prediction and
Recursive Estimation

The prediction of timeseries is a significant problem in
many technical, economical or social situations. It is
important for efficient planning. Reordering of supplies
to a storage is e.g. based on prediction of future sales.
The prediction of future power load is important for
power load scheduling. Prediction is also needed in many
other applications e.g. in EEG analysis, geophysics or

speech communication.

The modeling of the timeseries to be predicted is crucial
for the prediction result. A priori knowledge about the
physical background of the timeseries can be represented-
as a deterministic component, e.g. a trend or a period in
the model. In this manner one aspect of the nonstationarity
of the time series is treated. The discrepancies between
this function and the observed data are regarded as random
disturbancies. The modeling and prediction thereof are in

many cases important parts of the total prediction problem.

The variation with time of the parameters and of the struc-
ture of the process description is another aspect of the
lack of stationarity. This is illustrated in Figure 1,
where the hourly load during a week on a power network is
shown for different parts of the year. The periodic struc-
ture of the timeseries as well as the changing pattern is

clearly illustrated.

In order to predict a nonstationary process one has to
adjust the parameters in the process description according
to the obtained data. The general exponential smoothing
approach to this problem is presented in Brown (1963). In

this method a model of the process is given ad hoc.




5000 -

4000 -

3000

A Mw

Ll | { | I I 1

MON. TU.  WED. TH. FR. SAT. SUN.

Figure 1 - Hourly power load. A - during a winter week,
B - during a summer week, C - mean value over
a year.

It contains seasonal and trend components represented

with trigonometrical functions and polynomials respectively.
The parameters in the model are adjusted at every time

step according to a weighted mean value of old prediction
errors. A predecessor to this method is the method of
exponentially weighted moving averages which is discussed
for example in Holt et al (1963) and Coutie (1964).

In Box and Jenkins (1970) a method to handle the trend and
the periodic components of the timeseries is proposed. The
nonstationary elements in the level description are elimi-
nated through difference calculation, leaving an auto-
regressive moving average (ARMA) model for the noise com-
ponent. This latter treatment of nonstationary processes

originates from Yaglom, see Yaglom (1955).




The adaptive filtering approach to the problem is discussed
e.g. in Mehra (1971). He uses the same technique as Box

and Jenkins to the nonstationarities in the process level.
The prediction method in Harrison and Stevens (1971) is

also based on Kalman filtering but applied on a simple trend
model. They use Bayesian principles in order to treat sudden
changes in the process description e.g. changes in trend

or slope.

A different method for solving the prediction problem is
the Group Method of Data Handling (GMDH) proposed by
Ivakhnenko and his co-workers, see e.g. Ivakhnenko (1970,
1971) . In this approach the unknown process is modeled
with a general nonlinear function which is expressed as

a Kolmogorov-Gabor polynomial

y(t)==f(xl,...,xn)=:a0-+§ aixi-+izj aij}%_xj +
14

where X, = xi(t),i=l,...,n are input signals. The high
dimensionality of the problem due to the large amount of
parameters is circumvented by a multilayer regression
approach. The adequate relationsships are selected using
€.g. a minimum mean square prediction error criterion. The
method is applied for prediction in e.g. Sawaragi and Ikeda

(1976) .

OUTLINE OF THE WORK

In the present report an additive input-output model is

used to describe the data sequence {y(t)1l

y(t) = n(t) + s(t) (1)
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The stochastic term n(t) is supposed to be an ARMA

process
Algh ne) = ci@h wiw (2)
where q © 1is the backward shift operator, {w(t)} is a

white noise sequence, C(q_l)
A(q_l) and C(q—-l

periodic components are collected in the term s(t).

is a stable polynomial and

) are relatively prime. The trend and

The thesis consists of three parts:

I. Adaptive Prediction of ARMA Processes

IT. Adaptive Short-Term Prediction of Power Load

IIT. Local Convergence of Some Recursive Estimation
Algorithms

The first part treats prediction of an ARMA process when

the parameters in the process description are constant but
unknown. In the second part some of the methods discussed
are extended to cover prediction of the process in (1).

They are applied on short-term prediction of power load.

In the third part the interest is focussed on the estimation
algorithms per se. Conditions for local convergence for a

class of estimation algorithms are given.

PART I - ADAPTIVE PREDICTION OF ARMA PROCESSES

The problem of minimum mean square error prediction of an
ARMA process with constant but unknown parameters have many
features in common with the self-tuning regulator problem.
It can be approached by making an estimation of the para-

meters in a process model. These parameter estimates
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are then used to calculate the prediction. Another method
is to directly estimate the parameters in a predictor as
in the self-tuning regulator case, see e.g. Astrdm et al
(1977) . Different predictor representations may be used,
leading to different adaptive prediction algorithms. One
of these is discussed in Wittenmark (1974) and another in
Holst (1974). A similar algorithm is applied to river flow
prediction by Kashyap and Rao (1973).

It is shown that if the Extended Least Squares method is
used to estimate the parameters in (2), the estimates pro-
duced by all the considered algorithms when used for one-
step prediction are linearly related. Hence the one-step
predictions are the same irrespective of which prediction
algorithm is used. When used for k-step prediction there

is no such relation between all of the predictor represen-
tations. In this case simulation studies show that the
method where the process parameters are estimated and the
two methods by Wittenmark and by Holst where the parameters
in the predictor description are estimated have a similar

loss function performance.

The convergence properties of the adaptive predictors are
discussed. Conditions for local convergence to the para-
meters giving minimum mean square error prediction are
established. The key condition is expressed in terms of
the parameters in the process description and is indepen-

dent of the prediction horizon.

In certain applications it is necessary to simultaneously
predict 1,...,N steps ahead. If an adaptive predictor for
each of these predictions is to be used the calculations
might be rather time consuming. Simplifications using only
the parameters estimated from the one-step predictor are

discussed.
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PART IT - ADAPTIVE SHORT-TERM PREDICTION OF POWER LOAD

The self-tuning predictor has been applied to real data

for short-term prediction of the hourly load on the power
network. The results are presented in the second part of
this thesis. Preliminary results were given in Holst (1974).
It has also been applied to prediction of urban sewer

flows, see Beck (1977).

In both applications the algorithm has to be extended to
handle a timevarying process description and a periodic
component in the data series. The timevarying parameters
are handled with exponential weighting of the prediction
errors in the criterion function. The periodic component
is represented by a vector with as many elements as the
length of the period. It may be fixed or exponentially
updated with the obtained data.

In the power load prediction application different adaptive
prediction algorithms have been studied. All the algorithms
involve ARMA process prediction as was treated in part I.
The results of the predictions by the adaptive k-step
predictor compare favourably both with other published
methods studied in this part of the thesis and with pub-
lished prediction results. The obtained prediction results
imply that the adaptive prediction algorithms studied are

useful and well suited for practical use.

Part IIT - LOCAL CONVERGENCE OF SOME RECURSIVE ESTIMATION
ALGORITHMS

This part is devoted to the convergence problem for
estimation algorithms. Results concerning local con-
vergence are obtained. They are applied to some specific
algorithms namely the Extended Least Squares method and

a modification thereof ( see Young (1976)), an algorithm
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given in Landau (1976) and the self-tuning regulator.

The analysis is based on Ljung's result concerning con-
vergence of recursive stochastic algorithms, Ljung (1975,
1976). It is shown in these papers that the asymptotic
behaviour of the algorithm is described by an ordinary
differential equation and that only stable stationary points
to it are possible convergence points to the algorithm.

The key result in this part of the thesis is the calcula-
tion of explicit expressions for the eigenvalues of a

matrix occuring when linearizing this differential equation.

As an example of the result, consider the Extended Least
Squares method applied on an ARMA process (2). The eigen-
values of the matrix in the differential equation linea-

rized around the true values of the parameters are then

-1 multiplicity n,

—l/C(ai) i = l,...,na

where n, and n, are the orders of the A and C polynomials

in (2). Y i=l,...,na are the solutions to the equation
n -
z2aizl) =0

Thus i1f any of the numbers —l/C(ai), i=1,...,na has a

positive real part the true value of the parameter wvector

is not a possible convergence point.

Two of the considered algorithms,i.e. the basic and the
modified Extended Least Squares method are apt for esti-
mation of parameters in a timeseries modeled as- an ARMA
process. Through simple modifications in the algorithms

and the corresponding differential equations two other
algorithms can be derived. One of these is the Recursive
Maximum Likelihood method (RML), see e.g. Ljung, SOderstrdm
and Gustavsson (1975). Both RML and the second method,
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which appears new, have the desirable property that the
true value of the parameter vector is always a possible

convergence point of the estimation algorithm.
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Part I - Adaptive Prediction of
ARMA  Processes

ABSTRACT

The adaptive prediction of ARMA processes with constant
but unknown parameters is studied. Different algorithms
are considered and their mutual relations investigated.
It is shown that when the parameter estimation converges
the algorithms asymptotically give minimum mean square
error prediction of the process. A necessary condition
for convergence to the corresponding parameter values is
established. It is expressed in terms of the process

description and is independent of the prediction horizon.

17
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1. INTRODUCTION

The linear minimum mean square error prediction of an ARMA=-
process 1is a problem with a wellknown solution when the pa-
rameters of the process are known. The predictor can be
written in a number of ways using different representations
of the history of the process. A number of different predic-
tors can then be generated. Since the parameters of the pro-
cess are known the resulting prediction, however, will be

the same independently of the way the predictor is written.

If the parameters of the process are unknown an adaptive
predictor may be used. The prediction can be calculated ei=
ther via estimation of the parameters in the process model
or via estimation of the parameters in the predictor.

In the latter case the structure of the predictor can

be chosen as one of the predictor versions derived for known

parameters.

In this part of the report different adaptive prediction
algorithms are analysed and compared. Transient as well as
asymptotical properties of the algorithms are discussed.
All the proposed algorithms are based on a certainty equi-
valence principle (See e.g. Wittenmark (1975)), i.e. the
unknown parameters are estimated and then used in the pre-
dictor as if the estimates were the true values of the ra-
rameters. The Least Squares method is used in the identifi-

cation.

This approach to adaptive prediction has been taken also
by Wittenmark (1974). A similar type of algorithm is app-
lied to river flow prediction by Kashyap and Rao (1973).
The prediction algorithms are closely related to the algo-
rithms used for self-tuning control, compare for example
Astrém et al (1977). The adaptive prediction problem is
discussed also in Bohlin (1976).
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Some of the algorithms which are discussed here are presen-
ted elsewhere, for example in Wittenmark (1974) and Holst
(1974) resp. for two of the k-step prediction algorithms and
in Astrdm (1974b) and Young (1970) for one of the algo-

rithms in the one-step prediction case.

This part of the report is organized in the following way.
In Chapter 2 the minimum mean square error prediction of an
ARMA process with known parameters is discussed and diffe-
rent versions of the predictor are presented. The correspond-
ing adaptive prediction algorithms are given in Chapter 3
together with an algorithm where the parameters in the pro-

cess model are estimated.

In Chapter 4 it is shown that all these predictors, when
used for one-step prediction, are related by a change of
variables. For three of the algorithms this is so also in

the krstep prediction case.

The asymptotical properties of the algorithms are discussed
in Chapter 5. The analysis in this chapter is based on the
results in Ljung (1975, 1976a). The main idea there is to
associate the parameter estimation algorithm with a diffe-
rential equation that contains all relevant information a-
bout the asymptotic behaviour of the algorithm. The connec-
tion between this differential equation and the correspond-
ing algorithm that is of interest here is that only stable
stationary points to the differential equation are possible
convergence points for the algorithm. It is shown that when
the parameter estimation converges and the order of the pro-
cess is known, the unique stationary point corresponds to
the minimum mean square error predictor of the process.
Furthermore, it is shown that this stationary point to the
differential equation is unstable for certain systems. These
systems are the same for the considered algorithms and the

stability is independent of the number of steps to predict.

In Chapter 6 the prediction of an ARMA process will be
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discussed from a slightly different point of view. The
aim is to design an adaptive prediction algorithm which
predicts 1,...,N steps ahead. Such a predictor is termed
an adaptive multistep predictor and it is useful for
example in connection with prediction of parts of a period
or a whole period in a process which contains periodic
elements. In the given predictor the parameters for one-
—step prediction are estimated and the predictions are
then calculated recursively in the number of steps to
predict. Three different alternative representations of
this predictor are considered. They are based on the
adaptive one-step predictors from the previous chapters.
Hence they are equivalent for k-step prediction and the

convergence results from Chapter 5 apply directly.

Chapter 7 contains numerical examples, where some of the
predictors are compared. Finally, in Chapter 8 the algo-

rithms and their properties are summarized and discussed.

In the following the proposed algorithms will be distin-
guished by an index 0,...,5. The optimal values of e.qg. the
prediction when the parameters are known will be denoted by
the subscript M for minimum. Parameter and polynomial
estimates will be denoted by a time argument, such as for
example al(t) as an estimate at time t of the parameter aj -
Unless otherwise stated it will be assumed that the order

of the process to predict is known.
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2. PRELIMINARIES - K-STEP PREDICTORS

In this chapter the linear minimum mean square error
prediction of an ARMA process with known parameters will
be discussed. The solution of the prediction problem and
the properties of the resulting predictor are well known,
see e.g. Astrdm (1970) or Box and Jenkins (1970), and
will be briefly reviewed. The main purpose of the chapter
is to present different possibilities to express the
predictor. Since the parameters in the process are known,
the different expressions only give different possibilities
to calculate the same prediction value. However, all the
predictor versions may be used in an adaptive context when
the process parameters are unknown and recursively esti-

mated as will be discussed in the following chapters.

Statement of the problem. Version 1

Consider a stationary stochastic process {y(t)} described
by the ARMA model

Al vy = cla™h) e(t) (2.1)
where
A(q_l) =1 + alq_l + ..+ anq_n
-1

and similarly for C(g ~). The polynomials are supposed to

be asymptotically stable and relatively prime. Introduce

the reciprocal polynomials Af(q) and Cf(q) where
af@) = "™ =+ a L e
Cf(q) is analogously defined. {e(t)} is a sequence of

independent random variables with mean value zero and
. 2
variance ¢°.




22

If the vectors

®y () = [-y(t-1),..., =y (t-n), e(t-1),..., e(t-n)1T (2.2a)
6 = [ 1T (2.2b
o = layreevray cprevascg .2Db)
are used, (2.1) can be written
(£) = of _(£) 6. + e(t) (2.3)
Y = ®o,M o T € .

The problem at hand at time t is to find a prediction
§M(t+k]t) of y(t+k) based on the available information
about {y(t)} at time t, i.e. vy(t),y(t-1),... such that

the criterion

Vy = E [ % (t+k) ] (2.4)
is minimized. e (t+k) is the k-step prediction error
A
e (t+k) = y (t+k) - y(t+k|t) (2.5)

A
and y(t+k|t) is any linear prediction of vy (t+k) based on
data up to t.

Denote the smallest o-field generated by the values of the

process {y(t)} wup to and including the time t by Vt =

= F(y(t), y(t=1),...) (cf. e.g. Breiman (1968)). The
solution of the prediction problem is then the conditional

expectation of vy (t+k) given Vt. If this predictor is
A
denoted y,(t+k[t) we have §M(t+k[t) = E(y (t+k) |V,)

(cf. Box and Jenkins (1970) or Gikhman and Skorokhod (1969)).

Using the identity (Astrdm (1970))

-1 L v 7% 6 (2.6)

) = A(g ~) F(g
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where
-1, _ -1 -k+1
F(@ 7)) = 1+ £,9° +...+ £ _q
-1 -1 -n+1
G(g 7) = 9, + glq + ...+ gn_lq

the process model (2.1) can be written

-1 _ _ -1
y(erk) = L oo = rig™h et +q7F L) o (e
A(g 7) A(g ™)
Here (e(t+l),..., e(t+k)) do not belong to the o-field Vt

but -%?e(t) does since it is composed of vy (t), yv(t=1),... .

Thus the optimal predictor is

-1
vy(trk|t) = L) e e or

Alg ™)
gy (tk|t) = (1-aq™ ) Yy (k[ £) + (g™t e(t) (2.7)

This version of the predictor will be referred to as version
1. The predictions are based on the innovations of the ARMA
process, which can be calculated from the available measure-
ments by inversion of (2.1). The optimal prediction error
is

-1

aM(t+k) = F(g ) e(t+k) (2.8)

with the wvariance

E t+k) = ¢“ (L +£f5+... + f

8M(

The other predictor versions are derived below by applying
(2.1), (2.5), (2.6), and (2.8) on the predictor (2.7).
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—Ly,

In these predictors just two of the polynomials A(g
C(q_l), G(q—l), and A(q—l)F(q_l) are needed for the
k-step prediction. This means that only 2n, or if the
AF-polynomial is used 2n+k-1, old values of §M(t+k‘t),

y(t), sM(t) or e(t) must be stored.

Remark. If the independence assumption on {e(t)} is

replaced by the assumptions that the process is uncorrelated
and the predictor linear, the predictor (2.7) remains
optimal. The predictor (2.7) is also optimal for unstable

-1

polynomials A(g 7). o

Version 2

Using the system equation (2.1) the predictor can be

expressed as

-1
§M(t+k|t) = Eiﬂ:il v (t) or

Clg ™)
g (tk|t) = (1-c(@™h) g k) + 6@ D) y(t) (2.9)

This expression for the predictor is given in Astrdm (1970) .
It is used in an adaptive context in Holst (1974). The input
to the predictor system is in this case the measured values

of the given process.

Version 3

-1 -1 -1

)F(q ~) by H(g
If the prediction error, (2.5),

Denote the polynomial A(q ) with

coefficients hl""’hn+k—l'

is used the predictor can be written

-1
?M(t+k[t) = QLQ:IL £y (1) or
H(g 7)
§M(t+k|t) = (l—H(q_l)) §M(t+k|t) + G(q"l) ey (t) (2.10)
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In this version of the predictor the prediction error is
used as input to the prediction system. It is discussed

in Wittenmark (1974). The number of parameters is 2n+k-1.

Version 4

In version 3 some of the parameters in the H(q_l) and
G(q-l) polynomials are equal due to the identity (2.6). If

this is taken into consideration version 4 appears.

In the discussion it is favourable to separate the cases
n >k and n < k. When n > k the polynomials H and G

in version 3 are partitioned according to

H(G D) = Hy(@ D) +Hy(a™h) = (+hyg T el 4n g™
(b, q gt +h e g Pk
G(q_l) = Gl(q_l)-+G2(q-l) = (go-kglq_l-+...'+gn_kq—n+k) +
+ (gn-k+1 q—n+k—l_1L ot q—n+l).

When k =1, H,= G,=0. The identity (2.6) gives

2 2
-1 -1
Hylg ) = -q 7 Gy(a )
i.e. hi = 9y i=n+l,..., n+tk-1. If this is introduced

into (2.10) the following expression for the optimal

predictor is obtained:

§M(t+k|t) = (1-H) §M(t+k|t) + G oey(t) =

1l

(1-H;) ¥,(t+k|t) + G £) + G, y(t) (2.11)

1 Emf

Thus only 2n parameters are used.
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If n < k thepolynomial G in version 3 need not to be

partitioned and the polynomial H is partitioned into

H@h = Bl(@H + 3@ +HYE D =
_ -1 -n -n-1 -k+1
= (]_ +hlq +...+hnq ) + (hn+lq +---+hk_1q ) +
-k -n-k+1
+ (hyq " *...thy 44 ) (2.12)

When n=k=-1 +thepolynomial Hé is not part of the partition.

The identity (2.6) gives

Hi(q_l) = c(qg
[ -1 _
Hy(g ) =0
Hi(q D) = -G(q h g "
i.e.
C, i=1, ; N

i

hi = 0 i=n+l, k-1
9k i=k,..., ktn-1

If this is introduced into (2.10) the resulting predictor is

Ptk [E) = (1-H) §,(t+k|t) + G gy () =

M

(1-C) §M(t+k1t) + G y(t)

Thus when n < k the predictor 3 is transformed into
predictor 2. The predictor 4 will thus be discussed only
for k < n, when it can be regarded as a 2n parameter

variant of predictor 3.
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Version 5

A fifth way of expressing the predictor can be derived
from (2.9) with the aid of the identity (2.6) and the

prediction error:

Il

A A
yM(t+k|t) (1-C) yM(t+k1t) + G y(t) =

I

(1-H) y(t+k) + (C-1) 5M(t+k) (2.13)

Here the predictor seems to be depending on values of the
process and prediction error that are not at hand at the
time of prediction. This is however not true as, according
to the identity (2.6) the k-1 first coefficients in the
polynomial H areequal to the k-1 first coefficients in

the polynomial C. To exploit this the polynomials H and C
are partitioned. As in the discussion of version 4 it is

favourable to separate the cases n 2z k and n < k.

Thus when n > k the polynomials H and C are partitioned

as
_l — n —l " _l _ -l -k+l
H(g 7) = Hl(q ) + Hy(q ) = (1+hy9 to..thy g )y +
-k -n-k+1
+ (hya ©F +h_ o1 )
and
-1, _ -1 -1, _ -1 -k+1
C(g ) = Cqla ) + C,(g ) = (L+cq9 to..tCyp 19 ) +
-k -n
+ (ckq +...tc.q )
the predictor (2.13) is equal to
§ylek|e) = (1-H) y(t#) + (C-1) £y (EHK) =
n — — A
= -HY v (t+k) (c;-1) yM(t+k\t) + C, gy (Etk)

(2.14)
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If k=1, Hl 1~ 1.

This can be regarded as a generalization to k-step pre-

= C

diction of the one-step predictor usede.g. in Astrém (1974b)

for parameter identification.

When n < k the polynomial C need not be partitioned and
the polynomial H canbe partitioned as in version 4 which

gives
A A
yM(t+k|t) = (1-C) yyu(t+k[t) + G y(t)

i.e. version 2 of the predictor. Version 5 of the predictor

is thus used only when k < n.

Summary
All the versions of the predictor can be expressed as

A T .
vy (ttk|t) = mi,M(t+k) N i=1,...,5 (2.15)

where ei and o, are two columnvectors with parameters

and data respectiié?&. They are given in Table 1. There are
2n elements in the vectors except for version 3, where the
old prediction errors are used in the calculations. In that
case the vectors contain 2n+k-1 elements. For version 4
and 5 only the case k <n 1is considered. When k=1 there

are no elements of y in the datavector (t+k) and no

P4,m
A 7
elements of Yym in 0c M(t+k).

14

Using the expression (2.15) for the predictor, (2.5) and
(2.8) give

_ - - T -
eM(t+k) = F e(t+k) = y (t+k) (pi,M(t+k)ei i=1,...,5 (2.16)
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Table 1 - The Data and Parameter Vectors
Fquation
T
(2.7) 0, = (al, ..,an,go,...,gn_l)
A A
©p (tHk) = (yp(tH-1[t-1) , ...~y (t¥kn|tn), e (b),. .
v e(t=n+1))7T
T
(2.9) 0, = (cl, .,cn,go,...,gn_l)
A A
0y wltHk) = [~y (tk-1]t=1), ..., =y (ttk-n|t-n), y (1), . .
..,y(t—n+l))T
(2.10) 6. = (b h )T
: 3 17 nak-17907** 19n-1
A A
(D3IM(t+k) = (—yM(t+k-1 lt-1),... ¥y (tntl | t-n~k+1),
T
ep(t) .- ,eM(t—n+l))
(2.11) o, = (h )T
. 4 - ll'--l%lgOI'-'lgn_klg _k+ll"'lgn_l
A A
®4,M(t+k) = (—yM(t+k-l]t—lL...,in(t+k—n|trn),aM(t),..
er £y (tmn0), ¥ (t=nk=1) ..y (tn) )T
(2.14) 0. = ( c c c )’
: 5 = ByreearByyy q/C rs e rCpqrCpree iy
A
goS,M(t+k) = (=y(t) ,...,~y(t-n+l), ~yy(ttk-1|t-1) , ..

cer =Py (EFL kD), £ () o ey (Ekem) )
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Multistep Predictors

The predictor versions discussed are the only ones where
two polynomials and the values of §M(t+k[t), v (t), sM(t)
or e(t) are used. Another possibility to do the k-step
prediction is to use the expression (2.1) with time argu-
ment t+k or any one-step predictor of vy (t+k) and

make a conditioning with respect to V If this is done

£
on (2.1) the resulting predictor for k = n is (cf. e.q.

Akaike (1974) or Box and Jenkins (1970))

A A
vy (t+k | t) Feoatay Yy e+l +a, y(t) t...tal y(t+k-n) =

= ck e(t)~+..u+cn e (t+k-n) (2.17)

This is termed multistep prediction and is treated in
Chapter 6. If this predictor is used in order to calculate
the k-step predictor also the k-=1,k-2,...,1 step predictors
must be calculated. If these prediction values are not used,
the calculation effort might be unnecessarily large. But if
there is a need for brediction 1,...,N steps ahead (2.17)
might be an efficient way of doing the calculations. The
application to power load prediction, where there is a need

for profile prediction, is discussed in part II of this work.
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3. ApapPTIVE K-STEP PREDICTORS

One way of solving the prediction problem when the para-
meters of the process (2.1) are unknown is to estimate the
parameters in the A and C polynomials and use the estimates
in the calculation of the predictor. If this is done
recursively it means that the predictor polynomials must

be calculated at every time step, which might be a rather

heavy computational burden.

Another possibility is to look for adaptive schemes corre-
sponding to the predictor versions discussed above, i.e. to
estimate the parameters in the predictor instead of in the
process model. In the below proposed adaptive prediction
algorithms of this kind the Least Squares (LS) method is
used for parameter identification. An important reason for
this is that it needs a comparatively small amount of
computations. Hence the adaptive predictor with the LS

method will be well suited for practical real time use.

3.1 ESTIMATION OF THE PARAMETERS IN THE PROCESS MODEL

The LS method for parameter identification can not be used
directly for identification of the parameters in the process
model (2.1) because of the MA part of the model. A straight-
forward application would give biased parameter estimates,
see e.g. Astrdm and Eykhoff (1971). In this reference a
variety of parameter estimation schemes are presented which
circumvent this problem. One of these is the Extended Least
Squares method (Panuska (1969), Young (1970), Astrdm (1974b) ),
which will be discussed here. When this method is used the
noise sequence e(t) ,e(t-1),... is estimated as a sequence
of one-step ahead prediction errors eo(t),eO(t—l),...

where eo(t) is calculated from the equation
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oo (t) = y(£) = wg(t) 0 (t-1) (3.1)

wo(t) and eo(t) are the data and parameter estimate

vectors at time t. These are defined by

I

00 (8) = (ag (), .o a (£), cp(8),0npc (8))7

T (3.

wo(t) (—y(t—l),...,-y(t—n),eo(t—l),...,eO(t—n))
The method is also discussed in Ljung, SOderstrdm and
Gustavsson (1975). The obtained parameter estimates are
used to calculate the predictor parameters from the
identity (2.6).

3.2 ESTIMATION OF THE PARAMETERS IN THE PREDICTOR

When the parameters in the predictor are unknown adaptive
schemes based on predictor versions 1,...,5 can be
constructed. The parameters are recursively estimated and
the current estimates are used for prediction. The
algorithms are given the same numbers as the corresponding

versions of the predictor.

Consider as an example the adaptive prediction algorithm

corresponding to version 2 of the predictor, where the

2)

prediction is based upon the measured data. The discussion

may be duplicated for the other versions after appropriate

reindexing.
The data and parameter vectors in algorithm 2 are
A - A T
@, (t+k) = [~y (t#k=1]t-1),..., =y (t+k-n|t-n), y (t),. . ., y (t-n+1) )

0,(8) = (cq(0),ennyc, (0, gy (®)nnny g ()T

Consider the process model (2.1) and the identity (2.6)

v () =%e(t) = F el(t) +—gy(t—k) (3.

3)
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Introduce the notation
w(t) = F e(t)

Equation (3.3) then may be written as

T

1
e(t) = w(t) +E (cpz

() 0, -9 (t]t-k)) (3.4)
where {§(t[t—k)} could be any sequence of predictions and
{e(t)} the corresponding prediction errors. When the
parameters of the process are known, i.e. 62 is known,
(3.4) is reduced to (2.8) if §(t]t-k) is chosen as the
minimum mean square error predictor, i.e. §(t|t—k) =

= §M(tit—k). The elements of mz(t) = wle(t) are then by

construction uncorrelated with the prediction error.

Now suppose that the parameters are unknown. Consider first
pure AR processes, i.e. C = 1. Then (3.4) reads (after

appropriate redefinition of P, and 62)

e(t) = w(t) + (05(t) 6, - y(t]t-k))
or
T
y(£) = @5 (t) 6, + wl(t) (3.5)

Since w(t) 1is uncorrelated with the elements of wz(t)
the application of the LS method for estimation of the

parameters in 6 gives asymptotically consistent esti-

mates. Next, coniider processes with C # 1. If the para-
meters are estimated in the model (3.5) with full ®, and
62 vectors, then (3.4), which describes the process in
this case, indicates that the estimates of the parameters
would be biased since the elements in ¢®, are correlated
with the equation error in (3.4). However, if the parameter

estimates converge and if ¢ (t+k|t) is chosen as

§(t+ktt) = wg(t+k) 6, (t) (3.6)
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then one possible convergence point in the parameter
estimation is the minimum mean square error predictor |
corresponding to the absolute minimum of the loss function
Vin) = Z(y(t)-—&pg(t)n)2 (which is used in the LS
determination of the parameters). The correlation between
©, and the prediction error will consequently asymptotic-
ally be reduced to zero when the parameters converge to this
point. It will be shown in Chapter 5 that it in fact is the

only possible convergence point.

Algorithms

The discussion, valid for the adaptive prediction algorithms
where the parameters in the predictor are estimated, thus

gives the following algorithm performed at time t.

o Estimate the parameters ei i=1,...,5 in the model

y(t) =) (t) 6, = c(t) +§(t|t=k) =0} (£) 0; = wi(t)  (3.7)

giving the estimates ei(t), i=1,...,5.

o Use the obtained parameter estimates to calculate the

predicted value of the process at time t+k.
A T
y(t+k|t) = ©; (t+k) 6, (t) (3.8)
Note that mi(t) i=l,...,5 1is a function of all previous

estimates since the predictions and the prediction errors

depend on all these estimates.

Since the LS method is used, the estimates at time t are

given by the normal equations

N
0, (0) (y(t) —o; (t) 8,) =0 i=1,...,5 (3.9)
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They satisfy the following recursive equations (Astrém
(1968) , Stderstrdm, Ljung and Gustavsson (1974)). These
equations also describe the parameter estimation in the

adaptive predictor where the parameters in the process

model are estimated, i.e. in algorithm 0. In that case
A
wo(t)— eO(t) (3.1).
. A A
ei(t) = ei(t—l)-+Ki(t)wﬁt)-—ei(t—l)-+Pi(t)mi(t)wﬁt)
A . _ T _

Pi(t-l)wi(t)

1 Ki(t) = T i=0,...,5 (3.10)

l-*@i(t)Pi(t-l)wi(t)
T
P, (t=-1)o, (), (£)P, (£t~1)
P, (t) = P, (t-1) -2 T = =
l-*mi(t)Pi(t—l)mi(t)
where

t -1

Pi(t) = [ X mi(s)m (s)} i=0, ,5 (3.11)

LtO

For part of the analysis in Chapter 5 an alternative
description of the algorithm may be given (cf. SOderstrdm,

Ljung and Gustavsson (1974)). Introduce the matrices

-1

I

Ri(t) 1/t Pi(t)

Ki(t) = t Ki(t)

Then the algorithm (3.10) becomes for i =0,...,5
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_ 1% _ 1 -1 A
6, (£) =0, (t=1) +% Ky (£)wy () =0, (t=1) + Ry™(t) o, (B)w(t)
G0 = y(B) - o) (D)o, (t-1)

{ * 1 (3.12)
Ri(&) = — < ——3
L+3(e] (B)R; " (t-1) o, (t) - 1)

— 1 T _ _

R; (£) = R, (t-1) +¢ (0, (B)w; (t) =R, (£-1))

In algorithm 1, where the corresponding predictor with known
parameters is based on the innovations of the process, an
estimate el(t) of the element e(t) 1in the noise sequence

is needed. It is calculated at time t from the equation

A(t—l;q—l)
e, (t) = y (t)
1 -
C(t-1;q l)
In this calculation the earlier obtained values of el(t—l),
e, (t-2),... are used as initial values. A(t-l;q_l) is the
estimate at time t-1 of the polynomial A. C(t—l;q—l) is

an estimate of the polynomial C calculated from the iden-

tity (2.6) applied to the polynomial estimates A(t—l;q_l)
and G(t—l;q_l) i.e. from the system of equations
- - - -k -
Cle-1;9° 1) = Aatt-1;a HF(e-L;a7h +a ¢ 6(e-1;97h  (3.13)
For k=1 F(t—l;q_l) is equal to 1 and C(t—l;q_l) is

1 1

) and q_lG(t—l;q—

However, when k > 1 it is easily seen that the C(t—l;q_

determined simply by adding A(t-1;q ) .

h
and F(t—l;q_l) polynomials are uniquely determined from

this system of equations if and only if an(t—lj #0. This
implies that the algorithm might be numerically ill conditioned

when an(t-l) is small.

The data and parameter vectors for the algorithms are
collected in Table 2.
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Table 2 - Data and Parameter Vectors Used in the Adaptive

Prediction Algorithms

iigﬁ% Vectors
0 GO(t) = (al(tL...,an(t),cl(t),...,cn(t)]T
0o ®) = [y (t-1),..., =y (tn), ey (1), ..., ey (b))
1 01(6) = (ay (€)y-.vy 2 (8), gy (B),enes g, (B))F
@) (t+k) = (=9 (t+k=1]t-1), . .., =% (t+k-n| t-n), e (t)..., el(t—n+1))T
2 0,(t) = (cl<t),...,cn(t),go(t),...,gn_l(t))T
Oy (t4k) = (=9 (t+k=1]t-1), ..., =¥ (t+k-n|t=n), y(8), ..., y (t=n+1) )"
T
3 85(t) = (hl(t),...,hn+k_l(t),go(t),...,gn_l(t))
04 (tH) = (-7 (£Hk=1]-1),..., =y (t=n+] [ t=n-k+1), & (1), ..., & (t-=n+1) ) T
T
4 848) = (b (B)yeees By (), g (B)yees gy (B), 9, 4 (B)en, g1 (B)
®4(t+k) = (—§(t+k—l[trl),...,—§(t+k—nlt—nL e(t)yeea, e(ttk-n),
y(t+k—n—lL...,y(trn+l))T
5 05 () = (B (6), e By g 1 (B0 (B),nn, g (B, 0 (8),ene, e (8)T

O (t+k) = (=y (t),..., =y (t-n+l), —§(t+k—1[t—1), cee, —§(t+1|t—k+1) ,

a(tL...,e(tﬁk—n))T
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3.3 SOME FURTHER COMMENTS ON THE ALGORITHMS

It has been shown in Doncarli (1977) that the transient
properties of the ELS algorithm might be considerably
affected by the age of the parameter estimates entering
in the calculation of the residual. From this point of
view it would be preferable e.g. to calculate the {el(t)}

sequence in the algorithm 1 from

_A(t;q7h
el(t) = ET;T;:IT y(t)

i.e. to use the obtained estimates at time t and the
earlier obtained values el(t—l) etc. i1n the calculations.
The asymptotical properties of such variants of the algo-
rithms will however not differ from the asymptotical
properties of the given algorithms, since the age of the
parameter estimates entering into the calculations is

unimportant in the asymptotical analysis, cf. Chapter 4.
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4. RELATIONS BETWEEN THE ALGORITHMS

In this chapter some relations between the proposed algo-
rithms for solving the adaptive prediction problem are
established. It is shown in Section 4.1 that the algorithms
0, 1, 2 and 3 in fact are equivalent when used for one-
step prediction. In Section 4.2, in which k-step predic-
tion is discussed, the algorithms 2, 4 and 5 are shown to
be equivalent for all k. It is then finally shown that it

is not possible to extend the equivalence for k=1 between
the algorithms 0, 1, 2 and 3 to general k.

4.1. ONE-STEP PREDICTION
Consider the algorithms presented in Chapter 3 with k=1,
Theorem 1. Consider one-step prediction of an ARMA process

described by the model (2.1) using any of the proposed al-

gorithms 0,1,2,3. There exist constant matrices Si' such
that if

i=20,1,2,3; J

0,1,2,3

and

Il
I

T .
Pi(to) S..P.(to)si. i

15P4 5 0,1,2,3; j =0,1,2,3

for some tO and the initial values of the processes {y(t)}

and {e(t)} are the same for the considered algorithms, then
Qi(t) = 8,.8. (%) t>t i=20,1,2,3; 3 =0,1,2,3

when the same realization of {y(t),tzto} is used in the

algorithms.,
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Proof: The proof is based on direct comparisons of data
and parameter vectors for the different algorithms. It is

found in Appendix A.

Remark l. Since this theorem states that these four algo-
rithms are equivalent when k=1 also the convergence proper=
ties of the algorithms are the same. It is shown in Ljung,
Soderstrdm and Gustavsson (19275) and in Ljung and Witten-
mark (1974) that the algorithms 0 and 3 respectively do not
converge for all systems. This result is now possible to
apply on algorithms 1 and 2 too. This means that the sys-
tems for which the algorithms do not give converging para-
meter estimates are the same for all the algorithms. The con-

vergence properties are further discussed in Chapter 5.

Remark 2. The proof of Theorem 1 thus shows that the algo-
rithms for one step ahead adaptive prediction are related

via a change of variables.

4.2, K-STEP PREDICTION

For k » 1 the comparison between the algorithms gets more
complicated. The reason for this is that the data vectors
used in the determination of the parameter estimates and in
the prediction are not in all cases linearly related as was
the case when the algorithms were used for one step ahead
prediction. It is, however, possible to establish a linear
connection between the algorithms 2, 4, 5 in the same manner

as in Section 4.1.
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Theorem 2. Consider k-step prediction of an ARMA process

described by the model (2.1) using any of the proposed algo-

rithms 2, 4 or 5. There exist constant matrices Qij such
that if
ei(to) = Qijej(to) i=2,4,5; 3 =2,4,5
P.(t,) =0Q,.P.(t.)oF i=2,4,5; 5 =2,4,5
i'to i35 3170774y e T

for some tO, and the initial values of the processes {y(t)}

and {e(t)} are the same for the considered algorithms, then

ei(t) = Qijej(t) tzto i=2,4,5; 53 =2,4,5
when the same realization of {y(t),tzto} is used in the
algorithms.

Proof: This theorem is proven in the same manner as

Theorem 1. The proof is given in Appendix A.

No linear relationship can be established between algorithm
0 and any of the other algorithms 1, 2 or 3 since the data
and parameter vectors are not linearly related. Similarly it
is seen that no linear transformation exists between algo~-
rithm 1 and any of the other two algorithms 2 or 3. Finally,
consider the algorithms 2 and 3 or equivalently, due to
Theorem 2, algorithms 3 and 4. As was remarked in Chapter

2 algorithm 4 could be regarded as a 2n parameter version

of algorithm 3 when the parameters in the process (2.1) were
known. When the parameters are unknown it is not possible

to find a linear regular transformation between the two data
and parameter vectors Since the number of parameters to estimate
differs. The problem is then if there exists a linear trans-
formation, which is not bijective and does not depend on data

or time, of the data and parameter vectors from algorithm 3
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such that the algorithm for the transformed parameters
coincides with the algorithm for the parameters from al-

gorithm 4.

Theorem 3. Consider k-step prediction of an ARMA process
described by the model (2.1) using any of the algorithms
2, 4 or 5. Then there exists no linear data=- and timein-
variant transformation between the parameter estimates ob-

tained from these algorithms and the algorithm 3.

Proof: The proof is given in Appendix A.

Hence, for k > 1 the adaptive k-step prediction algorithms

0, 1, 2 and 3 are not linearly related.
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5. CONVERGENCE PROPERTIES OF THE ADAPTIVE PREDICTION
ALGORITHMS

In this chapter the convergence problem for the adaptive
predictors will be treated. Since it was shown in Chapter
4 that algorithms 2, 4 and 5 are equivalent only algorithms

0, 1, 2 and 3 are considered.

The convergence problem will be separated into two sub-
problems. Firstly the possible convergence points for the
algorithms will be derived and secondly local convergence

to these points will be discussed. The parameter estimates
given by any of the four algorithms do, however, not always
converge. This is reported in Lijung, SSderstrdm and Gustavs-—
gson (1l975) for the ELS algorithm, i.e. algorithm 0 and in
Ljung and Wittenmark (1974) for the algorithm 3. For the re-

maining two algorithms it follows from Chapter 4.

The convergence results are based on the method for analy-
sis of recursive stochastic algorithms derived by Ljung,

cf Ljung (1975, 1976a). This theoretical background is short-
ly reviewed in Section 5.1 and it is shown that the theory

can indeed be applied to the adaptive prediction algorithms.

The question of possible convergence points is treated in
Section 5.2, It is shown in Ljung, SO6derstrdm and Gustavs-
son (1975) that when the ELS method is applied to an ARMA
process there is one possible convergence point for the pa-=
rameter estimates, the true values of the process parameters.
This means that the corresponding predictor converges

to the minimum mean square error predictor if the parameter
estimates converge. Hence, in the following discussion on
the first subproblem only the adaptive prediction algorithms
where the parameters in the predictor are estimated will be
treated.

In Section 5.3 the local convergence to these points is fur-
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ther discussed. A necessary condition valid for the algo-
rithms 0, 2 and 3 is derived. This result is based on a

theorem given in part III of this report.

5.1, THEORETICAL BACKGROUND

In the theory by Ljung the main idea is to associate the
parameter estimation algorithm with a differential equation
that contains the information on the asymptotic behaviour
of the stochastic algorithm that is relevant to the current
problem. The aim of this section is to calculate the diffe-
rential equations, which correspond to the prediction algo-

rithms.

The parameters are estimated using the equation (3.12), i.e.

for i = 0,...,3

’

1
(0] ()R (e, (8) = 1)

0, (t) = 0, (t-1) + 1.

i t 1

1+

¢ Ry (e=1)oy (£) )

{

fi(e) = y () = o] (£)0, (£-1) =
=& (£) + o ()]0, (t=k) - 0, (£-1)]
R, (£) = R, (t-1) + L[w.(t)w?(t) - R.(tml)]
i 1 t] 71 i 1

Following the lines in Lijung (1975, 1976a), introduce the

stationary stochastic processes

A . — - . R
y(tl t—k;ei)l 8(tlei)l ei(t’ei)’ q)i(tlei); i = Ol°°'l3 (501)
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which are defined as above with ei a constant value of
the parameter vector. For example

wo(t,eo) = [~y (t=1),...,-y(t-n),
Py = T
eO(tml,@O),..,,eo(tmn,eo)]

where

. T i
eo(t,eo) = y(t) - @O(t,eo)ﬁo

Note that these processes (5.1) are defined only for such
parameter values that guarantee the defining relations to
be asymptotically stable. Denote the set of all such §i va=
lues Ds,ia For example, in the algorithms 0 (i.e. the ELS
algorithm) and 2 this set is

DSFi = {éiizn -+ Elzn_l + .. + En =0 = |z]| <1}
i =0, 2 (5.2)
Introduce the functions
£,(8;) = E o, (t,8,)e(t,8,); 1i=0,...,3 (5.3a)
G, (B;) = B o, (£,8,)0] (£,8,); i =0,...,3 (5.3D)

where the expectation is taken over the distribution of
{e(t)}. The set of differential equations associated with
the algorithm (3.12) is then

d _ -1 L e

Te 9y,p(0) = Ri,D(T)fi(ei’D(r)), i=0,.0.,3 (5.4a)
3 .

ar Ry plo) = Gi(ei’D<T)) = Ry p(r)ii = 0,...,3 (5.4b)

where the solution to the differential equation is denoted
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by subscript D. Then the connection between these diffe-
rential equations and the algorithm (3.12) which will be
exploited in the following is given in the following theo-
rem. The convergence point is denoted by (6I,R;) i=090,

«.+s3. The ELS case is covered in Ljung (1976a).

Theorem 4. Given an ARMA process according to (2.1) where
the noise {e(t)} 1is supposed to be a stationary sequence
of independent stochastic variables with E]e(t)lp
existing for each p > 1. Suppose that
(ei(th Ri(t)) is generated by the algorithm (3.12) and
that (6, (t), R; (t)) tends to (ez, RY) with a strictly
positive probability, i = 1,...,3. Then
Yy = . * - * P

fi(ei) = 03 RY = Gi(ei) i 1,0.4,3 (5.5)

and all eigenvalues of

¥y 9

-1 ] T
Gi (el E@: fi(ei) i=1,0..,3 (5.6)

g,=06%
1 R

where Gi(@;) is supposed to be regular, have nonpositive

real parts.

Proof: The proof of this theorem consists of an application
a of a theorem by Ljung (Ljung (1975)). It is given in Appen-
dix B.

Remark 1. The first part of the theorem thus states that
the only possible convergence points of the algorithm are
the stationary points to the associated differential equa=
tion. The second part of the theorem says that only such
stationary points to the differential equation that are as-
sociated with a stable linearization are possible conver=-

gence points of the algorithm.
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Remark 2. This theorem thus shows that when using the
adaptive prediction algorithm ¢(t,8*) and wi(t,@*) are
orthogonal, as is also the case when the minimum mean
sguare error predictor is used with known process parame-
ters. This common property of the adaptive algorithm and
the minimum mean square error predictor will be of impor-
tance when showing that the adaptive predictor in fact

converges to the minimum mean square error predictor.

\ A

Remark 3. With e*(t) = &(t;0%), §*(t|t=k) = ¥ (t|t -k;0%)
and ef(t) = el(t;e{) the interpretation of this theorem
for the algorithms 1 to 3 is given below.
1: E e*(t+1)9*(e+k |t) = roulx(t) = 0

T =k+1l,..0,k+n

E e (t+r)e] (t) = rg*ef<r) =0

T = K,e00,k+n=1
2: E a*(t+T)§*(t+k,It) = ra*§*(r) = 0

T = k'+l,noa,k+n

E e¥{t+1)y(t) = ra*y(r) = (

A
3: E g¥(t+T)y*F(t+k|t) = rg*Q*(T) = (
T =k+1,...,2k+n-1
E eX({t+1)e* (L) = rs*(T) = 0

T=K,...,k+n-1




48

From the predictor equation it then follows for all of the

proposed structures that

Toadu(k) = 0

Remark 4. The result is valid even if the order of the pro-

cess (2.1) is unknown.

Remark 5. Note the similarities between the normal equations
(3.9) and equation (5.5).

5.2. CONVERGENCE POINTS

In this section the application of the first part of Theo-
rem 4 to the algorithms where the parameters in the predic-
tor are estimated will be discussed. The fact that the data
vector @i(t), i=1,...,3 and the prediction error ¢ (t)
are asymptotically uncorrelated for certain lags when the
parameter estimates converge will be used to show that the
only convergence point when the order of the system is known
is the minimum mean square error predictor. This result
strongly resembles the discussion in Astrém and Wittenmark
(1973) concerning the asymptotical properties of the
self-tuning regulator. The result has also been derived

in Wittenmark (1974) for algorithm 3.

Lemma 5. Given an ARMA process according to (2.1) with known

order n. Suppose that it is predicted by any of the adaptive
predictors 1, 2 or 3 with the constant predictor parameters

ej, i=1,...,3, where

£,00) =03 i=1,...,3 (c£. (5.5))
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Assume that the polynomials A* and G* for the algorithm 1,
C* and G* for the algorithm 2 and G* and H* for the
algorithm 3 have no factors in common. These polynomials

are formed from the elements in 9? as in Chapter 2.

The prediction process is then the minimum mean square er-
ror prediction of (2.1). Moreover, if one of the algorithms
2 or 3 is used the parameters in the predictor are the para-

meters in the minimum mean square error predictor of (2.1).

Proof: The proof is given in Appendix C.

Remark. Although the predictions given by algorithm 1 with
el==e; are minimum mean sgquare error predictions, the
parameters in the predictors might be different. There might
be factors which cancel in the polynomials € and G and
in C* and G* Dbut these factors do not have to be the
same. This implies that C* # C and G* # G. However, if

C and G have no factors in common then it follows from
the proof of the Lemma that C* = C and G* = G. Still it

is only possible to prove that H* =H, 1i.e. A*F* = AF.

An exception from this discussion is the one-step predic-
tion. Then F = F*¥ = 1 which gives el(t) = e(t).
(C.4) gives

* -
l—(_;_ qlz
C*

0w

The algorithm gives




G* =1 A*

T 4T
Thus

A . AF

C C*

and since A and C have no common factors A

Il
b
*
@
Il
@)
*

giving G* = G,

The results from Theorem 4 and Lemma 5 will now be combined
to a theorem on the convergence points of the adaptive pre-

diction algorithms.

Theorem 6. Given an ARMA process according to (2.1) where
the noise {e(t)} is supposed to be a stationary sequence

of independent random variagbles with Ele(t)lp existing

for each p>l.'

Suppose that the process is predicted with an adaptive pre-
diction algorithm where the parameter estimates Bi(t)

i =1, 2 or 3 are generated by the algorithm (3.12).

Further suppose that (ei(tL Ri(t))'tends to (GI,R;) with
a strictly positive probability and that the polynomials
A* and G* for algorithm 1, C* and G* for algorithm 2,

and G* and H* for algorithm 3 have no factors in common.

The asymptotic prediction process is then the minimum mean
square error prediction process for (2.1). Moreover, if
one of the predictors 2 or 3 is used the predictor is the

unigue minimum mean square error predictor for (2.1).

Proof. The result follows directly from Theorem 4 and

Lemma 5.
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Remark. Note that the algorithms 2 and 3 give an estimate
of the polynomial H and not of A. It is not possible to
find A from the minimum variance identity (2.6) without
knowing F. One, trivial, such case is when k = 1, then

F =1 and A = H.

5.3. LOCAL CONVERGENCE PROPERTIES

In this section the second part of Theorem 4 is to be app-
lied to the algorithms 2 and 3. The eligenvalues to the mat-

rix
¥y A& g7lignd 8 - . i =
Ki(@i) Gi (Gi)ag;fi(ei) ei:ei ; i 2,3

in the theorem will be determined, which gives a local con-
vergence condition. According to Lemma 5 the stationary
point 8; contains the minimum mean square error predic-

tor parameters ei given in Chapter 2.

The ELS algorithm, i.e. algorithm 0, is treated in part IIXI
of this report. There it is shown that the eigenvalues to

the Kommatrix in 80 are
=1 of multiplicity n

ml/C(qi) where Af(qi) =0; i =1,.0.,n
These are also the eigenvalues in the linearization of the
algorithms 2 and 3 when used for one-step prediction due
to Theorem 1. Below is to be shown that these numbers in
fact are the eigenvalues to the Ki“matrix in the lineariza-

tion of the k-step prediction algorithms irrespective of k.

Study the functions fi(@i) = Ewi(t,ei)e(t,@i); i=2, 3

i.e. for the algorithms based on estimation of the parame-
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ters in the predictor. In this function

a(t,ei)

il

y(t) = ¥(tlt-k,8;) =

A A - _
gt t=k) + e (€) = §(elt-k,8;) =

T T ==
0y L (£)8, = 0 (,8,)8

-+ =
M 1105 + eylt)

= qT
[0 wm(t) - 0y (£,8,0] 70, +

1l

+ ml(tlgl)[glmel] + SM(t)

For both of the algorithms considered

= 4T, -1
[0, yit) = o, (t,8,)]70; = [c(q

;i ) = e ye) = e(t,8,)]

i,M
When i = 3 the polynomial identity (2.6)

1

cig™h = m™h + g e

have to be used. Thus

e(t,0,) = [C(qml) - l][eM(t) - 8(t,§i)] +
+ oot (£,8.)(0.-8.) + €.(t)
it rd i i M
- l T - =

g(tr@i) = EM(t) + ’”“’"“““’f:i"”” (pi(t,@i) (81-”81)

C(g ™)

Introduce the vector

~ = _ l . ( =
wi(t,ei) = —— @i\t,ei) (5.7)

cig )

Then, since 8M(t) is a moving average of the k latest inno-

vations e(s), s = t-k+1l,...,t it is uncorrelated with the
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elements in wi(t,@i), Thus we have

£,(8;) = E ®, (t,8,)e(t,8,) =
= F @, (t,8.)0  (t,8.) (8,-8.)
LA A A N | i i
= G, (8;)(8,-8,) (5.8)
with
o~ p— . NT .
Gi(ei) = F wi(t,ei)mi(t,@i) (5.9)

Hence the matrix in the linearization around ei is

.=..l ~ _
K (94) - G;T(8,)G, (8) =

T -1 ~
~ [E o) (t,0,)0] (£,0)] 7B @, (£,0,)0; (£,8;) (5.10)

The eigenvalues of this matrix and their implication on the

convergence of the algorithm are then given in the follow-
ing theorem.

Theorem 7. Consider the adaptive prediction algorithms 2 and

3. If the parameter estimates converge to 6; = ei then the

eigenvalues to Ki(ei), i=2,3
-t where Af(ay) = 0 k= 1l,e004n
%
C (o)

have negative real parts.

Proof: The proof is an application of the results in part III
of this report. It is given in Appendix D.

Remark. In the previous chapter the adaptive prediction al-

gorithms were compared. It was, however, not possible to find
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any time= and datainvariant relationship between the al-
gorithms when used for k-step prediction, k > 1. The theo-
rem shows, however, that the algorithms are egual in one

important aspect. They are locally convergent for the same
systems, i.e. only the data generating system, not the al-
gorithm nor the number of steps to predict affects the lo-

cal convergence of the predictor.

The condition for local convergence given in the theoremn
is discussed in part III of this report. There also exam-
ples are given where it is not fulfilled, i.e. the parame-

ter estimation diverges.
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6. MULTISTEP PREDICTION

Let the precess be described by (2.1). Consider the prob-

lem to design an algorithm which at time t simultaneously
predicts the outcomes of the process {y(t)} at times t+1,...,
t+k, ... ,t+N recursively in k. This prediction scheme is

called a multistep predictor. A similar algorithm is presented
in Bohlin (1976).

6.1 REPRESENTATIONS OF THE MULTISTEP PREDICTOR

Let y(t+k) be predicted by a minimum mean square error pre-
dictor for each k, k =1,...,N. Then the mean square

prediction error of any linear function

N
Y oa.y(t+i)
1 1

of future observations is minimized by

A
oLy

i (t+ilt)

M

™M 2

Hence, a multistep prediction scheme can be seen as a simpli-
fication of the calculations in the prediction of such a

linear combination of observations, cf. Box and Jenkins (1970),
Jazwinski (1970).

In the following parts of this section some different ways

of computing this predictor will be presented.
Consider first (2.1) at time t+k

y (t+k) + aly(t+k—l) + ... + any(t+k—n) =

= e(t+k) + ... + cne(t+k-n)
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The conditional expectation given Vt is
E(y(t+k)lvt) + a(E(y (e+k-1) [V, ) + ...+

+ anE(y(t+k—n)|Vt) =

i

Efe(t+k) [V,) + ... + an(e(t+k—n)th}

A
[y, (t+T]t) T >0
By (t+0) |Y,) ={ "
y (t+1) T <0
and
0 T >0
E(e(t+r) [V,) =
( e(t+T1) T <0

since F(y(t),y(t—l),...)also contains the noise sequence

up to and including t.

As C(q—l) is asymptotically stable, e(t) may be cal-

culated at time t

-1
e(t) = 2a ) gy
Clg ™)

The calculation of the prediction can be done recursively

for k =1,...,N from the equation

A
k_lyM(t+lyU + a,y(t) +...+a y(t+k-n)

= cke(t) + ... 4+ cneCt+k—n) (6.1a)

A
yM(t+k|t) + ... + a

for k < n and from
A A A
vy (ttk|t) + a1y (t+k-1]t) + ... + a y,(t+k-n|t) = 0 (6.1b)

for k >n (compare e.g. Akaike (1974)) .
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Another multistep predictor which is recursive in the number
of steps to predict,starts from a one-step predictor of the

values of the process at time t+k. Equation (2.9) gives
AL _ A B o _
%éb+kit+k 1) + ... + cn%ét+k nlt+k-n=1)
= ggy (t+k=1) + ... + g__ v (t+k-n)
or

E(y(t+k)| ¥V + ¢ E(y (t+k=1)1 Y

£ik-1) 1 *

t+km2) + e

+ an(y(t+k~n)|Vt+kwnml) =

= goy(t+kml) + ... T gnmly(t+kmn)

Now take a conditional expectation of this equation given

Vt. The result is

E(E[y(t+k)]yt+kml)wt] + clE[E(y(t+km1)Ivt+k_2)!yt] +

IVt =

+ eea T CnE [E (Y (t"’l”k""n) ‘ yt_{_]{mnml]

= goB (v (t+k=1) 1V, ) + .o + g E(y(t+k-n) 1Y, )

But the conditional expectations are

{ E(y(t+r)lvt+rml) T <0

E\E(y(t+tt) 1Y, )Y }
t+1=1 t E(y(t+T)in)

~
\%
[

~
A
o

%ét+T't+T“l) <
%ét+r|t) T >0




(compare e.g. Chung (1968)), which gives the following re-
cursive equation for the prediction of the process at time
t+k

A A A
Bit+klt) + cl%ét+k“llt) + ... Ck“ly%t+llt) +
A A _ 1y =
too yltle-1) + .. 4 c¥{ttk-nlt+k-n-1)

= goRlttk=1lt) + ... + I RLEFLIE) +
+ gkmly(t) + ... + gnmly(t+kmn) (6.2a)
for k < n and
A(t+kft) + + ¢ Y (t+k-nlt) =
Y oo Cn%é <N =
= qogét+ku1|t) + ... F gnm1%5t+kmnlt) (6.2b)
k > n. The identity (2.6) with k = 1 applied on (6.1) gives
another possibility to derive this representation of the
predictor.
Finally, the system (2.1), i.e.
~ -1 -1 B -1
y(t) = C(g 7)/A(g T)e(t) = e(t) + (Clg ™) - Alqg
-1
/A(g T)e(t) (6.3)

can be represented on state space form

{ x(t+l) = F x(t) + G e(t)

y(t) = H x(t) + e(t)

This gives the optimal prediction of y(t+k) given Vt as

H 8 (t+k|t)

{ QLK | t)

R(t+klt) = F R(erk=11%) = ... = F< 10 (e+11t)

i
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where Q(t+llt) is given by an orxrdinary Kalman filter ex-

pression (cf Astrém (1970)) .

As only stationary predictors of (6.3) are considered the
interesting solution to the Riccati equation is P = 0 giv-
ing K (the Kalman gain) = G, provided that F - GH is stable,
i.e. C(q&l) is stable. P=0 is a solution since the state
at time t can be considered as composed of noise elements
e(tr) 1t < t-l, cf (6.3). The one-step prediction error va-
riance of y(t+1l) given Vt is then 02, the minimum value
of this error variance. Thus a representation of the multi-

step predictor will be

R(t+11t) = F &(tlt-1) + G & (t) (6.4a)
{ y (t) = H ®(tlt-1) + e (t) (6.4b)
§M<t+k|t) = 0 {(t+klt) (6.4c)
R(t+kit) = F R (t+k-11t) (6.4d)

Thus, by starting either at the process equation (2.1) or at
the predictor equation (2.9) with k = 1, the multistep pre-
dictor of y(t+k), k = 1,...,N easily can be recursively
calculated from any of the representations (6.1), (6.2) or
(6.4).

6.2. ADAPTIVE MULTISTEP PREDICTION

Suppose that the process is described by the equation (2.1)
but the parameters in that equation are unknown. The design
of an adaptive multistep predictor may then, as here, be
based on the certainty equivalence principle, cf e.g. Wit-—
tenmark (1975) . First the unknown parameters either in the
process equation (2.1) or in the one-step predictor (2.9
with k = 1) are estimated with some parameter estimation me-

thod. The obtained estimates are then used as if they were



the correct values of the corresponding parameters.

The representations of the multistep predictor with known

parameters discussed in gection 6.1 suggest three possible

algorithms for adaptive multistep prediction.

Algorithm A is based on the process equation (2.1) and rea-

lizes the prediction via (6.1), i.e.

Al/ Calculate the estimate of e(t) from the eguation
B(e) = y(&) - §(tle-1)

A2/ Estimate the parameters in the polynomials A and

C giving the polynomials A(t) and C(t)

A3/ Use the equation (6.1) with A(t), C(t) and (8(t)}
instead of A, C and {e(t)} to determine the de-

sired predictions recursively in k.

In algorithm B the starting point is the one-step predic=

tor ((2.9) with k = 1), i.e. the steps in the algorithm
are

Bl/ Estimate the parameters in the G and C polynomials
to get the polynomials G(t) and C(t)

B2/ Use the equation (6.2) to determine the desired

predictions recursively in K.

Finally, in algorithm C the predictions are calculated from
the state space representation of the process. Thus the

steps in this algorithm are

Cl/ Estimate the parameters in the A and C polynomials
and use the result together with a reconstructed
state z(t) in a state space representation of the

process, cf (6.4a, b)
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D(t+1llt) = F(t)z(t) + G(t)e(t)

y(t) = H(t)z(t) + e(t)

Here F(t) is the estimate at time t of the matrix
F, etc.

C2/ Use the equations (6.4c, d) to determine the de-

sired predictions recursively in k.

Consider first the algorithms A and B. Suppose that the

ELS method is used in the estimation part in algorithm A‘and
suppose that the estimates of the parameters in the G and C
polynomials in algorithm B are obtained from an adaptive one-

step predictor as described in Chapter 3. It then follows

from Theorem 1 that these algorithms are algebraically egquiva-

lent giving identical one step ahead predictions, if they are
started with proper relations between the initial values.
Since the value of the k step ahead prediction is calculated
recursively this means that the two algorithms A and B are
algebraically equivalent for all values of k. The asymptoti-
cal adaptive multistep predictors A and B will thus produce
minimum mean square error prediction of the process for all

values of k if the parameter estimates converge (cf. Chapter
5).

Suppose that the ELS method is used for parameter identifi-
cation also in algorithm C. Then the values of the parame-
ters used in the prediction coincide with the values used in
the other two algorithms. If also a new reconstruction of

the state =z (t) 1is done at every time step to account for
the latest values of the parameter estimates, the resulting
predictions §(t+klt) k=1,...,N will be identical to the
predictions obtained from the other two algorithms. However,
this algorithm will have higher computational demand due to
the need of reconstruction. A fast method for doing this when

the system is represented on observable canonical form is
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presented in Astrdm (1974a). As is shown in the following
example it is also possible to do without the explicit

reconstruction. The amount of computations needed is then
of the same order of magnitude. The resulting predictions

are, of course, identical.

Example. If a third order system (2.1) is represented on
observable canonical form the reconstructed state at time

t+l given information up to time t+l is

v (t+D) = ¢ (t+1)
z(t+l) =] = az(t+l)y(t) - a3(t+l)y(tml) + cz(t+l)e(t)-+c3(t+1)e(t—1)

- a3(t+l)y(t) + c3(t+l)8 (t)

where the estimate at time t of the parameter cy is denoted

Ci(t) etc.

Note that
y(t+l) = & (t+1) = §(t+llt) =
= - a;(t)y(t) - a,(®)y(e-1) - az(t)y(t-2) +
+ cl(t)e(t) + cz(t)s(t_l) + c3(t)a(t—2)

The predicted state at time t+1 given information about

the process up to t is

- ap(B)y(t) = a,(t)y(t=1) = ag(t)y(t-2) + |
+oog(t)e (€) + cy(E)e(t=1) + cy(t)s (£-2)
Z(t4lle) =/~ az(t)y(t) - a3(t)y(tml) + cz(t)s(t) +

+ c3(t)8(tml)

[~ ag(B)y (k) + cy(t)e(t) | |
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Thue if we like to find a vector ~r(t+l) - such that

2 (E+1) = r(t+l) + 2 (t+llt)
then
[0 0
~ F(t) }
r(t+l) = |-a,(t+l) + a (t) -a., (t+l) + a,(t) +
2 2 3 3 g (£-1)
[may (E+1) + ag(t) 0
0 0
I o e (t) ] N
+ c. (E+1l) = c,(t) c, (g+1l) = c,(t 2
2 2 3 3 & (t-1)
L 63(t+l) = cg(t) 0
A i 1]
= Ny(t+l)sy(t+l) + Ns(t+l)ss(t+l)
Since
maz(t+1)+a2(t) ma3(t+1)+a3(t)
A
F(t+l)Ny(t+l) = ma3(t+l)+a3(t) 0 = Ny(t+1)

0 0
and similarly for ,F(t+l)N;(t+l) A Ng(t+l) the algorithm is

B(t+2]t+l) = F(t+1) 2 (t+l(t) + Ny(t+l)sy(t+l)

+ Ns(t+l)ss(t+l) + G(t+1) e (t+1)

y(t+l) = H(t+l)z(t+l) + e (t+1)

The example is easily generalized to arbitrary n.

The algorithm closely resembles an algorithm given in Landau

(1976) .
o
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/. NUMERICAL EXAMPLES

The different methods for adéptive prediction have also
been simulated. The aim has then mainly been to find out
whether any of the proposed algorithms is in any respect
clearly superior or clearly inferior to the others.
However, only the algorithms 0, 2 and 3 are included in

the comparison, due to the following reasons:

o Algorithms 2, 4 and 5 are equivalent according
to Theorem 2, therefore only algorithm 2 is

represented.

o In algorithm 1 an estimate of the C polynomial is
calculated from (3.13). This calculation has
however shown to be numerically i1l conditioned
when an(t) is small. For this reason algorithm
1 is considered significantly inferior to the

others and ruled out from further comparisons.

o Since Theorem 1 states that the algorithms 0, 2
and 3 are equivalent for k = 1 only k > 1 1is

considered.

The methods are compared on ARMA processes and the order
of the model is the same as the order of the generating
system. The noise {e(t)} is generated by a random number
generator, producing a normally distributed random variable

with zero mean and unit variance.

To measure the goodness of the prediction some loss function
akin to the function used in Chapter 2 for known parameters,
i.e. (2.4)

2

VO = FE g(t)

should be used. One possible such loss function, which is
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used here, is the time average over the observed prediction

errors, i.e.

vV = V(no,n) x e (t) (7.1)

There are of course other possible loss functions with
resemblence of VO above. The choise amongst them depends

on the application, e.g. in S8derstrdm, Ljung and Gustavsson
(1974), where parameter estimation algorithms are compared,
the loss function

V() = E ¢(t,8)2

is employed. The loss function V (7.1) is used for

example in Wittenmark (1974), Astrdm and Wittenmark (1973),
Borisson (1975), and Clarke and Gawthrop (1975) in connection
with discussions on self-tuning algorithms. It is used since
some of the influence of the noise realization on the para-

meter estimates is supposed to be averaged out.

The initial values of the parameters have been zero, and
the P matrix in the algorithm has initially been a scaled

identity matrix.

At each step in the algorithms 0 and 2 the stability of the
estimated C polynomial was tested and the estimates were

modified to give stability (cf. Gustavsson (1969)).

A commonly used method for prediction of timeseries is the
exponential smoothing algorithm, see Brown (1963). When

applied to a pure ARMA process, this algorithm reads

s(t) = Ay (t) + (1-1) s(t-1)

A {(7.2)
y(t+k|t) = s(t)
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This algorithm has also been included in the comparisons
and in the simulations of it, different values of A have
been tested. In the following examples it is used with
that value of A that minimizes the loss (7.1) in each

particular case.

Example 1. Consider the process

1 2

(1-1.5" 1 +0.79" %)y () = (1 +0.4q - 0.21g" %) e(t) (7.3)

where 02 = 1, subject to two step ahead prediction. The
optimal predictor, i.e. the minimum mean square error pre-

dictor with known parameters, is given by

)

A . - 1. . _o.
yleealt) =222 = 22330 gy = 230 (}1 0.69g tl
1+0.4q " -0.21q (1-0.3g )(1+0.7q
1.94 - 1.33q '
. y(t) = hd — ° =5 — 8M(t)
1+0.4q 1 -2.15q % +1.33q
(7.4)

and the minimal loss is V., = 4.61. The simulations lasted

over 2000 steps and the ingtial value of the P matrix was
0.1°'I, where I 1is an identity matrix. The accumulated
loss V (7.1) was calculated for the three adaptive
algorithms for 10 different realizations of the noise. The
mean value and standard deviation of V during the last

1000 and last 500 steps are shown in Table 3.

Table 3 - Sample mean and standard deviation for ten reali-
zations of the loss when the process (7.3) is
predicted 2 steps ahead.

Algorithm V(1000,2000) V(1500,2000)

0 4.716 + 0.287 4.773 £ 0.270
2 4.712 £+ 0.287 4.769 = 0.269
3 4.726 = 0.290 4.780 = 0.269

Exp.smoothing 7.957 = 0.543 8.063 £ 0.538
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The calculated estimation error in the mean value of the

loss for the adaptive algorithms thus is 0.09.

The accumulated loss function from one of the runs is shown
in Figure 1. It shows that all the adaptive predictors give
about the same incremental loss as the optimal predictor
after only a few steps. The parameter estimates for algorithm

2 from the same noise realization are shown in Figure 2.

[x10% ' v
A
10
T o
I
5_
03}
[0p}
3
()
L
<
2D
>
D
o 2
<0 — I | —#=[x10°]
0 5 10 15 20
TiME

Figure 1 - Accumulated loss function for the adaptive
predictors, the optimal predictor, i.e. the
minimum mean square error predictor for the
process with known parameters, and the best
single exponential smoothing algorithm when
applied to the process in Example 1. The noise
realization is the same in all five cases.
I: Optimal predictor

II: Adaptive prediction algorithms 0 and 2

ITI: Adaptive prediction algorithm 3

IV: Exponential smoothing with A = 1.9
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>
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o I | I — ™ [x107]
0 5 10 15 20
TIME
Figure 2 - Estimates of the C and G parameters in algo-
rithm 2 applied to Example 1. The same noise

realization as in Figure 1 is used.

The parameter estimates need considerably more time to reach
their final values. Thus the adaptive algorithm has a good
performance even when the parameters are not very precisely
known. This is a typical behaviour of the algorithms. It is
reported also in Wittenmark (1974) and AstrSm and Wittenmark
(1973) . The discussion is applicable also to the other
adaptive algorithms.

The predictions are shown in Figure 3 for the optimal and the
adaptive predictors in the initial part of the prediction.
After about 40 steps the prediction values from the optimal
and the different adaptive predictors are fairly close to
each other, cf. Figure 1. The initial behaviour of the

different adaptive predictors are similar.
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It is thus not possible from this example to point out
any of the adaptive algorithms as being significantly

different from the others.

The resulting average loss when the exponential smoothing
algorithm (7.2) was applied to the process is also shown
in Table 3. In Figure 1 one of the realizations of the
loss function is plotted. Hence, in this example the
adaptive predictors give significantly better predictions.
Figure 3 shows that the exponential smoothing algorithm
in contrast to the adaptive predictors lags the data with

two time steps.

The best value of X was 1.9 > 1. The filter in (7.2)
thus has a pole in =0.9, compare with the pole=-zero
constellation for the optimal predictor (7.4). Thus a zero
to the C polynomial in the left half of the unit disc might
indicate that the best value of the parameter in the expo-

nential smoothing algorithm will be greater than 1.

Example 2. Consider 5 step prediction of the process

(1-1.6q T +0.63q %)y (t) = (1-1.6083q L +0.9875q %)e (t)
(7.5)
with 02 = 1. The optimal predictor is
A 0.7261 - 0.4238q *
Fult+5]t) = —= T y () =
1-1.6083g * +0.9875q
-1
_ 0.7261 - 0.4238 g
1-1.6083q ©+0.9875q 2 - 0.7261q > - 0.4238q °
which gives the miminal loss VO = 1.88.

The adaptive predictors have been tested on one realization
of the noise. The test lasted over 10000 steps and the

€

Mt

t)
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initial value of the matrix P was 0.1 times an identity
matrix. When the adaptive predictor based on prediction
errors, i.e. algorithm 3, was used eight different para-
meters had to be estimated. In the two other predictors

considered only four parameters had to be determined.

In this example where the zeroes of the polynomial C 1lie
close to the unit circle the parameter estimates approach
their corresponding true values slowly compared to the
process in Example 1, see Figure 4. It is especially evi-
dent for algorithm 3. In this algorithm the parameters in
the polynomial C have been calculated from the estimated
polynomial H. A condition number of the matrix P (3.10)
measured as the quotient between the largest and the smallest
2 for algorithm 0, 1.8 * 102 for
algorithm 2, and 2.5 - 103  for algorithm 3 after 5000
steps.

eigenvalue, is 4.1 - 10

The loss function (7.1) 1is shown in Table 4. It shows that
the incremental loss for the adaptive predictors just
slowly approaches the values for the minimum mean square
error predictor of the process with known parameters. In
this realization of the noise the algorithms 2 and 3 are
slightly better in the initial and final parts of the

prediction respectively.

Table 4 - Loss functions for the predictors applied to
Example 2 when the process is predicted 5 steps
ahead.

Algorithm V(1000,2000) V(SOOO,lOOOO) V(9000,10000)

0 2.60 2.12 2.26

2 2.43 2.02 2.14

3 2.02 1.99 2.21

Optimal 1.82 1.88 2.03

Exp. smoothing 2.93 2.98 3.40
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PARAMETER ESTIMATES PARAMETER ESTIMATES

PARAMETER ESTIMATES
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Figure 4 - Parameter estimates from the adaptive

predictors applied to Example 2.
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The predictions are shown in Figures 5 and 6 in the
initial part of the prediction and after 9500 steps
respectively. During the initial part the predicted values
are very far from the predictions from the optimal pre-
dictor. Even after more than 9500 steps the predictions
from the adaptive predictors differ significantly from
the predicted values from the minimum mean square error
predictor when the parameters are known, cf. Example 1.
This is caused both by the parameters being incorrect and
the zeros of the polynomial C being very close to the

unit circle.

The exponential smoothing algorithm (7.2) was also simulated
on this example. The loss is given in Table 4 for A =0.73.
The minimum of the loss (7.1) with respect to X was very

flat, giving almost the same loss for 0.5 < X < 1.
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ALGORITHM 0

Data AND PREDICTION

ALGORITHM 2

DATA AND PREDICTION

ALGORITHM 3

=z

=)

5

[

w

@

a

o

2

<

%

0 -6 T T T T T
9500 9510 9520 9530 9540 9550
TIME

Figure 6 - Data and prediction values after 9500 steps in

Example 2 for the adaptive algorithms and the
optimal predictor. The noise realization is the
same as in Figure 4.
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== = — - Optimal predictor

Adaptive predictor
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8. SUMMARY AND DISCUSSION

In this report the problem of linear minimum mean square
error prediction of a stochastic ARMA process with
unknown but constant parameters have been discussed.

Six methods with different structures for solving the
problem have been considered. All these methods consist
of two parts, an identification part where the parameters
are estimated and a prediction part where the obtained
parameter estimates are used for prediction. One of the
methods, algorithm 0, is based on estimation of the para-
meters in the ARMA model and calculation of the predictor.
In the remaining five algorithms the parameters in the
predictor are estimated. The Least Squares method has

been used for the parameter estimation.

It has been shown that all the methods are equivalent for
one-step prediction, thus having identical transient and
asymptotical properties. This result can be extended to
k-step prediction for general %k for the methods 2, 4 and
5 but not for the others. Thus the methods 4 and 5 can be

considered just as equivalent variants of method 2.

The convergence properties of the algorithms have been
analysed. Since the Extended Least Squares method is used,
the algorithms do not give converging parameter estimations
for all systems. However, it has been shown that if the
parameter estimates converge, they converge to the minimum
mean square error k-step predictor. Moreover, it has been
shown that the methods 0, 2 and 3 give a nonconverging

parameter estimation if any of the numbers

) where Af(ak) =0; k=1,...,n

have a positive real part. Thus the same necessary condition

for local convergence is applicable to these three methods
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irrespective of the number of steps to predict. There are
other parameter estimation methods which do not have this
divergence drawback. One such is the Recursive Maximum
Likelihood method (cf. S8derstrdm, Ljung and Gustavsson
(1974)). When it is used for identification of the para-
meters in the process model the parameter estimates

converge for all systems.

For the algorithm 0, where the parameters in the process
model are identified,a linear system of equations must be
solved in every time step. Also for algorithm 1 more compu-
tations are needed for k-step prediction than in any other
of the algorithms 2,...,5 since a linear system of
equations must be solved in every time step. This system

of equations will be ill conditioned if the estimate of the
coefficient for q"n in the polynomial A is small. For the
algorithm 3 k-1 more parameters are estimated than in any
other structure. Thus the equivalent algorithms 2, 4 and

5 need less computations per prediction than the others.

In algorithms 0, 2. and 5 the characteristic polynomial of

the transfer function from data to prediction or prediction
error 1is estimated. This gives a possibility at every time

step to maintain the stability of the prediction, which

might be desirable.

In Tables 5 and 6 the execution time and storage requirement
for some of the algorithms are given. The figures refer to

a PDP-15/35 computer with floating point hardware. In the
least squares identification routine double precision
arithmetic is used. The difference in execution time between
the algorithms 0 and 2 is caused by the need to solve the
identity (2.6) in algorithm 0. The storage requirement in

Table 6 does not include data areas or library routines.
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Table 5 - Execution time for some of the algorithms.

Algorithm O

Algorithm 2

Algorithm 3

n k
# par Time (ms) # par Time (ms) # par Time (ms)
2 2 4 32 4 22 5 30
5 4 34 4 22 8 60
10 4 39 22 13 134
5 2 10 97 10 85 11 101
5 10 101 10 85 14 154
10 10 108 10 85 19 266
10 2 20 308 20 292 21 320
5 20 313 20 292 24 410
10 20 322 20 292 29 586
n Stability test
Time (ms)
3.2
8.2
10 19.6
Table 6 - Storage requirement for some of the algorithms.
Algorithm 0 with LS identification and
solution of identity (2.6) 1 375
Algorithm 2 with LS identification 755
Algorithm 3 with LS identification 764
Stability test 533
LS identification 445
Solution of identity (2.6) 409
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The algorithms have also been subject to simulations for
comparison between the predictors 0, 2 and 3. It is a
difficult task to make an always valid statement with
just simulation results at hand. There are however often
no other practical method available. The rather extensive
simulations performed, of which two examples are given,
show that the algorithm 3 often give slightly inferior
predictions when the accumulated prediction error is used
as a goodness measure. It should however be underlined that
the differences mostly are very small. It has not been
possible to distinguish between the algorithms 0 and 2
from the simulation studies. All the adaptive algorithms
have however a significantly better performance than

ordinary exponential smoothing.

In this part of the report also some different ways of
designing an adaptive multistep predictor, i.e. an algo-
rithm that gives a prediction of the ARMA process 1,...,N
steps ahead, have been presented. These multistep predictors
are all recursive in the number of steps to predict. Two

of them are based on a difference equation representation
of the prediction, versions 0 and 2 in the discussion of the
k-step predictor, and the third on a state space representa-

tion.

It has been demonstrated that when the Extended ILeast
Squares method is used for parameter estimation, these
predictors are algebraically equivalent giving identical
predictions when started with proper relations between the
initial values. This especially means that if the parameter
estimates converge these adaptive multistep predictors
asymptotically give minimum mean square error k-step

prediction for k = 1,...,N.

An algorithm for adaptive multistep prediction of vy (t+k),

k=1,...,N based on V could of course also be designed

t
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as N adaptive predictors. Such a multistep predictor
could then be realized either via estimation of the para-
meters in the ARMA model followed by N systems of
equations in order to calculate the parameters in the
predictors or via estimation of the parameters in the
predictors directly. In the first of these approaches the
solution of the N systems of equations can be simplified,cf
Holst (1977). Only one parameter estimation is needed, i.e.
2n parameters must be calculated if the system is of

n:th order. In the second of these approaches it is
necessary to estimate the parameters in N adaptive pre-
dictors. Whichever of these alternatives is used the old
prediction values for N predictors must be stored in the

computer.

In the predictors presented here considerably fewer data
elements have to be stored. Estimation of 2n parameters in
an n:th order system is needed. Thus, this way of solving
the adaptive multistep prediction problem is more efficient
both regarding computer time and computer storage. However,
since there are errors in the parameter estimates these
errors might propagate in an increasing manner into the
predictions. This could cause a deterioration of the pre-
diction result when the number of steps to predict increases.
Furthermore, when the process to be predicted is just
approximately described by an ARMA process the one-step
predictor parameters could be irrelevant for the k-step
prediction. In both cases it might be worthwhile to use

the adaptive k-step predictors.

A further comparison of the prediction algorithms together
with examples of multistep prediction is given in part II
of the report. This part contains an application on short

term prediction .of power load.
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APPENDIX A

PROOFS OF THEOREMS 1, 2 and 3

Proof of Theorem 1 (p. 39). The time argument in the parame-

ter estimates is omitted.

In the proof the parameter and data vectors for the four dif-
ferent algorithms are mutually compared. First it will be
shown that the algorithms 1 and 3 in fact are identical, i.e.

the 813 matrix is an identity matrix.

Algorithms 1 and 3. In the algorithms 1 and 3 the data and

parameter vectors are given by ( cf. Table 2 ) :

T
@l = [al,q.,,an, gopno»rgnml]

®y (£+1) = [-§(tlt=1),...,~§ (t-n+ll t-n),
e, (t) e (tmn+l)]T
L(E) renaieg

1T
03 = [hy,eeesh s goreeerg ]

@5 (t+l) = [-y(tlt=-1),...,-§ (t-n+llt-n),

6 (L), 0., (t-n+1) ]T

The polynomial H in algorithm 3 is equal to the polynomial A
(cf Chapter 2) which means that the parameters to estimate
are the same in the algorithms 1 and 3. The estimate {el(t)}

of {e(t)} is calculated at time t as

o1

C(t-1;q %)

where the parameter estimates from time t-1 are used. The

polynomial C is simply the sum of the estimated polynomials
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A and G. Thus

1
1

- A(t—l;q_

) oy(t) = y(t)
C(t-1;qg

) A(t-1;q

ey (t)

A
However, the prediction y(tlt-1) is

»)
e, (t-1)

A T ey
v (tle-1) = &lE-lig
I, “1

A(t-1;q

which gives
e (£) = y(¢) - P(elt-1) = & (t)

The sequence {el(t)} is thus a sequence of prediction er-
rors. Hence also the data vectors in the algorithms 1 and 3

are the same, thusg giving identical algorithms.

Thus only the relationships between the algorithms 0, 2 and

3 remain to be discussed. The parameter and data vectors are:

0 .0 O]T

0
90 = [al,@..,an,cl,...,cn

wo(t+l) = [=y(t),se.,~y(t=-n+l),
%), e, e (tene1) 1T

2 2 2 2 T
0, = [cl’°°°’cn’gO’°°“’gnml]

0, (t+1) = [-§%(tlt-1),...,~9% (t-n+1l t-n),
y(t),..,.,y(t“n+1)]T

and

3 3 3
63 = [al’°°"an’q0’°°°'giml]T
A3
05 (t+1) = [-97 (£l =1) ..., -9 (t-n+1l t-n),

(), .., e (bmnt1) ]"
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where also the components in the vectors are indexed.

Algorithms 0 and 2. Introduce for the following discussion

of the connections between the algorithms 0 and 2 the data
and parameter vectors
2 2 2 24T
82,0 = [al,...,an,cl,..,,cn]
U] (t+l) = [=y(t),c..,=y (t=n+1),
2,0

e2(t) yoenre(t-n+1)] T

i.e. the vectors with the same parameters and data elements
as used in the algorithm 0 but calculated from the algorithm
2 using the identity (2.6) on the estimated parameters. It is

then easily seen that

n n

=1 0
n n

@Z(t) = (A.1)

©r0 =92®y,9

where In is an nxn identity matrix and On is an nxn zero mat-

rix. The identity (2.6) gives

1
8 (A.2)
7

The equation (3.11) for the P matrix in the least squares al-
gorithm is

Pz(t) = az tDZ(s)tDZ(S) = |z Q‘pz,o(s)‘pz,o(s)g =
o £ J

T]“”l 1

[0 Py (B0

which for the parameter gain (3.10) means
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P,(t=1)op,(t) -1
K,(t) = % 2 = [0'] K, o(t)
1+ wz(t)PZ(t—l)wz(t)
where
P (t=1)o (t)
_ 2,0 2,0
Ky o)

- T
1+ mzpo(t)PZ,O(t 1)@2’0(t)

and

-1
£ T
o

This gives an algorithm for 62 0(t) via the algorithm (3.10)

14

which is used for ez(t)

It

0, o(t) = %o, (6) = aT[0,(t=1) + Ky(t) [y (£) =0, (£) 0, (e=1)) ]

14

T
=0, o(t-1) + K, (e)[y(e) - 0y o (B)0, o(t=1)]

This is the equation for the parameters in the algorithm 0.
Thus if eZ,O(tO) = 90(t0)pP2’O(tO) = Po(to) and the initial
values of the y- and e-processes are the same in the two algo=

rithms then for the same realization of the process {y(t)}

8, olt) = 8y (t) £

v
o+

which means that

v

o,(t) = [Q"] Yo (1) £z tySg, =0
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Algorithms 0 and 3. If the parameter and data vectors

3 3 3 3.7
63'0 = [al,,a.,an,cl,a.w,cn]
@ O(t+l) = [=y(t),ee.,~y(t-n+l),
7

e2(E) enr e (bont1)] T

are introduced it is seen that

Ta=1 _ T
85(t) = [P7] 8, (t) t 2 tg; Sg3 = P
where
I I -1 I 0
P = n n ,[PT] _ n n
o0 Iy “In In

The transformation matrix between the algorithms 2 and 3 is
easily found from the transformation matrices between the
algorithms 0 and 2 and the algorithms 0 and 3. All the

considered structures are thus knitted together.

PROOF OF THEOREM 2 (p.4l)

This theorem is proven in the same manner as Theorem 1.
A change of variables in one of the algorithms is done in or-
der to get a sequence of estimates which is identical to the

sequence of estimates achieved from another algorithm.

If n < k the discussion in Chapter 2 showed that these three

algorithms actually were egual. It is thus here assumed that
n > k.

If the transformed data and parameter vectors 84 21 @y 2(t),
2 12

65 5 and m5 , are introduced in a manner similar to that in
7 7

the proof of Theorem 1, it is seen that




90

5 5,2
I S
o (t) = [P ] ®5 o (t)
with
Onk+1l,k-1  Tn-k+1 : .
n
P= 01 O-1,n-k+1
e e mmmemen P— J— i e PR [— ,1_. ,..—.O S—
In i n
0 ! =1
T .3.]_ —_— 1:1 _+ e e e ,_.n — —
"] = T O -1
n |
Tkt Op-k+1,k-1
where IP is a pxp identity matrix, Op a pxp zero matrix and

Op,m a pxm zero matrix.
8, =1 64’2
-1
T
0, (t) = [17] ®, ()
where
i
. ; Oke1,n-k+1
e n o
= | “Tn-k+l
o ! T
n I n
n
.sl .- - . — —— S
T -
[T~ ] Op-k+1,k-1  'n
Op-1 Ok

In the same way as in Theorem
and 942 = T.

It is also seen that

Okml

Op-k+1,k-1

0
n

e e wi_- —

=k+1 I
! n
-1,n=k+1 |

1 it is then found that
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PROOF OF THEOREM 3 (p.42)

The proof is similar in structure to the proof of Theorem

1. It aims at showing that the parameter vector in algorithm
4 and the corresponding parameter vector calculated from

the estimates obtained in algorithm 3 are not based on the
same information. The time argument on the parameter esti~-

mates is omitted.

The data and parameter vectors for algorithms 3 and 4 are

.3 3 3 3 4T
83 - [hl,.’..’hn‘l']{‘“l,golw..’gn"’l]
@4 (t+k) = [<43 (bak=11t=1) , . vr =9 (t=n+llE-n-k+l) ,
3ty ..., e3(enr) 17
4 4 4 4 4T
0, = [hl,,.,,hn,gO,.a,,gnml]

o, (t+k) = [=0% (bak=11E=1) 4o, =" (t4konl€-n)

Gé(t),.,.,84(t°n+k),
T
y(tmn+k“l),,..,y(t~n+l)]

Introduce the data vector

By (t+k) = (03 (tk-11t-1) , ..., =9 (t+k-nlt-n),
e3(t), ..., e (b¥k-n),
T
y(tmn+kml),...,y(tmn+l),0,.,.,0]

with k=1 zeroes in the bottom of the vector, and the first
2n components of the vector the same as the 2n components of

©y- It is then easily seen that




T 10 10 y
Lo .n _+£1!£“]; —
o, (t) = D Okl Tnkrl ! Onekerd kel
3% T o, | ’ ! HTHe5 (E) =T @, (t)
-
L kel Op-1,ndet1 | k-1
— D
L Ok=l,2n+kml N
Introduce also the parameter vector
~ 3 3 3 3 T
8, = [hl,..m,hn,go,o,,,gnml,O,...,O]
When studying the connections between the EB and 93 para-

meters the identity (2.6) is used. This means that there is
a certain amount of arbitraryness in the choice of transfor-

mation of the last k-1 parameters in 93. The transformation
is

r-In ! on,n+kml T

S —TA —— e DR U e S — e B i —
~ | Onkdl, k=1 Tnek#l  Onkel,k-1l. _ o
5= 10 0. =50
3 "1, 0 5 3 3

R k=1,n-k+1

i k=1, 2n+k-1 |

where A and B are two (k=1)x(k-=1l) matrices that could be cho-
sen

Now choose a so that P is the Moore-Penrose pseudo-inverse

of TT (refer to Albert (1972) on pseudo—inverses). This means
that o = 1/2 and

SV

T i Onzk+l,kml Tkl inmk+l,kwl
7| D172 Oedeed Tl

i Og-1,2rHi-1 |




93

and also that

where AT denotes the pseudo-inverse of A. With this choice
of P the T matrix can be seen as

T = T PTT

where PTT is an orthogonal projection on the image of

TTa This P matrix also gives

§3(t+klt) qu(t-ﬂg)[TT] 0, + XT[I - oty ]63 =

il
i

T
@3(t+k)@3

~

& (t+klt) (A.3)

NT od
mB(t+k)93

where the equation
04 (t) = TG, (t) +[1-77T]x

for some x have been used. This equation thus partitions
the data used in algorithm 3 into the data used in algorithm

4 and a rest which is nonzero. This latter part contains

g (tmn‘H{"’“l) § oo & (t"“l’l"f‘l) ,i\, (t"’l’l'*‘k“’l' t“ﬂ“l) g o e o g
§ (t=n+1lt-n-k+1)

The equality (A.3) between the two predictions implies egua-
lity between the prediction errors. Now consider the algorithm
for 8

il

£) = PO, (t) = PO, (t=1) + PKy(t)[y(t) - 0 (t)6,(t-1)]

g3““-“‘“1) + PRy (£) [y (v) - Tbg(t)EB(tl)]

What is left to discuss igs, cf (3.10)
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PR, (t) P Py(t)e,y(t) =

P Py()T', (1) + P P, (£) [I-7T]x

R T
P Po(C)PP,(t) + P P3(t)[I»P T]x
It is easily seen that
T
P P3(t)[1mp T]x £ 0

i.e. the data in algorithm 3 which are not used in algorithm

4 are also contained in PK3(t). The algorithm for §3 is thus
not similar in the meaning discussed above to the algorithm
for 94, Thus there exists no data- and time-invariant rela-
tionship between the algorithm 3 and any of the algorithms 2,
4 or 5.
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APPENDIX B

PROOF OF THEOREM 4

The theorem by Ljung (Ljung (1975)) which is: used in the

proof of Theorem 4 is gquoted for reference. DR is an

open connected subset of DS i (5.2) .
14

Theorem (Ljung). Consider the algorithm

x(t) = x(t-1) + y(t)o(t,x(t-1), v (t))

where the observation y(t) is obtained from a linear

dynamical system

p(t) = A(x(t=1) ) (t-1) + B(x(t-1)) e(t)

under the following assumptions (N(z,a) ={z||z-2z| <a})

1) {e(t)} is a sequence of independent random variables

(not necessarily stationary or with zero means).
2) Ele(t)|® exists and is bounded in t for each p > 1.

3) The function Q(t,x,¥) 1is Lipschitz continuous in x
and
IQ(t,XlﬂPl) ':_Q(trlewz) l < Kl&,E,i,V) { lxl—xzi + H}l‘ll)zi}
for x. € N(x,p) for some p = p(x) > 0 and all

1
X € Dg. U, € N,V .

i
4) lKl(;(ﬂPl,p er) —Kl(§,‘b2,p,V2)| < K2 (;‘EIEIQ l\_7'W)
{l-u, |+ vy-vy |}
for ¢; € N(¥,w) and v; € N(v,w) .

5) The matrix functions A(.) and B(.) are Lipschitz

continuous in DR'
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6) 1lim E Q(t,x,v(t,x)) exists for X € Dp and is
t—>o

denoted by h(x). The expectation is over {e(t)}.

%),
(x),

7) For x € D the random variables o(t,x,v(t,x)
X

Ky (x,9(t,%) ,0 (%), v(E,%)) and K, (x,¥(t,%),p
v(t,x)) have bounded p-moments for all p > 1.
8)

Y(t)p < o for some p > 1.

10) {y(t)} 4is a decreasing sequence.

11) lim sup(l/y(t) - 1/v(t-1)) < =.

Tt

Assume that x* € D has the property

R
P(x(t) »N(x*,p)) > 0 for all p > O.

Then
h(x*) =0

Further suppose that
Q(t,x*,w(t,x*)] has a covariance matrix that is
bounded from below by a strictly positive

definite matrix

and that

E Q(t,x,w(t,xﬁ is continuously differentiablew.r.t.

X in a neighbourhood of x* and the derivatives
converge uniformly in this neighbourhood as t

tends to infinity.

(B.2)
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Then

H(x*) = 4 h (x) has all eigenvalues in the
dx x=3* (B.3)

left half plane (including the imaginary axis).

Proof of Theorem 4 (p. 46) Consider first the algorithm 2

and omit the subscript. The estimates are collected in a

vector

T T
x(t) = (e(t)? col(R(t))T> = <8T, col[R(t))T>

where col(R(t)) is a column vector containing the elements
in R(t). As this matrix is symmetric it is sufficient to
include equal elements once. The algorithm (3.12) is then

described by
x(t) = x(t-1) + v(t) oft,x(t-1), v (t))
with

R (t-Dom)wt)

0 1, T =1 -
ot,x(t-1), p(t)) = | ° Ligle” R T e=Do®)-1) | 5 4
Or col (p(t) ™ (t) = R(t-1))
where
Wit) = e(t) + o (t) (0(t-k) - 6 (t-1))

The observation vector ¢(t) contains in addition to the
elements of @(t) also the state vectors in the data and
prediction generating systems. Shifted values of the
elements in @ (t) are also included. The generation of

P(t) is given by

P(t) = A(x(t-1)) P(t-1) + B e(t) (B.5)
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In the matrix A(x(t-1)) the parameter estimates enter
either linearly or bilinearly. The poles of this system
are in the zeroes of the polynomial A, in the zeros of

the estimated polynomial C and in the origin.

The conditions 1 and 2 are fulfilled due to the noise
assumptions. It is shown in Ljung (1976a) that the condi-

tions 3 and 4 are satisfied for this function Q (B.4)

in the open area D, = {x|R>0} e.g. with
- 2
Ky (x,9,0,v) = (J8] +0) L+ |9 +v2/ (-0 |R L]
and
Ky (x,9,p,v,w) = (|6] +p) (|o] +2w+ (1 - R—l[ 2
2 rV,0,Vy p [ w V)/ D] )
for p = p(X)‘<l,/]R_l|. It should be noted that these
regularity conditions are not fulfilled if G(e*) =
= E @o(t,o0%) mT(t,e*) has any eigenvalue equal to zero

since then Q might increase without bound. This is

6
discussed in Ljung (1975). The matrix A in (B.5) is

clearly Lipschitz continuous as needed in condition 5.

To handle condition 6 define for fixed x € Dp

Vo= v(t,x%) = A(X) v(t,X) + B e(t)

Since e(t) is stationary ¢ (t,x) will approach stationarity
exponentially. The expectations E @(t,0)e(t,8) and
E m(t,@)mT(t,E) thus asymptotically tend to the functions

£(8) = 1im E @ (t,6) e(t,9)
t—>oo
J— . — T .
G(8) = 1im E @(t,8) o (t,9)
t -0
where the elements of o (t,08) and ¢(t,6) are asymptotic-
ally stationary since ¢ (t,8) is.
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The function h(x) which is required in condition 6 is
thus defined as

h(x) = 1im EQ(t,%,y(t,%)) =

t oo

The y-vector and thus also the proposed scalars Kl and

K, have bounded moments for all p > 1 since ¢ (t) is

generated by {e(t)}. This is required in condition 7. As
Y (t) inthe algorithm is 1/t the conditions 8, 9, 10 and
11 are all fulfilled.

Thus the conditions for the first part of the theorem by

Ljung are fulfilled and h(x*) = 0, i.e.
f(e*) =0
R¥ = G(8%*)

It remains to be shown that among the stationary points to
the ordinary differential equation (5.4) only those which
are connected to a stable linearization are possible

convergence points.

If the equation (5.4) is linearized around the stationary
point x* = [G*T, colT(G(e*)))T the resulting differential

equation is

% (6=0%) = G(o%) ™1 £, (%) (9-0%)
a%— col(R-G(e*)) = -col(R-G(8%*)) +d§i{col G(8)} (6=6%)

- 0*

(B.6)
where




100

a
£.(8%) === £(8)
6 ds N

It is thus clear that the stability properties of the

linearized differential equation (B.6) are determined by

Glex) "1 £, (6%)

since the system matrix of the linearized system is block
triangular with a negative unit matrix in the lower diagonal
block. In the following thus only the Qy, Ppart of the Q
vector is discussed. As only stable generation of ¢ (t,x)

in (B.5) is studied, possible transients in v(t,x) are

neglected and henceforth it is assumed to be stationary.

Then
—T ==1 - —_1 = —
Qe(thIW(trx)) = R P e - 'E 1 —T —=1 — =
A =1 — — —
2R -pe - S(t,x,v(t,x)) (B.7)

where
© = @(t,x) and € = &(t,x)

The covariance of Qe is

Cov 0, = BIR " 9 &) [R "5 21" + 2(t,%,0(t,%))

7 1s neglected since
z(t,x*, v(t,x%)) = 0(1/t) t - o,

Thus

Cov Qe(t,X*,W(t,X*)) =

*=1

E(R* Yo (t,x%) & (t,x%)) (R* o (t,x*) e (£,x%))"

v
H




101

where T is positive definite since G(6%) is supposed

to be regular.
Finally, look at the differentiation of

E Qe(t,x,q)(t,x)) - lim E Qe(t,x,w(t,x)) =-E S(t,x,¥(t,x))

t>co

where S is given in (B.7). If the order of differentia-

tion and integration are changed, then

R~
dd E S(t,x,w(t,x))=E% T T . dg . rR1gT
X3 1+2[e" R 79 -1] i
+E - s+ R1e - [ R1G-1].
[l+—E((,0R o-1)] i

When X5 is an element in col(R) the derivative clearly is
continuous and it converges uniformly to zero as t -w. When
Xy is an element in 6 the derivative also is continuous
since a%;(p(t,x) depends continuously on x. As the moments
of Y (t,x) are bounded according to the discussion above it

follows that

gj—i E S(t,x,(t,x))

converges uniformly to zero as +t -,

The conditions for the second part of the theorem by Ljung
are therefore fulfilled and the eigenvalues of

Gox) ™t £ (0%)

have nonpositive real parts. The theorem is thus proven for
algorithm 2. The other algorithms are treated quite

analogously.




102

AppenDIX C

Proof of Lemma 5 (p. 48)

Start with algorithm 2. The predictor is

A T
y(t+k|t) = @ (t+k) o

A .
where the stars at ¢, y, ¢, and 8 are omitted as well as

the subscript on ¢ and 6. If the polynomials

cig b = c* q‘1-+...+c; g "

and
- -n+
G(a 1) = gf+...tgr | g L

are introduced, the predictor could be written (cf. (2.1))

A G G C
y(tt+k |t) = 150 y(t) = 1570 'fﬁ'e(t)
_ A _ a ¥ ¢ _
e(t) = y(t) —y(t|t-k) = y(t) - 7 Y(B) =
-k -k
_1+C-qg G _1+C-qg G C
ST rC y(t) = =377 a €t (€.1)
Introduce the stochastic process
-1 .C
which is an ARMA (2n,n) process. Then
A
V(t+k [t) = Gv(t)
y(t) = (1+C)v(t) (C.2)
e(t) = (L+C-q ¥ 6) v(t)
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A
Multiplying both the y and y equations with ¢ (t+71)

and taking mathematical expectations gives

rSQ(T) = E(s(t+T)§(t+k|t)) = E(e (t+1) Gv(t))
= gg r, (1) +..;+g;_l r,, (t+n-1)

rgy('r) = E(e(t+1)y(t)) = E(e(t+1) (L+C) v (t))
= r (1) + cf ro, (r+l) +...+c;'<1 r, (t+n)

Since this parameter vector is a stationary point to the

differential equation (5.4)

’ * %
ray(k) l\\\\ii\; ....... cn 0 0 rev(k)
0
\\\\ * *
rgy(k+n—l) _ 0 1 Clevemeeness <, rsv(k+n 1)
* *
re§(k+1) 0 AT 91 0 0 rsv(k+n)
0
A * * -
rsy(k+n) 0 Io oreeceene -1 rsv(k+2n 1)

Thus since the G and 1+C polynomials have no factors in

common the matrix is regular (van der Waerden (1966)) giving

rav(T) =0 T =k,...,k+2n-1 (C.3)
Multiply (C.1) with v (t-t) and take mathematical expectation.
Denote the coefficients in the (1+C)A polynomial ai
i=1,...,2n and in the [l+C—q—kG]C polynomial B,
i=1,...,2n+k-1. Then

rsv(T) + ooy rsv(T-l) Fooata, rev(T—Zn) =

r (t=2n-k+1)

=r (t) + Bl rev(T—l)-+...+B2n+k_l .

ev
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Thus with 1 > 2n+k this equation together with (C.3)

gives

rgv(T) =0 T >k

The equation (C.2) then gives

v
o

re(T) =0 T

The prediction error process {e(t)} is thus a moving average

process of order k-1. Denote it by

e(t) = e(t) +fle(t—l) +...+f, _-e(t-k+1l) = F(q—l) e(t)

k-1
and (C.l) gives

k

l+C'q_G.£=F
1 +¢C A
or
_ -k G
C = AF + g 170 c (C.4)

Thus since %1% is a polynomial of degree n-1

G
I+¢ ~ ¢ = G

and (C.4) is the minimum variance identity (2.6). This gives

A G
y(tk|t) = 45 v(8) = g y(t)

i.e. the minimum mean square error prediction process.

When i =1 or 3 the discussion is quite analogous. To show
that the adaptive predictor in fact is the minimum mean
square error predictor, consider again the structure 2.

From (C.4) it follows that since G and 1+C do not have
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G

T3¢ - C 1s a polynomial of

any factors in common and

degree n-1

C=1+4+¢C

and

Thus in this predictor also the resulting polynomials are
the polynomials that would be obtained in the minimum mean
square error predictor of the process if the system
polynomials were known. 2An analog discussion can be

performed for algorithm 3, which concludes the proof.
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ApPENDIX D

Proof of Theorem 7 (p. 53)

First calculate the eigenvalues to the matrices Kz(ez)
and K3(e3). Consider algorithm 2 with the characteristic

equation
0 = det (AE T 4k o ) (D.1)
T oaet R0, M Y2, Po,M P2,m .

where is given in Table 1 in Chapter 2. There exists

P2, M

a constant matrix. B2 such that mz M can be transformed
4

as

T
®, = [‘?M(t—llt—k—l),...,‘§M(t—n|t-k—n),y(t—k),...,y(t—k—n+l)}

T
B, [-QNﬁtrkltrk—n),...,—§&ﬁtrk—n+l]t—k—n),e(trk),..., e(t—k—n+l)]

A B
T P2 "2,Mm
P2,M T P2 "o M
since, for example (i=1l,...,n)
v i i) = ¢ (t-i|tk Kei) +. ..+ £ (t=k-n+1
yM(t—llt-k—l) = yMHrllt-—n)+-q{e(t -i) +... tn=1-1 © n+l1)

where fj is the (j+1):th coefficient in the impulse response

A
and yp,(t-ilt-k-i), i=1,...,n as well as vy (t-i), i=k,...,
k+n-1 are linear combinations of the elements in Ny M

14
(cf. Chapter 6). Thus (D.l) is rewritten as
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_ _ T T ~T
0 = det B2 det B2 det()uEnZ,M n2,M + EnZ,M nle )

where the elements in may be partitioned into two

n
2,M
mutually uncorrelated parts. The application of Lemma 1 and
the corollary to Lemma 2 in part IITI of this report gives

the eigenvalues to K, (8,)

-1 of multiplicity n

l f = o 1 —
C(ai) where A (ai) =0; i=1,...,n

since the filter H(q—l) that is required in Lemma 2 is

1

Clg ™)

as in the ELS case.

Now consider algorithm 3. Theorem 1 in part III of the report

is directly applicable. The filter involved is also in this
case

H(g ) = -
C(q l)

as above. Thus the eigenvalues are

-1 of multiplicity n+k-1
S where Af(ai) = 0; i=1l,...,n

C(ai)

The convergence condition then follows by application of
Theorem 4,
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Part I - Adaptive Short-Term  Prediction
of Power load

ABSTRACT

The application of the adaptive k-step prediction methods
to short-term prediction of the hourly load on a power
network is considered. The load is partitioned into a
residual and a nominal part. The residual load is modeled
as an ARMA process. Different possibilities to represent
and to model the nominal load are considered as well as a
variety of possible prediction algorithms. The results

of the predictions with the proposed adaptive k-step pre-
dictor compare favourably both with the prediction results

from other published methods studied and with published
prediction results.
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1. INTRODUCTION

Prediction of power load is a part of planning and ope-
ration of power systems. The ultimate aim is to produce

and to distribute power to the consumers reliably and
efficiently. The prediction is needed for a variety of lead
times, ranging from years down to fractions of an hour. The
adaptive prediction methods presented in the first part of
this report may be used, if necessary after some modifica-
tions, in any of these ranges. The current application,
however, is on short-term load forecasting where the lead

time ranges from one hour up to some days.

An accurate prediction in this time interval is needed for
control and scheduling of the power plants, e.g. concer-

ning smooth start up and shut down procedures. Prediction
with these lead times is also needed as one of the inputs

to load flow determinations, contingency tests etc.

The power load can be regarded as a nonstationary random
process. It has a noticable seasonal pattern and a periodic
structure where the main period is one week. It is influ-
enced by e.g. industrial activity and long or short term
weather conditions. The prediction method therefore prefer-
ably should be adaptive in order to take changes of this

kind into account.

The inclusion of weather variables in the load prediction is
questionable. There are some easily noticed problems. The
weather predictions are often inprecise. The choice of
relevant weather variables is difficult as well as the
modeling of their influence on the power consumption.
Furthermore, the response in. power load to changes in
weather conditions might be rather slow and therefore
recognizable in past load data. It can then be handled by

the adaptive mechanisms in the prediction algorithm.
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On the other hand there is an obvious correlation between
weather and power load, especially in areas where a sub-
stantial part of the load is domestic. Hence the inclusion
of weather information in the prediction algorithm could
be beneficial for the prediction result when the changes
in the weather variables are large and faster then the

speed of adaption of the algorithm.

Weather variables are used as the main input signal for
prediction of power load in the papers by Dryar (1944) and
Davies (1959). In the method proposed by Davies weather-
load relationships are developed with a nonlinear regression
method. Recent data are however not included in forming the
functional relationships and the method can therefore not

adapt to changing load patterns.

In the prediction method by Farmer, see Farmer (1963),

Farmer and Potton (1966,1968) and Matthewman and Nicholson
(1968) , the load is decomposed in a nominal and a residual
part. The latter is then expressed as a weighted sum of eigen-
functions from a Karhunen-Loeve expansion. The method is
adaptive since the weighting of the eigenfuctions is done

in real time. Weather data are not included in Farmer's

own work. However, in Lijesen and Rosing (1971), where the
residual part of the load is decomposed according to

Farmer's method, the weighting coefficients are related to

average weather conditions.

The periodic structure of the load is emphasized in the work
by Christiaanse (1971). He uses a Fourier expansion with
nine frequencies of the weekly load and updates the para-
meters using general exponential smoothing (Brown (1963)).
Weather data are not included. This method has the same
structure as a stationary Kalman filter with the gain
matrix chosen ad hoc. If this matrix is determined by

usual Kalman filtering technique from Christiaanse's ori-

ginal load model the prediction method by Sharma and
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Mahalanabis (1974) results. Another Kalman filtering app-
roach to the problem is taken by Toyoda, Chen and Inoue (1970).

Two predictions, one hourly prediction based on historical
load data only and one peak load prediction based on
weather data, are weighted together in the method by Gupta
and Yamada (1972). The exponential smoothing technique is
used for updating the elements in the nominal part of the
load data prediction. The Least Squares method is used in
the calculation of the weather-load model. The weighting
coefficients are essentially inversly proportional to the
estimated variance of the corresponding prediction error
which means that the precision of the weather data may be

less critical for the final prediction result.

In Galiana (1971) the load is partitioned into a nominal
and a residual part. The nominal load is modeled as above,
i.e. as a sum of trigonometrical functions. The residual
part is represented as an ARMA.process on canonical state
space form with a nonlinear function of the deviation bet-
ween the actual and a normal temperature as an input signal.
The parameters in the model, including the steady state
Kalman gain, are determined on historical data with a mini-
mization technique. The model obtained is then used for

prediction during typically a week.

The representation of the residual load as an AR or an
ARMA process with or without explicitly included weather
variables is common to the following methods. In Bohlin
(1976) and Bohlin and Kamjou (1977) the nominal load is
represented as a state vector, containing four profiles.
It is updated on line using Kalman filtering technique.
The parameters in the model of the residual load are also
updated on line with a Least Squares algorithm. 1In
Bohlin and Kamjou (1977) also weather variables are in-
cluded. Their influence is found to be small and in gene-
ral negative to the prediction result. In Keyhani and

El-Abiad (1975) only one-step ahead prediction is considered.
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The total load is modeled as an ARMA process with an addi-
tive constant and without weather information. The para-

meters may be updated in every time step.

Also in the current prediction method the load {y(t)} is

partitioned as
y(t) =y (t) + v, (t)

where the residual load {yr(t)} is represented as an ARMA
process and the parameters in the predictor are updated with
the methods from part I of the report. Preliminary results
are given in Holst (1974). The period of the nominal load
{yn(t)} is a week. The timevarying character of the para-
meters is handled by introducing a weighting factor in the
parameter estimation. Weather information is not included.
If available, such signals however easily can be incorpo-

rated in the model structure.

The data used in the prediction experiments are authentical
load data from 1973 obtained from the Swedish State Power
Board. They are given in Holst (1977) . pata from 1971 and
1972 are used in the calculation of one of the nominal load
representations. Data are labelled "The Compensated Internal
Consumption on the Swedish State Power Board Network"
("Statens Vattenfallsverks Korrigerade Egenfdrbrukning").
These data are also used in a study of some other prediction
methods by Tyrén (1974).

In Chapter 2 different ways to handle the nominal load are

discussed. Methods used to measure the goodness of the pre-
diction are also treated. Chapter 3 contains an exposition

of the algorithms used. In Chapter 4 the prediction results
are given and in Chapter 5 this part of the report is

summarized.
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2. PRELIMINARIES

In this chapter the nominal load representation and the
measuring of the goodness of the prediction are dis-

cussed.

2.1 NOMINAL LOAD REPRESENTATION

Data have an obvious periodic pattern, cf. Figure 1 where
some weekly data profiles are shown. The load is quite
different on weekdays compared to weekends but there are
also differencies between the various weekday loads and
between the Saturday and Sunday loads. Therefore the period
of the nominal load is chosen as a week and not as a day
which also might be possible.

MON. = TU. 'WED. ' TH ' FR ' SAT ' SUN. |

Figure 1 - Hourly power load. A - during a winter week,
B - during a summer week, and C - mean value
over 1973,
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The variations of the weekly profile during a year are
comparatively slow. They are handled by the profile
updating. The nominal load is thus based on a vector
containing 168 elements representing the load at each

hour of the week.

In the simulations two different representations of the
weekly profile have been used. The first of these is based
on a mean value over the data from 1971 and 1972. This
signal is shown in Figure 2. It was used in the experi-
ments without updating. Random variations in the load

are filtered greatly. Systematic variations of the

weekly profile over the year are however also supressed.

The second representation of the profile is formed from
the load at the corresponding time a week ago. Using
this profile representation systematic variations as
well as random disturbancies are contained in the signal.
The updating of this weekly profile is somewhat more

cautiously done if just a fraction of the measured

Mw A
4000
30004
2000 T T T
0 50 100 150 TIME

Figure 2 - The mean value of the weekly profile in load
data. It is based on all data from 1971 and
1972.
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load is used in the profile adjustment. A very simple
exponential updating of the profile {v(t)} has been

used, i.e.
v(t) = « y(t) + (l-a) v(t-168) (2.1)

The smaller value of o the more supression of both the
systematic and random variations in the load. With
@ = 0.75 the influence of a profile value is reduced to
about 1% after three weeks. With o = 0.60 the same

reduction is acheived after five weeks.

In the simulations the nominal load has been modeled as

v (8) = 0(g™h) w(t)

where {w(t)} is taken from either the fixed mean value
profile from 1971 and 1972 or the value of the possibly
exponentially updated profile a week ago. Q(q—l) is a
transfer function operator. It is discussed in the

following chapter.

2.2 PERFORMANCE MEASURING

The goodness of the prediction could be expressed in
relative as well as in absolute terms. When a relative
measure is chosen the prediction error can be related
either to peak load, as in e.g. Galiana (1971) or Bohlin
(1976), to average load during the studied period, as in
€.g. Christiaanse (1971) or to the load at the same time

instant as when the error occurs as in e.g. Tyrén (1974).

In the current exXperiments one absolute and two relative

measures have been used. The loss functions are

Vo= T e2(t) (2.2)
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and

n 2
\V2 = N <8~(.E_)_.]_00\ (2.3)
n0+l y () /

o

where ¢ (t) is the prediction error and vy (t) the load
at time +t. The goodness of the prediction is measured
with either of the following values. The absolute measure

is

(2.4)

i.e. the estimated standard deviation of the error values.
The first relative measure is the corresponding coefficient

of variation, i.e.

_ 100 _ 1 2 (e(t)
- Tt n-n x \'y
av 0 n0+l av

2
-100) (2.5)

where Yav is the average value of the load for t €

[n0+l,n]. The second relative measure is

i.e. the estimated standard deviation of the instantaneous
relative prediction errors. When using Sg or s ., it is
possible to compare prediction methods applied to different
data series. However the impact on s, of a certain pre~
diction error will depend on when it gccurred. This may be
a drawback with the measure and it is illustrated in the

prediction experiments.
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3. PREDICTION ALGORITHMS

In the prediction algorithm the nominal and the residual
loads are to be treated and the model parameters estimated.
Modeling of the nominal load can be approached in some
different manners which are studied below. In addition to
the nominal load extension of the algorithms in Part I

of the report, the current algorithms also must contain
some facility to handle the timevarying parameters. This
is treated below too. Finally, a simple prediction method,
closely related to the scaling method is discussed. This
latter method is used today at the Swedish State Power
Board and it is described in Farmer and Potton (1968) and
in Tyrén (1974).

3.1 TOTAL LOAD MODELING

3.1.1 K-step prediction algorithms

The total load is partitioned as

c (g™ h
y(t) =y (t) +y (t) = ——— e(t) + y_(t) (3.1)
r n A (q ) n
1

where Al(q_l) and Cl(q_l) are polynomials in the back-
ward shift operator q—l. They are supposed to be rela-
tively prime, asymptotically stable and of order n,.
{e(t)} is supposed to be a sequence of independent random
variables with zero mean value and variance 02. Depending
on the model of the nominal load yn(t) different versions

of the adaptive prediction algorithm result.

Let yn(t) be modeled as
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B2 (q_l)
5

v, (t) = W (t) (3.2)

Az(q

where Az(q_l) and B2(q_l) are two relatively prime
polynomials in the backward shift Operator of order n,.
The constant term in Bz(q_l) is not necessarily equal to
one. Az(q_l) is asymptotically stable. {w(t)} 1is any
of the weekly profiles in the nominal load representation
that was studied in the previous chapter. Thus the total

load is

alg Yy = clahert) + Big Hwie (3.3)

where A(q—l

) =2 ha, Tl B - By(a hHa, (qh;
and C(q 1) = Cl(q—l)Az(q—l), cf. Astrdm (1970) for the
same kind of process modeling. The polynomials in (3.3) are

all of order n.

The minimum mean square error k-step predictor QM(t+kft) of
y(t+k) is

§M(t+k]t) = (1—C(q'l)) §M(t+k[t) + G(g~h v(t) +
-1 -1
+ B(q@ 7) F(q ) w(t+k) (3.4)
or
Ty (ttk|t) = (1-a(q Hr ) 7 (k[ 8) + 6(g L ey (t) +
* BT F(qTl) witak) (3.5)
cf. Part I in the report or Astrém (1970) . The F(q—l) and
G(q_l) pPolynomials are determined by the identity
cl@h =a@h pgly 4 gk Glq 1 (3.6)

{aM(t)} is the sequence of prediction errors that occur
when the optimal predictor is useq. {w(t)} is known
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k steps ahead. Denote in the following the polynomials
AaHFE@Y  and B@Hr@ ) by @D  ang K(q 1)
with elements hi; i=1,...,n+k-1 and kj; j=0,...,n+k-1
respectively.

When the parameters in the A(q—l), B(q—l), and C(q—l)
polynomials are unknown any of the equations (3.3), (3.4),
or (3.5) can serve as a starting point for an adaptive
predictor. When the Least Squares method is used for the

parameter estimation the resulting algorithms correspond

Table 1 - Parameter and data vectors used in the adaptive
load prediction algorithms.

Algorithm
0 % (8 = [ag(8),ee.s 2 (), ) (8),0e, 0 (8), by ()., b_(0) 1T
wo(t) = [—y(t—l),...,—y(t—n),eo(trl),...,eo(trn),w(tL...,
w(t-n) 17
2 83(8) = [eg(t),..., ¢, (b), I Bhreenr g (0, kg (1), ...,
T
-1 (®)]
A A
0y (tHk) = [~y (t+k-1]t-1),..., -y (t+k-n|t-n), y (¥),...,
y(t—n+l),w(t+k),...,w(t—n+l)]T
3 65(t) = [hl(t),...,hn+k_l(t),gO(t),..., -1 (B kg (0.,
T
Kgeq (0 ]

@4 (t+k) = [-{}(t+k—1[t—l),..., —§(t—n+1|t—k—n+1), e(t),...,

a(t—n+l),w(t+k),...,w(t—n+l)]T
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to the algorithms 0, 2, and 3 in Part I of the report.
Therefore they are denoted by 0, 2, and 3 also here. The
data and the parameter estimates are collected in vectors
mi(t) and ei(t); i=0,2,3 that are given in Table 1.
The estimate of an element in H(q-l) is called h; (t)
and correspondingly for the other polynomials. {eo(t)}
is the sequence of residuals obtained when the Extended
Least Squares method is applied for estimation of the

parameters in (3.3), i.e.
T
eo(t) = y(t) - wo(t) 6 (t-1) (3.7)

A
{y(t+k|t)} and {e(t)} are the prediction and prediction

€rror sequences.

Algorithms. The algorithms consist of an estimation step

and a prediction step.

Estimation: Estimate the parameters in the model, 1i=0,2,3

y(t) - wz(t) 0, = ri(t)

with a Least Squares algorithm, i.e.

8, (£) = 8, (t-1) +K, (t) (v (¥) -(piT(t)ei(t-l))
P. (t-1) . (t)
1 Ky (t) = = = (3.8)
l+(pl(t)Pl(t_l)q)l(t)
T

P, (t-1)o, (t)p, ()P, (t-1)

P, (t) =P, (t-1) - % . = 1 =
l-+wi(t)Pi(t-l)wi(t)

riﬁj is the model error.

Prediction: Calculate in algorithm 0 estimates of the

F(q—l) and G(q_l) polynomials in the system of equations
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(3.6) applied to the estimated A(q—l) and C(q—l)

polynomials. Use all the obtained polynomial estimates

to compute the k-step prediction e.g. by (3.4) or (3.5).

Use in algorithm 2 or 3 the obtained parameter estimates,

ei(t), to compute the prediction of y(t+k)

§(t+klt) = wI(t+k) 8, (t)

In the algorithms 2 and 3 the number of parameters to be
determined in principle grows linearly with the number

—l) or

of steps to predict since the elements in H(g

K(q—l) are estimated. Furthermore, the construction of

the total load model (3.3) implies that the parameters in

A (g h |
1

polynomials that are to be estimated. This might result

and Az(q_l) influence at least two of the

in bad condition of the P matrix in (3.8). In parti-

cular, if
A hH =1;  B,(
2 \d H 7 \d

then

1

K(q ) =y H(q

The simulations have indicated that the total load model

¢y (g™t
y(t) = — - e(t) + v w(t) (3.9)
Al(q )

indeed is appropriate in this application. The algorithm
is therefore modified in order to avoid the drawbacks
mentioned. A similar algorithmic problem is treated in
Wieslander (1969).
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Since then A(q_l) = Al(q_l) and C(q—l) = Cl(q—l),
(3.9) can be rewritten as
y(t) =y w(t) + (1-a) (y(£)-yw(t)) +C e(t) (3.10)

The minimum mean square error k-step predictor of (3.10) is

§M(t+k|t) =y wit+k) + (1-C) (§,,(t+k|t) = yw(t+k)) +
+ G(y(t) - yw(t)) (3.11)

or

-~
+
s
(a3
]

Y w(t+k) + (1-AF) (QM(t+k]t) -Yw(t+k)) +

+ G eM(t) (3.12)

-1 -1

The polynomials F(gq ~) and G(g 7) are calculated by (3.6).

Table 2 - Parameter and data vectors used in the modified
adaptive load prediction algorithms.

Algorithm
0 Bo(t) = [ay (t),..uya (), ¢ (0),..., c(£), 71T
0y (8) = [=(y(t=1)~yw(t-1)),..., =(y (t-n) =yw(t-n)), &g (t-1) ...,
e (tmn), w(t) 1T
2 O (8) = Loy (8)euy 0 (8), 9o (8),nnny g (8), ¥1T
A A
©, (t+k) = [=(y (t+tk=-1]t-1) =yw(t+k-1)),..., -(¥ (t+k-n|t-n)-
—yw (t+k-n) )r (Y(t) —yw (t) )/ seer (Y (t=n+1) —=yw(t-n+1) )I
w(t+k) 1T
- T
3 O3(t) = [hy(t)ees by (6,9, (B enn, gy (8), Y]
e(t+k) = [-(1/>(t+k—-l]t—l)-Yw(t+k—l)),..., —({}(t—n+1|t—k—n+1)—

~yw(t-n+1)), € (€), ..., & (t-n+1), w(ttk) 1T
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When the parameters are unknown an adaptive prediction
algorithm can be based on any of the eguations (3.10),
(3.11), or (3.12). If the Least Squares method is used

for the parameter estimation, the algorithms described
above applies also in this case. The data and parameter
vectors mi(t) and ei(t) which are used in the modified
algorithms are given in Table 2. Note that the number of
parameters to estimate in algorithm 0 or 2 does not depend

on the number of steps to predict.

3.1.2 Relations between the algorithms

The equivalence for one-step prediction between the
adaptive prediction algorithms that was stated in Chapter
4 of Part I of the report will now be extended to the

given algorithms.

Theorem 1. Consider one-step adaptive prediction of the
process (3.3) using any of the algorithms given above.

There exist constant matrices Sij such that if

ei(to) = S,. 0.(t,)

T
i(Eg) = 855 Pylky) 81y

for some to and the initial values of the {y(t)} and
{e(t)} processes are the same for the considered algorithms,
then

when the same realization of {y(t),tzto} is used in the

algorithms.

Proof. The proof of this theorem is quite similar to the
proof of Theorem 1 in Part I of the report, why it is

omitted. The matrices are
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03 n n On,n+l

On+l,n On+l,n In+l

I I On,n+l
S32 - On,n Th On,n+l !
O

n+l,n On+1,n In+l

where I, is an nxn identity matrix and On o is an
4
nxm zero matrix.

Corollary. Under the same conditions, the result from
Theorem 1 holds also for the modified adaptive prediction

algorithms applied to the process (3.10).

Proof. The proof is identical to the proof of Theorem 1.
The Sij matrices given there are applicable also to the
modified algorithms if the subscript n+l1 in the rightmost

column and in the bottom row is replaced by 1.

3.1.3 Multistep predictors

All of the algorithms proposed in Section 3.1.1 can be
transformed into multistep prediction algorithms in the
same manner as was done for the ARMA process prediction
algorithms. Only one of these possible predictors has been .-

tested, the multistep version of the modified algorithm 2.
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When applied to one-step prediction of y(t+k) in (3.10)

with known parameters the modified algorithm 2 is

Fhq(t+ [ £4k=1) = yw (£4+K) = oq (¥, (E+k-1]E4k=2) = yw (£+k=1)-...
- Cn(§M(t+k—nlt+k—n—l)-Yw(t+k—n)) +
+ gy (v (£+k=1) = yw(t+k=-1)) + ...+

+ g,_1 (v (t+k=n) =yw(t+k-n)).

A
yM(t[s) 'is the mean of y(t)

conditioned on F(y(s),y(s-1),
ve.), i.e.

conditioned on the smallest o—field containing

the elements of {y(t),tgs}, cf. e.g. Box and Jenkins

(1970) . Hence the multistep prediction of y(t+k) is

Py (E+k|E) = yw(t+k) = o (§, (t+k=1]1) —yw (t+k-1)) - ...

- ck_l(§M(t+1|t) - yw(t+l)) - ck(§M(t|t—1) -
_Yw(t))—...—cn(QM(t+k-nlt+k—n-1) -yw(t+k-n) ) +
+ gO(QM(tJrk-llt) ~yw (t+k=1) ) +.. .t gy

(7, (E+1]€) =yw (£+1)) + g, 1 (v (£) —yw(t)) +..
.ot gn_l(y(t+k—n) -yw(t+k-n)) (3.13a)
for kX < n. When k > n

the algorithm is

§M(t+k|t) = yw(t+k) - cl(§M(t+k—1|t) - yw(t+k-1)) - ...~

A A
- cn(yM(t+k—n|t) - yw (t+k-n) ) +g0(yM(t+k—1|t) -

- yw(t+k=-1)) +...+~gn_l(§M(t+k—n|t) -

- yw (t+k-n) ) (3.13b)
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In the unknown parameter case the algorithm is based on
(3.13). The two steps in the predictor are given below,
cf. algorithm B in the ARMA process case.

-1

0 Estimate the G(g ~) and C(q_l) rolynomials in

(3.11) applied to one-step prediction.

) Use (3.13) with the estimated parameters to determine

the desired predictions recursively in k.

3.2 TIME VARYING PARAMETERS

The tracking of time variable parameters in real time
applications can be accomplished in the algorithms after
just minor modifications, cf. S&derstrdm, Ljung and
Gustavsson (1974). Two different modifications are usually
seen. In both of these the gain in the parameter estimation

algorithm does not tend to zero.

By introducingadiscounting factor A in the loss function
for the parameter calculation the influence of old errors
on the estimates is reduced. This approach to real time
estimation is described in e.g. Wieslander (1969) and it

is used in the self-tuning algorithms, cf. Astrdm et al
(1977). The algorithm (3.8) is modified to

B(t) = B(t—l)-FK(t)(y(t)-@T(t)e(t_l))
| Ke = Pét_l) e l) (3.14)
A+ (E)P(E-1)@(t)
() = [p(e1) - PE=LIo () @" (£)P (£-1) 1/A
L A +wT(t)P(t—l)®(t)

where the subscripts are omitted.
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Another way, used e.g. in Bohlin (1976), is
based on the Kalman filter interpretation of the Least
Squares algorithm. Introduction of state noise, i.e.

parameter noise, R leads to the modified P equation

P(t-1)o(t)or (t)P(t-1)
P(t) = P(t-1) - T + R (3.15)
L+o(t) P(E-1)op(t)

R is positive semidefinite.

3.3 A SIMPLE PREDICTION METHOD

A simple adaptive load predictor may be based on the
updated weekly profile (2.1). The prediction is simply
this signal multiplied by a scaling factor to account for
the actual load.

The basic model is

y(t) = v w(t)
where w(t) is taken from the exponentially updated
weekly profile {v(t)}, cf. Chapter 2. The coefficient
Y 1is calculated in the algorithm (3.14), i.e. the algo-

rithm is given by the following two steps:

o Estimate the scaling factor by

Y () = v (t-1) +P(t)w(t) (y(t) - y(t-1)w(t))
(3.16)
P —
P(t) = ét L
A+wT ()P (t-1)
) Use the estimate Yy (t) to calculate the predictions

§(t+k|t) = v (t)w(t+k) .
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A 1s supposed to have a small value which means that old
values of the errors are discounted at a fast rate in the

scaling factor calculation. If A 1is negligible in the

denominator expression in (3.16), the scaling factor is
- y(t)
Y (t) w(t)

The prediction method using this value of <y (t) is given
by Farmer and Potton (1968). A similar scaling algorithm
is described by Tyrén (1974). That algorithm can be con-
sidered as a stochastic approximation variant of (3.16),

cf. e.g. Ljung and Wittenmark (1974).
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L, PREDICTION RESULTS

In this chapter the results from a series of prediction
experiments will be given. A threedigit number xx/y
will be used for time notation. xx 1is the week number
and y 1is the day in the week ( 1 = monday, 2 = tuesday

etc. ).

Three different data sets from 1973 have been used, 8000
hours - almost the whole year, 1000 hours in the begin-
ning of the year and 1500 hours in the autumn. In all the
data sets the first load measurement is taken at

7 o'clock a.m.

The winter data set as well as the data set covering the
whole year starts in 02/2. The winter set contains roughly
six weeks of load measurements, i.e. the weeks 02,...,07.
The starting point for the autumn data set is 33/1. This
includes roughly 9 weeks, i.e. the weeks 33,...,41. These
two sets of data have slightly different characteristics.
The average load is lower in the autumn data set than in
the winter set, 3.59 GW compared to 4.26 GW. The influ-
ence of random disturbances on the load is more pronounced
in the autumn load. Moreover, winter data has a more stable
load pattern. These differences taken together render the
prediction of autumn data more difficult than prediction

of winter data.

The results from the predictions over the whole year are
given in Section 4.1. The rest of the results are presen-
ted in Section 4.2.

4.1 PREDICTION OVER THE WHOLE YEAR

The predictions over the whole year were performed with the

modified algorithm 2, cf Table 2. Just one-step predictions
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are considered. The results of a sensitivity study of the
constants in the algorithm are given in Section 4.2. Here
the number of parameters in the estimates of the polynomials
C(q—l) and G(q—l) were three and one respectively, cf
(3.11). ¥ 1in (3.11) was fixed to 1. The discounting

factor X in (3.14) was 0.995.

In the predictions no attempt was made to treat the holi-
days in a special manner. This will have at least two

negative implications on the result.

1/ The increase in the lossfunctions fVMW (2.2) and
Vo (2.3) will be significant during the holiday
since the nominal load is irrelevant.

2/ The large prediction errors will imply large changes
in the parameters. This in turn might deteriorate the
performance of the algorithm immediately after the

holiday.

Hence, results from these simulations can be regarded as
an upper limit for the obtainable results with this algo-

rithm applied on these data.

In Figures 3 and 4 the lossfunctions VMW and V, as

functions of time are shown. The corresponding standard

deviations are given in Table 3.

Table 3 - Prediction results for one-step predictions over
8000 hours starting in 02/2 with the modified
algorithm 2.

Nominal Load % 2
SW(I\/IW) Srel(o) S%(O)
Fixed profile 69.5 1.89 1.98
Previous week a=1 in (2.1) 58.8 1.60 1.75
Previous week «0=0.75 in (2.1) 55.8 1.52 1.66
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Evidently, the inclusion of seasonal characteristics in the
nominal load representation is preferable to the fixed profile.
Furthermore, updating of the nominal load according to (2.1)

with o<l have a positive influence on the prediction result.

It is also obvious that an implementation for online use

need a special facility to treat the holidays. The late
spring and summer part of the curves in Figure 3 shows that
the prediction error then has a larger value than in the
other parts of the year. This is emphasized in Figure 4 where
the large increase in V% during the middle of the year in
addition depends on the relatively low value of the load.
Hence Swiw ©F Sre1 are more relevant measures of the power
which has to be put on line or removed in order to compensate

for the erroneous prediction.

4.2 PREDICTION OVER PARTS OF THE YEAR

In this section the performance of the various algorithms
as well as the influence of the parameters in the algorithms

that are at user's disposal will be investigated.

Nominal load representation

An example of prediction of autumn load is shown in Figures
5 and 6. The modified algorithm 2 is applied to one-step
prediction of the data in week 41. In Figure 5 the nominal
load is represented by the fixed profile and in Figure 6
it is represented by the load in the previous week updated
as in (2.1) with «=0.75. In both of the experiments the
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One-step prediction of data in week 41. Pre-
diction started in 33/1. The nominal load
is represented by the fixed profile.

In the middle figure the solid line shows the
prediction.
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number of parameters in the C(q—l) and G(g l) poly-
nomial estimates were three and one respectively, cf. (3.11).
Y in (3.11) was fixed to 1. The discounting factor A in
(3.14) was 0.995.

Evidently, the prediction algorithm can adapt its perfor-
mance to the variation in the mean level in data. This im-
plies that changes from day to day, as e.g. most weather

induced load variations can be handled.

The differencies between the two nominal load representations
are illustrated. As in the prediction over the whole year

the inclusion of seasonal characteristics in the profile is
beneficial to the prediction results. In this case, the
regular high prediction errors when the fixed profile is
used depend on the missing afternoon peak in that nominal

load representation.

In the predictions with the fixed profile s,=1.743 % and
srel=l.813 %. When the filtered load from the previous week
is used in the nominal load representation the corresponding

results are 1.354 % and 1.410 % respectively.

In the following, only the filtered previous week load is

used in the nominal load representation.

Nominal load model

Depending on the complexity of the nominal load model, two
types of algorithm were given in Chapter 3. When the nomi-
nal load is modeled as in (3.2) the number of parameter
estimates used in the adaptive k~step prediction algorithms
2 and 3 depends linearly on k, cf. Table 1. It is in accor-
dance with the model to estimate only the first n coeffi-

cients in the polynomial H(q_l),
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cf. algorithm 4 in Part I of this report. However, the
number of parameters needed in the K(q_l) polynomial

estimate is not a priori reducible.

In the modified algorithms, based on the load model (3.9)
no K(q_l) polynomial has to be estimated. Hence, the
number of parameters to estimate does not depend on k,

except possibly in the modified algorithm 3.

The advantages of the modified algorithm are also illustra-
ted in the following application of algorithm 3 to one-
-step prediction of winter data with n=2 and A=0.995,
The parameter and data vectors are given in Table 1. In
Figures 7A and B the hl and k2 and the h2 and k3
estimates respectively are shown. These trajectories show
that there is a large covariation in the two parameter
estimates. Furthermore, the condition number of the
matrix P in algorithm (3.8), measured as the quotient
between the largest and the smallest eigenvalue, is
roughly 106. This is an indication of overparametri-
zation, and it also induces numerical difficulties in

the propagation of the Riccati equation (3.8). In the
modified algorithms no such covariation is present and

the condition number of the matrix P is typically 102.

Because of these essential advantages of the modified
algorithms, they are considered significantly superiour
to the algorithms based on the more general load model
(3.3). Hence, in the following only results from appli-
cations of the modified algorithms are shown. The simula-
tions performed with the model (3.3) give similar or

inferior prediction results.
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Figure 7 - One-step prediction of winter data with algo-
rithm 3.

Ac: hl and k2 parameter estimates

B: h2 and k3 parameter estimates

Constants in the algorithm

When applying the adaptive predictor some constants in the
estimation algorithm have to be postulated. In order to
find reasonable values of these constants a series of one-
step predictions using the modified algorithm 2 has been
performed. The constants are: the number of Parameters, the

discounting factor A in (3.14) and the parameter noise
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R in (3.15). Furthermore, the filtering constant o in

the profile updating equation (2.1) must be determined.

These simulations showed that Yy in (3.9) preferably
should be fixed to 1. The timevariation of the para-
meters was found to be easily handled by the discounting
factor A in (3.14). When three estimates in the polyno-
mial C and one estimate in the polynomial G were used,
the results varied within 1% as long as A < 0.99. 1In

the simulations & in (2.1) was 1.0, 0.75, and 0.67.
The best results were obtained for 0.995 < A £0.999. The
inclusion of the parameter noise R in (3.15) did not

improve the prediction result.

In Table 4 the results from predictions where the number of
parameters was varied are presented. Autumn data are used
in the simulations. The last 200 data are plotted in

Figures 5 and 6.

Table 4 - Influence of the number of parameters n, and ng in
the estimated C and G polynomials on the prediction
result. A2=0.999 in (3.14) and &=1.0 in (2.1).
Autumn data. vy in (3.9) was fixed to 1.

Last 1350 data Last 200 data
e ng Sg Srel Se ®rel
0 1 1.545 1.552
1 1 1.538 1.548
1 0 5.55 5.79
0 2 1.541 1.552
1 2 1.538 1.548
2 2 1.534 1.543
2 1 1.534 1.542
2 0 5.55 5.79
3 3 1.533 1.542 1.453 1.508
3 2 1.533 1.542 1.456 1.510
3 1 1.532 1.540 1.456 1.510
4 1 1.530 1.539 1.458 1.512

Clearly, the one-step prediction result is not very sen-

sitive to the number of parameters in the C(q“l) and

G(q_l) polynomial estimates as long as ng > 0.
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Finally, the influence of the filtering constant « in
the profile updating equation (2.1) on the prediction
result has been studied. Winter as well as autumn data
have been used in the prediction experiments. The results

are given i Table 5.

Table 5 - Influence of the filter constant a in the profile
updating equation (2.1) on the one-step prediction
result. Three C-parameters and one G-parameter were
estimated. A =0.995 in (3.14). vy in (3.9) was fixed

to 1,

Winter Autumn

Last 850 data Last 1350 data
o S, So

1.00 1.014 1.535
0.90 0.9801 1.508
0.80 0.9577 1.496
0.75 0.9509 1.496
0.70 0.9473 1.500
0.65 0.9470 1.508
0.60 0.9503 1.520
0.50 0.9694 1.559
0.40 1.009 1.621

These results show that the inclusion of filtering opera-
tions on the profile improves the prediction. They are
rather robust relative to variations in the filtering
constant. k-step prediction results are however somewhat
more sensitive to changes in «, especially for large
values of k. It is an important parameter in the k-step

prediction algorithm.

Version of the algorithm

A discussion of the different versions of the adaptive
prediction algorithm must be based on results from k-step

predictions, since they have identical one-step prediction
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performance, cf. Chapter 3.

Version 0 of the algorithm, cf. Table 2, has not as good
a performance as version 2 when applied to k-step predic-
tion with large values of k. This is illustrated in
Table 6 for k=24,

Table 6 - The modified algorithms 0 and 2 applied to 24-
step prediction. 2=0.999 in (3.14) and «=0.60

in (2.1)
Winter Autumn
Last 850 data Last 1350 data Last 200 data
S% Srel S% Srel S% Srel
Version 0 1.930 1.907 3.440 3.526 4,161 4.393
Version 2 1.864 1.837 2.919 2.894 3.140 3.192

This discrepancy between the prediction results is caused
by the approximations done when the model (3.9) is app-
lied to data. In the 24-step predictor in algorithm 2 the
C- and G-parameters are tuned to fit the 24-step prediction
problem. In algorithm 0 the parameters in the one-step
predictor are estimated. The estimates are then used in the
calculation of the predictor as if the model was an exact

description of the process which not is the case.

The prediction results from algorithm 3 are similar to the
results from algorithm 2. However, in algorithm 3 the
H(q—l) polynomial, with n+k-1 parameters have to be
estimated. The model structure can be exploited as in
Part I of the report to yield an algorithm with fewer par-
ameters. This algorithm is identical to algorithm 2, which

is shown in the same manner as in Chapter 4 in Part I.
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k-step prediction

Finally, the k-step and the multistep versions of the
modified algorithm 2 together with the scaling method
with X=0.01 in (3.16) have been used in a series of
k-step prediction experiments. The results from the pre-

diction of winter data are shown in Figure 8. s

Smw
and s, are evaluated over the last 850 hours. In

rel’

Figure 9 the corresponding results from the autumn data
set are shown. The goodness measures are evaluated during
the last 1350 and the last 200 hours. In all the simula-
tions A=0.999 in (3.14) and &« =0.75 in (2.1). The
number of parameters in the C(q_l) and G(q_l) polyno-
mial estimates was three and one respectively and Y in
(3.9) was fixed to 1.
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Figure 8 - Results of k-step prediction of winter data.

The results are evaluated over the last 850
hours in the data set.

« Adaptive k-step predictor
X Adaptive multistep predictor
+ Scaling method
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The adaptive k-step predictor has for all values of k
a better performance than the multistep predictor. The
difference is small for small values of k but gets sig-
nificant when k increases. As in version 0 of the algo-
rithm the multistep predictor is based on the one-step
predictor parameters. The discussion above of the dis-
crepancies between version 0 and 2 is thus applicable

also here,

The essential property of the scaling method is that
changes in the process in relation to the nominal: load are
reflected in the parameter just one step after their
occurance. It gives in almost all cases not as good pre-
diction results as the adaptive k-step algorithm. This is
mainly caused by the better modeling of the process in

the latter of these methods. However, in week 41 the
scaling method has a slightly better performance for 18-
and 24-step prediction. The large variations in the load,
cf. Figures 5 and 6, are quickly reflected in the value of
the scaling parameter. In the adaptive k-step predictor
however, the parameter adjustment is based approximatively
on the prediction error. Especially in the 24-step predic-
tion case this lag is too large to allow for compensation

of the fast and large changes in the load.
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5. SUMMARY

The short-term prediction of power load is a wellknown
and early recognized problem. The presented approach is
a new variant of attacking it. The given adaptive k-step
predictor is not believed to be the final solution.
However, based on the given criteria this algorithm
gives similar or in most cases superior prediction

results compared to other methods presented.

A variety of algorithms has been discussed. They are all
but one based on a separation of the load into a nominal
and a residual part. The residual load is modeled as an
ARMA process and the nominal load representation has been
based either on a fixed profile or on the obtained data

filtered by a first order filter.

The solution to the representation and modeling problem
for the nominal load is crucial for the final prediction
result. Different approaches to this problem have been
considered. It has been demonstrated that the nominal
load should contain seasonal characteristics of the load
and also that the current load should be filtered when
updating the weekly profile. Moreover, with a nominal
load representation with these properties, the best
results are obtained with a simple load model where the
deviations between the current load and the nominal load

is modeled as an ARMA process.

The prediction methods developed in the first part of the
report have been extended to fit the load prediction
problem. Four different adaptive k-step prediction algo-
rithms and a simple variant, the scaling method, have
been considered. Twé of these, version 0 of the basic
algorithm and the multistep predictor are based on the

one-step predictor parameters. They give not as good
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prediction results for large values of k as the other
two adaptive k-step alternatives. The reason for this is
the inherent approximations done in the basic modeling.
The two remaining adaptive prediction methods, versions

2 and 3 of the algorithm give similar prediction results.
Of these, version 2 is preferred since the number of
parameters therein does not depend on k. The scaling
method gives in general significantly worse prediction

results than this algorithm.

The multistep predictor is apt for efficient profile
prediction, i.e. prediction of the hourly load during e.q.
a day. The obtained k-step prediction results show, how-
ever, that it is more accurate to use one adaptive k-step
predictor for each value of k. The amount of computer

time and computer storage needed is of course larger.

In the algorithms, some constants have to be chosen. The
values used of these constants have proved to give good
results. They are, however, not claimed to be overall
optimal, why tuning to a specific prediction situation

might improve the result.

A future development of the algorithm should be directed
towards an improved nominal load handling. Such an improve-
ment should manage the influence of fast and large vari-
ations in the load on the predictions for large values

of k. It may e.g. be based on weather information, which

in such cases can be beneficial for the prediction result.

In an online implementation the current algorithm has to
be extended with a facility to treat the holiday loads.
It should also include a possibility to do manual adjust-
ments of the predictions to compensate for large, occa-
sional but aforeseen and known changes in the load such

as e.9g. changes caused by very popular TV programs.
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Part lll- local Convergence of

Some Recursive Estimation
Algorithms

ABSTRACT

The local convergence properties of recursive estimation
algorithms are considered. The key result is the calcu-
lation of explicit expressions for the eigenvalues in the
linearization of a differential equation describing the
algorithm. The general result is applied to the Extended
Least Squares method and a modification thereof, an algo-
rithm by Landau and the self-tuning regulator. The analysis
gives useful insight into the properties of recursive
estimation algorithms. It leads to the construction of a
new algorithm for estimation of the parameters in an ARMA

process.
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1. BACKGROUND

Some applications of control theory require determination
of process parameters using system identification. It is
often desirable or even necessary to calculate the estimates
on line. Recursive parameter estimation algorithms are

therefore of both practical and theoretical interest.

Recursive Least Squares is the generic recursive method. It
gives, however, biased estimates if the equation error is
not white noise. Many algorithms have been proposed to over-
come this difficulty, see e.g. the survey by Astrdm and
Eykhoff (1971) or the book by Eykhoff (1974). Different
algorithms have been compared on various test cases, cf.
Stderstrdm, Lijung and Gustavsson (1974), Saridis (1974) or
Isermann et al (1974). For all of these methods the consi-

stency question is crucial.

One approach to the convergence analysis is based on Lyapunov
and hyperstability methods. These are often used in connection
with model reference adaptive schemes, cf. Landau (1974). They
have been adopted on a recursive stochastic parameter estima-
tion algorithm by Landau (1976), where he shows asymptotic
unbiasedness of the parameter estimates. In Ledwich and Moore
(1976) stability results from deterministic considerations
based on Lyapunov theory are used together with martingale
theory to show convergence w.p. 1 of the parameter estimates

for a class of stochastic parameter estimation algorithms.

Ljung has in a series of papers, see e.g. Ljung (1975, 1976a)
developed a different method for convergence analysis of
recursive stochastic algorithms. In Ljung (1976b, c) the posi-
tive realness concept, which is intimitely linked to hyper-
stability theory via the Kalman-Yakubovich lemma, is connected

to his analysis.

The analysis in the present report is based on the theory in
Ljung (1975, 1976a). It aims at establishing conditions for

local convergence of some parameter estimation algorithms to
appropriately chosen convergence points. The estimation algo-

rithms are applied to linear, timeinvariant, single input-
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single output stochastic systems described by difference
equations. The main idea in this theory is to associate the
parameter estimation algorithm with a differential equation
that contains all relevant information about the asymptotic
behaviour of the algorithm. Here a brief review of the re-

sults needed in the current analysis will be given.

Let the algorithm be given by

{x(t) x(t=-1) +y(t)Q(t; x(t=-1), v(t))
(1.1)

P (t) Alx(t-1))y(t-1) +B(x(t-1))e(t)

where {x(t)} and {Y(t)} are sequences of estimates and
observations respectively. A(e) and B(+) are two matrix
functions. OQf(s; + , ) is a deterministic function which
together with the gain sequence {y(t)} determine the algo-

rithm.
Introduce the set DS as

D, = {x|Aa(x) 1is stable}. (1.2)

Now, take a fixed x(EDS and define the random process

y(t, x)

{q;(t, x) = A(x)P(t, x) +B(x)e(t)
(1.3)

Y (0, x) 0

Pp(t, x) 1is welldefined and since Xx€Dg it approaches

stationarity exponentially for stationary sequences {e(t)}.
Define the function

f(x) = 1lim E Q(t; x, v (t, x)) (1.4)

oo

where the expectation is over the distribution of {e(t)}.

Introduce the differential equation

é% XD(T) = f(XD(T)) (1.5)
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where the subscript D 1is used to distinguish between the

solution to (1.5) and the estimates from (1l.1).

The basis for the present analysis is the theorems 4 and 5

in Ljung (1975). There is stated that only stable stationary
points to the differential equation (1.5) are possible conver-
gence points for the algorithm (1.1). Thus if x* 1is a con-

vergence point then

f(x*) =0 (1.6)
and
F(x*) = 2
x*¥) = = f(x)lx=x* (1.7)

has all eigenvalues in the left half plane {Re x < 0}. Thus
the eigenvalues of F(x*) are closely related to the conver-

gence properties of the algorithm (1.1).

In the recursive parameter estimation algorithms studied here

the vector of estimates can be partitioned as

where 6 contains the unknown parameters. The estimation

algorithm can be written as

1

0(t) = 0(t-1) +y(t) + R ~(t) - Q (6(t-1), @(£))

R(t)

R(t-1) + v (t)[Q,(6(t-1), @(t)) - R(t-1)] (1.9)

_ Jo(e) ] _ _ _ -
vie) = [940 | =aoe-1)0(e-1) +BO(E-1)) e ()
i.e. the vector r in (1.8) is composed of elements from the

R matrix. The differential equation corresponding to (1.9) is

-1
RD (T)-fl(GD(T))

&e
@
()
2
1l

(1.10)

(6, (1)) = Ry (1)

where
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£1(0p(0) = Lin B 0, (8,(D), 0(t, 05())
(1.11)
£2(0p(1)) = Lim E 0, (85 (1), 0(t, 05(1)))
The linearization of (1.10) around GD = 9* and RD = fz(e*)
is straightforward
(4 (6 _(1)-0%) = R(B%) (0. (T)-6%)
1ar ‘“p't = K(6%) (0, (7
L (R (1)-£, (%)) = 7(6%) (0 (1)=0%) = (R (1) =F, (8%))
(1.12)
K(0%) = £,1(0%) = £(0) | g_gx
2(6%) = S £,(0) | y_gx

The F(x*) matrix is thus blocktriangular

F(x*) =

K (%) 0 ]

Z(0%) -I

and the stability properties of the linearization are deter-
mined by K(0%).

The eigenvalues of two different matrices K "will be
calculated. The results of. these calculations can be applied
to many algorithms. Here the Extended Least Squares (ELS)
method, the algorithm by Landau mentioned above and the self-
-tuning regulator by Astr&m and Wittenmark are treated. The
eigenvalues for a modified version of the ELS method will also
be calculated. The application of the theory to these algorithms
is discussed in Ljung (1975, 1976a, b, c). The self-tuning

regulator case is also treated in Ljung and Wittenmark (1974).

It is assumed throughout the discussion that the orders of
all the involved polynomials are known and that the correct

number of parameters are estimated.
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The rest of this part of the report is organized as follows.
In Chapter 2 the algorithms mentioned above are treated and
the K(8*) matrix is determined. It is shown that for all
of the algorithms except the modified ELS method it can be

written as

K(0%) = -[E o(t, 6%)o  (t, 0%) 1  Eo(t, 6%)GT(t, 6%)
where o©{(t, 6*), cf. (1.9), is composed of data and noise
elements and @(t, 6%*) is a filtered version of @(t, 6%).

In the modified ELS method K(6%*) 1is given by
~ -1~ ~T
K(0*%) = -[E ¢(t, 0%)ot, 6%) 1 TEF(t, 6%)° (t, 0%)

The eigenvalues to these matrices are calculated in Chapter 3
and the result is used for a treatment of the local convergence
properties of the algorithms. In Chapter 4 the eigenvalue result
is used as a tool for evaluation of algorithms. A new -

method for ARMA process identification is also given. Some
examples in Chapter 5 and a summary in Chapter 6 concludes this

part of the report.
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2. SoME SPECIFIC ALGORITHMS

The algorithms mentioned above are presented in this chapter.
The corresponding differential equations are given together
with the linearizations. The algorithms are devoted one section
each, 2.1 to ELS and a modification thereof, 2.2 to Landau’s
algorithm and 2.3 to the self-tuning regulator. In Section 2.4

the similarities between the algorithms are discussed.
2.1. THE BASIC AND A MODIFIED ELS ALGORITHM

When parameters in an autoregressive model for a timeseries
with correlated noise are to be estimated, a straightforward
application of the Least Squares method results in nonconsis-
tent parameter estimates. If the noise is modeled as a moving
average process, the estimation problem can be approximately
solved on a least squares basis. The innovations are then esti-
mated as a sequence of residuals. This approach, here called
ELS-Extended Least Squares was originally suggested by Panuska
(1968, 1969) and Young (1968). Different versions of the algo-
rithm are discussed in e.g. Young (1974), Talmon and van den
Boom (1973) and Kashyap (1974).

The convergence properties of ELS are treated in Ljung,
Soderstrdm and Gustavsson (1975). It is shown that the
algorithm does not converge for all systems. This is also
discussed in Goedheer (1976). Sufficient conditions for

global convergence are given in Lijung (1976Db).

The method will now be briefly described. Refer to
for example Young (1974) or Ljung, SOderstrtm and Gustavsson
(1975) for details.

An ARMA process 1is described by the equation

hy) = cya e (2.1)

Ao(q
where {y(t)} is the output process and {e(t)} a stationary
sequence of independent random variables such that all moments
exist. The mean value of {e(t)} is supposed to be zero and

the variance 62. Ao(q_l) and Co(q-l) are two relatively
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prime polynomials in the backward shift operator q—l of
orders n and n
a c
-n
-1, _ 0 -1 0 a
Ao(q ) = l+—alq +—...+—anaq (2.2a)
-1, 0 -1 0 "Pc
Cola ™) = 1+cyqg -F...-Fcncq (2.2b)

It is assumed that the polynomials are asymptotically stable.

Introduce the reciprocal polynomials Ag(q) and Cg(q) defined

by

af(q) = naA qh = Ya, + a9 (2.3)
o la q o a q .o n, .
L f
and similarly for Co(q).
Using the vectors
T
(DO (t) = [—Y(t—l)r ’ —Y(t—na)l e(t-1), , e(t-n )] (2.4a)
0 0 0 0 ,T
60 = [all ’ an ’ Cll ’ Cn ] (2.4Db)
a c
equation (2.1) may be written
T
y(t) = ¢ (t) 8, +e(t) (2.5)
If the parameter vector 8 is unknown the unmeasurable noise

0
sequence is estimated with a sequence of residuals which is

treated as an input signal in an ordinary least squares approach.

Hence, the data and parameter vectors are

e(t) [-y (t-1), ..., -y (t=n_), e(t-1), ..., E(t—nc)]T (2.6a)

T

6(t) [al(t),..., a_ (t), Cl(t)’ oo ()] (2.6Db)

n n
a C

where aj(t) is the estimate of ag obtained at time t.
{e(t)} 1is the residual sequence

T

e(t) = y(t) -0 (t)6(t-1) (2.7)

From here on, the basic and the modified versions of ELS differ.

Therefore, each of them is given a subsection of the chapter.
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2.1.1. The Basic ELS Algorithm

In the basic ELS algorithm the parameter estimates are

recursively updated according to

e(t-l).+£ . R_l(":-l)ap(t)«e(t)
1‘*%[@T(t)R'l(t-l)@(t)—l]

(
8 (£) ¢

e(t) = y(t) - ol (t)8(t-1) (2.8)

s
d—
I

R(t-1) +3lo(£)o" (t) = R(t-1) ]

The differential equation describing the asymptotic behaviour

of this algorithm is

Lo (0 = ryL( £ (0 (1) (2.9a)

L R (1) = £,(6, (1)) - Ry (1) (2.9b)
where

£,(8) = E @(t,0)e(t,0) (2.10a)

£,(0) = E o(t,0)0" (t,8) (2.10b)

The expectation is taken with respect to the distribution of
{e(t)} when {y(t)} and {e(t,8)} are stationary processes
obtained from (2.1) and (2.7) for fixed 6. The stability

region is

T f
DS=={6[6 = (al, ceer @ 1 Cpy wees Cp )73 C (z) stable}
a c

It is easily seen that fl(e) in (2.1l0a) can be rewritten as

fl(e) = -fl(e)(e—eo) (2.11)
where

T (6) = E o(t,0)F(t,0)" (2.12)

~ _ 1

p(t,0) = DR ©(t,0) (2.13)

Co(q
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cf. Ljung (1976b) where these expressions are calculated.

Clearly 6 = eo is a stationary point. It is shown in Ljung,

s8derstrdm and Gustavsson (1975) that in this case, when the
orders of the estimated polynomials are equal to the true
orders, 60 is the only stationary point. Thus the K matrix

is, cf. Chapter 1,

-1 ~
K(6,) = ~£,7(06,)f,(6,) =
0 2 07170 (2.14)

T

= -[Ep(t,0,)0 (treo)]_l

~T

2.1.2. Young'’s Modification of the ELS Algorithm

In Young (1976) the basic ELS algorithm is modified to include

also filtered values of .

Introduce n(t), a filtered version of the data vector o(t)

n(t) = —— o(t) (2.15)
C(g ~,t)
where C(q_l, t) 1is the estimate at time t of the CO—
polynomial.

The algorithm is

1 1
B(t) = 6(t-1) +F — .
B 1T (OR T (=D n(e)-1)
] « Rl (e-1)n(t) (v (£) =0T (£) 8 (t-1)) (2.16)
_ 1 T
R(t) = R(t—l)-%E(n(t)w(t) - R(t-1))
The functions fl(e) and fz(e) entering in the differential
equations are
fl(e) =E n(t, 08)e(t, 06) (2.17a)
£,(0) = E n(t, 0)o (t, 0) (2.17b)

The expectation is taken with respect to {e(t)} where {y(t)}
and {e(t, 6)} are stationary processes obtained from (2.1)
and (2.7). n(t, 8) is the filtered version of ¢(t, 6) ob-

tained from (2.15). The stability region coincides with the
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stability region for the basic ELS algorithm.

Rewrite fl(e) from (2.17a) in the same manner as in Section
2.1.1 to yield

£,(8) = -F,(0) (8-8) = -En(t, 0)0(t, 8) (6-0

o) 0’

where ©(t, 0) is given by (2.13). The true value 6, of the

unknown parameter vector thus indeed is a stationary point and

linearization around 90 gives
K(0,) = —£.8)F. (6.) =
0/ - 270’ "1Y 00 T
~ T -1_~ ~T
= _[E(p(tl eo)‘@ (tl eo)] E(P(tr 60)(9 (tr eO) (2-18)
since
n(t, 6.) = ¢(t, 8,) = —2— o(t, 6,.)
0 F0 -1 " r0
Cola M)

2.2. THE ALGORITHM BY LANDAU

This algorithm is presented in Landau (1976). There it is
shown that the estimates are asymptotically unbiased if a
certain transfer function is positive real, cf. Chapter 4. The
algorithm is also discussed in Ljung (1976b). In this paper
global convergence w.p.l to the true values of the parameters
is shown under the same conditions. The following is a brief
review of the algorithm. Refer to Landau's article for
details.

The process is assumed to be given by the equation

g (a Dy (t) = By(a Hult) +w(t) (2.19)

where {w(t)} is an unmeasurable disturbance, {u(t)} and
{y(t)} the input and output sequences respectively. {w(t)}

is supposed to be a stationary stochastic process with rational
spectral density such that all moments exist and {u(t)} a
stationary sequence of independent random variables such that

all moments exist. The mean value of {u(t)} is supposed to
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be zero and the variance 02. The {u(t)} and {w(t)}
seqguences are supposed to be independent. The polynomials
Ao(q_l) and Bo(q_l) are of order n, and ng respectively,
with AO as in (2.2a) and

-1, _.0,.0 -1 o "

Bylg 7) = by thiq +...-+ban

With
0 0 0 .7
6, = [a], ..., ag ) Bgs eaes DO
a b
T

@0y (t) = [-y(t-1), ..., -y (t=n_), u(t), ..., u(t-nb)]

the process equation (2.19) can be written
T

y(t) = o, ()6, +w(t) (2.20)
The unknown parameters in the AO and BO polynomials are
estimated from a model

..l -

Alg Dy, (t) = Bl@ Hu(e)
or if the vectors

6(t) = (a,(t) (), by (t) b (€))7

= (a4 poeees @) =N roeeer b
a b
T

e(t) = ("YM(t"l)l "‘I-yM(t—na)l u(t), ..., u(t_nb))

are used
T

YM(t) = @ (t)o(t)
Introduce the sequences

£q(t) = y (t) -y, (t) (2.21)

T "a 0
e(t) = y(t) —@ (t)0(t-1) + = cieq (t-1) (2.22)
i=1

where cg, i=1,..., n, are some suitably chosen numbers.

The parameter estimates 6 (t) are recursively calculated
according to (2.8) with ¢(t) given by (2.22). This gives
the differential equation (2.9) with
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-Eo (t, 6)$T(t, 0) (6—90) (2.23a)

-h
=
D
li

Eo(t, 0)¢r(t, ) (2.23b)

h
\]
@
I

The expectations are taken over the distributions of {u(t)}

and {w(t)}. The vector (t,0) is defined as

-1
Cola ™)
— p(t, ©)
Aglg ™)
Co(q_l) = l-kcgq—l-+...~+co g 2

n
a

®(t, 8)

The stability region is given by

D, = {6|6 = (@, «eora 4 b

s b ) s A (z) stable}

Since the orders of the A(q_l) and B(g ) polynomials are
the same as the orders of the true polynomials Ao(q-l) and
Bo(q_l) the obvious stationary point 6 = 90 is unique

(Ljung 1976b). Thus the K-matrix is

K(6

_l _
o) = "E,7 (8 (8,) =

YBo (£, 008 (£, 0,) (2.24)

T -
-IEo(t, 800 (£, 8)]

2.3. THE SELF-TUNING REGULATOR

The self-tuning regulator is presented in Astrdm and Witten-
mark (1973) and Wittenmark (1973). The properties of the
algorithm are also discussed in Ljung and Wittenmark (1974),
Astrbm, Borisson, Ljung and Wittenmark (1977) and Ljung and
Wittenmark (1976). The convergence question is treated in
Ljung (1976b), where sufficient conditions for global conver-

gence are given.

Assume that the system is described by the difference equation

y(t+1)-+agy(t)-+...-+ag y (t=n_+1) =
a (2.25a)
=b0u(t—k)+...+bO u(t=k-n, ) + v(t+1)
0 nb b

or if polynomial notation is used
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-1 -1

By (q D)y (t+l) = by By(q ult=k) + v(t+l) (2.25b)
{u(t)} and {y(t)} are the input and output sequences of

the system. The time delay k > 0. {v(t)} 1is a sequence of

random variables. The system is supposed to be minimum phase.

Rewrite (2.25) as

0 0
y(t+k+1l) +a y(t) + ... +a_ _.y(t-n_+1) =
0 n -1 a (2.26)
.0 0 3 0 o -
= Bo[u(t) + elu(t 1)+ ...+ Bnb+ku(t nb k)] +w(t+k+1)
y (t+k+1) +o(q D)y (t) = 888(q_l)u(t) +w (t+k+1)

where {w(t)} 4is a moving average of order k of the {v(t)}

process.
After introduction of 60 and mo(t) from
_ 0 0 0 0 T
60 - (OLO, o o o g O(.n _l’ 0, e & o g O, Bl, o o o g Bn +k)
a b
(DO (t) = (_Y(t) y ey "Y(t-na+l) ’ _Y(t_na) y s ey _Y(t_s) ’
0 0 T
’ Bou(t_l) 14 LR 4 Bou(t_nb—k))

where there are s+l—na zeroes in GO, s > na—l, (2.26) can

be written as
0 T
y (t+k+1) - Bou(t) = qao(t)eO + w(t+k+1) (2.27)
The choice of the number s is further discussed below.

The equation (2.27) is the starting point for the estimation.

Assume that 68 = bO

0 and k are known. The model is then

T

y (t+k+1) = Bou(t) = @' (t) 0 +wy (t+k+1) (2.28)

l(
where the vectors ¢(t) and 6 are

_ T
e - [OLO, e o o g asl Bll L 4 Bnb+k]

@(t) = [-y(£), +.., -y(t=s), BOU(E-1), ..., Bou(t-n k)]
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The actual estimate of 60, 0(t), is given by a least squares
estimate from (2.8) in the same manner as in the basic ELS
and in the Landau algorithms. The residual sequence {e(t)}

entering in the algorithm is calculated as
- 0 T
e(t) = y(t)-—BOu(t—k—l)-w (t-k-1)6(t~1) (2.29)

The input {u(t)} is computed as timevarying linear feedback
from the output

utt) = - =5 o(e)To (¢) (2.30)
B0
This choice of input is discussed and motivated in Astrém and
Wittenmark (1973). The main reason for it is that if {v(t)}
is a white noise sequence then this regulator with the correct

number of parameters in the estimation converges to

ue) = - L ol (t)e,
Bo

which is a minimum variance regulator for the process (2.25)

in this case. However, one of the main properties of the self-
tuning regulator is that minimum variance control asymptotically
is achieved with the regulator (2.30) also when the noise

{v(t)} 1is a moving average of a white noise sequence. The

convergence point for the parameter estimation is in this case,

eMV = (igo’..-,—gs, hl, e e oy hnb+k) (2.31)

if the parameter estimates converge and if there are enough
parameters in the estimation. The parameters 95 and hj
are calculated from the polynomial equalities, cf. Astrdm
(1970)

(2.32)

H(q !

where Ao(q—l) and Bo(q—l) are defined in (2.25) above and
Co(q—l) is the moving average description of {v(t)}, i.e.

v(t) = e(t)-kcie(t—l)%—...+—cg e(t-n) = ¢ (g He(t) (2.33)

C
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{e(t)} is a stationary sequence of independent random
variables with zero mean and all moments existing. The F

and G polynomials are defined by

Ly o1+ q‘l-+...—+fkq’k (2.34a)

F(q 1

1 1

) g0-+glq— -+...-+gsq_s;s = max(na—l, nc—k—l, 0) (2.34Db)

Glg

Clearly, if the number of a-parameters is smaller than s+ 1,
eMV can never be a convergence point for the estimation algo-
rithm. Note that when COE 1, i.e. when {v(t)} is white noise,
60 = eMV.Also note that when a minimum variance regulator is
used the output is a moving average of order k over the
sequence {e(t)}, i.e.

y(t) = e(t) + ... +felt-k) = F(q 1) e (t) (2.35)

where the F(q_l) polynomial is the same as in equation (2.32).

Contrary to the former algorithms the parameter estimates in
this algorithm also influences the value of the process output
since the input {u(t)} is calculated via feedback (2.30).
The differential equations will however be the same as for
ELS, i.e. (2.9) with

fl(e) Ep(t-k, ©6)e(t+l, 6) (2.36a)

£,(8) = Eo(t-X, )" (t-k, 8) (2.36b)

The expectation is to be taken over the distribution of {e(t)}
assuming stationarity of the involved processes (2.25), (2.30)
and (2.29).

The stability region is




167

The linearization of the differential equation starts with

a rewriting of e(t+1l, 6) in (2.36a).

e(t+1l, 0) = y(t+l, 8) = @(t-k, 0) 0+ gou(t-k) +CoFe(t+1)
where (2.29), (2.33) and (2.26) have been used. The F poly-
nomial is of order Xk and emanates from the rewriting of
(2.25) to (2.26) with the identity

1=aTF+q Flg (2.37)

Using (2.30) for wu(t-k) and introducing eMV leads to

T

— - T - - - =

e(t+l, 0) = @(t-k, 06) (60 GMV)4-@(t k, 8) (GMV 6)4-C0Fe(t+l)

Now, (2.37), (2.32) and (2.25) gives
T —_ p— ‘—__

(t-k, 09) (GO—GMV) = (1 Co)y(t+l,m (F F)Coe(t+l)

which leads to
T
e(t+l, 8) = (l—CO)e(t+l, ) +p(t-k, 0) (GMV—G)-+COFe(t+l)
_ 1 T
e(t+l, 06) = — i p(t-k, 06) (6 _-0) +Fe(t+l)
- MV
co(q )

Denote the filtered value of @(t-k, 6) by ©(t-k, 9). The

equation (2.36a) is then

T

(6-0,,) =

£,(8) = -Eo(t-k, 8)%(t-k, 6) -

—fl(e)(e—eMv)

It is shown in Astrdm and Wittenmark (1973) that eMV in fact
is the only stationary point when the correct number of para-

meters are estimated. The matrix K +thus is

-1 ~
K(GMV) = —f2 (eMV)fl(eMV) (2.38)
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2.4. SUMMARY OF THE ALGORITHMS

The linearized equations (1.12) show that the matrix K is
crucial for the stability of the differential equation and
hence for the convergence of the algorithm. In the discussed
four algorithms this matrix has been written as

K(0) = -£51(0)%F, (8)

2 1

where the functions %1(6) and fz(e) are calculated above.
These functions are principally equal for the ELS, the Landau

algorithm and the self-tuning regulator. The corresponding K

matrices can all be written

K(0) = -[Bo(t, 8)o (t, 8)1 'Eo(t, )& (t, 6) (2.39)
where o{t, 8) 1is composed of old data and noise elements

and @ (t, 8) 1is a filtered version of o(t, 8).

These three algorithms can be regarded as special cases of an
algorithm where the K matrix has the form (2.39). The filtered
vector a(t, 8) 1is calculated as

T, 0) = H(g Ho(t, 6) (2.40)

where H(q—l) is causal, rational and asymptotically stable
filter. The eigenvalues for this more general type of algo-
rithm are calculated in the next chapter. The algorithm is
said to be symmetric since fz(e) ig a symmetric matrix.

The modified ELS algorithm do not £fit into this form and has
to be treated separately.
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3. E1GENVALUE CALCULATION AND LocAL CONVERGENCE RESULTS

In this chapter the eigenvalues of the matrices K, defined
in (1.12), will be calculated for the recursive schemes pre-

sented in the previous chapter.

3.1. THE GENERALIZED SYMMETRIC LEAST SQUARES METHOD

The eigenvalues of the matrix

-1

K(0) = -[Eo(t, 8)or(t, 0)1 TEo(t, 0)FT (t, 6) (3.1)

with

T(t, 8) = H(q *

Jo(t, 6)

and H(q_l) a causal, rational and asymptotically stable
filter will be calculated. The result is interpreted as
local convergence conditions for the three algorithms from
Chapter 2.

3.1.1. Preliminaries

This section contains two lemmas needed for the eigenvalue
calculations. The first lemma concerns the influence of a

white noise component in the ¢(t, 0) vector.

Lemma 1. Given the signal §S(s) with n elements which are
outcomes from random processes. Given also the signal W(s) =
= (w(s=-1), ..., w(s—m))T where the m elements are conse-
cutive outcomes from a sequence of uncorrelated random
variables {w(s)} with zero mean value. Form the signals

g(s) and ﬁ(s) from

S(s) = H(g 7)sS(s); W(s) = H(g 7)W(s)
where H(q_l) is a causal, rational and asymptotically stable
filter with H(0) = 1. Suppose that E WST=0 and E WS® =0.

Then the set of eigenvalues to the matrix
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are given by the eigenvalues of
—[E SST]_l E s5T
and
—[E WWT]_l E WW©
Moreover, the matrix has at least m eigenvalues in -1.

Proof. The lemma is proved in Appendix A. o

The m eigenvalues in -1 1in the lemma corresponds to
white noise components in the data vector. In the following
lemma the rest of the eigenvalues are determined for a special

form of the vector signal S(t).
Lemma 2. Given a vector signal

s_1

S(t) = [Sll e s o g S 2 Sp'l‘l’ s e 0 g n

p

where the first p elements are stationary stochastic ARMA

processes generated by

Bk(q—l) bg+...+bi_lq_n+l
Sk(t) = ———:—r W(t) = -1 n W(t); k = l, s ey P
A(g ™) l+ajq “+...+a g

{w(t)} is a sequence of uncorrelated random variables with
mean value zero and variance 02. The polynomial - A 1is

supposed to be asymptotically stable.

The remaining n-p elements in S are lagged values of a

stationary ARMA process

() = z(tkel) = Sy (exe1) =
A(g ™)

Sp+k

c0+dlq_l+..;+c q P
= _0 p_ql w(t-k+1); k=1, ..., n-p

-1
l+alq +...+anq
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Given also the filtered signals

~ - ~ ~ T
S(t) = H(@Hs(t) = (5(8), ..., S (£))
where H(q_l) is asymptotically stable
_l -
H(q-l) _ R(q l) _ l+rlq +...+r2q
-1 -1 -m
P(g ) l+plq +...+pmq
Then the eigenvalues of the matrix
-(e ssT) " le 58T
are
£
—H(uk) where A (uk) =0, k=1, ..., n

Proof. The proof is found in Appendix A.

Corollary. If S = (sl, e ey sn)T with
-1
B, (@ 7)

Sk(t) = ) w(t), k =1, , n
A(g ™)

and the same assumptions on the involved entities as above in

Lemma 2 are supposed to hold, then the eigenvalues of

]; ]; 7 14 LA 4 n

Proof. The result follows immediately from the first part of

the preceeding lemma, see Appendix A.

These two lemmas and the subsequent corollary will be combined
into a theorem concerning the eigenvalues to the matrix K in
(3.1) . The eigenvalue result is then applied on the three

special algorithms.
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3.1.2. Local convergence

Theorem 1. Consider a stationary random process

1

2(t) = —29 ) vt (3.2)
F(g 7)G(g ™)
where

-1

D(q—l) =d0+dlq_l+...+d g @
N3

-1

=1 -1 £
F(q 7) = 1+£q +...+fnfq
-n

-1, _ -1 g
G(g 7) = l-Fglq 4~...4—gngq

G is supposed to be asymptotically stable. {v(t)} 1is a

moving average
_ -1
v(t) = F(g Te(t)

where {e(t)} is a stationary sequence of independent random

variables with mean value zero and variance o

Introduce the vectors ¢(t) and $(t) as

T
e(t) = [-z(t-1), ..., z(t—nf—ng), vit), ..., v(t—nd)]
-1
e(t) = H(g 7)oe(t) -n
-1 r
-1 l+rlq t...tr g
-1, _ R{g ™) _ r
H(g 7) = —T = -
Pla™  14p g7t + p
plq +.e pn gq
p
where H(q—l) is asymptotically stable.
Then the eigenvalues of
_.l ~
-[Bo (t) " (£) 17 Bo ()" (£) (3.3)

are

{—l of multiplicity n_+n_ +1

f
—H(ak) where G (uk) =0; k=1, ..., n
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Proof. The proof is given in Appendix B. o

Corollary. Under the assumptions of the theorem, with the
exceptions that D(q_l) in (3.2)ris supposed to have the
constant term equal to 1, and that ¢(t) is supposed not
to contain the element v (t), the eigenvalues to

T, -1 ~
-(E @) Ewa

are

£ d

{—1 with multiplicity n.+n
£
—H(ak) where G (uk) =0; k=1, ..., n

g9

Proof. The result follows immediately from the proof of Theorem

1, cf. Appendix B. g

This theorem and its corollary will now be applied on the ELS

method, Landau's algorithm and the self-tuning regulator.

Theorem 2. If the parameter estimates from the ELS algorithm,

described above in Section 2.1.1, converge to § = 60 then
the eigenvalues of K(GO)
1 f
C (o)) where Ao(ak) =0, k=1, RN
07k
have negative real parts.
Proof. The proof is given in Appendix C. o

Theorem 3. If the parameter estimates from the algorithm by

Landau as described above in Section 2.2 converge to 8 = 60
then the eigenvalues of K(eo)
C.(a
- 9 "k £ - -
Ao(uk) where Ao(uk) = 0, k = ;, SRR

have negative real parts.

Proof. The proof is given in Appendix C. =]
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Finally, the self-tuning regulator is treated.

Theorem 4. If the parameter estimation in the self-tuning
regulator as described above in Section 2.3 converges to

8 =86 the eigenvalues of K(6,..)

MV’ MV

1

£ _ _
EETE;T where BO(Bk) =0, k=1, ..., n

have negative real parts.

Proof. Also this proof is given in Appendix C. o

3.2. LOCAL CONVERGENCE RESULTS FOR THE MODIFIED ELS ALGORITHM

In this algorithm the matrix K is given by (cf. (2.18))

-1 -1

~ ~ T
~£,7(8)F (8) = ~[E $(t, 8o, 8)7 1

~ ~ T

where 80 and o (t, 60)

filter involved in the calculation of @ is l/CO(q_l), as

are defined in Section 2.1l. The

in the basic ELS scheme.

A necessary condition for local convergence of this algorithm

is then given by the following theorem.

Theorem 5. Consider the modified ELS method as described

in Section 2.1. If the parameter estimates from this algorithm

converge to 0 = 60 then the eigenvalues of K(eo)
- where Af(a ) =.0 k=1, ¢, -n
C,(a,) 0"k ! ! ' Ta
0'7k
and
- L £ - -
Co(yk) where Co(yk) 0, k 1, eeey n,

have negative real parts.

Proof. The proof is given in Appendix D. o
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3.3. DISCUSSION

Consider a parameter estimation algorithm which is connected

to an ordinary differential equation

d _

= GD(T) = h(eD(T)) (3.5)
with the linearization around GD(T) = p*

S (p_(1) - 0%) = K(8%) (B (1) - 8%)

drt D D

cf. Chapter 1. If this matrix K(6*) can be represented as
(3.3), its eigenvalues given by Theorem 1 give a necessary and
sufficient condition for local stability of the differential
equation. In turn this gives a necessary condition for the
algorithm to converge to 6%. Thus the eigenvalue result makes
it possible to characterize the systems for which 6* is not

a possible convergence point, i.e. to prove divergence.

The eigenvalue condition is not sufficient for convergence
of the estimates. If that is to be shown, the domain of
attraction for the stationary point must be contained in a

compact subset D of an open connected subset of the stabi-

lity area Ds’ Tie parameter estimates 6 (t) must infinitely
often with probability one belong to Dl' Furthermore the
data vector must be bounded by a finite valued random variable
C, i.e. |o(t)] < C infinitely often w.p.l (Ljung 1975).
These conditions on @(t) and 6{(t) are referred to as

boundedness conditions.

It is péssible to make the boundedness condition fulfilled
without knowing the true values of the parameters, cf. Ljung
(1976c) . Thus in order to show asymptotic consistency of the
parameter estimation the major step is to construct a Lyapunov
function for (3.5) to handle the domain of attraction of the

stationary point.
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4, Some AsPeEcTS ON THE CONSTRUCTION OF ALGORITHMS

In the first section of this chapter estimation of parameters
in an ARMA process is treated. A new algorithm with nice
local convergence properties is proposed. A more general dis-
cussion on the filter H(q_l) in symmetric algorithms is
given in Section 4.2. Some conditions on the filter, which
imply that the eigenvalues of the matrix K in the algorithm

have negative real parts are established.
4.,1. ESTIMATION OF PARAMETERS IN AN ARMA PROCESS

Consider estimation of the parameters in the time series model

-1

Ay (a Hy(t) = cyla Me(t)

In the algorithms of ELS type the estimates are calculated
by the equations

1 1

(6(t) = 6(t-1) + & - g
t I, T, o1
l-+E{xl(t)R (t-1)x, (t)-1]
c RN (e-Dx, (0 [y () -t (8 (e-1)]  (4.1)
_ 1 T
R(t) = R(t-1) + $Ix,(£)x](t) - R(t-1)]

cf. (2.8) for the basic ELS algorithm and (2.16) for the

modified version. ..

The matrix K, defined by (1.12), is for the algorithm (4.1)
given by

- - T -1 ~T
K(8g) = =[B x,(t,00)x (£,00) ] "Ex,(£,64)07(£,6) (4.2)
cf. Section 2.1. The vector $(t,eo) is a filtered data vector
~ 1
@(t,0,) = ———— ©(t,0,) (4.3)
0 1 0
Cola ™)

where w(t,eo) is given in (2.4a).




In the basic ELS algorithm
xl(t) = xz(t) = ¢(t)

where ¢(t) 1is given in (2.6a) and (2.7) .

The equation (4.3) indicates however that it might be worth-
while to filter data. Since the polynomial Co(q-l) is not
known the estimated polynomial C(q—l,t) can be used. In
Young's modification of the algorithm xz(t) is filtered
by 1/C(q t,t), i.e.

xl(t) e (t)

x, (£) = —2—— @ (t)

C(q-lrt)

The expression of the matrix K (4.2) suggests two other
algorithms containing filtered data. If both xl(t) and

xz(t) are filtered, i.e.

x, (t) = %,(t) = _11 o (t)
Clg )

then

%o (£, B8.) = x,(t, 8,) = —=—— o(t, 8,) = G(t, 0)

17 0 2 ! 0 -1 ' 0 ' 0

Cola ™)
This gives
_ ~ ~T -1_ ~ ~T _

K(0,) = -[E &(t, 0)F (t, 8,1 E ©(t, 09)@ (£, 8g) = -1

i.e. the true value of the parameter vector, 60, is always

a possible convergence point. This is the Recursive Maximum
Likelihood method proposed by Astrdm. It is analysed in
séderstrdm (1973). It is treated also in Ljung, SHderstrdm

and Gustavsson (1975) and in Ljung (1976c). A similar method
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is derived by Fucht and Carapic (1976). When applied to an
ARMA process this method converges w.p.l to the true values

of the parameters.

The non-symmetric method, corresponding to

1
x, (t) = —= w(t)
1 C(g lrt)

Xz(t) = @(t)

appears new. This algorithm seems attractive since the local
stability of the corresponding differential equation, linear-

ized around 6 =9

0 is determined by

K(8y) = = [Bo(t,00)0 (t,00)] " E o(t,00)0 (t,0) = -I

i.e. the true value 60 of the parameter vector is always a

possible convergence point. Thus this method has desirable
local convergence properties. The global convergence proper-

ties have however not been studied.
4.2, INFLUENCE OF THE FILTER TRANSFER FUNCTION

Consider a symmetric algorithm with,

K(8) = - [E o(t,0) 0 (t,0)] 7 E o(t,8)d  (t,8)
cf. (2.39)
p(t,0) = [—z(t-—l),...,—z(t—nf-ng),v(t),...,v(t—nd)]T
~ -1
e(t,8) = H(q Ho(t,0)

Data are assumed to be generated by

-1
z(t) = ?{q ) ) v(t)
F(g 7)-G(g 7)
-1

v(t) = F(g 7) el(t)

where {e(t)} 1is white noise, cf. Theorem 1.
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The eigenvalues to K(6), that are influenced by the
filter are

—H(ai) where Gf(ai) =0 i=1,...,n

g9

cf. Theorem 1. The problem is to explore under what

conditions these eigenvalues have negative real parts.

Firstly, suppose that the filter H(z) has all poles and

zeroes outside the unit disc and that the poles of the poly-

nomial Gf(z) are real. Then
H(x) > 0; x real, |x| <1
since H(0) = 1 > 0. Consequently the eigenvalues of K(#8)

are in the open left half plane and the stationary point is

a possible convergence point.

Secondly, if the conditions on H(z) are strengthened by

demanding that H(z) is positive real, i.e.

a) H(x) 1is real for real x
b) H(z) have all poles outside the unit circle

c) Re H(e™) > 0 -T < W< T

the eigenvalues of K(6) have strictly negative real parts as
long as the polynomial Gf(z) is asymptotically stable. Hence,
the conditions on the polynomial Gf(z) are relieved and
irrespective of the generating system, the corresponding sta-

tionary point is a possible convergence point to the algorithm.

Finally, for all other nonpositive real, stable, and minimum
phase filters H(z) there is a subset of the unit circle such
that if any of the zeroes to the Gf(z) polynomial belongs
to it the parameter estimation diverges. It was demonstrated

above that the real axis is not contained in this subset.
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5. EXAMPLES

The algorithms introduced in Chapter 2 will be further
examined. The basic ELS method and the self-tuning regulator
are treated simultaneously as well as the modified ELS algo-
rithm and the algorithm by Landau. The corresponding eigen-

value results were given in Theorems 2, 3, 4 and 5.
5.1. THE BASIC ELS METHOD AND THE SELF-TUNING REGULATOR

It is wellknown that the ELS method and the self-tuning regula-
tor might be divergent. Two specific examples of this will be

considered.

Example 1. In Ljung, S&derstrdm and Gustavsson (1975) the

system
v(t) +0.9y(t=1) +0.95y(t-2) = e(t) +1.5e(t-1) +0.75e(t-2)

is shown to give a nonconverging paraméter estimation. The
filter

H(z) = 1 _ 1 5

C(z) " 141.5240.752

is nonpositive real. The zeroes of the Af(z) polynomial are
-0.450 i 0.865 and the eigenvalues (0.162+i 1.383, -1, -1).
Theorem 2 then implies that the parameter vector with the true

values of the parameters is not a possible convergence point.
Example 2. A self-tuning regulator is applied to the system

v (t+1) = 1.6y (t) +0.75y (t-1) = u(t) +u(t-1) +

+0.9u(t-2) +e(t+l) +1.5e(t) + 0.75e(t-1)

in Ljung and Wittenmark (1974). It is demonstrated that the
parameter estimation is divergent. The filter H(z) is not
positive real. The zeroes of the Bf(z) polynomial are

-0.5+1i 0.806 and the eigenvalues (0.136+1.643, -1, -1).
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Thus, referring to Theorem 4, the behaviour of the algorithm
is possible to explain by the fact that the minimum variance
controller parameters do not constitute apossible convergence

point. o

In both of these algorithms H(z) = 1/C(z) where C is
asymptotically stable. If it is of first order, i.e. C(z) =
= l-kclz, Re C(z) > 0 as long as |z| < 1. The eigenvalue
condition for convergence to the desired convergence point
is thus fulfilled. For a second order C-polynomial, i.e.
C(z) = l-kclz-kczzz, the stability region in the (cl, c2)
plane is shown in Figure 1. If (cl, 02) belongs to the

striped part of this figure H(z) = 1/C(z) is positive real.

AC

| T ‘4.’(%
2 R / 1 2

Figure 1. Stability region in the (Cl’ cz) plane for a
second order polynomial C(z) = l+clz+c222
For (cl, c2) in the striped part the filter

1/C(z) 1is positive real.

Consider the ELS method. It was shown in Chapter 4 that if
H(z) 1is not positive real, there is a subset of the unit

disc such that if any zero to Af(z) belongs to this subset,
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the estimation diverges. Take a second order polynomial C
and suppose that Af(a+ib) = 0. Then

Re H(a+ib) > 0 & Re C(a+ib) > 0

2 2 2
[a-+cl/202] - b° > —l/cz-+[cl/202]

This is a hyperbola in (a, b) for fixed (cl, cz). If
¢y = 4c2, i.e. on the parabola in Figure 1, this equation
describes two straight lines which for cy < 0.5 do not
intersect the unit circle. For (cl, cz) = (2, 1) or (-2, 1)
the maximum subset of the unit disc giving divergent para-

meter estimation is achieved.

Ab
1

-1

Figure 2. The ELS method applied on a timeseries with

(cyrcy) = (2,1) or (-2,1) diverges if any

zero of Af(z) belongs to the shaded area.




5.2. THE MODIFIED ELS METHOD AND LANDAU's ALGORITHM

In both the modified ELS algorithm and in the algorithm by

Landau it is essential to determine C(Yj) where Cf(yj) =0
j=1, ..., n,. The C(z) polynomial may be factorized as
n
c
C(z) = 1w (l-zv.)
, i
i=1

where Y; may be complex. To determine the sign of Re C(Yj)

the argument of C(yj) will be studied.

C(Yj) is a real, positive number for real Yj‘ If, however,
Yj is complex then in general
n
c
arg C L)o= arg(l-vy.vy.
g (YJ) s g ( YJYl)

will not be equal to zero. Hence Re C(Yj) can be negative.
Consider a third order polynomial

C (z) = (z-c)(z-(a+ib)) (z~ (a~ib))
The argument of C(a+ib) is

arg C(a+ib) = arg(l-c(a+ib)) + arg(l-(a+ib)?)

These two angles are illustrated in Figure 3. Straightforward

calculations of the argument gives

-cb " —-2ab
l-ac 2 .2
- -b
tan(arg C(a+ib)) = - L (%. )
cb 2ab
1= (35) | 57
1-(a“-b")
which is infinite for
€= 5 7
a(3b“+1-a“)

or
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2 (1-a%) (1-ac)
- 3ac-1

This defines for constant c¢ asubset AS of the unit disc

in the (a, b)=-plane such that for (a, b) in A, Re C(a+ib) < 0,
i.e. the corresponding parameter estimation diverges. AS is
symmetric with respect to both the a- and the b-axes.

The part of AS that is contained in the first quadrant

is shown in Figures 4 A, B and C for different values of

¢. Note that for c¢ < 0.5 AS vanishes.

Im A Im A

0
A B L
A B
0 N »Re 0 x1 -+ Re
+ +
-i- -
_ 2
A: cla+ib) A: (a+ib)2
B:1-cla+ib) B: 1-la+ib)

Figure 3. The argument of C(a+ib) is the sum of the two

angles 6 and 62

1
Sl = arg(l-c(a+ib)) and
62 = arg(l—(a+ib)2).

Clearly 6;+86, can be made greater than /2.
The crosses show the zeroes of the polynomial
ct(z) = (z-0) (z- (a+ib)) (z- (a-ib))

where c¢ = |a+ib| = 0.9 and

arg (a+ib) = 40°.
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Choose a2 = 1-x and b2 = xy. The critical value of c
(from (5.1)) is then

- 1ty
V1-x(1+3y)

If especially x = 0.36 and vy = 0.16/0.36 the complex

c

poles will be 0.8 i 0.4, with distance from the origin 0.8.

The critical value of ¢ is ~0.77. Then for the C-polynomial
C(z) = (1-0.8z) (1-(0.8+i0.4)z) (1-(0.8-10.4) z)

the eigenvalues ‘1/C(Yi): i=1, 2, 3 are

(-11.97, 0.558+1i 12.58)

}4’0‘
o
> o

, > a —tT—+®a ———+#a
5% 1 5 1% 5 %,

1/3C 1/3C
A) c=1 B) 1/2 < c <1 C) 1/3 <c < 1/2

Figure 4. Let As = {(a, b)|a2+b2 <1l, ¢>0

Re(l—c(a+ib))(l—(a+ib)2)(l—(a2+b2)) < 0}

The shaded region is the part of AS that is in the
first quadrant of the unit disc in the (a, b)-plane.
A is symmetric with respect to both the a- and the

s
b-axes. It vanishes for ¢ < 0.5.
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and with the C-polynomial

C(z) = (1-0.9z) (1-(0.8+i0.4)z) (1-(0.8-10.4) z)

the corresponding eigenvalues are

(-25.30, 2.998 = 112.95)

This example is applicable to both of the considered algorithms.

In the Landau algorithm the nominator polynomial is put equal
to 1 (cf. Chapter 2.2).
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6. SUMMARY

In this part 1local convergence of some recursive parameter
estimation algorithms has been treated. The results have been
applied on some specific algorithms namely the Extended Least
Squares algorithm and a modification theoreof, an algorithm
proposed by Landau and the self-tuning regulator by Astrdm and

Wittenmark.

The key result is the calculation of the eigenvalues to a matrix
occuring in a linearized nonlinear differential equation. This
equation describes the asymptotié behaviour of the algorithm

and only stable stationary points are possible convergence points

to the algorithm. If the matrix is
T.- ~ T
-IE o () o(©)TIT E 0(0)3(¢)

where o(t) is a data vector composed of old output and noise

components from the process description

-1 -1
]3](-q )_l v(t) = D(q_l)
F(g )G(g ) G(g ™)

y (t) e(t)

and

1

o(t) = H(g ")o(t)

with H(g l) a causal, rational and asymptotically stable

filter then the eigenvalues are =1 of multiplicity nd%—nf(+l)
and —H(yk) k=1, ..., ng where ngr Ng and fn are the

orders of the D, F and G polynomials and G (yi) = 0. Thus,
if the filter H(z) is positive real, all the eigenvalues have

negative real part since Gf(z) is supposed to be stable.

The eigenvalue result gives useful insight into the properties
of the algorithm. It makes it possible to characterize the
system for which a stationary point to the algorithm is not

a possible convergence point.
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This result is then applied on the special algorithms mentioned.
For the ELS algorithm and the self-tuning regulator, the filter is
H(q—l) = l/CO(q_l). The true value of the parameters is thus

not a possible convergence point for the ELS algorithm if the
numbers —l/CO(ai) have positive real part. oy is a zero to

the Ag—polynomial in the true time series description. When the
self~-tuning regulator is considered the critical eigenvalues are
—l/CO(Bi) where Bi is a zero to the Bf(z) polynomial in the

0
true system description.

In the algorithm by Landau, the filter is H(q—l) = Co(q—l)/AO(q_l)

where the polynomial Co(q_l) is at user's disposal. The true

value of the parameter vector is thus a possible convergence

point if —Co(uk)/A (o, ) has negative real part. o is a zero
£ 0"k k

to Ao(z).

In the algorithm by Young, finally, the eigenvalues are —l/CO(uk)
as in the basic ELS but also —l/CO(Yi) where Y5 is a zero to

the Cg(z) polynomial.

These necessary conditions for the basic ELS algorithm, the
method by Landau and the self-tuning regulator have a counter-
part in a result in Ljung (1976 b, c) where he shows that it is
sufficient for global convergence w.p. 1 to the true value of
the parameter vector that the filter H(z) -1/2 1is positive
real. In Landau (1976) the same condition (cf. Ljung 1976 c¢) is
used to show that the parameter estimates ari asymptotically

)

unbiased. The properties of the filter H(qg are thus inti-

mately tied to the convergence of the recursive algorithms.

Two of these algorithms, i.e. the basic and the modified ELS
method, are apt for estimation of parameters in a timé series.
Through simple modifications in these algorithms and the
corresponding differential equations both the Recursive
Maximum Likelihood method and a new algorithm where the true
value of the parameter vector always is a possible conver-
gence point for the parameter estimation have been con-

structed.




/. REFERENCES

Astrbm, K.J. (1968): Lectures on the Identification Problem —
The Least Squares Method. TFRT-3004, Department of Automatic
Control, Lund Institute of Technology, Lund, Sweden

Astrbm, K.J. (1970): Introduction to Stochastic Control Theory.

Academic Press, New York.

Astrém, K.J. (1974): A Self-Tuning Parameter Estimator. TFRT-3114,
Department of Automatic Control, Lund Institute of Technology,

Lund, Sweden

Astrém, K.J., Borisson, U., Ljung, L. and Wittenmaxrk, B. (1977):
Theory and Application of Self-Tuning Regulators. To be
published in Automatica 13. This is an expanded version of
a paper given at the 6th IFAC World Congress 1975 in Boston,

Mass.

Astrotm, K.J. and Eykhoff, P. (1971): System Identification — A
Survey. Automatica 7, 123-162

Astrbm, K.J. and Wittenmark, B. (1973): On Self Tuning Regulators.
Automatica 9, 185-199

Box, G.E.P. and Jenkins, G.M. (1970): Time Series Analysis:

Forecasting and Control. Holden-Day, San Francisco

Eykhoff, P. (1974): System Identification. Parameter and State

Estimation. John Wiley and Sons, London

Fucht, B.P. and éarapic, M. (1976): On=Line Maximum Likelihood
Algorithm for the Identification of Dynamic Systems,
Preprints 4th  IFAC Symposium on Identification and

System Parameter Estimation, Tbhilisi, USSR

Goedheer, L.D. (1976): Comparison of Several Identification
Methods and their Mutual Relations. Department of Electrical
Engineering, University of Technology, Eindhoven, the Nether-

lands

Isermann, R., Baur, U., Bamberger, W., Kneppo, P. and Siebert, H.
(1974) : Comparison of Six On-Line Identification and Parameter
Estimation Methods. Automatica 10, 81-103

Kashyap, R.L. (1974): Estimation of Parameters in a Partially

Whitened Representation of a Stochastic Process, IEEE Trans-
actions of Automatic Control AC-19, 13-21



190

Kashyap, R.L. and Rao, A.R. (1976): Dynamic Stochastic Models

from Empirical Data. Academic Press, New York

Landau, I.D. (1974): A Survey of Model Reference Adaptive
Techniques — Theory and Applications. Automatica 10, 353-379

Landau, I.D. (1976): Unbiased Recursive Identification Using
Model References Adaptive Techniques. IEEE Transactions on
Automatic Control AC-21, 194-202

Ledwich, G. and Moore, J.B. (1976): Multivarible Self-Tuning
Filters. Report, Department of Electrical Engineering,

University of Newcastle, Australia

Ljung, L. (1975): Theorems for the Asymptotic Analysis of
Recursive Stochastic Algorithms. TFRT-3096, Department of
Automatic Control, Lund Institute of Technology, Lund, Sweden

Ljung, L. (1976 a): Analysis of Recursive Stochastic Algorithms.
TFRT-7097, Department of Automatic Control, Lund Institute
of Technology, Lund, Sweden. To be published in IEEE Tr-AC
22, Aug 1977.

Ljung, L. (1976 b): On Positive Real Transfer Functions and the
Convergence of Some Recursive Schemes. TFRT-3138, Department
of Automatic Control, Lund Institute of Technology, Lund,
Sweden. To be published in IEEE Tr-AC 22, Aug 1977.

Ljung, L. (1976 c): Convergence of an Adaptive Filter Algorithm.
Report LiTH-ISY-I-0120, Department of Elegtrical Engineering,
Link&ping University, Linkdping, Sweden. To appear in Int
J Control.

Ljung, L., S6derstrdm, T. and Gustavsson, I. (1975): Counter-
examples to General Convergence of a Commonly Used Recursive
Identification Method. IEEE Transactions on Automatic Control.
AC-20, 643-652

Ljung, L. and Wittenmark, B. (1974): Asymptotic Properties of
Self-Tuning Regulators. TFRT-3071, Department of Automatic
Control, Lund Institute of Technology, Lund, Sweden

Lijung, L. and Wittenmark, B. (1976): On a Stabilizing Property
of Adaptive Regulators. Preprints 4th IFAC Symposium on

Identification and System Parameter Estimation, Thilisi, USSR

Panuska, V. (1968): A Stochastic Approximation Method for
Identification of Linear Systems Using Adaptive Filtering.

Proceedings JACC




191

Panuska, V. (1969): An Adaptive Recursive Least Squares Identi-
fication Algorithm, Proceedings 8th IEEE Symposium on Adaptive

Processes

Saridis, G. (1974): Comparison of Six On-Line Identification
Algorithms. Automatica 10, 69-79

Sdderstrdm, T. (1973): An On-Line Algorithm for Approximate
Maximum Likelihood Identification of Linear Dynamic Systems.
TFRT-3052, Department of Automatic Control, Lund Institute
of Technology, Lund, Sweden

Soderstrdm, T., Ljung, L. and Gustavsson, I. (1974): A Comparative
Study of Recursive Identification Methods. TFRT-3085, Depart-
ment of Automatic Control, Lund Institute of Technology,

Lund, Sweden

Talmon, J.L., van den Boom, A.J.W. (1973): On the Estimation of
Transfer Function Parameters of Process and Noise Dynamics
Using a Single-Stage Estimator. 3rd IFAC Symposium on Identi-

fication and System Parameter Estimation, the Hague/Delft

Wittenmark, B. (1973): A Self-Tuning Regulator. TFRT-3054, Depart-
ment of Automatic Control, Lund Institute of Technology,

Lund, Sweden

Young, P.C. (1968): The Use of Linear Regression and Related
Procedures for the Identification of Dynamic Processes.

Proceedings 7th IEEE Symposium on Adaptive Processes

Young, P.C. (1974): Recursive Approaches to Time Serieés Analysis.
Bulletin of the Institute of Mathematics and its Applications,
10, 209-224

Young, P.C. (1976): Some Observations on Instrumental Variable
Methods of Time-Series Analysis. Int. J. Control 23, ;
593-612




192

APPENDICES

Notations

All integrals are evaluated along the positively oriented

unit circle.

E(¢) denotes mathematical expectation.

The subscript 0 on the polynomials in Theorems 2-5 is omitted.
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ApPENDIX A

Proofs of Lemmas 1 and 2

Proof of Lemma 1 (p.169)

The characteristic equation for the matrix

T

} - - mmT17t

LRI =R o it -2

=0

is

det (AI+[E MMT1 1[E MAT]) =

o
I

1

det[E MMY1™! det[A E MM +E MM ]

But the covariance matrices EMMT and EMMT are blocktriangular

since EWST = EW§T = 0. Thus the equation to solve is
0 = det[A E 5SS +E 58" ]-det[AEWW + EWN ]
Hence, the first part of the lemma is proven.

The matrix E WWT is diagonal since the elements of W are

mutually uncorrelated. The (i, j):th element in EWW'II is

0 i< 3
E w(s—i)%(s-j) = <{E W2(S-i) i= 3
Xij i >3

where xij is uninteresting in this context. Thus

0 = det[\ E WW +E WiW'] =
A E we(s-1) 0 E w2 (s—1) 0
0 A E w”(s-m) E w (s-m)

X,
i3]

(A+l)m-E w2(s—l)~,,,-E w2(s—m)

The lemma is thus proven.
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Proof of Lemma 2 (p. 170)

First suppose that the zeroes of the Af polynomial are discrete.

The characteristic equation for the matrix

-(gssT)™1 gsgT (A.2)
_ T _ T T.T
S = [sl, ooy Sp’ Sp+l’ .oy Sn] = [Sl 02]
is
0 = det (A EssT+Es§T) (A.3)

The partitioning of S induces a partitioning of the matrices

in (A.3). Each of the resulting four parts is studied separately.

A typical element in ESlsi is (Astrom (1970))
> BY(z) B.(2) k=1, p
E sy (B)sy () = oo [ —f— - 202 Ty - ’
J m1 A (Z) zZ - 14 14 p

Since the Af(z) polynomial is supposed to have all zeroes
inside the unit disc and the Bi(z) polynomial has at least
one zero in the origin, only the residues in the zeroes of the

Af(z) polynomial affect the value of the integral. Thus

5 I Bi(z) Bj(z) 1 k=1, ..., p
E s, (t)s.(t) = 07 X Res o o —hsy L
k 3 r=1 o Af(z) A(z) z =1, .o, P
where Res, {D(z)} is the residue of D(z) in 2z = Zge {ar},
r =1, ...,On are the zeroes of the Af(z) polynomial.

Since the zeroes of the Pf(z) polynomial are inside the unit
disc the same arguments applied to an element of the matrix

B Slg T give

1
N , n B (z) B, (2) k= 1,...,p
E sk(t)sj(t) =0 rilResOcr Af(z) NGO H(z) {3 5= 1,.0,p

Next, consider the elements in E SlszT and E Slng' The

(k, j):th element in the first of these is
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£
2 B (z) Jj-1
. k C(z) =z dz
E s, (t)z(t-3+1) = = [ . =
k 2Ti Af(z) (z) Z
n Bf(z) k =
2 k c(z) ._j-2 T r P
r=1 riA (z) J P P
and in the second
f
2 B (2) j-1
~ _ O k C(z) , . Z dz
E sy (t)z(t-3+1) = 5= ] =% NG H(z) - =
AT (z)
f
n B (z) -
= 02 by Resa ? . ggz; H(z)zJ 2 ;
r=1 riA (z)
k=1, .cc, Py J =1, ..., n-p

which follows immediately in the same manner as above.

Next, the (k, j):th element in the matrices E S$,S T and

~ T 271
E S2Sl are determined.
2 _ B. (z)
E z(t-k+l)s,(t) = 2 [ gt7k &Lz 3~ dz _
| 2mi Af(z) A(z) =z
n-p e p-1
_ 02 [ zl—k z (coz +clz + .+cp) ] Bj(z) dz _
2Ti Af(z) A(z) =
P = -
2 n (coz +...+cp) Bj(z) n-p-k k=1, ..., n-p
= 0~ I Res = SN z (7 4 = 1
r=1 r AT (2) ! r B
and
- o D (cozp+."+c )  B.(z) n-o-k
E z(t-k+l)s.(t) =0 % Resa = J H(z)z p
J r=1 r A" (z) A(z)
k=1, ..., n=p; J =1, ..., p

which follows from the Af(z) and Pf(z) polynomials being
stable.

Finally, the matrices E 8282T and E 82§2T with the following

(k, J):th elements are studied.
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n-p b
2 ) Z (c.zv+ +c_ )
_ g j-k 0 C(z) dz
E z(t-k+1)z(t-j+1) = — [ z ) z
27i Af(z) A(z) =z
n (C Zp'l' .+C ) .
9 0 p’ C(z) n-p+j-k-1
= 0 Z Resu F A(z)
r=1 r A" (z)
k =1, .y D=p; 3 =1, ..., n-p
( P
n c z5+ .. .+C )
E z(t-k+1)Z (t-j+1) = 02 z Res I = B . gﬁi; )
ar{ A" (z)
_ 1 = r e ¢ NP
° H(z)-zn pti-k l}; s
J = ro~eey NP

since there are no poles

in the origin for any

combination of

(k, 3).
Consequently
T ~T 2n n
0 = det(AM E SS™+E 8S7) = det] = (A+H(ar))ﬂr] (A.4)
r=1
where ﬂr is the matrix of residues in ar It is of rank one
and can be written
[ _f Yo .
B] (o)) B, (0,)
=f Ala)
A (ar)ar r
£
7§ (qr) Bp(ar)
ﬁf(d ) o Ala)
r r
’”' =
t p n-p-1
(coar+ .+cp)ocr C(G£i
-£ Aa_)
A (ar) r
© oP+...4c ) C(a.)o P71
r " p r'“r
ﬁf(ot ) A(O(r)
where
Kf(a ) = (o_-0-) (0. ~a ) (a_=-o, ) (o_=0a_)
r r 17" 'r Tr-1 r r+l17°"°"*r "n
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Hence, the soclutions to (A.4) are
A= —H(ur), r=1, ..., n

Now, suppose that the Af polynomial has multiple zeroes. It is
then always possible to do a small perturbation in the coefficients
with a polynomial st(z) where € 1is a small number such that
the zeroes of the resulting polynomial Af(z)-+eDf(z) are
distinct and strictly inside the unit disc. The elements in the
matrix A E 55T +E s§T then look like

M(z)

£ = dz =
[A"(z)+eD (z) 1[A(z)+eD(z) ]
f £ £
= f M(z) dz—-sf[A (z)D(z)+D:;z)A(z{;eD (z)D(z) IM(z)dz
2t (z) a(z) af(z)a(z) (af (z)+ep(2)) (A (z)+eD(2))

Therefore, as the eigenvalues of (E SST)_lE SgT depend

continuously on the elements in the matrix, there is a continuous
function relating the eigenvalues to the zeroes of the af
polynomial. Thus if € - 0, i.e. the Af polynomial gets multiple
zeroes, a multiple eigenvalue of the same multiplicity as the
corresponding zero to the Af polynomial is formed. Thereby the

proof of the lemma is complete. =




198
APPENDIX B

Proof of Theorem 1 (p.l1l72)

The aim is to construct a new basis in the space spanned by

the elements in the vector ¢. This new basis will be such that
it can be decoupled into two parts which are uncorrelated. It
is achieved by partitioning the data into the innovations which
are needed to describe the v=elements in w , 1i.e.

e(t), ..., e(t-n), say and, essentially, the predictions of

certain z-elements based on information up to and including n-1.

Firstly
v(s) = F(g Ne(s) = e(s) +fye(s=1) + ... +£_ e(s-ny);
ne £
(B.1)
s = t, ooy t—nd
i.e. the nf4-nd4-l elements e(t-i), 1 = 0, ..., an+nd of

the {e(t)} sequence are needed to describe the v-elements in

Q.

Secondly, the elements of {z(t)} which are included in
¢p must be described. Separate the cases ng < ng + 1 and

n >n, + 1.
g =

d

Suppose that ng < nd4-l. "It will be . shown that the innova-

tions above and the minimum mean square error predictions

Q(t—nf—ilt—nf—nd—l) of z(t-ng-i), i =1, ..., ng, can be used

to describe all the z-elements. Clearly

z(t=-1) = 2(t—i|t-nf—nd—l)-+€(t—i) (B.2)
where ¢(t=i) is a linear sum of the innovations e(t-1i), ...,
e(t—nf-nd) for i =1, ..., nf+ng (cf. Box and Jenkins (1970),

Astrom (1970)). z(t) 4is given by

D(g” )

20 = ha(q

— v(t)
F (g 1

)

or, with (B.1)
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z(t-1i) = -g.z(t-i-1) - ... -g_ z(t-i-n_) +d.e(t-i) + ...+
1 ng g 0 (B.3)

-kdn e(t—l—nd)
d
The minimum mean sguare error prediction is given by the
conditional mean. Therefore, calculate the conditional mean of

(B.3) given information up to and including t-—nf-nduél.

Q(t—ilt—nf-nd—l) = —ng(t—i—l{t—nf—nd—l)— .. =
_gngﬁ(t—l—ng|t—nf—nd—l)-+d0é(t—1|t—nf—nd—l)+
co+d e(t—l—ndlt—nf—nd—l)
d
Since the innovations are independent
&(t=j[t-ngny-1) =0 j =1, ...y ngtny

which means that 2(t-i|t-n -1) is a linear combination of

2(t-ng-1[t-n

£
ehg~L) oy ﬁ(t—nf—ng{t—nf—nd—l) for i=1,...,ng

Hence, for n < n.,+1
g d

e(t) = an(t)
where @ 1is a constant square matrix and

n(t) = [ﬁ(t—nf—llt—n —nd—l), ey 2(t—nf—ng|t—n -n.~-1),

£ £ 'd

(B.4)

, e(t), ..., e(t—nf—nd)]T

Now suppose that ng > nd-kl. In this case the new basis vector

is

n(t) = [Q(t—nf—l[t—nf—nd—l), ey ﬁ(t—nf—nd]t—nf—nd—l), 5.5)

’ z(t—nf—n -1), ..., z(t-n —ng), e(t), ..., e(t—nf—nd)]

d f

i.e. there exists a constant square matrix § such that

e(t) = Qn(t)

T
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This is shown in the same manner as above and this part of

the proof is therefore omitted.

Clearly also the filtered versions of the ¢ and n vectors

are related with the same § matrices.

The equation for the eigenvalues is then

0 = det[AI+ (E 0ot) 1 E @or] =
= det[AI + (E nn’) 'E AT
Both of the n(t)-vectors can be partitioned as n(t) = (s(t),
w(t))T where w(t) = (e(t), ..., e(t—nf—nd))T Thus from the
construction of n(t) it follows that E w(t)s(t)T = 0 and
since H(q_l) is causal also E w(t)g(t)T = 0. Lemma 1 then
implies that there are n_+n.,+1 eigenvalues in -1 corres-

£ d
ponding to the innovations part in n(t).

The remaining eigenvalues are to be determined using Lemma 2
and its corollary. Therefore, consider the calculation of the
predictions. They are computed as

K -1

nd+l-i(q )

2(t-ng-i|t-n 1) e(t-ng-ng4-1) (B.6)

£ g~

where the polynomial Knd+l—i(q l) is determined by the
identity (Astrdm 1970)

-n . -1+i
-1, _ -1 -1 S| -1
Dlg ™) = G(g ")L(g 7) +q Knd+l_i(q ) (B.7)
The polynomial L(q—l) is of degree nd—i,
Consider first the case ng < nd-kl (B.4) . In this case
i=1, .., ng. The degree of the Knd+l~i(q_l) polynomial

is ng—l independent of i. This is seen if the highest degree
terms in the identity (B.7) are considered. Therefore the con-
ditions for the corollary to Lemma 2 are fulfilled. The remaining
eigenvalues are thus in this case —H(ak) where Gf(ak) = 0,
k=1, ..., ng.

Finally, study the eigenvalues to the s part of the n vector
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when Ny >n.+1. In this case the index i in (B.6) ranges

d

from 1 to n The degree of the Knd+l_i(q—l) polynomial

a
is ng-—l (from (B.7)). Moreover, since there are ngq
dictions in (B.5) all of the conditions for Lemma 2 are ful-

pre-

filled. Hence, the remaining eigenvalues are also in this

where Gf(uk) =0, k=1, ..., n_. The proof

case in =H(q
( g

)
k
of the theorem is thereby complete.

Proof of Corollary (p.173)

The corollary follows immediately since the innovations term
e(t) in y(t) in the proof of Theorem 1 is needed only to

handle v (t) in the theorem.
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ApPENDIX C

Proofs of Theorems 2, 3 and 4

Proof of Theorem 2 (p.173)

According to the theorem by Ljung referenced in Chapter 1 the

eigenvalues to the matrix

' - ~T
-[E o(t, 800" (t, 60171 E o(t, 03" (£, 6,) (C.1)
0 0 0 0
with
~ 1
o(t, 6,) = ——— o@(t, 6,)
0 1 0
Co(q )
must have negative real part when the algorithm is locally
convergent to 60. Since in this case
T
e(t, 64) = [-y(t-1), ...,—y(t—na), e(t-1), ..., e(t—nc)]

the corollary to Theorem 1 is applicable. It states that there

are n_ eigenvalues to (C.1) = (2.14) in =1, and that the
s : f AL _

remaining are in —l/C&ak) where Ao(ak) =0; k=1, ..., n_.

It is thus clear that if the real part of any of these numbers

is strictly positive, the linearization is unstable

which means that the algorithm cannot converge to eo. o

Proof of Theorem 3 (p.173)

Since the vector ¢ is

o(t, 60) = [-yM(t-l), N, —yM(t—na), u(t), ..., u(t-nb)]T

the eigenvalues to the matrix (2.24) are =1 with multiplicity

=0, k=1, ..., n

£
nb-kl and —c&ak)/%fak) where A a

o (o)
according to Theorem 1.

Thus, if any of these numbers have strictly positive real part,

convergence to the stationary point 60 cannot be achieved. i
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Proof of Theorem 4 (p.174)

The ¢ vector in the self-tuning regulator is

O(t) = [-y(t), ..., -y(t=s), ggu(t-1), ..., Bou(t-n, k)]

where {y(t)} is a moving average of order k

y(t) = F(qg Yye(t)

The input u(t) is calculated from

a(t) = - —5— G(?l;) —— v(t)
b0 Bo(g‘ YE(g ™)
Thus the eigenvalues of the matrix (2.38) are -1 with multi-
plicity s+k+1 and -1/CfB,) where Bg(Bk) =03 k=1, ...,

ny according to Theorem 1.

The desired result thus follows from the theorem by Ljung

referenced in Chapter 1.
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APPENDIX D

Proof of Theorem 5 (p.174)

The proof aims at verifying that the eigenvalues of the matrix
(3.4) = (2.18) are given by the numbers mentioned in the for-
mulation of the theorem. The result then follows as above in

Theorems 2, 3 and 4. The subscript 0 is omitted.

First suppose that the n, zeroes of the Af(z) polynomial

and the n, zeroes of the Cf(z) polynomial are discrete.

The equation to be solved is

o
1l

det (A + £.(96

"‘lN _

0

n_-+n

_ a’'c, -1, 1 ~
= A det fz(eo) det(A fl(60)+f2(9 )) (D.1)

0

Clearly, A + 0 since the model is supposed not to be over-
parametrized. Denote 1/X by u.

The partitioning of @ (t) into

w(t) [-Y(t_l)l o e ay _Y(t“na)l e(t*l)l e o oy e(t‘nc)]T =

T

induces a partitioning of @ as well as of ?1(60) and

f2(60). The elements in these matrices will now be studied.

Consider first the (k, j):th element in E $l$iT. It is

E —_;ET_ e(t—k)‘*—;éiw e(t-j) =
A(g ™) A(q )
n k=1, ...,
g2 fzj—k z 2 1 dz.
= —— N I - ¥ ¢ 8 e p
2mi Af(z) A(z) =z

Since the Af(z) polynomial is supposed to be asymptotically
stable and there are no poles in the origin, the value of the

covariance is
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E —t— e(t-k) —— e(t-3) =
Algq 7) A(g ™)
na na+j—k—l L kK =1, . ,
= g~ X Res ° 7 —
r=1 r Af(z) a{z) I A Y
her Af( =0 =1
\ e ar) =0, r=1, ..., n,.

The same argumentation can now be applied to give the elements

in the matrix E $lwlT i.e.

1 C _l) :
E —-—:T e(t—k) '_—g‘_—l—- e(t-j) =
A(g 7) A(qg )
n n_+j=-k=-1 _
2 a ” a Cl(z) k=1, ..., na
= o I Res £ "2 (z) 7 j =1 n
r=1 r A (z) rosrsr g

£
A (ur) =0; r=1, ..., n_
An examination of the elements in the matrices E Gl$2T and
E $l®2T shows that there are no poles to the integrands except

in the zeroces of the Af(z)-polynomial.

In the same manner it is shown that the elements in the mat-
rices E W0y s E mzwl ; B P50, and E P05 are determined
by the residues in the zeroes to the C (z) polynomial since

all the integrands lack poles in the origin.

Consequently the equation (D.1l) 1is

0 = det(ufl(60)+f2(80)) =
n n (D.2)
a c
= det| I (u+C(ay)) P, + I (p+C(y,))Q
k=1 S | AR
where Cf(yz) =0, 2 =1, ..., n_. Here Pk is the matrix of

residues in ak

All of these matrices are of rank 1, c¢f. the proof of Lemma 2.

k=1, ..., n, and

and QQ the matrix of residues in Yo

Hence the solutions to (D.2) are -C{(a
—C(Y,Q,)’ /Q/= l, s 0 e n

k)’
i
The solutions to (D.1l), i.e. the eigenvalues to (2.18), are

then —l/C(ak), k=1, ..., n_ where Af(ak) = 0 and
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£
-l/C(Yk), k=1, ..., n_ where C (yk) = 0.

The same kind of perturbation calculation that was performed
in Lemma 2 for multiple zeroes to the Af(z) polynomial can
be performed also here. The result is that the calculated

eigenvalues are valid also when either or both of the Af(z)

and Cf(z) polynomials have multiple zeroes.

Invoking the theorem referenced in Chapter 1 the conclusion
concerning local convergence follows since if any of the
eigenvalues have strictly positive real part, the linearized

differential equation is unstable.




