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ANALYTICAL SOLUTION OF A SIMPLE DUAL CONTROL PROBLEM,

Jan Sternby

ABSTRACT

A stochastic control problem for which the optimal dual
control law can be calculated analytically is given. The
system is a four state Markov chain with transition pro-
babilities that depend on the control variable. The per-
formance of the optimal dual control law and of some
suboptimal control laws are calculated and compared.
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1. INTRODUCTION.

It is in general very difficult to sclve control prob-
lems leading to dual control laws in the sense of Feld-
baum (1965). A few examples of this type have been solved
numerically by extensive computer calculations, see e.g.
Bohlin (1969), Jacobs and Langdon (1969) or Astrdm and
Wittemmark (1971). The motivation for solving these ne-
cessarily rather simple problems has been to ‘obtain some
insight into how dual control laws actually work and thus
to understand how to make good suboptimal dual controllers
for more difficult problems.

But numerical solutions do not, however, give as much and as
detailed information as analytical solutions. For one thing,
with just a numerical solution it is not known what hap-
pens between data points. For this reason an example is
glven in this’ report which is completely solvable over any
time interval, With the analytical solution given, one can
study in detail how the dual controller works. An analyti-
cal comparison is also made between the performance of dif-
ferent control strategies. However, this is a very special
problem, and conseguently nothing can be said in general
about other and more realistic problems.

The example is based on governed Markov chains as in Astrdm
(1965) , but may also be looked upon as a simplification of
the example in Jacobs and Langdon (1969). In Chapter 2 two
problems are formulated corresponding to open loop control
and closed loop control. Functional equations for the two
cases are derived in Chapter 3, and are solved in Chapter 4.
From this we derive different control laws, including an
open loop feedback control, see e.g. Bar-Shalom and Sivan
(1969), Tse and Athans. (1972) or Ku and Athans {1973). The
performance of these controls are analyzed in Chapter 5,
The last chapter is a discussion of the results.




2. TWO PROBLEMS.

Consider a Markov chain with four states called Xy to Xy
The transition probabilities depend on a control variable

~ -~

u (0 ¢ u g 1), and are shown in Table 1,

next\ state | *1 . | % %3 Y
ctate RO B R R
Xy Py (u) Py (u) Py (u) py (1)
X, py{u) p3(u) 0 0
X4 0 0 py (1) py ()
Xy pglu) | . pglu) . pg (1) pg (1)
Table 1.

The functions Py are given in Fig. 1.

For every u we have
Py +P3 + Pg =Py +pytpg=1

The py:s are Ehosen piecewisely linea: in u to make the
calculations simple and, for the same reason, some of
the transition probabilities are identical and others
are zero. The desire to achieve a dual effect in the re-
sulting regulator also restricts the possible choices of

py:s.

Id

A loss function h(x) is now introduced that assigns a
loss to each of the states as follows

hix;) = hix,) = 1; h(x,) = hixy) = 0
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Fig., 1 - The transition probabilities as functions of u.
Each line is marked by its slope.

The loss function thus puts the states together into two
groups: x1~and X4 in one and Xq and X4 in another. For
obvious reasons these groups will be called the one-states

~and the zero-states respectively.

Now we are ready to formulate the first problem, which is
one of an open loop. No measurements are made and thus the
only available information about the state is*its initial
probability distribution which is known in advance. The
value of the state at time t is denoted by xt.

Problem l: Determine at t = tOla sequence v of values for

the control variable to minimize the eriterion




t.+n
- 0 t
W.=E& .} h(x)
' t=t0+l

where n is chosen in advance.

The second problem is the corresponding closed loop si-
tuation. At every time t, t0+l g t g t0+n, the value of
the loss function is measured. This means that we are
able to know whether the state is a zero-state or a one-
state but we cannot separate at all the two states with-
in the group.

Admissible control laws at time t may use all informa-
tion available at that time, which 1s now the inittal
probability distribution for the state and the outcome
of all measurements up to and including that at time t.
Due to the Markov property this information is contained
in the conditional probability distribution for xt+l.

Now let us state

-

Problem 2: Find a sequence v of admissible control laws
to minimize the criterion

t0+n

wo=E ] h(x®)
h t=tb+l

where n is chosen in advance.

This is the problem which leads to a dual control law.




3. DERIVATION OF FUNCTIONAL EQUATIONS.

In this chapter we will derive a functional equation for
the minimal loss for each of the two problems in the pre-
vious section. In order to do this, dynamic programming

in the number of steps 1s used. We then also find the re-
sulting optimal control strategies. The system is complete-
ly time~invariant, and so we can always let the minimiza-
tion in the dynamic programming equation be a minimization
with respect to the initial control variable at t ='t0.

Since all the transition probabilities from states Xq and
X, are equal the future development of the process will

.be the same if the current state is X] Or X,. The same pro-
perty is also true for states X5 and Xy Therefore we in-
troduce ¢ as the probability for the initial state to be

Xy Or X,. Then the corresponding probability for Xq Or X,
will be 1-q.

3.1. The Open Loop Case.

If we put .

F = min W
v

where n is the number of steps considered, Fn will be a

function of q and .

Fylq) = r\_t;iln{q[p_l (vg) + P5(vg) ] + (1-a)[p,y(vy) + pg (‘—’0)]} (1)
0

The expression to be minimized with respect to v

is
0
simply the probability for the state x to+l

at time




t =ty + 1 to be a one-state, given that the probabili-
ty for the initial state to be X, or x, is q.

Introduce q(v,) as
to+l

5(30) = the probabllity for x - (the state at time
t =+, + 1) to be'xl Or X, if the control va=-

0
riable at t = to is Vo
Then from Table 1
a(vg) = alp) (Vg) + p3(Vy)] + (1=q) - p,(T,) (2)

Now, using dynamic programming the expected n-step loss
will be computed as the sum of the immediate (one~step)
loss and the minimal value of the expected n-l-step loss,

All transition probabilities and hence all state proba-
bility distributions are time-invariant. Therefore, the
expected n-step loss Fn will be the same function of g

for any value of the initial time ty+ Then we have for

n x 23

Fot) = minfdley Gy) + pg(Fe) ] +
0

+ (1-a) [y () + B (Fe)] + B,y (365 ) (3)

The expression within brackets will be denoteqd by J (g,v 0).
In J (q,v ) the first terms are the immediate loss, i e,
Jl(q v ), the probability for the next state to be a one-
state. The last term is the expected loss for the last n-1
steps, since we know in advance that the probability for
the state to be x; or x, at time t = t, + 1 will be'&(Go),




3.2. The Closed Loop Case,

Let us now derive a similar equation to (3) for Problem _
2. As in the previous section we put (without bars)

Fn = min Wn
v

and obtain

Filq) = I\r;in{q[pltvo) * p5(vy)] +
0

(=) py(vy) + pﬁ(vo)]} (4)

“

Now, instead of 6(50), qo(vo) and ql(vo) are introduced

as
0 _ t0+l
q (VO) = the probability for x (the state at time
t = tO + 1) to be Xos given that it is a zero-
state;
1 - to+l
9~ (v,) = the probability for x to be x,, given that
0 1

it i1s a one-state,

-

By Bayes' rule this means that

qpq (v,)
qo(vo) = 20 (5)
qu(VO) + (l‘q)p4(V0)
-
and
1 _ 'f'fﬂjqp11V6Xf¥f(14q)p (vpo) 0 oL
q (VO) = 2.0 (6)

alpy (Vo) + pg(vy) ] + (1-q) [Py (vy) + Pg (vy) ]




Next introduce PO(VO) and Pl(vo) as

PO(VO).= the probability for xto+l to be a zero-state
1f the control variable at t = t, was Vi
Pl(vo) = the corresponding probability for a one-state.

In this notation we can rewrite (4) as

Filq) = min BT (vy)
Vo

As for Problem 1 dynamic programming is used, but since
t0+l) and will learn if the
is a zero-state or a one-state, the term cor-

we are going to measure h(x

responding to the last one in (3) can be split in two,
one for each possible outcome of the measurement. Then
for n » 2

Fpla) = gin{Pl(VO) + Fn-l(ql(vo)) ) Pl(vo’ +
0

+ Fn*l(qo(vo)) . PO(VO)} (7)
Similarly to Problem 1 the expression within brackets
will be denoted by Jﬁ(q,vo). In it the first term is the
immediate loss, while the last two terms add up to the
expected loss for the next n-1 steps knowing that measure-
ments are going to be made.




4. SOLUTIONS TO THE TWO PROBLEMS,

In both cases the one-step loss, ?l(q) and F, (q) respec-
tively, 1s calculated by considering the slope of E(q,GO)
(J{q,vo)] as a function of GO (vo) for different values

of q, and it isg easily verified that

: 0.9g g £ 1/2
and
0.8 q < 1/2
ToPt(q) = vePt(q) = (either for q = 1/2)
0.2 q > 1/2

4.1. The Open Loop Case, -

To obtain Fn(q) for n 3 2 we need the following lemma.

Lemma 1: Let ﬁn_l(q) = min[g, (q), g, (q) ] with 9; and g,
linear in q,'Pl(GO) and Q(GO) linear in 30. Then ﬁn_l(§0) =
= pl(GO) + Fn_l[Q(GO)] is concave.

A proof of the lemma is found in Appendix 1, *

Applying this lemma to. (3) for n = 2 we find that for
each value of g 32(q,§b)'is a concave function of GO
within each of the intervals where the transition pro-
babilities are 1inear. Thus 52 is minimized for GO = 0,
0.2, 0.8 or 1. Considering these four vo—values it can




i0.

be shown that
ﬁz(q).= minf[1.53q, 1.26(1-q)]
and
0.8 q < 14/31 ‘
=opt _ _
Vg = (either for q = 14/31)

0.2 q > 14/31

Now comparing~§l(q) and Fz(q) it seems reasonable to as-
sume that for n z 1

§n(q) = min[i?q, ﬁg(l-q)}

with

0.8 small g's
voPt =

0.2 blig g's

In Appendix 1 this is shown to be true with

E? = 3(1-0.7™) 23 1 o «

1.5(1-0.4"%) » 1.5 1 o

The limiting optimal control is then

0.8 g < 1/3°
VPt = (either for q = 1/3)
0.2 q>1/3

This control scheme can be used either in an open loop
mode (if no measurements are made) or as the suboptimal
closed loop control law called "open loop feedback con-
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trol", Bar-Shalom and Sivan (1969), or "open loop feed-
back optimal control", Tse and Athans (1972) and Ku and
Athans (1973). In Chapter 5 the performance is computed
analytically for these two and for some other cases. Note
that all control laws in this report will be discontinuous
as functions of gq. In the following they will be chosen to
be right-continuous.

4.2. The Closed Loop Case,

As was shown in the beginning of this chapter we have

Fy(q) = min[0.9q, 0.9(1-q)]

and
0.8 q < 1/2

opt =

vy = (for q = 1/2 0.2 by choice)
0.2 q 3 1/2

These choices of vy can be compared to the ones for a com-
pletely known state, ire. g =20 (x3 or x4) or q = l~(xl or
X,) 0 For q = 0 we find Vg = 0.8 by minimizing p, t+ pg of
Fig. 1 and similarly Vg = 0.2 for g = 1. The p-functions
are chosen so that for these ve-values (and g = 0 or 1) we
are sure to arrive at a zero-state (i.e. no immediate loss),
and, moreover, g (v ) and ql(v ) will be zero or one, so
that we will continue to know exactly where werare (i.e.

no future loss either).

Thus the best one-step regulator chooses vy as if the most
probable state was the true one.

To calculate F (q) for n » 2 we need




Lemma 2: Let F n-1f@) = min[gl(q), veer gpla) ] with gl,
cer g linear in q. Also let p0 (Vo) Pl(v ), q (v )20 (v,)
and g (v )Pl(v ) be linear in Vg Then

n_l(vo) = Pl(vo) + Fn_l(q}(vb))ﬁl(vo) +
* Fn_l(qo(vo))Po(vb)

is concave.

This lemma is proved in Appendix 2,

Now Lemma 2 is applied to (7) for n = 2., Then for each
value of g we find that Jy {q vy) 1s a concave function
of vy in each of the intervals where the transition pro-
babilities are linear. Thus only Vo = 0, 0.2, 0.8 or 1
could minimize Jz(q,vo). Considering these four Vp-Vvalues

we have
1l.26q 0 s g < 25/54
Fyolg) = { 1-0.9q 25/54 ¢ q < 39/54
1.26(1-q) 39/54 ¢ g ¢ 1
and
0.8 0 £ g < 25/54
voPtq) = { 1 25/54 < q < 39/54
0.2 39/54 s q g 1

'}

For g-values close +o 1/2 Vo = 1 is chosen. This Vg~ value
- Will never be used by the one- step regulator (or if the
state is completely known), and so the two—step regulator
is essentially different,

The value Vg = 1 gives an identification step since qo(l) =1
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and ql(l) = 0, i.e. the exact state becomes known. Then

the future loss will be zero.

Thus the two-step regulator works as follows: For q:s
close to zero or one, i.e. good knowledge about the cur-
rent state, v will be chosen as by the one-step regula-
tor, whereas for q:s close to 1/2, i.e. poor knowledge
about the current state, an identification step will be

taken.

Since the cost of choosing Vg = 1l is 1 - 0.9gq and the fu-

ture loss will then be zero, one might guess that for

n z 2
an 0.8 small g's
F (@ ={1=-0.9q with voPE = {1 q ~ 1/2
K (1-q) 0.2 bigg's

As a matter of fact the transition probabilities p were
chosen to give Fn(q) =1 - 0.9q when g ~ 1/2 for all n
by assuring that the total knowledge about the state
gained in the identification step is preserved in the

future (to give no loss).

3

In Appendix 2 it is shown by induction that the guess is

correct and that

P = 1.401-0.1"Y 41,4 nosw

The function Fn is shown in Fig, 2 for some values of n.
Note that the "identification loss line" 1-0.9q is the

same for all n =z 2.
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Fig. 2 - Graphs of the function F, for some values of n.

It is instructive to study Jo as a function of Vo for dif-
ferent values of ¢

I (a,vg) = alpg (vp)+pg(vg) 1 + (1-a) [py (vl +pg (vg) ] +
+F ( 0 ) -
ol d (Vo) JLapg (v) +(1-a)py(vy) ] +
+ Fm(ql(vo)){q[pl (vo)+pg (vp) ] +
+ (1-0) [p, (v) +pg (vg) 1}

This function is shown in Fig. 3 for g = 0.4, 0.5, 0.7,
0.8 and 0.9.

In Bohlin (1969) it is shown that a dual control law may
be discontinuous as a function of the current hyperstate

due to several local minima of the loss function.
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|
0 : : | ; ] } % : :

Fig. 3 - The expected loss for infinitely many steps as

a function of Vo plotted for some values of g.
The rings mark out the global minimum for each

q.

For the example discussed here, the discontinuity in vo(q)
between Vg = 0.2 and vy = 0.8 is not a dual effect, but is
due to the choice of piecewisely linear transition proba-
bilities. One can, however, imagine that nonlinear p:s
might make one local minimum go continuously from vy = 0.8

to vy = 0.2, but for certain g:s the local minimum at Vo

=1

would be smaller, thus giving a discontinuous control law in

any case.

In the next chapter the performance of the system is com-
puted analytically when using the one-step regulator, the
two-step regulator and the optimal regulator.
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5. COMPARISON OF DIFFERENT STRATEGIES.

In this chapter the expected n-step loss is calculated
using six different control strategies. The loss will be
denoted by Vg(q), 3 =a, b, ¢, d, e or £ according to

v - open 100? control (no measurements)
Vb - open loop feedback control

ve - one-step regulator

Vd - two-step regulator

ve - approximate multistep regulator

Vf - optimal dual regulator

The approximate multistep regulator is calculated in the
following way. When equation (7) is minimized to give vy
the optimal open loop loss for an infinite number of steps,
Fm, is used instead of the corresponding closed loop loss.
This corresponds closely to what is done for more general

systems in Tse, Bar-Shalom and Meier (1973). A similar me-

thod giving a "neutral" control is proposed in Jacobs (1974).

To calculate the V:s an equation similar to (3) (Case a) or
(7) is used, where the minimization w.r.t. Vo is removed,
Instead the v,~value inserted should be some function of q,
depending on which regulator is used.

In this chapter Vi will denote the control used at time
t =ty +tk, a function of Q) s the a posteriori probabili-
ty for the state at time t = t; + k to be X Or X4
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5.1. Open Loop Control.

The control law is now
0.8 qp < 1/3

0.2 @ > 1/3

No measurements are made, and so ¢ must be computed from

a formula similar to (2)

Thus we can, of course, calculate all qy s and VS in

advance.

As is shown in Appendix 3, g will be less (greater) than
1/3 if g is, and so all the vy is will be equal.
From Appendix 3

3(1-0.7Mgq q < 1/3 3q
V. o= - as n = o«
1.5(1-0.4™) (1-q) g 3 1/3 1.5(1-q)

As expected Vi = ﬁm of Chapter 4.

5.2, Open Loop Feedback Control.

Again the regulator is
0.8 q < 1/3

0.2 q 2 1/3
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but now the measurements are used to up-date q; SO that,
depending on the measurements, an equation similar to (5)
or (6) will be used where qo(vo) and ql(vo) are replaced
by Ge1’ Vo by V) and q by dy - Then from Appendix 4

1.5(1-0.4M g q < 1/3

1.5(1-0.4") (1-q) q 3 1/3

5.3. One-Step Regulator.

Now we use
0.8 q < 1/2
q = 1/2

where e is calculated as in 5.2, From Appendix 4

1.5(1-0.4Mq q < 1/2
Ve =
n n
1.5(1-0.,4") (1-q) q > 1/2
5.4. Two-Step Regulator,

The control law is

0.8 0 < q < 25/54

= 1 25/54 ¢ qp < 39/54

Vk

0.2 39/54 ¢ q < 1

and dy is again computed as in 5.2. From Appendix 4 we get

(~ 0 ¢ q) < 0.46)
(~ 0.46 ¢ q < 0.72)

=

{(~ 0.72 ¢ ) g 1)
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(1.4-5-0.1")q 0 ¢ q< 25/54
v3 = {1 - 0.9q 25/54 < g < 39/54
(1.4-5.0.1") (1-q) 39/54 ¢ q ¢ 1

5.5. Approximate Multistep Requlator,.

To obtain the control law we have to minimize

1

T layiv) = PL(vy) + Em(q (vk))Pl(vk) + E;(q°(vk))p°(vk)

with respect to Vi

According to Lemma 2 the minimizing V) must be 0, 0.2,
0.8 or 1. Considering these four vk-values we find

0.8 0 s q < 120/306 (~ 0 5 q < 0.39)
v =4 1 120/306 < qy < 255/306 (~ 0.39 ¢ q < 0.83)
0.2 255/306 < q < 1 (~ 0.83 ¢ q ¢ 1)

As previously 4 should bg computed as in 5.2. From Appen-

dix 4 we have

(1.4-5.0.1M)¢g 0 € q < 120/306
ve =4 1 - 0.9q 120/306 ¢ q < 255/306
(1.4-5-0.1") (1-q) 255/306 s q < 1
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5.6. Optimal Dual Regulator.

This regulator is

0.8 0 < qy < 50/115 (~ 0 ¢ qp < 0.43)
v = 1 50/115 ¢ qp < 92/115 {(~ 0.43 ¢ q < 0.80)
0.2 92/115 < q s 1 (~ 0.80 < q s 1)

with q; as in 5.2 - 5.4. Appendix 4 gives

(1.4-5.0.1M)q 0 s g < 50/115
vi=1{1-o0.9q 50/115 € g < 92/115
(1.4-5+0.1™) (1~q) 92/115 < q < 1

Now let us compare the expected loss for infinitely many
steps when using these six regqulators. This is done in

fig. 4.

From Fig. 4 we can classify the six regulators into three
groups. The first group is just the open loop control,
which, of course, gives the biggest loss.

The second group consists of the open loop feedback con-
trol and the one-step regplator. For these two the slope
of V_is #1.5 depending on the ¢. These strategies do not
use any identification steps and so this type of regula-
tor is called passively adaptive by Bar-Shalom and Tse
(1974) . Note that the one-step regulator is better than

open loop feedback control for this example.

The third group consists of the two-step regulator, the
approximate multistep regulator and the optimal dual con-
trol. Here the slope.of V_is :1.4 for small and big g's,
but the loss is decreased by taking an identification

step when Qe is close to 1/2. These controls are called
actively adaptive in the terms of Bar-Shalom and Tse {1974) .
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The expected loss for infinitely many steps,
v

o

 as a function of the probabilitv for the
initial state to be Xy Or X, when using dif-

ferent control strategies.

open loop control

open loop feedback control
one-step regulator
two-step regulator

approximate multistep regulator

Hh (0 Q0 T oW

optimal dual regulator

The bottom curve is f, from which d and e differ
only by the two black and dashed areas respective-
ly.

Note that most of the dual effect is present for the two

suboptimal dual controllers. The difference between the

three can be explained as follows:
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The two-step regulator is designed to be used for only
two steps, and the need for identification is therefore
less than with the optimal dual controller. This means
that q must be closer to 1/2 before an identification

step 1s taken.

With the approximate multistep regulator, however, we
must try to find a good estimate of the state immediate-
ly, since the controller is designed as if no measure-
ments are made after the first one.
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6. CONCLUDING REMARKS.

The most interesting feature of the example in this report
is that the problem is solvable analytically. This means
that it has been possible to examine in detail how diffe-

rent strategles work.

It turns out that in this case the best one-step regulator
is equivalent to certainty equivalence control. The best
two-step regulator, however, is essentially different in
that it gives the possibility for making identification
steps. Having this feature built in it performs nearly as
good as the optimal dual regulator. The same thing is al-
50 true for the approximate multistep regulator.

An interesting detail is that for this example the one-
step regulator performs better than open loop feedback
control, but, of course, the problem is a very special
one, and again nothing can be said in general,

Nevertheless, as the analytical expressions are given it
is also possible to see how the dual control law is crea-
ted. The expected loss for the next n steps has three lo-
cal minima as a function of the control variable. Two of
these correspond to control actions taken when knowledge
about the state is good, while the third one corresponds
to a control giving an identification step. For the one-
step regulator and the open loop feedback control this
last minimum is never the lowest one, and so this value
for the control variable is never used. Multiple minima

in the expected loss as a function of the control variable
are also reported by Bohlin (1969) for a different example.

Since the two-step regulator and the approximate multistep
regulator both give nearly minimal loss, it seems as if a
good way to derive suboptimal dual regulators is to include
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some approximation of the future loss when taking expec-
tation and minimizing in order to find the current value
of the control variable. However, the example in this re-
port is a special one and for a more general case we can

only say that it may be interesting to examine the effect

of such approximations.
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APPENDIX 1

Al, 1.

Calculation of the Optimal Open Loop Control Program.

As is said in Chapter 4 it is easily found that

Fi(q) = min[0.9q, 0.9(1-q)]

and
0.8 q < 1/2

Ggpt = (either for g = 1/2)
0.2 q > 1/2

To continue we need Lemma 1 (see page 9).

Proocf of Lemma 1l:

P (@) = minfg) (@F0)), 9,(3Fp) |

Since g;, g, and q are all linear Fn_l[é(Go)) 1
nimum of two straight lines and is thus concave

s the mi-
. Pl(GO)

is concave (linear) and so ﬁn—l is concave being the sum

of two concave functions.

Now we want to prove by induction that

F o (a) = min[iiq, Rg(l-q)}

where
Ky € [0.9,3], K, € [0.9,1.5], K} » K, and R] 2

1 for n z 2.
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It is true for n = 1. Suppose it is true for n. Then

T, (@) = alp) (Vo) +pg (V)] + (1-a)[p, (Vo) +pg vyl ] +
+ Fn(E(GO))

from (3). By Lemma 1 with all terms except the last one
included in Pl(GO),ﬁ

v

n+l(q'§0) is a concave function of
0 in each of the intervals [0,0.2], [0.2,0.8] and
[0.8,1]. This means that 3n+l(q,60) is minimized for

GO =0, 0.2, 0.8 or 1.

We have
0.6q 1 - 0.6q
g = 0.6 + 0.4qg and P1 - 0.9(1-q) for ;0 _ .2
0.7gq 0.3%q 0.8
0.9g 1 - 0.9
and so
min[1 - 0.6q + K} + 0.6q , 1 - 0.6q + KD (1-0.6a) -
_ _ min[0.9 (1-q) + K] (0.6+0.4q), 0.9(1~q) + 0.4Ky (1-q) ]
J (q’v) = _ + _
kL 70 min[0.9q + K} + 0.7 , 0.9 + B5(1-0.7) ]
{ min[1 - 0.9q + K] + 0.9 , 1~ 0.9q + K (1-0.99) ]

for these Go-values. This matrix of possible expressions

for Jn+l(q,v0) is denoted by S.

Then
S,, » 8,, si K KD
21 7 S22 SRCe Ry 2 Ry
S12 % 5S4




if KR 32 1 (t.e. n 3 2)

wi
w2l

W

41 11 1
§41 > §31 ifn=1 (Ri = 0.9) and g < 1/2
S41 7 §42 ifn=1 (ié = 0.9) and q > 1/2
§42 > §22 since §42 = (1+R2)(1—0.9q)
and §,, = (0.9+0.4R2)(l—q)
511 > 531 for q < 1/3 since it is true for g
and Sy, * §31 for g € [0,1/3]
Sy ” §,, for g > 1/3 and R? 1, i.e. n > 2
| §,, =1+ 0.6(kKj-1) > 1 and
5,, = (0.9+0.4K}) (1-q) < 1.5(1-q)
S,, » 8,, for g » 1/3 and K} = K) = 0.9, i.e
511 =1 - 0.06g and §22 = 1,26(1-q
§32 > 522 for g > 75 since ig €{0.9, 1.5]
§32 > 0.9:q + 0.5 > 8,4y for q < %7
Thus 521, §12, §41, 542, §ll and §32 cannot be

of Jn+l(q,v0), so that

Foopl@ = min{85,,8,,] =
oI, - =n

= min[{0.9+0.7Kl)Q; (0.9+0.4K2)(1~q)]

= min[ﬁ?+lq; E2+l(l“q)]
where
=n+l _ =n =n+l _ =n
Now R? € [0.9,3] = R?*l € [0.9,3]

D ¢ [0.9,1.5] = &l € [0.9,1.5]

2

Al. 3.
= 0,
since
< 1; g2 1/3
.. n =1 since

)

the minimum
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-1 -1 "n+l _n+l
Ky 2 Ky = K77 3 Ky
ﬁ? > 0.9 = i?+l z 1 so that R? » 1 forn x> 2

This completes the induction.

831 and 822 correspond to Vo

n

0.8 and 0.2 respectively

so that
=n
_ 0.8 _ K;q
vgpt = when Fn(q) = _i
Finally
sn+l =1 =1 _ =n _ _ n
Ky = 0.9 + 0.7Kl with Ky = 0.9 = Kl = 3(1-0.7")
and
RE*l = 0.9 + 0.4K] with Ré = 0.9 » K) = 1,5(1-0.4")
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APPENDIX 2

Calculation of the Optimal Dual Control Law.

Proof of Lemma 2 (see page 12 for the statement) :

F__ (@) = minfg) (@), gy(@, -er gyl ]

Then for j = 0, 1 and for every VO

min[gl(gj(vo)), cees gm(gj(vo))]Pj(vb) =

min[gl(qj (vo))Pj (vO) ; eeer g‘m(qj (vg) )Pj (vg) ]

Fn_l(qj(vo))Pj(vo)

)

Now, since all the g;:s are linear and qO(VO)PO(vo) and
q (v )P (v ) are also linear according to assumptions
Fo_ l(q:’(vo))P (v ) will be the minimum of m straight lines
and therefore concave. Since P (VO) is also concave (li-
near) Hn—l(VO) will be concave being the sum of three con-
cave functions. This completes the proof.
u]

Now we can compute F2(q). From (7) we get

1 1 1 0 0
Jz(q,vo) = P (VO) + Fl(q (vo))P (vo) + Fl(q (VO))P (vo)
where F,(q) = min[0.9q, 0.9(1-q) ]. Then for each g by Lem-
ma 2 Jz{q,vo) is a concave function of Vo in each of the
intervals [0,0.21, [0.2,0.8] and [0.8,1] so that Jz(q,vo)

is minimized for vy = 0, 0.2, 0.8 or 1.

Thug we need PO, Pl, q0 and ql for these vd-values.
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O.6q 1 -~ 0.6q
l b 0-9q Oogq
0.9q 1 - 0,9
and
1 (0 )
q 2 0.2
0 q + 0.1(1-q) 1 3
q = A q = J for VO = A (2.2)
0.1q 2 0.8
1 - 0.9g 3

Fl(l) = Fl(O) = 0 and Fl(2/3) 0.9(1 - (2/3)) = 0.3 so

that

1 - 0.6qgq

0.9(1-q) + 0.3:0.9(1-q) + 0.9-minf[qg,0.1(1-q)]
Jz(qrvo) = 3

0.9q + 0.3:0,9¢ + 0.9-minf[0.1q,1-q]

1 - 0.9g

for these four vouvalueSu This means that
F,(q) = min[l - 0.6g, 1.3.0.9(1-q) + 0.9q,
1.3:0.9(1-q) + 0.9.:0.1(1-q),
1.3:0.9q + 0.9.0.1qg,
1.3:0.9q + 0.9(1-g), 1 - 0.9q] =

= min[8;, ..., S¢]
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and so Sl' 82 and 85 can be removed such that

F,(q) = min[1l.26q, 1-0.9q, 1.26(1-q)]

with
0.8 1.26q
Vgpt = 1 when Fz(q) = 1 - 0.9g
0.2 1.26 (1-q)

By induction we will now show that
Fola) = min[X"q, 1-0.9q, K" (1-q) ]

for n 3 2, where X € [1.26,1.4]. This is true for n = 2.
Suppose that it is also true for n. Then again from (7)

Jn+l(q,v0) = Pl(vo) + Fn(ql(vo))Pl(vo) + Fn(qo(vo))Po(vo)

so that Jn+l(q'VO) is a concave function of vy in each of
the intervals [0,0.2], [0.2,0.8] and [:0i8,1]. Jn+l is thus
0

minimized for Vo = 0, 0.2, 0.8 or 1 and again we need P,

1 0 1
P", g and g  for these v,-values (see 2.1 and 2.2},
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Fn(O) = Fn(l) = 0 but Fn(2/3) =1~-0.9 « 2/3 = 0.4 since
KM e [1.26,1.4].

Then

1 - 0.6qg

1.4.0.9(1-q) + min[K"q,0.1,k".0.1(1~q)]

J (C,{.rV):-*
n+l 2000 1.4-0.9q + min[K"0.1q,1-0.99q,K" (1-q) ]

1 - 0.9
so that
F_,,(@) = min[l - 0.6q, 1.26(1-q) + k%q, 1.26(1-q) + 0.1,

1.26(1-q) + 0.1K"(l-q), 1.26q + 0.1K'qg,

1.26g + 1 - 0.99q, 1.26g + K'(1-q), 1 - 0.9q] =

min{Ty, ..., Tg}

Some of the T:s can now be removed

Tl > T8 and T3 > ‘1‘8
T2 > T5 T2 > T4
Te 3 Ty for q ¢ 1/2 and Te 2 Ty for g » 1/2
Thus Tl’ T3, T2, T6 and T7 can be removed and so
; n n
Fn+l(q) = min{ (1.26+0.1K J)g, 1 - 0.9q, (1.26+0.1K )(1-q)] =

minf®k™ g, 1 - 0.9q, k™1 (1-q) ]
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with
k"L 21,26 + 0.18% € [1.26,1.4) if K™ € [1.26,1.4]
This completes the induction.

Ty T5 and Tgq correspond to Vg = 0.2, 0.8 and 1 respec~
tively, so that

0.8 K"q
vgpt =11 when  F_(q) ={ 1 - 0.9g

0.2 K" (1-q)
Finally K™% = 1.26 + 0.1k"™ with kK% = 1.26 gives

K® = 1.4(1-10:0.1") 5 1.4 n - o,




APPENDIX 3

The Expected Loss

A3.l.

When No Measurements Are Made.

For this case the

control law is

1/3

1/3

The expected one-step loss is then

pl(0.8)
a —
pt(0.2)

0.9g q < 1/3

0.9¢(1l-g) q = 1/3

To calculate Vi(q) we need an equation similar to (3)

pl(0.8)
vola) =
1
P (0.2)
Now
- g(0.2) =
q(0.8) = 0.7q <
50 that it
n
a Kalq
Vn(q) =
n
Kaz(l—q)

This 1s true for n =

+ vi_l(§(o.8)) q < 1/3

+ vi_l(&(o.z)) q s 1/3

0.6 + 0.4q > 1/3

1/3 if q < 1/3

is easy to show by induction that

g = 1/3
q > 1/3

1. Supposing it is true for n we get
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plo.8) + vi(&(o.S))

——
fle
S
|
A

pl(0.2) + Vi(é(0-2))

[ 0.9q + K,,q(0.8)

= 4 =

0.9(l-gq) + Kzz(l - &(0.2))

[ (0.9+0.7K};)q kMg q < 1/3
= X =
(0.9+0.4K2 ) (1-q) ngl(l—q) q s 1/3
and the induction is completed.
n+l _ ‘ n 1 _ n o _ _ n
Ky = 0.9 + O.?Kal with Ky~ 0.9 = Kal = 3(1-0.7")
n+l _ n 1 n  _ “ n
Ka2 = 0,9 + 0.4Ka2 with K o, = 0.9 = K , = 1.5(1-0.47)
n n
Thus K, 3 and Ka2 -+ 1.5 ags n - = so that
3g q < 1/3
vi(q) =

1.5(1~q) g = 1/3
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APPENDIX 4

The Expected Loss When Measurements Are Made.

Five different control laws will be tested in this case.

e o e e e i - ——— T . M S — o

0.8 g < 1/3

0.2 qy 3 1/3

0.8 q < 1/2

0.2 q > 1/2

Bt s e o e ok k. e i e ke e i e oy ek

0.8 0 < q < 25/54
=4 1 25/54 < q < 39/54

0.2 39/54 < q < 1

0.8 0 g4, < 120/306
v}";' =11 120/306 < q < 255/306

6.2 255/306 < @ < 1

~

0.8 0 ¢ q < 50/115
vi = {1 50/115 < q < 92/115

0.2  92/115 < q s 1
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These five cases willl be considered simultaneously and

so the superscripts on the V are dropped.

The expected one-step loss is

¢

Pl

(0.8) = 0.9g q < 1/3, 1/2, 25/54,
120/306 and 50/115
respectively

Vl(q) = 4 Pl(l) =1 - 0.9g cases d, e and f:

For Vn+l

n+l(q)

Pl

4

r

g close to 1/2

(0.2) = 0.9(1l-q) q » 1/3, 1/2, 39/54,
255/306 and 92/115

respectively

|

(g) we have the following equation

1

p1(0.8) + v _(a'(0.8))p (0.8) +

0 0
+ v, (a (0.8))P"(0.8)

(
ph(1) + v (ah)et ) + v (¢®)e%w
pt(0.2) + v (a'(0.2))pt(0.2) +

0 0
+ Vn(q (0.2)) PV (0.2)

The choice of equation depends on the g acceording to the

different regulators.

Now

= 2/3
1 - 0.99
1
and { g (1) =0
d ql(o.z). = 2/3

g + 0.1(1-qg) L
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so that q0(0.8) ¢ q and q0(0.2) 3 4.

For cases b and ¢ suppose that

In

K'gq q < 1/3 and 1/2 respectively
v, la) =
Kn(lwq) q » 1/3 and 1/2 respectively
Then
(0.9 + K*(1 - q7(0.8))p1(0.8) + K™q(0.8)p%(0.8)
Vn+l(q) =

0.9(1-q) + K'(1 ~ ¢*0.2))p 0.2) + K*(1 - ¢©(0.2))p%(0.2)

0.9 + K%0.3 + K0.1)q Ky

1 (0.9 + K7+0.3 + K7-0.,1) (1—q) K (1)

i

This proves that

Kgq q < 1/3
by =
vpla) =

Kp(l-q) g 3 1/3
and

qu q < 1/2
volq) =

Ko (l-q)  q 3 1/2

with Kg = KZ = 1.5(1-0.4™) > 1.5 n - .

For cases d, e and f suppose that




Vn(q) =

Then

n+l(q)

Thus we

a
vola) =

e
Vn(q)

and

[H

£
v, (@)

. n
with Kd

Ad .4,

x'q q < 25/54, 120/306 and 50/115 resp.
1 - 0.9g g close to 1/2

K" (1~q) q » 39/54, 255/306 and 92/115 resp.

0.9q + (1 - 0.997(0.8))P*(0.8) + K¥¢°(0.8)p°(0.8)

=11-0.99+0-p Q) +0.%1)

0.9(1q) +(1 ~ 0.9q7(0.2)} 21 (0.2) + K*(1 - ¢°(0.2)) °(0.2)
[ (0.9 + 0.36 + K™0.1)q Ky

{1 - 0.9 ={1- 0.9

(0.9 + 0.36 + K.0.1) (1-q) K" (1)

have proved that

Kgq 0 < g < 25/54
{1~ 0.99 25/54 < q < 39/54
K3 (1~q) 39/54 £ q s 1
-
K_q 0 ¢ q < 120/306
!11-0.99g 120/306 < q < 255/306
Kz(l—q) 255/306 ¢ q < 1
!
f Kgq 0 ¢ g < 50/115
{1 -0.99 50/115 ¢ q < 92/115
Ke (1-q) 92/115 ¢ q ¢ 1
= KD = K2 = 1,4 ~ 5.0.1% 5 1.4 1n - o,




