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ABSTRACT – The null hypothesis that exercise has no 
effect on fracture rates in old age cannot be rejected 
on the basis of any published, randomized, prospec-
tive data. The view that exercise reduces the number 
of fractures is based on prospective and retrospective, 
observational cohort studies and case-control studies, 
all hypothesis-generating, not hypothesis-testing. Con-
sistently replicated sampling bias may con� rm the � nd-
ing when evaluating other than randomized prospective 
studies. Better health, better muscle function, more 
muscle mass, better coordination may lead to exercise. 
The causal relationship could be between better health 
and exercise and better health and fewer fractures, not 
exercise and fewer fractures. The hypothesis should 
be tested in prospective, randomized studies evaluat-
ing hip, spine and other fragility fractures separately. 
Blinded studies assessing the effects of exercise can 
obviously not be done, but open trials can and should be 
undertaken to increase the level of evidence within the 
evidence-based system. 

There are � rm data supporting the view that exercise 
during growth builds a stronger skeleton. Exercise 
during growth seems to result in high peak BMD and 
high muscle strength. However, the Achilles heel of 
exercise is its cessation. Are the skeletal and muscular 
bene� ts attained during growth retained after the 
cessation of exercise and can any residual bene� ts be 
found in old age, the period when fragility fractures rise 
exponentially? Does exercise during adulthood produce 
any biologically important reduction in surrogate end- 
points for fractures other than BMD, since BMD can be 
in� uenced only marginally by exercise after completion 
of growth?

Recommendations for exercise should be based on 
evidence, not on opinion. Can continued recreational 
exercise maintain some of the bene� ts in BMD and 

muscle function achieved in youth? What level of recre-
ational exercise is needed to retain these bene� ts, if not 
fully, then at least to some extent? Dose-response rela-
tionships should be quanti� ed. Furthermore, the effect 
of exercise on independent, surrogate end-points for 
fractures, such as bone size, shape, architecture, muscle 
function, fall frequency and frequency of injurious falls 
during de� ned periods in the life cycle must be deter-
mined. Absence of evidence is not evidence of absence 
of effect, but if we recommend exercise then should this 
be to children, adults, elderly, men and women with 
fractures, all persons? What type of exercise? For how 
long? Lifelong? If exercise could be implemented for 
most persons in society, would this reduce the number 
of fractures? Would the increased costs associated with 
the efforts to increase the activity level be lower than 
the reduced costs associated with any reduction in frac-
tures? Our inability to answer these questions must be 
acknowledged before recommendations are made at the 
community level. 

n

Does exercise reduce the number of fractures?

Half of all women and one third of all men will 
sustain a fragility fracture during their lifetime 
(Cooper et al. 1992). Increased morbidity, mortal-
ity and costs associated with the increased fracture 
incidence make it imperative to implement pre-
vention strategies in the community (Cooper et 
al. 1993, Poor et al. 1995). Hip and vertebral frac-
tures in women are the fractures most commonly 
discussed, but also other fragility fractures create 
enormous problems (Ray et al. 1997). In addition, 
as fragility fractures increase in men, we must also 
discuss the question of fracture in this cohort in the 
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future (Seeman 1995, Kannus et al. 1996, Center 
et al. 1999).

In recent years, data have become available 
indicating that drugs reduce the risk of frac-
ture by about half in elderly women with bone 
mineral density (BMD) 2.5 SD below BMD in 
young healthy women, the de� nition of osteopo-
rosis advocated by the World Health Organization 
(WHO 1994, SBU95 1995). As the evidence-based 
decision for drug treatment is mainly based on 
trials including elderly, osteoporotic women with 
or without fractures, it is unclear whether women 
with a more modest reduction in BMD can also 
bene� t from drug treatment. Such treatment prob-
ably also reduces the fracture rate in men with low 
BMD, but treatment strategies in men are less well 
de� ned (WHO 1994, Orwoll et al. 2000). 

General screening for detection of low BMD is 
not considered to be cost- bene� cial, as a modest 
reduction in BMD implies a low absolute risk of 
sustaining a fracture (SBU951995). Drug treat-
ment in these groups would involve the need to 
treat many persons to save 1 fracture event, an 
approach that is not regarded as being evidence-
based. Instead, when the aim of the health services 
is to reduce the fracture rate in the community, 
intervention programs are needed that are effec-
tive in preventing fractures, widely accessible, 
inexpensive and with no adverse side effects. 
Exercise could have these bene� ts, but the ques-
tion arises–does evidence-based information show 
that exercise reduces the number of fractures? The 
� nal and only acceptable end-point for evaluating 
the effects of exercise are fractures, not surrogate 
end-points such as BMD, balance, muscle strength 
or frequency of falls. However, a low absolute 
incidence of falls with an even lower incidence 
of fractures among those who fall creates a for-
midable challenge when randomized exercise 
intervention studies are planned with fracture as 
the end-point. When designing a study with hip 
fracture as the end-point, a 5-year study with a  = 
0.05 and b  = 0.20, a control group with a hip frac-
ture incidence among 75-year-old women of 3–6% 
over a 5-year period and with a reduction in risk 
of 25% with exercise, sample sizes would have to 
be close to 7,000 persons to achieve the statistical 
power to detect that exercise has a fracture-reduc-
ing effect. Moreover, increasing the groups by 

25% because drop-outs and nonresponders is also 
recommended. Thus, prospective, randomized 
controlled studies to evaluate the effect of exercise 
on the rate of hip fractures are dif� cult and costly 
to perform (Gregg et al. 1998), and no such studies 
are available today. A prospective study evaluating 
whether exercise during growth and adolescence 
protects against fragility fractures in old age would 
be virtually impossible to perform because of 
compliance problems and drop-outs. Therefore we 
have to use a lower level of evidence in the evi-
dence-based hierarchy. The purpose of my review 
is to evaluate whether previous or current exercise 
affects the fracture rate and surrogate end-points 
for fracture. Finally, it must be emphasized that 
exercise may confer a variety of health-related 
effects, but in this survey I only discuss the effects 
on fracture rate and the muscular-skeletal system. 

How strong are data suggesting that exercise 
reduces the risk of sustaining a fracture?

There is no hypothesis-proven evidence (random-
ized, prospective, controlled trial) that exercise 
reduces the fracture risk. No double-blinded trials 
can be done since it is not possible to keep the 
investigator or participant blinded to exercise. 
Moreover, there has never been an unblinded, 
randomized prospective trial, an unrandomized, 
prospective trial or an uncontrolled trial show-
ing that exercise reduces the fracture risk, mainly 
because of the large cohorts needed (Gregg et al. 
1998). However, lack of data from randomized 
trials is not proof of lack of ef� cacy. Going down in 
the evidence-based hierarchy to noninterventionist, 
observational, case-control studies and prospective 
and retrospective cohort studies, there are data 
which support the view that exercise reduces the 
fracture risk (Paganini-Hill et al. 1991). As these 
types of studies are the highest available evidence, 
we must consider these data, not forgetting that 
causality can never be proven in observational or 
case/control studies. Even meta-analyses can not 
exclude the risk of sampling bias, since persons 
with higher muscular capacity and function usu-
ally perform better in sports and are probably more 
likely to choose a physically active lifestyle. The 
genetically-inherited larger muscle mass and stron-
ger bone may confer a lower fracture risk, not the 
high activity level. 
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Does exercise reduce the risk of sustaining a 
hip fracture?

In the following sections, odds ratios (all signi� -
cant unless otherwise stated) for brevity are pre-
sented without con� dence intervals. Most reports 
consistently suggest that persons with a history of 
a low activity level at present or in the past have a 
higher incidence of hip fractures than those with 
a higher activity level (Gregg et al. 1998, Wick-
ham et al. 1989). Current activity, such as daily 
standing, climbing stairs and walking, are associ-
ated with a lower risk of sustaining a hip fracture 
(Cooper et al. 1988, Coupland et al. 1993). The 
Study of Osteoporotic Fracture (SOF), a longitu-
dinal study following 9,704 women aged 65 years 
or more for 4 years, showed a 30% reduction in hip 
fracture risk associated with walking (Cummings 
et al. 1995). The same cohort followed for a mean 
of 8 years suggested that the incidence of hip frac-
ture was reduced by 42% among the women in the 
highest quintile of current activity as compared to 
the least active quintile (Gregg et al. 1998). There 
was a dose relationship in the activity, with 2 hours 
or more/day of exercise reducing the hip fracture 
risk by 53% as compared to less than 2 hours of 
activity/day which reduced the incidence by 25% 
as compared to sedentary individuals. Sitting > 9 
hours/day increased the hip fracture risk by 43% 
as compared to sitting < 6 hours/day (Gregg et al. 
1998). The Leisure World Study (Paganini-Hill et 
al. 1991), a prospective cohort study following 
8,600 postmenopausal women for 7 years, reported 
that exercise more than 1 hour/day reduced the hip 
fracture risk by 38% as compared to an activity 
level of less than 1/2 an hour/day. One study fol-
lowing 3,595 noninstitutionalized men and women 
over the age of 40 years in a population-based, 
longitudinal study for 10 years (NHANES I) sug-
gested that no or a minimal activity level during 
recreation was associated with a 90% higher hip 
fracture risk as compared to recreational exercis-
ers (Farmer et al. 1989). These � ndings are sup-
ported by at least 6 other prospective cohort stud-
ies (Farmer et al. 1989, Paganini-Hill et al. 1991, 
Meyer et al. 1993, Cummings et al. 1995, Gregg 
et al. 1998, Joakimsen et al. 1998) and several 
case-control studies (Cooper et al. 1988, Coupland 
et al. 1993, Johnell et al. 1995). Although nonran-
domized, data consistently indicate that exercise 

during growth and adulthood is associated with 
a reduced hip fracture risk, selection bias cannot 
be excluded to explain the results. The � nding of 
a dose-response relationship in several published 
studies, with the risk reduction varying between 
86% (Coupland et al. 1993) and 30% (Paganini-
Hill et al. 1991) when comparing the most active 
with the least active persons, strengthens the view 
that moderate activity reduces the hip fracture risk 
in women (Gregg et al. 2000). 

The data which show that exercise reduces the 
fracture risk in men are much weaker, since small 
cohorts and short follow-ups increase the risk of a 
type II error. However, studies with the power to 
evaluate the exercise-induced, hip-fracture reduc-
ing effect accord with the data in women. A longi-
tudinal, cohort study of 3,262 50-year-old Finnish 
men followed for 21 years showed that vigorous 
physical activity at baseline reduced the hip frac-
ture risk by 58% (Kujala et al. 2000). The Leisure 
World Study which included 5,049 men aged 73 
years followed for 7 years, showed an inverse 
relationship between exercise and hip fracture risk 
(Paganini-Hill et al. 1991). Exercise more than 1 
hour/day reduced the risk by 49% as compared to 
exercise for less than 1/2 hour/day. The exercise-
induced, hip-fracture reducing effect in men has so 
far been veri� ed by at least 4 prospective, cohort 
studies with adequate sample sizes (Farmer et al. 
1989, Paganini-Hill et al. 1991, Meyer et al. 1993, 
Joakimsen et al. 1998), but also in case-control 
studies (Cooper et al. 1988, Grisso et al. 1991, 
Gregg et al. 2000).

Does exercise reduce the risk of sustaining 
vertebral or other fragility fractures? 

In the SOF study, moderate to vigorous activity 
(> 2 hours/day) reduced the vertebral fracture risk 
by 33% as compared to no activity (Gregg et al. 
1998). The European Vertebral Osteoporosis Study 
(EVOS) (Silman et al. 1997), including 6,646 
women aged 50–79 years, of whom 884 had a ver-
tebral deformity, showed that current walking or 
cycling for more than 30 minutes each day resulted 
in a 20% reduction in the risk of developing a ver-
tebral deformity as compared to inactive women. In 
contrast, some authors suggest that a longer dura-
tion of exposure to the risk of falling during activ-
ity may increase some types of fractures. The risk 
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of forearm fractures was not signi� cantly higher 
in women with walking as their leisure time activ-
ity than in sedentary women (Mallmin et al. 1994, 
O’Neill et al. 1996) and the SOF study reported 
the same tendency with no signi� cant increase in 
the risk of sustaining a forearm fracture related to 
exercise (Kelsey et al. 1992) and a 13% increase in 
the risk of sustaining a wrist fracture (NS) in the 
most active persons (Gregg et al. 1998). 

Data supporting the contention that exercise 
reduces the incidence of vertebral deformities 
in men are weak. The EVOS prospective study 
(Silman et al. 1997), which included 5,922 men, 
of whom 809 had a vertebral deformity, showed 
a 10% reduction in vertebral fracture prevalence 
with activity (NS). Two case-control studies with 
adequate sample sizes found a tendency that physi-
cal activity reduced vertebral deformities, albeit 
not signi� cantly (Greendale et al. 1995, Chan et 
al. 1996). When including all types of fragility 
fractures, the results of the Dubbo epidemiologi-
cal cohort study (Nguyen et al. 1996) suggest that 
each standard deviation of increased leisure time 
activity reduced all types of osteoporotic fractures 
by 14%, even after adjustment for differences in 
bone mass.

Does past exercise reduce the incidence of 
fractures? 

What is the situation concerning fracture risks 
with reduced activity level after a period of active 
lifestyle during growth and adolescence, the sce-
nario for many middle-aged and elderly persons? 
There were more persons among 284 former male 
soccer players now over the age of 48 who had 
had fractures during their active career (before 
age 35) than controls (23% versus 16%; p < 0.05), 
while after retirement (after age 35 years), the 
number of former soccer players with fractures 
were similar to those controls with fractures (20% 
versus 21%, NS) (Karlsson et al. 2000). Further-
more, the number of former soccer players who 
had sustained low energy fragility fractures after 
the age of 50 years was not lower than in controls 
(2% versus 4%, NS), in absolute numbers only 
half in former athletes, but the power to detect 
a signi� cant difference was low (Figure 1). The 
data are supported by other studies reporting more 
persons with fractures among 2,622 former female 
college athletes now 20–80 years than among 
2,776 controls (40 % versus 32%; p < 0.001) 
with no difference in fracture risk after retirement 
(Wyshak et al. 1987). The � ndings of the Leisure 
World Study (Paganini-Hill et al. 1991) supports 
the � ndings when reporting that persons with an 
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Figure 1. Percentage of persons 
with fractures among 284 former 
soccer players now 48–94 years 
of age and 568 age- and gender-
matched controls. Adapted from 
Karlsson et al. 2000.



Acta Orthop Scand 2002; 73 (6): 691–705                                                                                                          695

activity level of more than 1 hour/day ran a lower 
risk of hip fracture than those active for less than 
1/2 hour/day, but this effect was lost with a further 
reduction in activity level.

In summary, reports consistently suggest that 
exercise reduces the risk of hip fractures in men 
and women. The � ndings of a dose-response effect 
of exercise in several cohorts support this. Data 
suggesting that exercise reduces other types of 
fractures related to osteoporosis are weaker. Present 
studies consistently suggest that exercise in youth 
does not protect against fractures after retirement. 
Since exercise during adulthood is reported to at 
best cause a slight, but not signi� cant, increase in 
BMD, the question remains—what is the mecha-
nism underlying the possibly reduced fracture 
rate? Is the quality of the skeleton improved? Is 
balance or muscle strength improved? Is the inci-
dence of falls or injuries from falls lower? 

Does exercise during growth increase the 
accrual of bone mass and bone size?

The skeletal effects of exercise may differ in young 
and old persons. The mechanical threshold for old 
rats was higher than in young ones, but that, once 
activated, their cells had the same capacity as those 
of younger rats to enhance bone formation (Turner 
et al. 1995). The relative bone formation rate in the 

elderly rats was 16- fold less, and the relative bone-
forming surface 5-fold less compared to younger 
rats with similar loads (Turner et al. 1994,1995). 
Similar results have been presented in other trials, 
showing a dramatic reduction in responsiveness 
of the ulnae of old turkeys to applied mechanical 
loads as compared to young turkeys (Rubin et al. 
1992). Although data in animals can not be directly 
extrapolated to humans, the skeletal response to 
exercise must be evaluated separately in young 
and old persons.

Data suggesting that exercise during growth 
increases mineralization and/or bone size are 
strong. Studies of young tennis and squash players 
have increased our understanding of the exercise-
induced skeletal effects by comparing the dominant 
and nondominant arm. This approach eliminates 
the risk of selection bias among the athletes. Tennis 
players were early reported to have larger bones, 
10–35% greater cortical thickness and more bone 
mass in the playing than in the nonplaying arm 
(Jones et al. 1977, Huddleston et al. 1980). This 
observation was later con� rmed by several inde-
pendent reports that bone mass was up to 4 times 
greater in the playing than in the nonplaying arm 
in female players who began their tennis training 5 
years before menarche as compared to those start-
ing 15 years after menarche (Kannus et al. 1994, 

0

10

20

30

> 5 yrs 3–5 yrs 0–2 yrs 1–5 yrs 6–15 yrs > 15 yrs

Years prior to menarche  Years post menarche  

Percent difference in bone mass between dominant and non-dominant  
arm in female tennis players with different starting age of exercise     

Figure 2. The side-to-side differences in bone mass of the humerus were 2–4 times greater in female tennis players who 
had started training before menarche than in those who had started playing up to 15 years after menarche. Bars represent 
95% CIs. Adapted from Kannus et al. 1994.
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Haapasalo et al. 1996) (Figure 2). The inclusion of 
competitive athletes who began training early also 
suggests that exercise during growth and adoles-
cence can substantially increase BMD (Karlsson et 
al. 1993a,b, Dyson et al. 1997, Bass et al. 1998). 
Furthermore, cross-sectional data consistently 
suggest that BMD is increased by 10–20% with 
exercise only in weight-loaded skeletal regions. 
Prepubertal gymnasts had 10–30% higher BMD 
than controls, with the greatest difference reported 
in the arms compared to controls, a weight-bearing 
site in these athletes (Bass et al. 1998) (Figure 3). 
Similarly, male weight-lifters had 10–20% higher 
BMD in the arms than controls (Karlsson et al. 
1993a,b, 1996). Both male and female soccer play-
ers had similar BMD in the arms, a region mini-
mally loaded during soccer, while BMD in the legs 
was 10–20% higher than in controls, a difference 
of the same magnitude as in weight-lifters (Figure 
3) (Duppe et al. 1996, Karlsson et al. 2000). More-
over, BMD may be lower in unloaded skeletal 
regions in athletes than in controls, which could 
suggest that a redistribution of bone occurs from 
unloaded to weight-loaded skeletal regions during 
high activity and a reverse distribution with less 
activity (Figure 3) (Karlsson et al. 1996, Ramne-
mark et al. 1999, Magnusson et al. 2001a,b). 

Currently, 6 controlled, intervention studies, 
some randomized and some unrandomized, com-
prising pre- and peripubertal boys and girls, have 
been published (Blimkie et al. 1996, Morris et al. 
1997, Bass et al. 1998, Bradney et al. 1998, McKay 
et al. 2000, Fuchs et al. 2001). One study included 
the exercise intervention in the school curriculum 
(McKay et al. 2000), the others as leisure time 
activity on a voluntary basis. The intervention 
studies were short-term, 6–12 months with an 
increase in exercise 3 ´  20–30 minutes more per 
week. During this period, BMD increased 1.3–5% 
more in the legs in the active than in the sedentary 
children, only 2 studies reported an increase in 
bone mineralization in the spine. When a similar 
exercise program was done in peripubertal chil-
dren, the effect on the skeleton was less or not 
signi� cant. 

Data from prospective and retrospective cohort 
studies support this view that physically active 
children have higher BMD than sedentary controls 
(Slemenda et al. 1994, Cooper et al. 1995, Bailey 
et al. 1999). However, these observational studies 
may be confounded by selection bias: exercise 
during leisure time could be preferred by children 
with more muscle mass, larger bones and higher 
BMD due to shared genetic regulation, and not that 

Figure 3. Bone mineral density (BMD) of the upper part of the skull / the skull, the arms and the legs, in active male soccer 
players, male weight-lifters and female gymnasts, expressed as Z scores (number of standard (SD) deviations above or 
below age-predicted mean). Adapted from Karlsson et al. 1996, Karlsson et al. 2000 and Bass et al. 1998.
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exercise causes high BMD. Most prospective stud-
ies show only a 1–4% increase in BMD in active 
persons, but cross-sectional studies usually report 
a 10–20% higher BMD in athletes than in con-
trols. This could be due to a cumulative long-term 
effect in athletes while most prospective studies 
have a maximum follow-up 2 years. It is also not 
known whether this increase in BMD lowers the 
frequency of fracture and, if so, to what extent. For 
example, treatment with Raloxifen increases BMD 
by 3%, but reduces the risk of lumbar fracture by 
38% (Sarkar et al. 2002). 

Does exercise during adulthood increase 
BMD and bone strength?

Low or moderate impact exercise hardly increases 
BMD during young adulthood. Most studies show 
that aerobic exercise, at best, stops bone loss or 
increases BMD by less than 3%, which can have 
little effect on the fracture risk (Drinkwater 1993, 
Forwood and Burr 1993, Bouxsein and Marcus 
1994). The results of weight-training are also dis-
couraging, with most studies reporting an increase 
in BMD of no more than 2% (Gleeson et al. 1990, 
Rockwell et al. 1990, Snow-Harter et al. 1992, 
Friedlander et al. 1995, Lohman et al. 1995). 

Similar � ndings have been reported in numer-
ous randomized, prospective, short-term studies 
in premenopausal women (Bassey and Ramsdale 
1995, Heinonen et al. 1996). Prospective interven-
tion studies in peri- and postmenopausal women 
wih follow-ups of 6 to 24 months have evaluated 
activities such as walking, stepping up and down, 
running, jumping and strength training. They have 
usually found a higher BMD in the spine of less 
than 3% than in sedentary controls with the adap-
tive changes at the femoral neck described as less 
(Grove and Londeree 1992, Hatori et al. 1993, 
Revel et al. 1993, Nelson et al. 1994, Bravo et 
al. 1996). During the past decade, several articles 
have reviewed 10–20 prospective, randomized or 
nonrandomized studies on the effects of exercise, 
and shown exercise-induced bene� cial effects 
on the skeleton in three-quarters of the studies 
in peri- and postmenopausal women (Bailey and 
McCulloch 1990, Gutin and Kasper 1992,  Berard 
et al. 1997,  Wallace and Cumming 2000). One 
review evaluated the effect of exercise in women 
between the ages 46–76 of years in 35 randomized, 

prospective studies and found that 6–36 months of 
impact and nonimpact exercise prevented bone 
loss by 1–2% in the lumbar spine in peri- and 
postmenopausal women and that impact exercise 
seemed to have a similar effect, even in magnitude, 
on femoral neck BMD (Friedlander et al. 1995, 
Preisinger et al. 1995, Prince et al. 1995, Ebrahim 
et al. 1997). 

The outcome of exercise intervention in the 
elderly is equally discouraging. 6–24 months of 
exercise in 65–80-year-old women had no effect 
on bone loss despite more exercise in one third of 
the studies and a slight increase in BMD—i.e., a 
maximum of 2% during the study period in some 
(Lau et al. 1992, Prince et al. 1995, Pruitt et al. 
1995, Hartard et al. 1996, Ebrahim et al. 1997, 
McMurdo et al. 1997, Kelley 1998). In this age 
group, most of the improvement occurred in the 
spine and less in the femoral neck BMD (Lau et 
al. 1992, Ebrahim et al. 1997). It is not known 
whether exercise has other effects on the skeleton, 
such as changes in bone size, skeletal geometry 
or matrix properties, which may in� uence bone 
strength and no intervention studies have yet been 
published in adult men. 

 No randomized, prospective studies have been 
done to evaluate the skeletal effects of lifelong 
exercise. The Rancho Bernardo Study (Greendale 
et al. 1995) showed that both current and lifetime 
exercise were correlated with hip BMD—i.e., dif-
ferences in BMD between persons in the highest 
and lowest categories of exercise being 5% and 
8%, respectively. These � ndings were con� rmed 
by Brahm et al. (1998), who reported that high 
lifetime occupational and leisure time activity was 
associated with high BMD in 61 women and 61 
men aged 22–85 years.

Does cessation of exercise confer residual 
high BMD after retirement? 

Only a few, short-term, longitudinal studies have 
evaluated the effect on BMD of cessation of exer-
cise. Michel et al. (1992) reported a decrease of 
16% in the BMD of the spine in 9 middle-aged 
male runners who stopped their running career, as 
compared to no loss in 3 persons who continued 
running over a 5-year period. Similarly, 12 women, 
aged 19–27 years increased their muscle strength in 
the trained leg by 24% and leg BMD by 2% during 
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12 months with unilateral leg presses 4 times a 
week, but the BMD returned to its pretraining level 
after no more than 3 months of detraining (Vuori 
et al. 1994). No long-term studies evaluating the 
structural changes in the skeleton with reduction or 
cessation of exercise exist. Only 3 cross-sectional 
studies evaluated the BMD effects of cessation of 
exercise after the age of 65 years, when fragility 
fractures increase exponentially (Karlsson et al. 
1995, 1996, 2000, Khan et al. 1996). Leg BMD 
has been reported to be 10% higher than in age-
matched controls in male soccer players who had 
been retired for 5 years, 5% higher in those retired 
for 16 years, but no higher in those retired for 42 
years (Figure 4). The decrease in BMD with age in 
the legs was 0.33% /year in the former soccer play-
ers as compared to 0.21%/year in the controls. A 
residual, but not signi� cantly higher leg BMD was 
reported in the legs in the former players aged 70 
or more. However, the difference was signi� cant 
when adjusted for differences in body composi-
tion relative to the controls. No differences were 
found in the spine or hip before or after adjustment 
for confounders, indicating that after 3–5 decades 
of retirement, no residual BMD bene� ts could 
be found (Karlsson et al. 1993a, b, 1995, 1996, 
2000, Khan et al. 1996). Similar data have been 

presented, evaluating both male weight-lifters 
and female ballet dancers (Karlsson et al. 1993a, 
b, 1995, 1996). There are problems with cross-
sectional studies spanning 7 decades because of 
secular trends in exercise (Karlsson et al. 2000). 
Intensity and duration of training in young persons 
were perhaps less vigorous 5 decades ago. How-
ever, the duration of activity in the oldest former 
soccer players was at a level that gave the same 
high BMD during their active career as in soccer 
players active today (Karlsson et al. 2001). 

A lower level of activity may retain some BMD 
bene� ts acquired during an active career. The � nd-
ings in the male soccer study accord with this view 
by showing a correlation between current activity 
level and femoral neck BMD (r = ~0.25) (Karls-
son et al. 2000). This was also shown in a 4-year 
longitudinal study of 13 formerly competitive male 
tennis players in which all players at baseline were 
Finnish national top level players with an average 
training frequency of 8 hours’ exercise/week. No 
changes were seen in the differences in bone min-
eral content between the arm used for playing and 
the one not used after not training for 2 years, but 
these athletes were still playing a mean 3 hours/
week (Kontulainen et al. 1999). Perhaps continued 
activity, but at a lower level, preserves the exer-
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cise-induced, bene� cial skeletal effects acquired 
during growth and adolescence, but currently we 
have no data on the amount of exercise needed to 
preserve exercise-induced skeletal bene� ts also 
after an active career.

Does exercise increase muscle size and 
muscle strength?

Muscle size, muscle strength, neuromuscular � ber 
recruitment, and balance decline with advancing 
age, traits often regarded as surrogate end-points 
for fractures (Roman et al. 1993, Lipsitz et al. 
1994, Lord and Ward 1994, Hakkinen et al 1995, 
Tracy et al. 1999).

It is unclear whether the age-related decrease in 
muscle size and strength can cause the age-related 
decrease in BMD or whether the decrease in these 
two variables, both predicting fracture, can occur 
with no causal relationship. Grip strength corre-
lated with BMD in all measured locations in 649 
postmenopausal women (Kritz-Silverstein and 
Barrett-Connor 1994) and quadriceps strength and 
femoral neck BMD were correlated in 109 men 
and 231 women aged 20–89 years (both r = 0.6) 
(Hyakutake et al. 1994), as in the data reported in 
most studies. Muscle strength has been described 
as an independent predictor of femoral neck BMD 
in some (Hyakutake et al. 1994, Pocock et al. 
1989, Snow-Harter et al. 1990), but not all studies 
(Seeman et al. 1996). It is unclear whether muscle 
strength partially determines the BMD or whether 
strength and BMD covariate only because of simi-
lar genetic regulation, since these persons with a 
large skeleton and a high BMD probably also have 
a larger muscle volume (Hyakutake et al. 1994, 
Kritz-Silverstein and Barrett-Connor 1994, Pocock 
et al. 1989, Snow-Harter et al. 1990). 

Muscle strength seems highly adaptable to 
exercise in the elderly as well and an increase of 
up to 200% with exercise has been reported in 
octogenarians. This increase is far greater than 
the corresponding increase in the muscle volume 
and BMD. Tracy et al. (1999) reported a 27% 
increase in quadriceps strength, a 12% increase 
in quadriceps muscle mass and a 14% increase 
in muscle quality, de� ned as strength per unit of 
muscle mass for a 9-week program of resistance 
exercise for the quadriceps 3 days/week in 12 men 
aged 65–75 years. The corresponding increase in 

11 women aged 65–73 years was 29%, 12% and 
16%, respectively. Lord et al. (1995) con� rmed 
these � ndings by reporting 29% increase in quad-
riceps strength, while BMD remained unchanged 
in those aged 60–85 years after a 12-month period 
of exercise and Ryan et al. (1998) reported up to a 
98% increase in strength with no changes in femo-
ral neck BMD after a 16-week training program. 
A similar training program for 21 men aged 61 
years gave a 39% increase in upper body and a 
38% increase in lower body strength, but also a 3% 
increase in femoral neck BMD (Ryan et al. 1994). 
Moreover, a decrease in activity level causes rapid 
changes in muscular strength. Kontulainen et al. 
(1999) reported that muscle volume, measured as 
differences in forearm circumference between the 
playing and nonplaying arm, diminished from 6% 
to 3% with a reduced training level during 2 years, 
and Fiatarone et al. (1990) reported a 32% loss of 
muscle strength after no more than 4 weeks with 
no training.

The exercise-induced muscle response is proba-
bly of greater signi� cance than the BMD response 
in the elderly for reduction of the risk of fracture 
by exercise through improved mobility, speed 
of movement and ability to prevent or reduce 
the severity of falls. The speci� c neuromuscluar 
mechanisms responsible for the increase in muscle 
quality with exercise are unknown. Neuromuscular 
recruitment with increase in motor unit recruitment 
or discharge rate increased activation of synergis-
tic muscles, decreased activation of antagonistic 
muscles and alteration in muscle architecture may 
all contribute (Hakkinen and Komi 1983, Narici et 
al. 1989, Fiatarone et al. 1990, Pyka et al. 1994, 
Hakkinen et al. 1998).

 
Does exercise reduce the number of falls?

Impairments of balance and gait are known risk 
factors for a fall (Overstall et al. 1978, Tinetti et al. 
1986, Wolfson et al. 1986, Lipsitz et al. 1994, Lord 
and Ward 1994). Among persons aged 65 years, 
living in the community, 30% fell in the course of 
a year and the frequency of falls increases with age 
so that 40% of 80-year-olds fell at least once a year 
(Tinetti et al. 1988, Campbell et al. 1989). Obser-
vational, cohort studies and case-control studies 
indicate that a fall precedes more than 90% of 
hip and forearm fractures, but only 5% of all falls 
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lead to a fracture and fewer than 1% of all falls 
result in a hip fracture (Tinetti et al. 1988, Nevitt 
et al. 1989, Grisso et al. 1991, Hayes et al. 1993, 
Greenspan et al. 1994). The tendency to fall seems 
to be a predictor for hip fractures. Cummings et al. 
(1995), in the prospective SOF study, reported that 
a history of falls increased the risk of hip fracture, 
where the fracture risk increased by 30% with each 
fall during the � rst 5 recorded falls.

Prospective, randomized or unrandomized inter-
vention studies and observational cohort studies 
consistently indicate that exercise improves bal-
ance, coordination, muscle strength, reaction time, 
protective responses during a fall, lean body mass 
and mobility, all surrogate end-points for frac-
tures (Tinetti et al. 1988, Nevitt et al. 1989, 1991, 
Meyer et al. 1993, Fiatarone et al. 1994,  Hu and 
Woollacott 1994, Nelson et al. 1994, Province et 
al. 1995, Daly et al. 2000). Several observational 
studies have found a reduction in the number 
of falls with exercise (Tinetti et al. 1988, 1995, 
O’Loughlin et al. 1993, Graafmans et al. 1996). 
Hornbrook et al. (1994) in 1611 persons with an 
intervention program and 1571 controls 65 years 
and older, found that the fall frequency had been 
reduced by 15% with exercise, Tinetti et al. (1994) 
in 301 men and women 70 years and older reported 
that 35% of those exercising fell as against 47% 
of the controls. Several randomized controlled 
trials have evaluated the effect of exercise and the 
risk of falling. The � rst longitudinal study which 
reported that exercise reduces the risk of falling 
was The Frail and Injuries: Cooperative Studies 
of Interventions Techniques (FICSIT) including 
60–75-year-old persons. The authors reported that 
10–36 weeks of various training programs reduced 
the number of falls by 17%. The best results were 
reported with 15 weeks of Tai-Chi training, result-
ing in a 47% reduction in multiple falls during 
the 4-month period (Wolf et al. 1996). Since this 
study, 4 newer randomized controlled trials have 
con� rmed that exercise reduces the number of 
falls (Buchner et al. 1997, Campbell et al. 1997, 
1999a, Lehtola et al. 2000) while 4 other random-
ized controlled trials could not detect a reduction 
with exercise (McMurdo, et al. 1997, Campbell 
et al. 1999b, Rubenstein et al. 2000, Steinberg et 
al. 2000). Some studies even imply that the most 
active persons are at the same risk of sustaining a 

fall as the most inactive (Tinetti et al. 1988, 1995, 
O’Loughlin et al. 1993, Graafmans et al. 1996), 
probably due to a longer exposure to risk during 
the activity in the most active elderly. Two recently 
published reviews concluded that exercise alone 
does not protect against future falls (Campbell et 
al. 1999a, Gillespie et al. 2000). However, Gregg 
et al. (2000), summarizing 6 randomized studies, 
asserted that exercise reduces the fall frequency. 
It seems that the outcome in one population of 
elderly can not automatically be extrapolated to 
another population and that intervention studies 
concerning nursing home populations with a fall 
as end-point show less promising results. Addi-
tional questions arise as to how much exercise; its 
frequency and duration are needed to maintain the 
level of function achieved and are there any differ-
ences between populations? 
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