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PREFACE 

The Philadelphia chromosome (Ph) was discovered in 1960 by Nowell and 
Hungerford as the first consistent structural chromosome abnormality 
associated with leukemia. A decade later, the Ph chromosome was shown to 
originate from a reciprocal translocation between chromosomes 9 and 22. At 
the DNA level, the abnormality was shown in the early 1980s to involve the 
BCR and ABL1 genes and to generate a BCR/ABL1 fusion gene encoding a 
protein with increased tyrosine kinase activity. The BCR/ABL1 fusion gene 
has since been studied extensively, and shown to induce expansion of the 
leukemic cell population by mediating growth-promoting and death-
inhibiting signals, but the mechanisms by which BCR/ABL1 elicits its trans-
forming properties are unknown. The detailed molecular and functional 
characterization of the BCR/ABL1 fusion gene recently allowed the 
development of inhibitors that target the tyrosine kinase activity of the 
fusion protein. However, mutations leading to drug resistance and persisting 
leukemic cells remain as challenging problems in the treatment of CML. 

The general aim of this thesis has been to increase our understanding 
of BCR/ABL1-induced leukemogenesis by molecular and functional studies 
of BCR/ABL1-mediated signaling. The thesis is divided into three sections. 
The first is an introduction to Ph-positive leukemias and BCR/ABL1-
mediated signaling, with the intention of putting the original articles into 
proper context. The second section outlines the specific aims, and sum-
marizes the investigations on which this thesis is based. The third and final 
section contains the original articles on which the thesis is based. 
 
 Lund, August 2006 
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ABBREVIATIONS 

ALL acute lymphoblastic leukemia 
AML acute myeloid leukemia 
AP accelerated phase 
BC blast crisis 
bcr breakpoint cluster region 
BM bone marrow 
CB cord blood 
CCR complete cytogenetic remission 
CLL chronic lymphocytic leukemia 
CLP common lymphoid progenitor 
CML chronic myeloid leukemia 
CMP common myeloid progenitor 
CMV cytomegalovirus 
CP chronic phase 
FDR false discovery rate 
GFP green fluorescent protein 
GMP granulocyte/monocyte progenitor  
HSC hematopoietic stem cell 
IRES internal ribosomal entry site 
LSC leukemic stem cell 
LTR long terminal repeat 
MEP megakaryocyte/erythrocyte progenitor 
MSCV murine stem cell virus  
NBT nitro blue tetrazolium 
PB peripheral blood 
Ph Philadelphia chromosome 
SAM significance analysis of microarrays 
SOCS suppressor of cytokine signaling 
WBC white blood cell count 
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INTRODUCTION 

The Genetic Basis of Leukemia 

Leukemia constitutes a heterogeneous group of malignant neoplasms of the 
blood-forming tissue. The word leukemia is Greek for “white blood”, and 
refers to the unrestricted production of abnormal leukocytes. The imbalance 
of healthy and non-functional leukemic cells causes the symptoms of 
leukemia. The worldwide incidence of leukemia is approximately 5 cases 
per 100,000 persons and year, representing 3% of all cancers (Parkin et al. 
1999). There are several types of leukemias that are traditionally classified 
according to how quickly they progress and which cells they affect. Acute 
leukemia is characterized by an accumulation of immature hematopoietic 
cells (blasts) in the bone marrow (BM) and peripheral blood (PB), whereas 
chronic leukemia typically displays a slow buildup of relatively mature 
blood cells. The acute and chronic leukemias may be further classified into 
lymphoid or myeloid leukemias according to the origin of the leukemic 
cells, where the main types are referred to as acute lymphoid leukemia 
(ALL), acute myeloid leukemia (AML), chronic lymphoid leukemia (CLL), 
and chronic myeloid leukemia (CML). In Sweden, approximately 250 and 
450 new cases of AML and CLL, respectively, and 100 cases each of ALL 
and CML, are diagnosed every year (Socialstyrelsen 2006). 

Leukemia is a clonal neoplastic disorder that originates in a single 
hematopoietic progenitor cell through acquired somatic genetic changes. At 
the chromosomal level, these genetic changes are visible either as balanced 
abnormalities (reciprocal translocations, inversions, and insertions) or 
unbalanced changes, including nonreciprocal translocations, deletions, 
numerical aberrations, and amplifications (Mitelman et al. 2006). Many of 
the cytogenetic abnormalities are intimately associated with a particular 
subtype of leukemia and provide clinically important diagnostic and 
prognostic information (Johansson et al. 2004; Mrozek et al. 2004). Thus, 
the current World Health Organization classification system now recognizes 
genetic changes as important factors for appropriate disease classification of 
hematological malignancies (Jaffe et al. 2001).  

The most characteristic genetic changes in leukemia are the 
reciprocal chromosomal translocations that result in fusion genes. To date, 
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more than 250 different fusion genes have been described with at least two 
qualitatively different types of rearrangements being observed (Rabbitts and 
Stocks 2003; Mitelman et al. 2006). In a subset of malignancies of B- or T-
cell origin, illigitimate recombinations result in the juxtaposition of a variety 
of structurally intact (onco)genes to regulatory control elements of the 
immunoglobulin loci or the T-cell receptor loci, resulting in deregulated 
expression (Rowley 2001; Rabbitts and Stocks 2003). The second and by far 
most common outcome of balanced translocations is the creation of fusion 
genes, resulting in the expression of chimeric fusion proteins. The most 
frequent targets of chromosomal translocations in acute leukemias are 
transcriptional control genes, whereas tyrosine kinase encoding genes are 
more common targets in chronic myeloproliferative disorders (Cross and 
Reiter 2002; Kelly and Gilliland 2002; Scandura et al. 2002; De 
Keersmaecker and Cools 2006). 

The molecular and functional characterization of individual fusion 
genes has offered profound insights into leukemogenesis, and, more 
recently, has also enabled the development of targeted therapies of 
hematological malignancies (see below). 
 
Normal and Leukemic Hematopoiesis 

Hematopoiesis is the dynamic process of blood cell formation and in-
volves maintenance and proliferation of hematopoietic progenitor cells 
and their differentiation into mature blood cells. During adult life 
hematopoiesis occurs predominantly in the BM, where a small popula-
tion of pluripotent hematopoietic stem cells (HSCs) resides and gives rise 
to all the different blood cells (Szilvassy 2003; Bonnet 2005). Normal PB 
is composed of three types of cells: erythrocytes, thrombocytes, and 
leukocytes. The most numerous of these cells are the erythrocytes (red 
blood cells), which transport oxygen to the tissues, and the thrombocytes 
(platelets), which are needed for blood coagulation and repair of 
damaged blood vessels. The leukocytes (white blood cells), which are 
important mediators of the innate and adaptive immune system, can be 
further divided into granulocytes and lymphocytes (Jandle 1996).
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Figure 1. Hematopoietic differentiation. The pluripotent hematopoietic stem cell (HSC) 
has capacity of both self-renewal and differentiation. In the classical model of hematopoietic 
differentiation, the HSC first commits to either the lymphoid or myeloid branch through a 
common lymphoid progenitor (CLP) or a common myeloid progenitor (CMP), with the 
CMP further committing to either a granulocyte/monocyte progenitor (GMP) or a 
megakaryocyte/erythrocyte progenitor (MEP). Ultimately, the lymphoid branch gives rise to 
mature B- and T-lymphocytes. The GMP cells differentiate into neutrophils, basophils, 
eosinophils, and macrophages, whereas the MEP cells give rise to erythrocytes and thrombo-
cytes. CML is characterized by presence of the P210 BCR/ABL1 fusion gene, which is 
believed to arise in a pluripotent HSC. 

 
Under normal conditions, most of the HSCs are in a quiescent or 

slow cycling state, but a small proportion remains active and continuously 
produces mature blood cells (Szilvassy 2003; Bonnet 2005). Lifelong 
hematopoiesis is maintained by the unlimited capability of HSCs to self-
renew without differentiation, which maintains the HSC compartment at a 
steady state. The development of mature blood cells occurs in a hierarchical 
and linear manner that is commonly described as the progressive loss of 
self-renewing potential of HSCs, with gradual restrictions in cellular 
differentiation capacity. The classical and most accepted model of hemato-
poietic differentiation proposes that the HSCs first become commited to 
either the lymphoid or the myeloid branch through a common lymphoid 
progenitor (CLP) or a common myeloid progenitor (CMP) (Figure 1). The 
CMP further commits to either a granulocyte/monocyte progenitor (GMP) or 
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a megakaryocyte/erythrocyte progenitor (MEP). Ultimately, the lymphoid 
branch gives rise to mature B- and T-lymphocytes, whereas the myeloid 
branch differentiates into granulocytes (i.e. neutrophils, basophils, and 
eosinophils), macrophages, erythrocytes, and thrombocytes (Passegue et al. 
2003; Hoang 2004). The decision between self-renewal and differentiation is 
strictly controlled by both intrinsic and extrinsic regulation exerted by 
transcription factors, cytokines, and the microenvironment in which the 
hematopoietic cells reside (Zhu and Emerson 2002; Hoang 2004; 
Kaushansky 2006). 

The majority of the cells in the BM are blood cells at different stages 
of maturity and less than 0.1% of these cells correspond to an HSC 
(Szilvassy 2003). HSCs reside mainly within the BM, but can be mobilized 
into the PB by treatment with cytokines such as G-CSF, a method 
commonly used for stem cell transplantation. Umbilical cord blood (CB) is 
another source of primitive hematopoietic cells; however, use of it for trans-
plantations is limited because of the low number of stem cells obtained from 
a single extraction (Szilvassy 2003). There is currently no single marker that 
can be used to distinguish the most primitive HSC population from other 
cells in the BM, but because CD34 is highly expressed on most human 
HSCs it has become widely used for identification of more primitive cells. 
CD34 is, however, a heterogeneously expressed cell-surface marker and is 
also found on more committed progenitor cells (Bonnet 2002; Szilvassy 
2003). 

The target cell for malignant transformation is mostly unknown, but 
cancer stem cells that are biologically distinct from the differentiated cells 
that characterize the disease have been demonstrated in both leukemias 
(Lapidot et al. 1994; Blair et al. 1997; Bonnet and Dick 1997; George et al. 
2001; Jamieson et al. 2004) and other cancers (Al-Hajj et al. 2003; Singh et 
al. 2003). Because the leukemic stem cell (LSC) shares the capacity for 
unlimited self-renewal with normal HSCs, and also has some capacity to 
differentiate, it has been proposed that the initiating leukemic event occurs 
in an HSC, which—due to its lifelong persistence—has a high probability of 
accumulating mutations. Alternatively, the LSC may arise from a more 
committed progenitor that re-acquires the capability of self-renewal. There 
is currently support for both theories, indicating that the target cell may vary 
depending on the specific genetic aberration (Passegue et al. 2003; Bonnet 
2005). 
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Ph-Positive Leukemias and the BCR/ABL1 Fusion Gene 

The Philadelphia Chromosome 
The discovery of the Philadelphia (Ph) chromosome by Nowell and 
Hungerford in 1960 was the first description of a recurrent structural 
chromosomal abnormality associated with cancer, in this case CML (Nowell 
and Hungerford 1960). In 1973, Janet Rowley showed that the Ph chromo-
some results from a reciprocal translocation between the long arms of 
chromosomes 9 and 22 (Rowley 1973). Characterization of the breakpoints 
in the 1980s revealed that the translocation leads to fusion of the BCR gene 
at chromosome band 22q11 with the ABL1 gene at 9q34, generating the 
BCR/ABL1 fusion gene (Heisterkamp et al. 1985; Shtivelman et al. 1985). 
Molecular characterization of the chimeric protein later showed that the 
tyrosine kinase activity of BCR/ABL1 was indispensable for leukemic trans-
formation in Ph-positive leukemias (Lugo et al. 1990). The leukemogenic 
effects of BCR/ABL1 have been studied using different model systems, 
which have revealed that BCR/ABL1 affects several signal transduction 
pathways that influence proliferation, apoptosis, and adhesion of the 
leukemic cells (Deininger et al. 2000; Melo and Deininger 2004; Ren 2005). 
A major therapeutical breakthrough came with the development of imatinib, 
a drug that targets the tyrosine kinase activity of the BCR/ABL1 protein 
(Druker et al. 1996). Imatinib has now emerged as a front-line therapy in the 
treatment of CML patients, with increased survival advantages compared to 
previously available treatment regimens (O'Brien et al. 2003; Roy et al. 
2006). However, some patients fail to respond to imatinib or develop drug 
resistance, and the reservoir of leukemic cells persists even in patients 
receiving treatment with more potent second-generation inhibitors (Copland 
et al. 2006). Hence, an increased understanding of how BCR/ABL1 
mediates its leukemogenic effects will help us to identify complementary 
targets that can be used to eradicate the leukemic clone. 
 
Clinical Characteristics of Ph-Positive Leukemias 
The Ph chromosome is found in 90–95% of patients with CML; the re-
maining cases have no cytogenetically visible Ph chromosome but are 
positive for the BCR/ABL1 fusion, which then occurs either as a cryptic 
translocation or is masked within a complex karyotype (Jaffe et al. 2001). 
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CML accounts for about 15–20% of all leukemias in adults, with an 
incidence of 1–1.5 cases per 100,000 persons and year (Jaffe et al. 2001). 
The median age of presentation is around 53 years, but it does also occur at 
a low rate in children (D'Antonio 2005; Randolph 2005). Common symp-
toms at diagnosis include fatigue, weight loss, anemia, night sweats, and 
enlarged spleen—but many patients are asymptomatic and are diagnosed 
because of a high white blood cell count (WBC) in a routine blood test 
(D'Antonio 2005; Randolph 2005). 

CML is a clonal myeloproliferative disorder characterized by an 
increased and premature release of primitive myeloid cells into the blood. 
Typically, the disease has a triphasic clinical course and is most often 
diagnosed during the initial, relatively indolent, chronic phase (CP), in 
which the expansion of mature myeloid cells leads to an increased number 
of white blood cells. Eventually the disease may progress into an accelerated 
phase (AP), showing an increased number of circulating blasts. After a short 
period of some months, an aggressive blast crisis (BC) resembling an acute 
leukemia of either myeloid origin (about two-thirds of cases) or lymphoid 
origin (about one-third of cases) develops (Randolph 2005). During BC the 
cells fail to mature and this phase is thus characterized by an accumulation 
of undifferentiated blasts and is often also associated with secondary genetic 
changes. The most common changes include trisomy 8, duplication of the Ph 
chromosome, and an isochromosome 17q (Johansson et al. 2002). If un-
treated, the BC finally leads to death in less than eight months (Randolph 
2005). 

The Ph chromosome is also found in 15–30% of adult ALL, and up 
to 5% of childhood ALL, and occasionally in newly diagnosed AML (Jaffe 
et al. 2001; Faderl et al. 2002; Kurzrock et al. 2003). Some cases of acute 
leukemia may represent an initial asymptomatic CML that has progressed to 
a later and acute stage of the disease. Ph-positive ALL represents the most 
common genetic abnormality in adult ALL, and its incidence increases with 
age (Faderl et al. 2002). Ph-positive ALL is characterized by clonal expan-
sion and accumulation of immature lymphoid cells in the BM, blood, and 
lymphoid organs, and generally shows a higher WBC compared to other 
forms of ALL (Faderl et al. 2002; Kurzrock et al. 2003). The normal 
counterpart of the leukemic clone in Ph-positive ALL is pre-B cells (Faderl 
et al. 2002). Presence of the Ph chromosome in ALL is associated with a 
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poor prognosis when treated only with conventional chemotherapy (Radich 
2001; Gleissner et al. 2002). 
 
The Different BCR/ABL1 Fusion Genes 
The Ph chromosome is formed by fusion of the 3´ end of the ABL1 gene at 
9q34 to the 5´ end of the BCR gene at 22q11. The ABL1 gene contains two 
alternative first exons followed by ten more, with the breakpoints occurring 
upstream of exon 2 (Deininger et al. 2000). Normally, the ABL1 gene en-
codes a highly conserved and ubiquitously expressed non-receptor tyrosine 
kinase of 145 kDa, which is able to migrate between the nucleus and 
cytoplasm (Van Etten et al. 1989; Dhut et al. 1991; Taagepera et al. 1998). 
The ABL1 protein has been implicated in cell cycle regulation, in processes 
of stress response, and in signal transduction from growth factor receptors 
and integrins (Van Etten 1999; Saglio and Cilloni 2004). The BCR gene is 
also ubiquitously expressed and encodes a protein of 160 kDa with a 
serine/threonine kinase activity (Maru and Witte 1991). BCR has been 
suggested to be involved in the regulation of oxidative burst in neutrophils 
(Voncken et al. 1995b), to suppress RAS signaling (Radziwill et al. 2003), 
and to be important for cellular trafficking of growth factor receptors 
(Olabisi et al. 2006). The detailed normal cellular function of the BCR 
protein is, however, still largely unknown. 

The BCR gene has 23 exons and the break usually occurs within one 
of three different breakpoint cluster regions (bcr), as indicated in Figure 2 
(Deininger et al. 2000). In most cases of CML, as well as in 30–50% of the 
Ph-positive adult ALL cases (Jaffe et al. 2001; Faderl et al. 2002; Kurzrock 
et al. 2003), the break occurs within the major bcr (M-bcr) that spans exons 
12–16, and results in either a fusion of BCR exons 13 or 14 with ABL1 exon 
2 (known as the b2a2 or b3a2 junctions, respectively). The resulting fusion 
protein is designated P210 BCR/ABL1 because it has a molecular weight of 
210 kDa. If the break occurs within the minor bcr (m-bcr) instead, located in 
the 54 kb large intronic region between the alternative exon e2´ and exon 2, 
a smaller protein of 190 kDa is produced. This variant is called P190 
BCR/ABL1 and is almost exclusively associated with Ph-positive ALL; it is 
the predominant form found in Ph-positive childhood ALL (Faderl et al. 
2002; Kurzrock et al. 2003). The third bcr, the µ-bcr, is located downstream 
of exon 19 and the corresponding fusion protein is called P230 BCR/ABL1. 
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This variant is associated with a rare form of neutrophilic CML (Pane et al. 
1996). Occasionally, some other fusion variants of BCR/ABL1 are also 
detected (Melo and Deininger 2004). 

Compared to the normal ABL1 protein, the BCR/ABL1 fusion 
protein is located in the cytoplasm and shows increased and constant 
tyrosine kinase activity (Lugo et al. 1990; Ilaria and Van Etten 1995). 
BCR/ABL1 contains several protein domains that allow interactions with 
adaptor molecules and mediate and regulate its function. The protein 
domains of the ABL1 part are identical in each of the P190, P210, and P230 
BCR/ABL1 fusion variants, whereas the domains from the BCR segment 
differ (Figure 2). ABL1 contributes with the SRC homology domains SH2 
and SH3, a tyrosine kinase domain, and also DNA- and actin-binding 
domains. The myristoylation site—encoded by the alternative exon 1b of 
ABL1—is not included in the BCR/ABL1 fusion protein and loss of this site 
has been suggested to favor an active conformation of ABL1 (Hantschel et 
al. 2003; Nagar et al. 2003). The SH2 and SH3 domains bind to tyrosine-
phosphorylated proteins and proline rich residues, respectively, and are 
important domains for interaction with adaptor proteins such as CRK and 
CRKL (Feller et al. 1994b; Sattler et al. 1996). The tyrosine kinase activity 
of ABL1 is normally regulated by intramolecular interactions involving the 
SH2 and SH3 domains, which act to suppress the tyrosine kinase activity 
(Franz et al. 1989; Jackson and Baltimore 1989; Muller et al. 1993). 

From the BCR part, the coiled-coil oligomerization domain and the 
serine/threonine kinase domain that harbors a tyrosine 177 site are present in 
all three different fusion proteins (Figure 2). The oligomerization domain is 
important for autophosphorylation of ABL1, leading to the increased 
tyrosine kinase activity of the BCR/ABL1 protein, and also promotes 
binding of BCR/ABL1 to actin (McWhirter et al. 1993; McWhirter and 
Wang 1993; Smith and Van Etten 2001; Zhang et al. 2001). The substrate of 
the serine/threonine kinase activity is unknown (Maru and Witte 1991), but 
residues overlapping this domain have been shown to be involved in several 
signal transduction pathways by binding to SH2 domains of other proteins. 
Phosphorylation of tyrosine 177 leads to recruitment and binding of the 
GRB2 adaptor protein (Pendergast et al. 1993), which is important for 
activation of the RAS pathway (Puil et al. 1994). Two additional domains of 
BCR include the Rho guanine nucleotide exchange factor (RhoGEF, also 
designated Dbl-like) and the pleckstrin homology (PH) domains, both of 



Introduction  19 

 
Figure 2. Schematic representation of the BCR, ABL1, and BCR/ABL1 proteins. The 
t(9;22) gives rise to mainly three different BCR/ABL1 fusion proteins: P190, P210, and 
P230 BCR/ABL1. The three fusion proteins consist of identical domains of the ABL1 part, 
but the contribution of the BCR protein differs. Three different BCR breakpoint regions have 
been identified: the major breakpoint cluster region (M-bcr), the minor breakpoint cluster 
region (m-bcr), and the micro breakpoint cluster region (µ-bcr). The P210 BCR/ABL1 fusion 
variant is formed through a break within the M-bcr and is associated with CML and also a 
fraction of Ph-positive adult ALL. A break within the m-bcr is associated with formation of 
the P190 BCR/ABL1 fusion protein and is mainly seen in Ph-positive ALL. The P230 fusion 
variant is rare and results from a break in the µ-bcr. Domains/residues of the BCR protein: 
C, coil-coiled oligomerization domain; Ser/Thr kinase, serine/threonine kinase domain; 
Y177, tyrosine residue 177; RhoGEF, Rho guanine nucleotide exchange factor domain; PH, 
pleckstrin homology domain; Ca, calcium-dependent lipid-binding domain; RacGAP, RAC 
GTPase-activating protein domain. Domains of the ABL1 protein: SH2/SH3, SRC 
homology 2/3 domains; Tyr kinase, tyrosine kinase domain; DB, DNA-binding domain; AB, 
actin-binding domain. The figure is not drawn to scale. 

 
which are present in P210 and P230 BCR/ABL1. The RhoGEF domain 
activates Rho GTPases by catalyzing the release of GDP and the binding of 
GTP (Denhardt 1996). Comparison of the P190 and P210 fusion proteins 
has suggested that differential activation of Rho proteins may play a role in 
the differences between P190 and P210 BCR/ABL1-induced leukemia 
(Harnois et al. 2003). PH domains have several putative functions, e.g. to 
mediate protein-lipid interactions (Lemmon 2004), but their role in BCR 
function is unknown. P230 BCR/ABL1 also harbors a calcium-dependent 
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lipid-binding domain, as well as a truncated RacGAP domain (Melo 1996; 
Advani and Pendergast 2002). The RacGAP domain of BCR has been 
shown to exhibit GTPase activity for RAC (Diekmann et al. 1991). 
 
Functional Differences Between the BCR/ABL1 Fusion Variants 
The three main translocation variants of BCR/ABL1 (P190, P210, and P230) 
are primarily associated with different types of leukemias (Pane et al. 2002). 
Much work has been focused on trying to elucidate whether the intrinsic 
properties of these fusion proteins might explain their disease-specific 
preference, or if this can be explained by the fact that they originate in 
different cell types. Comparisons of the functional properties of the fusion 
proteins have revealed that P190 has a higher intrinsic tyrosine kinase 
activity than P210, and that P230 has the lowest kinase activity of the three 
(Lugo et al. 1990; Li et al. 1999). Transgenic mice expressing either P190 or 
P210 BCR/ABL1 have been shown to develop distinct leukemic phenotypes, 
with relatively short and long latency periods associated with P190 and 
P210, respectively (Voncken et al. 1995a; Honda et al. 1998; Koschmieder 
et al. 2005). In contrast to P230 BCR/ABL1-expressing primary mouse bone 
marrow cells that remain dependent on growth factors for optimal growth in 
the absence of stroma, both the P190 and P210 BCR/ABL1 variants induce 
independence from growth factors. All three variants, however, induce 
growth factor-independence in cytokine-dependent cell lines (Quackenbush 
et al. 2000). Although both P190 and P210 BCR/ABL1 have been shown to 
activate the JAK/STAT pathway by phosphorylating different STAT 
molecules, the P190 variant has—in contrast to P210—been reported to 
induce phosphorylation of STAT6 in Ba/F3 cells transfected with 
BCR/ABL1 (Ilaria and Van Etten 1996). Notably, however, upon retroviral 
expression of the P190 and P210 BCR/ABL1 variants in primary human 
hematopoietic cells, no differences in STAT phosphorylation were seen, 
with both fusion variants inducing STAT5 and STAT6 phosphorylation to 
similar extents (Article IV). Furthermore, P190 and P210 have been 
suggested to activate similar signal transduction pathways in hematopoietic 
cell lines, as demonstrated by phosphorylation of identical substrates (Okuda 
et al. 1996). 

The various fusion proteins have been reported to drive expansion of 
different hematopoietic populations, where P190 efficiently induces 



Introduction  21 

lymphoid expansion of primary mouse BM cells, whereas P210 and P230 
expression result in myeloid cell expansion under the same conditions 
(Quackenbush et al. 2000). Furthermore, comparison of the leukemogenic 
activity of P210 BCR/ABL1 and an activated form of ABL1 revealed that 
ABL1 induces only lymphoid malignancies, whereas P210 BCR/ABL1 
expression was found to result in a myeloproliferative disease (Gross et al. 
1999). In contrast, other studies have demonstrated that P190 and P210 
BCR/ABL1 induce a similar leukemogenic phenotype in mouse B-lymphoid 
precursors, and also in mice reconstituted with BM cells expressing either of 
these variants. The P190 variant was, however, a more potent leukemic 
stimulus than P210 BCR/ABL1 (McLaughlin et al. 1989; Kelliher et al. 
1991). Furthermore, transplantation of mice with P190, P210, or P230 
BCR/ABL1-expressing BM cells, was found to induce an identical CML-like 
myeloproliferative disorder with equal potency as that seen when BM cells 
from donors pretreated with 5-fluorouracil—which favors transduction of 
early progenitor/stem cells—were used (Li et al. 1999). Using BM from un-
treated donors, P190 was shown to induce lymphoid leukemia with shorter 
latency than that induced by P210 or P230 BCR/ABL1 (Li et al. 1999). Thus, 
there are conflicting data suggesting either that the association of various 
BCR/ABL1 variants with different types of leukemias is related to their 
different intrinsic leukemogenic activities, or, alternatively, that the various 
BCR/ABL1 translocations would arise in different hematopoietic cell pop-
ulations. In this context, it is interesting to note that when P210 and P190 
BCR/ABL1 are expressed in human CD34+-enriched umbilical CB cells, they 
both give rise to a similar (erythroid) cell expansion (Article IV). 
 
Leukemic Cells in CML and Ph-Positive ALL 
In CML, aberrant cells mainly from the granulocytic lineage are released 
into the blood, but the Ph chromosome is also found in macrophages and 
cells from the erythroid, megakaryocytic, and B lymphoid lineages (Fialkow 
et al. 1978). This indicates that CML arises in a common blood-forming 
stem cell, however, the exact precursor cell remains to be identified. 
Because BCR/ABL1 has also been detected in endothelial cells from CML 
patients, it has been suggested that CML may arise in a progenitor cell even 
earlier in the hierarchy than the HSC—possibly in a hemangioblast capable 
of generating both blood and endothelial cells (Gunsilius et al. 2000). 
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Although this should be confirmed in further studies, a later report has 
suggested that the BCR/ABL1 translocation may originate in a more 
primitive cell than the HSC (Fang et al. 2005). 

The mechanism behind myeloid expansion in CML is far from clear. 
It has been suggested that the population of BCR/ABL1-positive HSCs is 
renewed even more slowly than normal HSCs (Udomsakdi et al. 1992) and 
that myeloid expansion results from an increased self-renewal of the more 
differentiated progenitors (Jamieson et al. 2004). Although it is generally 
believed that CML arises in a pluripotent HSC (Figure 1), the cell of origin 
in Ph-positive ALL has been proposed to be a more committed lymphoid 
progenitor (Anastasi et al. 1996). The two largest studies investigating the 
origin of Ph-positive ALL, however, have reported conflicting results, the 
one demonstrating multilineage involvement suggesting a pluripotent stem 
cell origin (Schenk et al. 1998), and the other showing a lymphoid lineage 
restriction in all de novo Ph-positive ALL cases, indicating a lineage-
committed origin (Pajor et al. 2000). In support of the latter, there has been a 
study of Ph-positive ALL in children suggesting that high-risk ALL in child-
hood originates in a B lineage-negative but lymphoid-restricted progenitor 
cell (Hotfilder et al. 2005). Interestingly, it has been reported that P210 
BCR/ABL1-positive and P190 BCR/ABL1-positive ALLs have different 
cellular origins, with P210 originating in a pluripotent HSC and P190 in a 
committed B-cell progenitor (Castor et al. 2005). In indirect support of a 
separate cellular origin of P190 and P210 BCR/ABL1, expression of either 
of these two variants in primitive human CD34+ cells was found to result in 
induction of very similar biological effects (Article IV). 
 
Experimental Models of BCR/ABL1-Induced Leukemia 
Several experimental systems have been used to study how BCR/ABL1 
elicits its transforming activities. The different model systems include 
hematopoietic cell lines established mainly from patients in advanced stages 
of CML, BCR/ABL1-transduced cell lines, primary CML cells, and trans-
genic and retroviral mouse models (Deininger et al. 2000). Each of these 
systems has its individual advantages and disadvantages, but combined, they 
have contributed greatly to our current knowledge of BCR/ABL1-induced 
leukemogenesis. Retroviral transduction of primary mouse BM cells with 
BCR/ABL1—with subsequent transplantation into mice—reflects the clinical 
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features of Ph-positive leukemias well, and has been used to study the in 
vivo pathogenesis of CML (Wong and Witte 2001; Van Etten 2002; Ilaria 
2004). 

As for BCR/ABL1-transfected cell lines, most show stable expres-
sion of BCR/ABL1, and only a few cell lines of murine origin have been 
described in which this fusion gene can be conditionally expressed (Carlesso 
et al. 1994; Kabarowski et al. 1994; Cortez et al. 1997; Klucher et al. 1998; 
Pierce et al. 1998; Article I). Compared to stable transfection, conditional 
expression offers an advantage in that early effects of the introduced gene 
can be monitored in a controlled manner, and the risk of clonal selection is 
likely to be very low. Immortalized leukemic cell lines are relatively easy to 
work with and have thus become a widely used model system to study the 
basic biological features of Ph-positive leukemic cells (Drexler et al. 1999). 
These cells are, however, derived from cells arrested at a specific stage of 
hematopoietic differentiation, and have also evolved to tolerate and be 
dependent on the expression of the BCR/ABL1 fusion gene. Although cell 
lines acquire additional genetic alterations during culture, it has been shown 
that immortalized hematopoietic cell lines with the same primary genetic 
change—including several Ph-positive cell lines—display a similar gene 
expression profile (Andersson et al. 2005), and that cell lines and clinical 
samples with the same aberration share a characteristic gene expression 
pattern (Fine et al. 2004; Andersson et al. 2005). 

Retroviral transduction of BCR/ABL1 into human CD34+ progenitor 
cells has enabled the study of BCR/ABL1-induced transforming activities in 
cells resembling the ones in which leukemia originates, with the advantage 
that the transduced cells can be readily compared with normal hematopoietic 
progenitor cells (Zhao et al. 2001; Chalandon et al. 2002; Ramaraj et al. 
2004; Article IV). Finally, primary CML cells from patients have also been 
widely used to study the effects of BCR/ABL1. However, their limited avail-
ability, poor growth, and tendency to mature in vitro restrict the use of 
primary cells from patients (Deininger et al. 2000). Moreover, when 
comparing the molecular and cellular phenotypes of primary CML cells with 
those of normal cells, it is important to use a clearly defined cell population 
such as selected CD34+ cells. 

During recent years it has become increasingly clear that the cellular 
context in which BCR/ABL1 is expressed has a significant impact on the 
phenotype induced by the fusion gene (Deininger et al. 2000; Wong et al. 
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2003; Wetzel et al. 2005). Hence, care should always be taken before 
findings derived from, in particular cell lines and animal models, are 
extrapolated to primary CML cells and patients. 
 
Biological Properties of BCR/ABL1-Mediated Transformation 
The constitutive tyrosine kinase activity of BCR/ABL1 is essential for its 
transforming properties (Lugo et al. 1990; Pear et al. 1998) and required 
both for the establishment and maintenance of Ph-positive leukemia. 
Different hypotheses have been postulated to explain the expansion of the 
leukemic clone—including activation of proliferation, reduction of apop-
tosis, and deregulation of cell adhesion—features also observed upon 
expression of BCR/ABL1 in human hematopoietic progenitor cells (Zhao et 
al. 2001; Chalandon et al. 2002; Ramaraj et al. 2004). The proliferative 
advantage is believed to result from BCR/ABL1-mediated activation of a 
number of signal transduction pathways (Deininger et al. 2000; Melo and 
Deininger 2004; Ren 2005). Moreover, BCR/ABL1 has been shown to 
induce growth factor-independent proliferation in factor-dependent cell lines 
and primary CML cells, which may be at least partly due to autocrine 
production of IL3 and G-CSF (Hariharan et al. 1988; Sirard et al. 1994; 
Jiang et al. 1999). 

Cell lines transfected with BCR/ABL1 have been demonstrated to be 
less sensitive to apoptotic agents such as ionizing radiation and growth 
factor withdrawal (Bedi et al. 1994; McGahon et al. 1994; Cortez et al. 
1995). The anti-apoptotic effect is, however, debatable because conflicting 
results have been reported in primary CML cells (Bedi et al. 1994; Amos et 
al. 1995; Albrecht et al. 1996). These contradictory findings have been 
suggested to be due to differences in the expression level of BCR/ABL1 
between primary CML cells and cell lines, where the latter have been 
reported to require high levels of BCR/ABL1 expression to be able to be 
protected against apoptosis (Cambier et al. 1998; Issaad et al. 2000; Keeshan 
et al. 2001). A more recent study of primary CML progenitor cells has 
indicated that the dividing cells are sensitive, whereas the non-proliferating 
CML cells are resistant to apoptosis induced by, for example, imatinib and 
arsenic (Holtz et al. 2005). 

In normal hematopoiesis, proliferation and differentiation are 
strongly regulated by cellular interactions with the BM stroma. Increased 
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proliferation and also premature release of immature myeloid cells at 
different stages of differentiation into the circulation have been suggested to 
result from reduced adhesion of CML progenitor cells to the stroma and 
extracellular matrix (Gordon et al. 1987; Verfaillie et al. 1992; Verfaillie et 
al. 1997). BCR/ABL1 has been proposed to perturb the receptor function of 
integrins by inducing a low-affinity state that reduces its adhesive properties 
(Verfaillie et al. 1997), and it appears that restoration of the normal integrin-
dependent adhesion of CML progenitors is one of the mechanisms by which 
IFN-alpha treatment works (Bhatia et al. 1994). Altogether, accumulation of 
BCR/ABL1-positive cells may, besides its proposed effects on proliferation 
and apoptosis, also be due to reduced contact inhibition as a result of 
reduced interactions with the microenvironment. 
 
Signaling Pathways Activated by BCR/ABL1 
The transforming potential of BCR/ABL1 is likely to be mediated by a 
number of signal transduction pathways. Over the years, a large number of 
signal transduction pathways have been implicated in BCR/ABL1-mediated 
transformation, indicating that complex deregulatory mechanisms are in-
volved in the leukemogenic events. Several different experimental systems 
have, however, been used for these investigations and some of the observed 
features are thus likely to be important only in the context of certain cells. 

BCR/ABL1 contains several protein interaction domains/motifs that 
regulate and mediate its function by binding to and/or phosphorylating 
adaptor proteins, which activate downstream signaling pathways (Figure 3). 
Adaptor proteins that have been shown to interact with BCR/ABL1 include 
CRKL, CRK, GRB2, GRB4, GAB2, SHC, SOS, DOK, and CBL 
(Pendergast et al. 1993; Feller et al. 1994a; Matsuguchi et al. 1994; Oda et 
al. 1994; Puil et al. 1994; ten Hoeve et al. 1994; de Jong et al. 1995; Carpino 
et al. 1997; Coutinho et al. 2000; Sattler et al. 2002). The complex formed 
between BCR/ABL1 and the adaptor proteins results in activation of multi-
ple signaling pathways, which in turn activate proteins and transcription 
factors such as RAS, PI3K, AKT, STAT5, NFκB, and MYC. 

BCR/ABL1 activates the RAS signaling pathway by forming a 
complex with GRB2, which binds to the autophosphorylated tyrosine 177 
site (Mandanas et al. 1993; Pendergast et al. 1993), and SOS, thereby 
leading to accumulation of the active GTP-bound form of RAS (Figure 3) 
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(Druker et al. 1992; Tauchi et al. 1994). Alternatively, RAS may be 
activated by the adaptor proteins SHC and CRKL. Following activation, 
RAS signals via MAP kinases (MAPKs) through a phosphorylation cascade 
and activates the ERK (Cortez et al. 1997) and the JNK/SAPK (Raitano et 
al. 1995) pathways, resulting in activation of transcription factors and 
stimulation of proliferation and differentiation. Inhibition of the RAS 
pathway has been shown to prevent the leukemogenic activity of 
BCR/ABL1 in fibroblasts and hematopoietic mouse cells (Sawyers et al. 
1995). 

Activation of the PI3 kinase (PI3K) pathway by BCR/ABL1 is 
thought to result from formation of a complex together with the CRKL, 
CRK, and CBL adaptor molecules (Sattler et al. 1996), which bind to the 
BCR/ABL1 fusion protein (Figure 3). The PI3K is composed of the 
regulatory p85 subunit and the catalytic p110 subunit, the first of which 
associates with BCR/ABL1 through interaction with the adaptor molecules 
CRKL and CBL (Sattler et al. 1996). Activation of the PI3K is required for 
transformation by BCR/ABL1, and downstream signaling through the AKT 
kinase appears to be important for the transforming event (Skorski et al. 
1995; Skorski et al. 1997). 

Another pathway thought to mediate growth-promoting signals in 
BCR/ABL1-positive cells is the JAK/STAT pathway (Figure 3). Normally, 
the JAKs are involved in signal transduction from tyrosine kinase-associated 
receptors and they phosphorylate and activate different STAT molecules, 
which then dimerize and are translocated to the nucleus where they activate 
gene transcription (Ivashkiv and Hu 2004). Mainly STAT5, but also STAT1 
and STAT3, have been shown to become phosporylated in BCR/ABL1-
transfected and leukemic cell lines (Carlesso et al. 1996; Ilaria and Van 
Etten 1996; Shuai et al. 1996; Chai et al. 1997; Article I). This activation 
has, however, been suggested to be independent of JAK signaling (Carlesso 
et al. 1996; Ilaria and Van Etten 1996). The JAK/STAT pathway has also 
been shown to be constitutively active in primary CML cells (Chai et al. 
1997), and, after some years of controversy, STAT5 has recently been 
shown to be essential for BCR/ABL1-mediated transformation of primitive 
murine cells (Hoelbl et al. 2006). Thus, the available data suggest that 
JAK/STAT is an important pathway by which BCR/ABL1 mediates its 
transforming activities. 
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Figure 3. Schematic overview of BCR/ABL1-mediated signaling. BCR/ABL1 binds to 
and/or phosphorylates several adaptor proteins such as GRB2, CRKL, CBL, and SHC, 
resulting in activation of multiple downstream signaling pathways including RAS, PI3K, and 
JAK/STAT. BCR/ABL1 also activates a focal adhesion complex, including FAK and 
paxillin, that is associated with the integrin receptor. Ultimately, signaling through these 
pathways results in enhanced proliferation, reduced apoptosis, and deregulated adhesion. 

 
The RAS, PI3K, and JAK/STAT signaling pathways may also 

contribute to a possible reduction of apoptosis in BCR/ABL1-positive cells. 
BCR/ABL1 has been shown to increase transcription of the anti-apoptotic 
BCL2 and BCLXL proteins by RAS/PI3K- and STAT5-mediated signaling, 
respectively (Sanchez-Garcia and Martin-Zanca 1997; Skorski et al. 1997; 
Horita et al. 2000). Normally, BCL2 and BCLXL are neutralized by the pro-
apoptotic protein BAD, but in its phosphorylated form BAD is instead 
bound by to a 14-3-3 protein and can no longer inhibit the anti-apoptotic 
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activities. In BCR/ABL1-expressing cells, BAD has been suggested to 
become phosphorylated either by RAS-mediated activation of the RAF1 
kinase, or by PI3K-mediated activation of AKT, which may be at least 
partly responsible for the increased survival of BCR/ABL1-expressing cells 
(Figure 3) (Neshat et al. 2000). Furthermore, BCR/ABL1 may inhibit 
apoptosis by downregulating IRF8 (also designated ICSBP), thereby 
modulating the expression of BCL2 and BCLXL (Gabriele et al. 1999; 
Burchert et al. 2004). Additionally, BCR/ABL1-mediated signaling may 
prevent accumulation of cytochrome c, resulting in suppressed activation of 
caspase 3, and hence suppressed apoptosis (Amarante-Mendes et al. 1998). 

The integrins are a family of transmembrane receptors associated 
with the cytoskeleton through focal adhesions that connect them to 
cytoskeletal proteins, which is important for signal transduction between the 
cell and its environment (Ginsberg et al. 2005). The cytoplasmic location of 
the BCR/ABL1 protein permits interactions with the cytoskeleton by 
binding to focal adhesion kinase (FAK), paxillin, vinculin, F-actin, tensin, 
and talin (Figure 3) (McWhirter and Wang 1993; Gotoh et al. 1995; Salgia 
et al. 1995a; Salgia et al. 1995b). Phosphorylation and interaction of 
BCR/ABL1 with these cytoskeletal proteins may influence the function of 
integrins and mediate signal transduction, but there have been conflicting 
results reported regarding phosphorylation of FAK and paxillin in 
BCR/ABL1-transfected fibroblasts (Cheng et al. 2002). Primary CML cells 
have, however, been reported to show an enhanced association between the 
cytoskeleton and integrin receptors. This may influence the normal cellular 
interactions with the microenvironment, thereby affecting proliferation and 
normal contact inhibition (Bhatia et al. 1999). 

Several transcription factors including MYC, JUN, and NFκB have 
been shown to become activated by BCR/ABL1 (Figure 3), but the 
mechanisms underlying this activation remain to be elucidated. Using a 
dominant-negative MYC mutant, it has been demonstrated that MYC is 
required for BCR/ABL1-mediated transformation of fibroblasts and primary 
mouse bone marrow cells (Sawyers et al. 1992). The activation of MYC 
appears to be dependent on the SH2 domain of BCR/ABL1 (Afar et al. 
1994), and JAK2 has been suggested to be involved in the induction of 
MYC by BCR/ABL1 (Xie et al. 2002). JUN has been demonstrated to 
exhibit increased expression in BCR/ABL1-transfected murine and human 
cells, as well as in primary CML cells (Raitano et al. 1995; Burgess et al. 
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1998; Article II), and contributes to BCR/ABL1-mediated transformation 
(Raitano et al. 1995). The NFκB transcription factor is a key regulator of 
proliferation and apoptosis and is constitutively active in CML and Ph-
positive ALL blasts (Reuther et al. 1998; Kirchner et al. 2003; Munzert et al. 
2004). Activation of NFκB by BCR/ABL1 is dependent on the tyrosine 
kinase activity and is also partly dependent on the RAS signaling pathway 
(Reuther et al. 1998). Inhibition of the IKK complex that activates NFκB, 
abrogates proliferation of CML cell lines and primary CML cells (Cilloni et 
al. 2006). 

In conclusion, BCR/ABL1 mediates its leukemogenic effects 
through activation and deregulation of several well-known signal trans-
duction pathways. Although individual pathways have been demonstrated to 
be essential, they are likely to act in concert to induce transformation. 
 
Transcriptional Effects Mediated by BCR/ABL1 Signaling 
Several of the different signal transduction pathways and transcription 
factors that have been found to become deregulated by BCR/ABL1 are 
likely to affect a number of downstream target genes. Identification of such 
genes, or perturbed transcriptional networks, may ultimately make it 
possible for us to identify, and hopefully target, novel pathways used by 
BCR/ABL1 to elicit its leukemogenic activity. Since the introduction of 
microarray technology in the 1990s, allowing gene expression profiling of 
several thousand genes at the same time, several studies investigating the 
influence of BCR/ABL1 on the global gene expression pattern in different 
experimental systems have been reported. 

One of the first microarray studies investigating the transcriptional 
effects of BCR/ABL1 compared the gene expression profiles of mouse BM 
mononuclear cells retrovirally transduced with either P190 or P210 
BCR/ABL1 (Advani et al. 2004). This study revealed that P190 showed a 
significantly higher expression of IFN-inducible genes as compared to P210, 
which instead displayed a slightly increased expression of the IL3 receptor. 
An enrichment of IFN-alpha inducible genes was also found following 
inducible expression of P210 BCR/ABL1 in human U937 cells (Article II). 
However, it is presently unclear whether the induction of IFN-responsive 
genes is part of the transformation process by BCR/ABL1, whether it is a 
negative feedback reaction against it, or whether it represents an entirely cell 
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context-dependent response. Global gene expression studies of Ph-positive 
cell lines following treatment with imatinib identified 142 genes that are 
dependent on the tyrosine kinase activity of BCR/ABL1 (Article III). 
Interestingly, BCR/ABL1 was found to positively regulate several genes 
involved in negative feedback regulation of known signaling pathways. 
Among these were three members of the suppressor of cytokine signaling 
(SOCS) family (Figure 3): CISH, SOCS2, and SOCS3. Aberrant expression 
of individual SOCS family members has previously been described to be 
associated with BCR/ABL1 expression in transfected cell lines and primary 
CML cells (Tauchi et al. 2001; Schultheis et al. 2002; Liu et al. 2003; 
Radich et al. 2006), and thus seems to be a recurrent feature and an 
important response following BCR/ABL1 signaling. In addition, the latter 
study also found several genes to be negatively regulated by P210 
BCR/ABL1, many of which are involved in metabolic pathways. In 32D 
mouse cells, P210 BCR/ABL1 expression was also shown to deregulate the 
expression of several genes involved in carbohydrate metabolism (Hickey 
and Cotter 2006). In an attempt to investigate the transcriptional effects of 
BCR/ABL1 in a cellular context more closely resembling Ph-positive 
leukemias in vivo, human CD34+ selected cells were retrovirally transduced 
with P210 and P190 BCR/ABL1 (Article IV). Microarray analysis revealed 
no significant differences between the two fusion variants. When the gene 
expression profiles of both fusion genes were combined and compared with 
those of control cells, 222 potential downstream targets of P190/P210 
BCR/ABL1 were identified (Article IV). The SOCS2 gene was again 
identified as being upregulated and BCR/ABL1 expression was found to 
activate genes involved in the MAPK and TGFB signaling pathways, for 
example, and to suppress the expression of genes involved in the immune 
response, cell communication, cell adhesion, and differentiation. 

Relatively few microarray studies have been performed to investi-
gate the transcriptional expression profiles of primary Ph-positive ALL and 
CML cells. Gene expression studies of Ph-positive ALL have revealed a 
more heterogeneous gene expression pattern than in other subgroups of 
ALLs harboring characteristic chromosomal aberrations (Ross et al. 2003; 
Fine et al. 2004; Haferlach et al. 2005). This finding has been suggested to 
reflect a less direct effect on the gene expression pattern by the P190 
BCR/ABL1 fusion gene than in cases harboring rearrangement of transcrip-
tional control genes (Fine et al. 2004).  
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Gene expression studies in primary CML cells have concentrated on 
comparing normal cells with those obtained in CP (Bruchova et al. 2002; Li 
et al. 2002; Kaneta et al. 2003; Nowicki et al. 2003; Kronenwett et al. 2005), 
to identify gene signatures associated with disease progression by comparing 
cells obtained in CP with AP/BC cells (Ohmine et al. 2001; Radich et al. 
2006; Zheng et al. 2006), or to identify molecular profiles at diagnosis that 
could predict the likelihood of treatment response or failure following 
administration of imatinib (Hofmann et al. 2002; Kaneta et al. 2002; Ohno 
and Nakamura 2003; McLean et al. 2004; Frank et al. 2006; Villuendas et al. 
2006). One major drawback is that several of these studies have used a 
limited number of samples and/or heterogeneous, mainly mononuclear, cell 
populations (Bruchova et al. 2002; Li et al. 2002; Kaneta et al. 2003; 
Nowicki et al. 2003; Song et al. 2006), in which the influence of BCR/ABL1 
in a critical progenitor population may easily escape detection. A recent 
study compensated for this by subtracting the normal CD34+ expression 
signature from the CML expression profile (Radich et al. 2006), and 
identified a set of 103 differentially expressed genes. At least four studies 
have used selected (CD34+ or AC133+) cells from CML patients (Ohmine et 
al. 2001; Kronenwett et al. 2005; Yong et al. 2006; Zheng et al. 2006), with 
two of them focusing on identification of genes involved in disease progres-
sion (Ohmine et al. 2001; Zheng et al. 2006), and one on prediction of an 
aggressive or indolent disease outcome from diagnostic CP CML samples 
(Yong et al. 2006). Kronenwett et al. (2005) used a restricted cDNA micro-
array of 1,185 defined genes to compare the expression profile of CD34+ 
cells from five newly diagnosed CML patients in CP, and from ten healthy 
individuals. In total, 158 genes were differentially expressed and the authors 
speculated that the increased and reduced expression of GATA2 and 
CXCR4, respectively, would support the increased self-renewal and defec-
tive adhesive properties of the CD34+-enriched progenitor cells seen in early 
phase CML. 

Recently, Radich et al. (2006) reported an extensive gene expression 
study in which 3,500 genes were identified as being differentially expressed 
across the different disease phases of CML. A very similar expression 
profile was observed between AP and BC, suggesting that—at least at the 
transcriptional level—CML may be considered to be a two-step process 
rather than a three-step process. Of the genes involved in disease progres-
sion, SOCS2 has been shown to have increased expression, whereas 
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members of the CEBP family that regulate myeloid differentiation show 
reduced expression in advanced phases relative to the CP of CML (Radich et 
al. 2006; Zheng et al. 2006). 

Gene expression profiling has also been used to identify genes that 
can be used to predict the response and sensitivity of Ph-positive leukemias 
to imatinib treatment (Hofmann et al. 2002; Kaneta et al. 2002; Ohno and 
Nakamura 2003; McLean et al. 2004; Frank et al. 2006; Villuendas et al. 
2006). Using unselected cells, these studies have reported that a number of 
genes can be used to distinguish between cytogenetically defined responders 
and non-responders to imatinib. 

In conclusion, several global gene expression studies investigating 
the transcriptional effects of BCR/ABL1 in different experimental systems 
and in primary Ph-positive samples have been published. The use of 
different microarray platforms, experimental cellular systems, cell pop-
ulations, and samples to which the BCR/ABL1 expression pattern is 
compared makes it very difficult—and sometimes even impossible—to 
compare individual microarray investigations. In addition, an increased 
knowledge of transcriptional programs active in normal hemtopoiesis is 
needed to better interpret the aberrant transcriptional profiles of Ph-positive 
leukemia. Some recurrent features are, however, emerging; for example, the 
upregulation of SOCS family members by BCR/ABL1 seen in several 
studies. Experimental interference with such genes, for example by RNA 
interference-based strategies, will hopefully enable the development of 
novel targeted therapies. 
 
Targeted Therapy Against BCR/ABL1-Positive Leukemias 
Imatinib mesylate (Gleevec/Glivec, formerly STI571; Novartis) is a highly 
selective and potent growth inhibitor of BCR/ABL1-expressing cells 
(Buchdunger et al. 1996; Druker et al. 1996; Deininger et al. 1997), and has 
emerged as the first-line therapy for CML. The imatinib molecule binds to 
the ATP-binding pocket of the ABL1 domain and stabilizes the inactive, 
non-ATP-binding conformation of BCR/ABL1 (Schindler et al. 2000; Nagar 
et al. 2002). This blocks the tyrosine kinase activity, and inhibits both 
BCR/ABL1-mediated autophosphorylation and substrate phosphorylation, 
resulting in abrogated downstream cell signaling and reduced proliferation 
of the BCR/ABL1-positive cells (Buchdunger et al. 1996; Druker et al. 1996; 
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Deininger et al. 1997; Gambacorti-Passerini et al. 1997). Although imatinib 
is highly specific for ABL1, the KIT, PDGFR, and ARG tyrosine kinase 
activities are also suppressed (Buchdunger et al. 1996; Druker et al. 1996; 
Carroll et al. 1997; Buchdunger et al. 2000), which has been suggested to be 
part of the inhibitory function of imatinib (Wong et al. 2004). 

Imatinib is a well-tolerated drug with few side effects, but some 
influences on normal hematopoiesis have been reported (Appel et al. 2005). 
In the CP of CML, treatment with imatinib induces complete cytogenetic 
remission (CCR, i.e. no visible Ph chromosomes) in 70–80% of newly 
diagnosed patients (Kantarjian et al. 2003; O'Brien et al. 2003). With a 
median follow-up of 54 months, the overall relapse rate for imatinib-treated 
patients with newly diagnosed CML in the CP was found to be 16%. The 
relapse rates at 54 months for patients in CCR or with a 3-log reduction of 
BCR/ABL1 transcripts were 7% and 3%, respectively (Druker 2006). 
Patients in more advanced stages of CML achieve CCR in about 5–20% of 
cases, but the response is generally not durable and relapse occurs relatively 
quickly (Ottmann et al. 2002; Sawyers et al. 2002; Talpaz et al. 2002). 

Before the development of imatinib, CML was treated with IFN-
alpha, which is normally involved in viral protection, inhibition of cell 
growth, and control of apoptosis (Stark et al. 1998; Platanias 2005). 
Treatment of CML with IFN-alpha suppresses the leukemic clone and 
prolongs survival (Talpaz 2001), but the mechanisms behind its effect are 
unknown. Compared to imatinib, treatment with IFN-alpha has major side 
effects and also gives a slower initial response (O'Brien et al. 2003). 
However, in some cases the effects of IFN-alpha have been reported to be 
durable even after interruption of treatment, which has not been observed for 
imatinib (Bonifazi et al. 2001; Cortes et al. 2004; Mauro et al. 2004). This 
discrepancy has been suggested to be due to targeting of different cell 
populations: IFN-alpha appears to be more toxic to primitive CML stem 
cells whereas imatinib mainly targets differentiated CML progenitors 
(Angstreich et al. 2005). In support of the latter idea, patients in imatinib-
induced CCR have been shown to remain positive for leukemic progenitors 
(Bhatia et al. 2003; Chu et al. 2005). Furthermore, both in vitro studies and 
mathematical modeling of CML suggest that a small population of LSCs 
may survive treatment with imatinib, possibly by adopting a quiescent state 
(Holyoake et al. 1999; Graham et al. 2002; Michor et al. 2005). 
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Resistance to imatinib occurs frequently in patients with advanced 
CML or Ph-positive ALL, but is much rarer in CML patients treated with 
imatinib during their CP. The major molecular mechanism behind acquired 
resistance to imatinib is point mutation in the kinase domain of BCR/ABL1 
that interferes with the binding of imatinib to ABL1 (Gambacorti-Passerini 
et al. 2003; Deininger 2005). This results in either no or incomplete inhi-
bition of BCR/ABL1, and such mutations can be detected in 50–90% of 
relapsed patients (Deininger et al. 2005). Imatinib resistance has also been 
suggested to be conferred by increased expression of BCR/ABL1. Although 
amplification of the BCR/ABL1 gene has been observed in some patients, 
overexpression may also result from other mechanisms (Gambacorti-
Passerini et al. 2003; Deininger 2005). 

Two newly developed inhibitors of the BCR/ABL1 kinase, dasatinib 
and nilotinib, have shown promising results in early-phase clinical trials 
involving patients with imatinib-resistant disease (Kantarjian et al. 2006; 
Talpaz et al. 2006). Dasatinib (BMS-354825; Bristol-Myers Squibb) has 
been shown to be a more potent inhibitor than imatinib, possibly due to its 
dual inhibitory effects on both ABL1- and SRC-family kinases. Dasatinib 
also binds to both the active and inactive conformations of the ABL1 kinase 
domain (Lombardo et al. 2004; Shah et al. 2004). Nilotinib (AMN107; 
Novartis Oncology), like imatinib, binds to the inactive conformation of 
ABL1, but is more potent and shows both higher binding affinity and 
selectivity for the ABL1 kinase (Weisberg et al. 2006). Although these two 
drugs have been shown to be effective against most imatinib-resistant 
mutations (Kantarjian et al. 2006; Talpaz et al. 2006), patients with imatinib-
resistant acute Ph-positive leukemia still show a relatively short response to 
these drugs, and several kinase domain mutations that would confer 
resistance have been identified by BCR/ABL1 mutagenesis (Burgess et al. 
2005; Bradeen et al. 2006). Furthermore, although dasatinib has been shown 
to be more effective in targeting an earlier BCR/ABL1-positive progenitor 
population, quiescent primitive CML cells still remain viable (Copland et al. 
2006). 

In addition to tyrosine kinase inhibitors, compounds that target 
signaling pathways downstream of BCR/ABL1 have been developed. 
Inhibitors of farnesyl transferase, and cyclin-dependent kinases are currently 
undergoing clinical trials (Daley 2003; Deininger et al. 2005). The farnesyl 
transferase inhibitors work by abrogating RAS activation (Jabbour et al. 
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2004), and have been demonstrated to inhibit proliferation of BCR/ABL1-
transformed cell lines and primary human CML cells, as well as to make 
imatinib-resistant cells sensitive to apoptosis (Peters et al. 2001; Hoover et 
al. 2002; Nakajima et al. 2003). Inhibitors that target the PI3K and MEK1 
signaling pathways have also been reported to be effective compounds 
against imatinib-resistant cells (Klejman et al. 2002; Yu et al. 2002). 
Furthermore, BCR/ABL1 may be degraded by inhibition of HSP90 (Gorre 
and Sawyers 2002), which is required for stability of the fusion protein, or 
by histone deacetylase inhibitors which both promote degradation and 
reduce the expression level of BCR/ABL1 (Nimmanapalli et al. 2003). In 
conclusion, although novel compounds and tyrosine kinase inhibitors are 
under development, transplantation is likely to remain the only cure of Ph-
positive leukemias until a new treatment (or combination of treatments) that 
efficiently targets and eliminates all leukemic cells has been developed. 
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THE PRESENT STUDY 

This section includes the specific aims of the thesis, a brief description of 
materials and methods, as well as the major results together with a short 
discussion of each article. At the end of this section a summary of the major 
conclusions is given together with some concluding remarks. 
 
Specific Aims of the Study 

The general aim of this thesis has been to improve our understanding of 
BCR/ABL1-induced leukemogenesis through molecular and functional stud-
ies of BCR/ABL1-mediated signaling using different experimental systems. 
More specifically, the aims were: 
 
• to establish a cell line allowing inducible expression of BCR/ABL1, and 

to characterize BCR/ABL1-mediated effects in this model (Article I), 
 
• to investigate BCR/ABL1-mediated effects on the global gene expres-

sion pattern, using the BCR/ABL1-inducible cells established in the first 
study (Article II), 

 
• to study BCR/ABL1-mediated effects on the global gene expression 

pattern, using blockage of the BCR/ABL1 tyrosine kinase activity in 
Ph-positive cell lines by imatinib (Article III), and 

 
• to investigate the functional and molecular effects following retroviral 

transduction of BCR/ABL1 into primitive human progenitor cells, and 
to compare the effects induced by the P190 and P210 BCR/ABL1 
variants (Article IV). 
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Materials and Methods 

For a more thorough description of how the individual studies were 
performed, the reader is referred to the original articles (Articles I–IV). In 
brief, the effect of BCR/ABL1 on cellular proliferation and viability was 
studied in liquid cultures using trypan blue exclusion, assessment of 
apoptosis and differentiation was performed using Annexin V and nitro blue 
tetrazolium (NBT) reduction/May-Grünwald-Giemsa staining, respectively, 
FACS analysis was used to study the expression of cell-surface markers, and 
colony assays were performed to assess self-renewal and differentiation 
capacity. Microarray technology was used to investigate BCR/ABL1-
mediated effects on the global gene expression pattern, and selected genes 
identified as being differentially expressed were studied further at the 
mRNA level using northern blot, RT-PCR, and real-time PCR analysis. 
Western blots were used to confirm and study BCR/ABL1-mediated effects 
at the protein level. Below follows a short summary of the experimental 
systems that were established, and a brief description of microarray 
technology. 
 
Experimental Model Systems 
In this thesis, three different experimental models were established and used 
to study functional and transcriptional effects of BCR/ABL1-mediated 
signaling. First, Clontech’s Tet-On Gene Expression System was used to 
prepare human U937 cells with inducible BCR/ABL1 expression. The U937 
cell line was chosen because it is a well-characterized leukemic cell line that 
can be induced to differentiate using various compounds (Sundström and 
Nilsson 1976; Olsson and Breitman 1982; Olsson et al. 1983), thus allowing 
evaluation of BCR/ABL1-mediated effects on cellular differentiation. The 
model system was established by electroporation of U937 cells containing 
the pTET-On regulatory plasmid with a vector carrying P210 BCR/ABL1 
under the control of a tetracycline-inducible cytomegalovirus (CMV) 
promoter lacking the strong enhancer elements. The regulatory plasmid also 
conferred resistance to geneticin, which permitted selection and establish-
ment of stable clones. For the phenotypic characterization of the established 
cells (Article I), the tetracycline analog doxycycline was used to induce 
BCR/ABL1 expression at different time intervals between 30 min and 72 h. 
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The transcriptional effects were studied 12, 24, 36, and 48 h after BCR/ABL1 
induction and compared to the expression profiles of uninduced cells and of 
control (mock) clones obtained from transfections with an empty vector 
(Figure 4A) (Article II). 

In a second experimental system, Ph-positive cell lines were used to 
study BCR/ABL1-mediated transcriptional effects (Article III). Five Ph-
positive cell lines (K562, KU812, JK-1, Meg-01, and LAMA-84), derived 
from CML cells in BC, were selected. For the microarray analysis, all cells 
were treated with imatinib mesylate for 3 and 12 h, after which cells were 
collected and total RNA extracted (Figure 4B). Following expression 
profiling, a mean expression value based on the two time points was 
calculated. Because imatinib is a specific abrogator of BCR/ABL1-mediated 
signaling, the genes that become downregulated upon imatinib treatment 
were considered to be positively regulated by BCR/ABL1, whereas the 
upregulated genes were considered to be negatively regulated. Control 
experiments included untreated cells and Ph-negative cell lines treated with 
imatinib. 

The third model system consisted of human hematopoietic progen-
itor cells transduced with virus containing a murine stem cell virus (MSCV)-
based retroviral vector (Article IV). The bicistronic vector contained either 
P190 or P210 BCR/ABL1 cDNA, and a separate internal ribosomal entry site 
(IRES) element linked to green fluorescent protein (GFP). The expression of 
BCR/ABL1 and GFP was driven by the constitutively active viral long 
terminal repeat (LTR) promoter. Before transduction, the CD34+ umbilical 
CB cells were stimulated with early acting cytokines for 48 h to induce 
active cell cycling, which is needed for integration of the gene carried by the 
virus into the host genome. The cellular effects of BCR/ABL1, including 
proliferation, differentiation, and colony-forming capacity, were monitored 
over several days in culture. In contrast, the transcriptional response was 
examined at earlier time points, i.e. 2, 3, and 4 days after transduction, to 
monitor more immediate transcriptional effects of BCR/ABL1 (Figure 4C). 
The results were compared with those in control (MIG) cells obtained from 
retroviral transduction of a vector encoding GFP only. 
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Figure 4. Experimental models used to identify BCR/ABL1-regulated genes. The figure 
is a schematic representation of the different experimental set-ups used to identify differen-
tially expressed genes by microarray analysis. (A) Doxycycline (Dox)-inducible expression 
of BCR/ABL1 in U937 cells. The transcriptional response was studied at six different time 
points between 0–48 h after doxycycline-induced expression of BCR/ABL1, and compared to 
the expression profiles of uninduced cells and control mock cells. (B) Imatinib (IM)-
treatment of Ph-positive and Ph-negative cell lines. To extract BCR/ABL1-regulated genes, 
expression profiling were performed 3 and 12 h after blockage of the tyrosine kinase activity 
of BCR/ABL1 in five Ph-positive cell lines. The gene expression profiles were compared to 
the profiles of untreated Ph-positive cells and to the expression profiles of five untreated and 
imatinib-treated Ph-negative cell lines. (C) Retroviral transduction of human CD34+ CB 
cells. The transcriptional effects of P190 and P210 BCR/ABL1 expression were studied 2, 3, 
and 4 days after transduction of CD34+ CB cells and compared with the expression profiles 
of control MIG cells. 

 
Gene Expression Profiling Using Microarrays 
Gene expression analysis using microarrays was used to screen for novel 
downstream target genes of BCR/ABL1. Microarray technology permits 
parallel analysis of the expression of thousands of genes at a fixed time point 
(Duggan et al. 1999), and relies on the inherent ability of single-stranded 
DNA to base pair with a complementary sequence (Southern et al. 1999). 
Briefly, two different fluorescent dyes were used to label the test and 
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reference samples, which were then allowed to hybridize to known single-
stranded cDNA or oligonucleotide probes immobilized on a glass slide 
(Figure 5). Because the hybridization occurs competitively, the amount of 
bound target is proportional to the level of expression (Duggan et al. 1999; 
Southern et al. 1999). Following hybridization and washing, the slides were 
scanned to measure the emission of the two dyes and the final outcome was 
presented as a color image of the spots with red and green representing up- 
and downregulation of the corresponding gene in the test sample relative to 
the reference. The expression of each gene was then quantified as the log2-
ratio between the intensity values of the test and reference samples. 
 

 
Figure 5. Brief overview of microarray technology. Total RNA extracted from test and 
reference samples are independently labeled with two different fluorescent dyes. The labeled 
samples are subsequently mixed and hybridized to a microarray slide. Following washing, 
the slides are scanned to quantify the emission of the two dyes, finally providing a color 
image with red and green representing up- and downregulation of the corresponding gene in 
the test relative to the reference sample. Yellow spots designate genes with an equal 
expression level in the test and reference samples. 

 
In Articles II and III, cDNA microarrays containing 6,450 and 

25,000 cDNAs, respectively, were used. Total RNA from the test samples 
was extracted, purified, and reversed transcribed into cDNA. The reference 
sample used in Article II was prepared from uninduced cells corresponding 
to the test sample, whereas Article III made use of a common human 
reference RNA. For the microarray analysis in Article IV, oligonucleotide 
slides of about 27,000 oligos were used. Because of the small amount of 
total RNA available for this investigation, both the test sample and human 
reference RNA were amplified using one round of amplification. To extract 
genes differentially expressed as a result of the BCR/ABL1 fusion gene, the 
second study used several selection criteria based on ratio and spot intensity 
(Article II). In the third study, a mean difference statistic was used to 
quantify the response to imatinib, and a significance threshold of 5% false 
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discovery rate (FDR) was used (Article III). In the final microarray study 
(Article IV), the differentially expressed genes were extracted using the 
significance analysis of microarrays (SAM) method, which ascribes a score 
to each gene based on the change in expression level and the standard 
deviation of repeated measurements (Tusher et al. 2001). In the latter study, 
an FDR of 0% was used. 
 
Results and Discussion 

Below follows a brief summary and discussion of the results obtained in the 
present study. For a more comprehensive description and discussion of the 
individual results, the reader is referred to the original articles in the final 
section. 
 
Article I 
Establishment and phenotypic characterization of human U937 cells 
with inducible P210 BCR/ABL expression reveals upregulation of 
CEACAM1 (CD66a) 
In this study U937 cells were established, allowing inducible expression of 
the P210 BCR/ABL1 fusion gene. Two BCR/ABL1-inducible clones, c6 and 
e9, were obtained from independent transfections of U937 cells with a 
vector expressing the P210 BCR/ABL1 gene under the control of a 
tetracycline-inducible promoter. In their uninduced state, no BCR/ABL1 
protein could be detected in the c6 clone, whereas the e9 clone showed a 
weak leakage. Upon doxycycline treatment, both clones showed a rapid 
induction of BCR/ABL1 protein expression, but the c6 clone was able to 
induce a higher level of expression. 

BCR/ABL1 expression resulted in an early phosphorylation of 
STAT5A/B and a later and less pronounced phosphorylation of STAT1 and 
STAT3, as determined by western blot analysis. Activation of the 
JAK/STAT pathway, involving activation of mainly STAT5, has been 
shown in most BCR/ABL1-positive cell lines and primary CML cells 
(Carlesso et al. 1996; Ilaria and Van Etten 1996; Shuai et al. 1996; Chai et 
al. 1997). Furthermore, STAT5 was recently demonstrated to be essential for 
P210 BCR/ABL1-induced transformation of primitive murine cells (Hoelbl 
et al. 2006). 
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Phenotypic characterization of the BCR/ABL1-inducible clones, 
using different techniques such as the NBT reduction test and FACS 
analysis, revealed that BCR/ABL1 expression induced a slight decrease in 
proliferation and viability without having a marked effect on cellular 
differentiation, cell cycle distribution, or the rate of apoptosis. Thus, 
BCR/ABL1 does not appear to confer a proliferative advantage under these 
conditions. Although BCR/ABL1 is generally considered to confer a 
proliferative advantage and/or increased survival, in vivo studies have not 
been able to confirm that CML cells proliferate more rapidly than their 
normal counterparts (Stryckmans et al. 1977; Thiele et al. 1997); nor has it 
been possibly to demonstrate an anti-apoptotic effect in primary CML cells 
(Amos et al. 1995; Albrecht et al. 1996). 

Increased cell-surface expression of the CEACAM1 (CD66a) 
molecule was observed following induction of BCR/ABL1, which was in 
accordance with increased levels of transcription and translation. Using 
semiquantitative RT-PCR analysis, the increased transcription was found to 
be reversible upon treatment of c6 cells with imatinib. This was also true of 
K562 cells, showing that BCR/ABL1 also regulates CEACAM1 expression in 
another cellular context. The tyrosine kinase activity associated with 
CEACAM1 has been suggested to be involved in important cellular 
processes such as signal transduction, cell adhesion, proliferation, apoptosis, 
and immune responses (Hammarström 1999; Gray-Owen and Blumberg 
2006). The increased expression of this protein could thus play an important 
role in the leukemogenic process. In this respect, it is interesting to note that 
members of the CEA family have been shown to be aberrantly expressed in 
Ph-positive ALL (Mori et al. 1995; Sugita et al. 1999; Carrasco et al. 2000). 
However, in normal hematopoiesis, the expression of CEACAM1 and some 
of its family members has been shown to change during differentiation along 
the myelocytic lineage (Grunert et al. 1998), and it is quite possible that the 
increased expression of CEACAM1 reflects an indirect upregulation by 
BCR/ABL1 caused by a small shift in the differentiation of U937 cells. This 
hypothesis is supported by studies showing that CEACAM1 is upregulated 
following retinoic acid-induced differentiation of U937 cells (Botling et al. 
1995). 

Thus, further studies are needed before a firm conclusion can be 
drawn about the mechanism behind the observed upregulation of 
CEACAM1 by BCR/ABL1 and its possible role in leukemogenesis. Even 
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so, the establishment of U937 cells with conditional expression of 
BCR/ABL1 in the present study provides a valuable model for studying 
BCR/ABL1-mediated cellular effects, in particular early effects elicited by 
this fusion gene.  
 
Article II 
Identification of genes differentially regulated by the P210 
BCR/ABL1 fusion oncogene using cDNA microarrays 
BCR/ABL1 activates a wide range of signal transduction pathways, but little 
is currently known about the effects on downstream target genes. In this 
study, cDNA microarrays were used to study the expression pattern of 6,450 
genes in the BCR/ABL1-inducible U937 model system established and 
characterized during the first study (Article I). 

A time-course experiment in which RNA was extracted 0, 12, 24, 
36, and 48 h after induction of P210 BCR/ABL1 and analyzed using cDNA 
microarrays, revealed approximately 60 genes to become upregulated upon 
BCR/ABL1 expression. Five of these genes were validated by northern blot 
analysis and confirmed the previously reported upregulation of the PIM1 
and JUN oncogenes by BCR/ABL1 (Burgess et al. 1998; Nosaka and 
Kitamura 2002). The most striking feature of the microarray analysis was 
that approximately one-third of the genes were found to be IFN-responsive, 
including OAS1, IFIT1, and IFI16, as well as the transcription factor genes 
ISGF3G and STAT1, with the latter two also activating other IFN-responsive 
genes (Lau and Horvath 2002; Platanias 2005). In addition, seven other 
genes were found to be IFN-responsive as determined by IFN-alpha 
treatment of the control cells, which also induced phosphorylation of 
STAT1, STAT3, and STAT5. Normally, IFNs are involved in protection 
against viruses, and also inhibit cell growth and modulate differentiation 
(Platanias 2005). Most likely, the observed effect did not result from an 
autocrine action of BCR/ABL1-induced IFNs because no IFNs could be 
identified in the culture media using ELISA; nor did conditioned media from 
BCR/ABL1-expressing cells induce expression of IFN-responsive genes 
when added to control U937 cells. 

In principle, there are a number of possible mechanisms to explain 
the observed induction of IFN-responsive genes. Both IFN and BCR/ABL1 
have been shown—by us and others—to use similar signaling pathways, 
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including phosphorylation of STAT molecules and of adaptor proteins such 
as CRKL and CBL (Voutsadakis 2000; Platanias 2005). This may result in 
the activation of a common subset of genes, and could provide a mechanism 
by which the observed clinical effects of treatment with IFN-alpha work in 
CML. Thus, the growth-inhibiting effects of IFN-alpha in CML may be the 
result of its interference with—and/or competition for—common substrates 
used by BCR/ABL1 to elicit its transforming properties. Alternatively, 
BCR/ABL1 expression might activate cellular defense mechanisms or 
negative feedback mechanisms, of which IFN-inducible genes are a known 
part (Stark et al. 1998; Platanias 2005). In support of this, the CISH gene, a 
member of the SOCS family, was found to be upregulated by BCR/ABL1 in 
this study. The CISH protein has previously been reported to diminish trans-
formation of BCR/ABL1-expressing cells (Tauchi et al. 2001). Interestingly, 
a study of purified progenitor cells from CML patients found several IFN-
responsive genes to be upregulated during the CP, while there was marked 
downregulation with disease progression (Ohmine et al. 2001). Finally, it is 
also possible that the observed activation of IFN-inducible genes may be 
entirely cell-context dependent, i.e. specific for U937 cells. 

BCR/ABL1 was also found to upregulate the expression of several 
genes with common functional properties. The expression profile included 
genes encoding transcription factors, kinases, and signal transduction 
molecules, and also genes regulating cell growth, differentiation, and 
apoptosis, for example—features previously implicated in BCR/ABL1-
mediated transformation (Deininger et al. 2000; Melo and Deininger 2004; 
Ren 2005). Thus, in this article a number of genes were identified that may 
provide insights into early transcriptional alterations (< 48 h) following 
induction of BCR/ABL1. 
 
Article III 
Gene expression analysis of BCR/ABL1-dependent transcriptional 
response reveals enrichment for genes involved in negative feedback 
regulation 
In this study, we used global gene expression profiling of imatinib-treated 
Ph-positive cell lines to identify genes that are dependent on BCR/ABL1 
expression. A particular advantage of this experimental set-up is that 
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problems associated with non-physiological and forced expression of the 
BCR/ABL1 fusion gene to a large extent are circumvented. 

Following treatment with imatinib, the five Ph-positive cell lines 
(but not control cell lines) showed reduced growth and viability, as well as 
reduced phosphorylation of BCR/ABL1 and STAT5, thus confirming the 
selective effect of imatinib in Ph-positive cell lines. cDNA microarray 
analysis was used to study the transcriptional response 3 and 12 h after 
blockage with imatinib, i.e. at time points before any effects on proliferation 
or viability could be detected. In total, 142 genes were identified as potential 
targets of BCR/ABL1-mediated signaling. Half of these genes were 
considered to be positively regulated by BCR/ABL1 and they included 
genes mainly involved in signal transduction via, for example, the 
JAK/STAT, MAPK, and TGFB signaling pathways. BCR/ABL1 was also 
found to affect genes involved in several metabolic pathways, which most 
likely reflects a restoration of the increased metabolic rate characterizing 
BCR/ABL1-transformed cells.  

Interestingly, BCR/ABL1 was found to positively regulate several 
genes involved in negative feedback regulation of known signaling 
pathways. Among these were three members of the SOCS family, CISH, 
SOCS2, and SOCS3, of which CISH was also found to become activated 
upon BCR/ABL1 expression in Article II. Normally, the SOCS family 
controls the strength and duration of cytokine-mediated signaling, 
particularly via the JAK/STAT pathway (Krebs and Hilton 2001; Naka et al. 
2005). Based on the deregulated gene expression pattern, this study suggests 
that BCR/ABL1-mediated signaling activates negative feedback regulatory 
systems that might initially act to limit the tumor-promoting effects of this 
fusion gene. Aberrant expression of individual SOCS family members has 
previously been associated with BCR/ABL1 and CML (Tauchi et al. 2001; 
Schultheis et al. 2002; Liu et al. 2003; Radich et al. 2006), where, for 
example, SOCS2 has been shown to be overexpressed in advanced stages of 
the disease (Schultheis et al. 2002; Radich et al. 2006) and CISH has been 
reported to suppress transformation of BCR/ABL1-transfected cell lines 
(Tauchi et al. 2001). BCR/ABL1 was also found to activate PIM1, a gene 
previously suggested to be involved in negative feedback regulation of 
STAT5 (Paukku and Silvennoinen 2004), and also TNFAIP3 and DUSP6, 
which have been implicated in negative feedback regulation of NFκB 
activation and the ERK/MAPK pathway, respectively (Beyaert et al. 2000; 
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Platanias 2003). In summary, this article describes both new and previously 
known targets of BCR/ABL1-mediated signaling, and provides additional 
insights into the complex downstream effects of this fusion protein. 
 
Article IV 
Expression of P190 or P210 BCR/ABL1 in cord blood CD34+ cells 
leads to enhanced cell proliferation and differentiation towards the 
erythroid lineage 
The two BCR/ABL1 variants P190 and P210 are clinically associated with 
distinct types of leukemias in which different hematopoietic subpopulations 
are expanded, but only a few studies comparing the molecular effects of 
P190 and P210 BCR/ABL1-mediated signaling have been published (Ilaria 
and Van Etten 1996; Okuda et al. 1996; Advani et al. 2004). Moreover, most 
studies on BCR/ABL1-mediated signaling have been performed in cell lines 
or transgenic animal models. Thus, the functional and transcriptional effects 
of retroviral transduction of P190 and P210 BCR/ABL1 into primitive human 
hematopoietic progenitor cells were investigated in this study. 

A retroviral vector system was created to express either P190 or 
P210 BCR/ABL1 in human umbilical CB CD34+ cells. The results showed 
that expression of both P190 and P210 BCR/ABL1 resulted in phosphor-
ylation of STAT5A/B, and rapidly induced a substantially increased cell 
proliferation accompanied by differentiation towards the erythroid lineage. 
Although contradictory findings have been published (Zhao et al. 2001; 
Ramaraj et al. 2004), P210 BCR/ABL1 has previously been described to 
induce an erythroid phenotype (Chalandon et al. 2002). Given the require-
ment of STAT5 for BCR/ABL1-mediated leukemogenesis (Hoelbl et al. 
2006) and the important role of STAT5A in the regulation of erythroid 
hematopoiesis (Schuringa et al. 2004), we speculate that STAT5 may be 
important for the observed differentiation towards the erythroid lineage. 

Global gene expression profiling of P190 and P210 BCR/ABL1-
transduced cells using oligonucleotide microarrays failed to identify any 
significant differences between the two fusion variants. Combining the gene 
expression profiles of both fusion genes and comparing them with MIG 
transduced cells allowed identification of 222 genes as potential targets of 
P190/P210 BCR/ABL1. In this study, BCR/ABL1 expression was found to 
activate genes involved in, for example, the MAPK, and TGFB signaling 
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pathways, and to suppress the expression of genes involved in the immune 
response, cell communication, cell adhesion, and differentiation. In accord-
ance with the erythroid lineage phenotype, both P190 and P210 BCR/ABL1 
were found to suppress CEBPA and CEBPD, which are important for 
myeloid differentiation and which have also been reported to suppress 
leukemogenesis (Perrotti et al. 2002; Gery et al. 2005; Rosmarin et al. 2005; 
Ferrari-Amorotti et al. 2006). Furthermore, as in Article III, SOCS2 was 
again found to be activated by BCR/ABL1. 

In conclusion, expression of P190 and P210 BCR/ABL1 had no 
detectable functional differences, and only subtle transcriptional differences, 
when expressed in the same cellular context. These findings also indirectly 
support a separate cellular origin of P190 and P210 BCR/ABL1-induced 
leukemias. 



48 The Present Study 

CONCLUSIONS 

The main findings of the present thesis can be summarized as follows: 
 
Article I 

• Conditional expression of P210 BCR/ABL1 in the myeloid U937 cell 
line results in activation of the JAK/STAT pathway, but does not confer 
a proliferative advantage or any marked effects on differentiation and 
apoptosis. 

 
• Expression of P210 BCR/ABL1 in U937 cells induces a reversible 

expression of the cell-surface marker CEACAM1, which has been im-
plicated in cell adhesion and signal transduction, and may thus be 
important in the leukemogenic process. 

 
• A widely requested U937 cell model with inducible expression of P210 

BCR/ABL1 was established. 
 
Article II 

• Gene expression profiling of U937 cells with inducible P210 
BCR/ABL1 expression, identified upregulation of 61 potential target 
genes of BCR/ABL1-mediated signaling. 

 
• BCR/ABL1 induces expression of a large number of IFN-responsive 

genes, which may indicate an overlap with IFN-induced signal trans-
duction pathways, or activation of cellular defense or negative feedback 
mechanisms. 

 
• BCR/ABL1 expression affects genes encoding transcription factors, 

kinases, and signal transduction molecules, as well as genes regulating 
cell growth, differentiation, apoptosis, and cell adhesion. 
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Article III 

• Blockage of the P210 BCR/ABL1 tyrosine kinase activity in Ph-
positive cell lines allowed identification of 142 genes as potential 
targets of BCR/ABL1-mediated signaling using global gene expression 
profiling. 

 
• BCR/ABL1 expression affects mainly genes involved in signal trans-

duction, e.g. the JAK/STAT, MAPK, TGFB, and insulin signaling 
pathways, and in regulation of metabolism. 

 
• BCR/ABL1 activates several genes involved in negative feedback regu-

lation of important cell signaling pathways, which may possibly act to 
suppress tumor-promoting effects elicited by BCR/ABL1. 

 
Article IV 

• Expression of both P190 and P210 BCR/ABL1 in retrovirally trans-
duced primitive human cells results in increased proliferative capacity 
and differentiation towards the erythroid lineage. 

 
• Global gene expression profiling of P190 or P210 BCR/ABL1 

expression in primitive human cells revealed no major differences in 
the transcriptional response between the two fusion genes, but allowed 
identification of 222 genes as potential targets of both P190 and P210 
BCR/ABL1-mediated signaling. 

 
• Expression of P190 or P210 BCR/ABL1 in primitive human cells 

induces very similar biological effects, which indirectly supports the 
hypothesis of a separate cellular origin for these fusion genes to explain 
their association with different leukemias. 
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CONCLUDING REMARKS 

More than four decades have passed since the original discovery of the Ph 
chromosome and our knowledge about this specific translocation has 
increased rapidly over recent years. It has been established that the Ph 
chromosome results in the formation of mainly three different BCR/ABL1 
fusion genes. The transforming properties of BCR/ABL1 have been elegantly 
demonstrated in retroviral and transgenic animal models, and much work 
has been focused on trying to understand how BCR/ABL1 elicits its 
transforming properties. Without a doubt, it has emerged that there is a very 
complex biochemical basis for BCR/ABL1-mediated signaling with a 
number of intracellular pathways/proteins becoming activated or phosphor-
ylated by the fusion protein. Most of this knowledge has, however, been 
gained by analyses of individual adaptor proteins and signal transduction 
molecules rather than by using more systematic approaches to address 
BCR/ABL1-mediated signaling.  

A major aim of the present study was to identify BCR/ABL1-
regulated genes. To this end, we developed three different experimental 
systems and used global gene expression analysis to identify such genes 
systematically. A recurrent and interesting finding in the three experimental 
systems was the deregulated expression of different SOCS family members, 
but otherwise there were only a few genes that overlapped in the different 
studies. While this can be at least partly explained by the different platforms 
and statistical methods used for gene extraction, it is more likely to be a 
result of the “different inherent properties” of the established experimental 
systems. The BCR/ABL1-inducible U937 cell line model is likely to help 
unravel the immediate transcriptional effects of BCR/ABL1-mediated 
signaling, thus giving us insight into early transcriptional effects elicited by 
BCR/ABL1 in cells never exposed to this fusion protein before. In contrast, 
the genes identified after blockage of the tyrosine kinase activity in 
immortalized Ph-positive cell lines are likely to reflect BCR/ABL1-
mediated transcriptional effects in cells that have evolved to tolerate—and 
be dependent on—constitutive expression of BCR/ABL1.  

The experimental system that perhaps most closely resembles cells 
in which Ph-postive leukemias originate is the model in which human 
CD34+ CB cells are transduced with retroviruses encoding either P190 or 
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P210 BCR/ABL1. Apart from showing that both fusion gene variants in-
duced a similar phenotypic and transcriptional response, providing circum-
stantial evidence for a “separate cellular origin” to explain their association 
with different types of leukemia, we identified 222 genes as potential 
BCR/ABL1 targets. BCR/ABL1 expression was found to affect genes in-
volved in, for example, the MAPK and TGFB signaling pathways, and in the 
immune response, cell communication, cell adhesion, and differentiation—
i.e. cellular processes that are consistent with our current understanding of 
CML biology. Results from an ongoing gene expression study of CD34+ 
selected primary CML CP cells in our laboratory support the relevance of 
the latter model. As outlined in Article IV, there was a 6-fold over-
abundance of differentially expressed genes between the two studies than 
would be expected by chance, suggesting that the retroviral expression of 
BCR/ABL1 in human CD34+ CB cells at least partly reflect aberrant 
transcriptional patterns present in primary CML cells.  

In conclusion, the present study has identified a number of 
pathways/individual genes that become deregulated by BCR/ABL1 in 
different experimental systems. Further experimental studies, for example 
by RNA interference-based strategies, should help to elucidate the role of 
some of the identified genes in BCR/ABL1-mediated transformation. In 
addition, an increased knowledge of transcriptional programs underlying 
normal hematopoiesis is needed before the aberrant transcriptional profiles 
of BCR/ABL1-expressing cells can be put into a biologically meaningful 
context. Such efforts should provide additional pathogenetic insights into 
BCR/ABL1-mediated leukemogenesis and, hopefully, enable the develop-
ment of novel targeted therapies that can be used either alone or as a 
complement to already available tyrosine kinase inhibitors. 
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SVENSK SAMMANFATTNING  
(Summary in Swedish) 

Molekylärgenetiska och funktionella studier av BCR/ABL1 
fusionsgenen 
Det finns tre sorters blodkroppar, röda, vita och trombocyter, som alla bildas 
från gemensamma stamceller i benmärgen. När stamcellerna delar sig bildas 
det antingen nya stamceller eller förstadier till blodkroppar som efter 
ytterligare delningar blir till mogna blodkroppar. Ibland uppkommer 
särskilda genetiska förändringar i något av dessa förstadier eller stamceller, 
vilket omvandlar normala celler till cancerceller. Vid leukemi trängs den 
normala blodbildningen undan av en kraftig expansion av dessa leukemi-
celler vilket orsakar brist på normala mogna blodkroppar samtidigt som en 
ökad mängd omogna vita blodkroppar släpps ut i blodet. 

I Sverige insjuknar ungefär 1000 personer årligen i en akut eller 
kronisk leukemi, varav ca 100 fall utgörs av kronisk myeloisk leukemi 
(KML) (http://cancerfonden.se). Medan de akuta leukemierna ses hos både 
barn och vuxna förekommer kronisk leukemi främst bland vuxna. KML 
karaktäriseras av olika faser där den första kroniska fasen är ganska lätt att 
kontrollera, medan den slutliga blastfasen istället liknar en akut leukemi. I 
majoriteten av alla fall av KML uppkommer ytterligare genetiska avvikelser 
under sjukdomsutvecklingen, vilket man tror kan ha betydelse för leukemins 
framskridande. 

De allra flesta fall av KML, samt 15-20% av akut lymfatisk leukemi 
(ALL), kännetecknas av en specifik kromosomavvikelse, Philadelphia (Ph) 
kromosomen. Denna specifika avvikelse uppkommer genom en trans-
lokation (utbyte av genetiskt material) mellan kromosomerna 9 och 22. 
Resultatet blir att tyrosinkinasgenen ABL1 på kromosom 9 sätts ihop med 
BCR genen på kromosom 22, vilket leder till att antingen ett P190 eller P210 
BCR/ABL1 fusionsprotein med förhöjd tyrosinkinasaktivitet bildas. Medan 
P190 BCR/ABL1 varianten främst är förknippad med ALL, ses P210 i både 
KML och i 30-50% av patienterna med Ph-positiv ALL. Under senare år har 
det utvecklats lovande läkemedel som syftar till att hämma aktiviteten av 
BCR/ABL1 proteinet i cellen. Tyvärr utgör dessa mediciner ingen bot mot 
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sjukdomen och många patienter utvecklar så småningom resistens mot dem 
vilket gör att leukemin återkommer. 

För att förstå och så småningom bota denna sjukdom är det viktigt 
att känna till hur BCR/ABL1 proteinet signalerar och påverkar om-
vandlingen till leukemiceller. Senare års forskning har inriktat sig på att 
försöka förstå hur BCR/ABL1 ger upphov till leukemi och varför P190 och 
P210 BCR/ABL1 företrädesvis är associerade med olika typer av leukemier. 
Studier har visat att både P190 och P210 uppvisar transformerande egen-
skaper i olika experimentella system och ett flertal proteiner och signal-
vägar, viktiga för bl.a. reglering av celltillväxt och programmerad celldöd, 
har visats interagera med eller aktiveras av BCR/ABL1. Detta gör det 
sannolikt att BCR/ABL1 uttrycket leder till aktivering eller nedreglering av 
ett flertal målgener. Mycket lite är emellertid känt om vilka dessa gener är. 

Systematiska studier av de genetiska program och signalvägar som 
påverkas av BCR/ABL1 har saknats. I denna avhandling har olika expe-
rimentella system utvecklats för att studera hur signalering via P190 och 
P210 BCR/ABL1 proteinerna påverkar cellerna. Genom att använda olika 
cellbiologiska och molekylärgenetiska metoder har de fenotypiska och 
transkriptionella effekterna av BCR/ABL1 aktivering undersökts. De erhåll-
na resultaten utgör ett bidrag till vår kunskap om de cellulära effekter och 
förändringar på gennivå som styrs av BCR/ABL1 fusionen, vilket på sikt 
skulle kunna få betydelse för utvecklingen av nya behandlingsstrategier. 
Nedan följer en kort summering av resultaten från de publikationer och 
delarbeten som ingår i denna avhandling. 
 
Artikel I 

Etablering och karaktärisering av en human cellinje med inducer-
bart uttryck av BCR/ABL1 genen 
En stor del av dagens kunskap om hur BCR/ABL1 påverkar celler kommer 
från studier utförda på humana cellinjer eller cellinjer från möss som visar 
ett stabilt uttryck av denna fusionsgen. I detta delarbetet etablerades en 
human cellinje i vilken uttrycket av BCR/ABL1 kan slås på genom att till-
sätta doxycyklin till odlingsmediet. Fördelarna med detta system är att det 
blir möjligt att undersöka tidiga och omedelbara effekter av BCR/ABL1 
signalering samtidigt som risken för klonal selektion, dvs. att enbart studera 
en grupp celler som erhållit någon tillväxtfördel, minskar. BCR/ABL1 genen 
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fördes in i U937 celler som är en välstuderad leukemisk cellinje som kan fås 
att differentiera och mogna ut längs den myeloida vägen i hematopoesen 
(blodbildningen). Vi kunde visa att ett tidigt uttryck av BCR/ABL1 leder till 
fosforylering/aktivering av i huvudsak STAT5, men även av STAT1 och 
STAT3. Dessa molekyler är del av ett viktigt signalsystem som bl.a. tros 
påverka cellers tillväxt och överlevnad. Aktivering av STAT5 via 
BCR/ABL1 har även visats vara viktig/nödvändig för fusionsgenens möjlig-
heter att förändra cellen. Uttryck av BCR/ABL1 genen i detta modellsystem 
gav en något minskad cellexpansion, dvs. fusionsgenen tillför ingen tillväxt-
fördel vid dessa betingelser, medan ingen synlig påverkan av förmågan att 
mogna ut eller begå programmerad celldöd (apoptos) kunde ses. Slutligen 
visades även en reversibel ökning av cellytemarkören CEACAM1, vilket 
bekräftades i ett oberoende modellsystem. Medlemmar i samma familj som 
CEACAM1 molekylen har tidigare visats ha ett förändrat uttrycksmönster i 
Ph-positiv akut leukemi. 
 
Artikel II 

Identifiering av gener med förändrad uttrycksnivå till följd av tidig 
påverkan av BCR/ABL1 signalering 
I detta delarbetet användes det BCR/ABL1 inducerbara U937 modell-
systemet för att studera uttrycket/aktiviteten av ett mycket stort antal olika 
gener med hjälp av den s.k. microarray tekniken. Uttryck av BCR/ABL1 
fusionsgenen ledde till ökat uttryck av ca 60 olika gener, däribland gener 
inblandade i olika signalvägar samt gener med betydelse för tillväxt, 
utmognad och celldöd. Intressant nog utgjordes ungefär en tredjedel av de 
aktiverade generna av s.k. interferon-inducerade gener. Normalt aktiveras ett 
flertal signalvägar och gener av interferoner som bl.a. har betydelse för 
cellens försvar mot virus och även verkar tillväxthämmande. Flera olika 
tolkningar av dessa resultat är möjliga. Det är t.ex. tänkbart att BCR/ABL1 
och interferon använder sig av delvis samma signalvägar, vilket resulterar i 
aktivering av samma gener. En annan möjlighet är att de interferon-
inducerade generna speglar ett tidigt försvar mot BCR/ABL1 genens 
påverkan i cellen. 
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Artikel III 

Identifiering av gener med förändrad uttrycksnivå till följd av 
avstängd BCR/ABL1 signalering i Ph-positiva cellinjer 
I det här delarbetet använde vi oss av Ph-positiva cellinjer för att studera hur 
BCR/ABL1 signalering påverkar genuttrycksmönstret i cellen. Detta delar-
bete utgår ifrån att en blockering av BCR/ABL1 aktiviteten i celler som 
anpassat sig till att leva med denna avvikelse bör vara fördelaktigare än att 
tillföra ett onormalt uttryck av fusionsgenen. Genom att behandla fem Ph-
positiva cellinjer med imatinib som specifikt hämmar tyrosinkinasaktiviteten 
hos BCR/ABL1 proteinet, studerade vi hur genuttrycket i dessa celler för-
ändrades jämfört med samma behandling av Ph-negativa cellinjer. Totalt 
identifierades ca 140 gener som beroende av BCR/ABL1 aktiviteten. Dessa 
gener var framförallt associerade med olika signalvägar (JAK/STAT, 
MAPK och TGFB) och reglering av cellens metabolism (ämnesomsättning). 
BCR/ABL1 befanns också öka aktiveringen av ett flertal gener involverade i 
s.k. ”negative feedback reglering” av viktiga signalvägar i cellen, vilken 
skulle kunna tyda på en funktion hos cellerna för att undertrycka fusions-
proteinets påverkan. 
 
Artikel IV 

Uttryck av två olika BCR/ABL1 varianter i humana stamceller leder 
till ökad cellexpansion och utmognad längs den erytroida linjen 
De två olika varianter av BCR/ABL1 som kallas P190 och P210 är huvud-
sakligen ansvariga för uppkomsten av olika typer av leukemier. Den mesta 
kunskapen om hur BCR/ABL1 omvandlar normala celler till leukemiceller 
kommer från studier av P210 BCR/ABL1 varianten i olika cellinjer eller 
djurmodeller. I detta delarbetet användes virus för att föra in de två olika 
fusionsgenerna i normala humana stamceller tagna från navelsträngsblod. 
Resultaten visar att såväl P190 som P210 BCR/ABL1 uttrycket leder till 
fosforylering/aktivering av STAT5 samt en kraftig expansion av cellerna 
som efter några dagar åtföljs av en omogen utmognad längs den erytroida 
vägen som normalt ger upphov till röda blodkroppar. Vi visar också att de 
två varianterna av fusionsproteinet ger en liknande effekt på genuttrycks-
mönstret i cellen och 222 gener identifierades som påverkade av tidig 
BCR/ABL1 signalering. De sammantagna fynden talar för att de två fusions-
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proteinerna inte skiljer sig åt beträffande sin biologiska påverkan när de 
uttrycks i samma cellpopulation. Detta ger ett indirekt stöd åt de resultat från 
tidigare studier som tyder på att P190 och P210 BCR/ABL1 avvikelserna 
måste uppkomma i olika cellpopulationer under blodcellsbildningen för att 
kunna ge upphov till olika sorters leukemi. 
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