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1. INTRODUCTION

Frequency response analysis is one of the oldest and most
widely used methods to determine the dynamics of a stable
linear system. When using the method the input signal is
chosen as a sinusoid. If the system is stable the steady state
the output signal is also a sinusoid with the same frequen=

cy as the input signal. A measurement of the amplitude and
phase relations between the input signal and the steady

state output signal then gives the value of the transfer
function for s = iw where w is the frequency of the input
signal. By repeating the measurement for different frequen-
cies of the input signal the value of the transfer function can

then be determined for any range of frequencies.

Frequency response analysis has been applied both in order
to determine physical parameters and to determine dynamics
for the purpose of control system design. The availlability
of the powerful frequency response method to determine the
transfer function of a linear dynamical system was an im-

portant factor for the success of classical control theory.

A great advantage of the method is that the transfer func-
tion is obtained directly without extensive computation
after the experiments. This means that various malfunc-
tions and erroneous results can be detected very quickly.
The experiments can then be repeated immediately without
loss of time. Since the transfer function is obtained di-
rectly the method is also well suited to design techniqgues
like the ones developed by Bode and Nichols which are expli-
citely based on the properties of the open loop transfer
function. The equipment required for the experiment is ve-
ry modest. It is necessary to have a sinewave generator

and equipment to measure amplitude and phase relationsg bet-
ween two sinusoids. For low frequencies the input signal

can simply be introduced manually using a table and a clock.



It is also possible to use fairly crude approximations of

a sinusoid. For higher frequencies a signal generator is,
however, required. The amplitude and phase measurements

can often be made from a recording of the inputs and the
outputs on a two-channel recorder. Using a two=-channel re-
corder it is also possible to detect nonlinearities as dis-
tortions in the output waveform and by comparing the results
obtained with different amplitudes of the input signal. It
is also possible to use an oscilloscope as a phase detector.
Such simple schemes will work very well if there are small
disturbances. For high disturbance levels the accuracy can
be increased to an arbitrary degree at the price of longer
experimentation time and slightly more sophisticated signal

analysis equipment (correlators).

The main disadvantages of the frequency response method are

the following:

o} The experiments may take a long time if low frequen-

cies are considered.

o The method permits determination of system dynamics

only and cannot be used to model disturbances.

The chapter is organized as follows. A direct approach
based on simple methods to determine amplitude and phase
relations between two sine waves is discussed in Section
2. A more sophisticated technique based on correlation is
discussed in Section 3. It is shown that disturbances can
be rejected effectively at the price of increased experi-
mentation time. A special method due to Jensen which re-
duces the experimentation time at the price of more com=
putations is also briefly discussed. An efficient tech-
nique to eliminate the effects of drifting disturbances
in the output are discussed in Section 4. Section 5 covers
problems associated with frequency response analysis of

sampled data systems.




To convey some feeling for the planning of experiments,
the data analysis, and achievable results several prac-=
tical examples based on real data are presented. The
examples cover determination of dynamics of submarines,
the human eye, a power network, a diesel engine, and de-

termination of thermal diffusivity in metals.

Computer programs used to generate many of the figures
in this chapter are included in the appendix. The prog-
rams include a flexible frequency analyser based on the

correlation method. They are written in the interactive
simulation language SIMNON.




2. A DIRECT APPROACH

Frequency response is based on the fact that for a stable
linear system with the transfer function G(s) the steady

state response to the input

ul{t) = Uy sin wt (2.1)
is
y(t) = uO!G(iw)l sin(wt + arg G(iw)) (2.2)

The value of the transfer function G(s) for the argument

s = iw can thus be determined simply by applying a sinus-
oidal input to the system and comparing amplitudes and
phases of the input and the output. By repeating this pro-
cedure for different values of the frequency w the values
of the transfer function can thus be determined for any

desired range of frequencies.

To perform a frequency analysis a signal generator and
equipment for comparison of amplitudesand phasesof two
sine waves are required. There are many different ways to
make thecomparison. The various schemes differ essential-
ly in complexity and noise rejecting ability. A variable
frequency sine wave generator and a recorder or an oscil-

loscope can be used as indicated in Fig. 2.1.

Signal generators with synchronized sine and square wave
outputs are very common. They can be used for amplitude
and phase measurements as shown in Fig. 2.3. It is even
more convenient to use a sine wave generator with a vari-
able phase output as shown in Fig. 2.2 although such gene-

rators are not as easily accessible.

The number of points Wy required to obtain a sufficiently

good approximation of the transfer function will, of




course, vary depending on the system and the application.

A rule of thumb that is often given for typical servo-

mechanism problems is to use about four points per de-

cade. The points are frequently chosen as equally spaced

on a logarithmic scale. This rule can, however, not be

applied when the system has resonant peaks. Since there

is no data processing involved the frequency curve is

often plotted during the experiment. It is then easy to

choose the frequencies ©; On the basis of the results ob-

tained.
‘Y
Sine wave | Uit)=ug sinet
generator
?
yl(t) YO
System \
Recorder
Fig. 2.1 - Experimental arrangement for the determination

of the transfer function G of a stable linear
system using a sine wave generator and a dual
channel recorder or a dual beam oscilloscope.
The magnitude of the transfer function is ob-
tained as |G(iw)| = Yo/uo and the argument is
given by arg G(iw) = ¢. (Notice that ¢ is posi-
tive in the figure.)



- sin wt
System
Signal
generator
sin (wt +¢)
Oscilloscope
Fig. 2.2 = Experimental arrangement for the determination

of the transfer function G of a stable linear
system using a sine wave generator with vari-
able phase shift and an oscilloscope. The va-
riable phase is adjusted until the picture on
the oscilloscope i1s a straight line. The phase
shift then equals the argument arg G(iw) and
the amplitude ratio is obtained as |G(iw)]| =
= b/a. Notice that some care must be *taken in

order to avold a phase error of m.




JAVAVAYA
System
Sine-square
generator
Oscilloscope
Fig. 2.3 = Experimental arrangement for the determination

of the transfer function G of a stable linear
system using a sine-square wave generator and

an oscilloscope. The amplitude ratio is obtained

it

by |G(iw)| = wb/4c and the argument by arg G(iw)
= cosml(b/a), The zero crossings of the sine and
square waves must coincide, and the signals must

have the same peak-to-peak amplitude.

If there are considerable disturbances none of the arrange-
ments shown in Figures 2.1, 2.2 or 2.3 will give satisfac-
tory results. When there are disturbances the output of the
system will contain not only the frequency of the input but
other frequencies as well. A simple remedy is then to fil-
ter out the other frequencies. Before discussing this in de-

tail some examples will be given.




Submarine Dynamics.

This application is based on experiments made in 1948 by
Dr. A. Garde and Mr. E. Persson of the ASEA Company in
collaboration with the Swedish Navy. The purpose of the
experiments was to determine submarine dynamics for the
purpose of designing a depth control system. It was thus
of interest to know the dynamics relating depth to rud-
der angle. The application is of interest for several
reasons., It shows that the input can be generated manual-
ly if the dynamics is sufficiently slow and that measure-

ments can be performed with very simple equipment.

A schematic diagram of a submarine is shown in Fig. 2.4.
The system to be analysed thus has one input, rudder angle
B, and two outputs, pitch angle a and depth h. To deter-
mine the transfer functions, relating these variables, the
rudder angle was varied sinusoidally. Since the frequen-
cies of interest were very low, no signal generator was
required. The sinusoidal variation was simply introduced
manually according to a given program. The approximation
of the sine wave used in the experiment is shown in Fig.
2.5. The pitch angle « and the depth h were read manually

from a pendulum and a manometer.

" Fig. 2.4 - Pictorial diagram of a submarine. The rudder

angle is B, the pitch angle « and the depth h.




Fig. 2.5 - Approximation of sine wave used in experiment.

A typical result is shown in Figure 2.6. The amplitude
ratio and the phase shift were determined directly from

the graphs.

The experiment was repeated for different speeds. At high
speeds the submarine was unstable and a low frequency
oscillation of high amplitude was superimposed on the
forced oscillation. See Fig. 2.7. The oscillation was
partly due to instability and partly due to unsuccessful
efforts to keep the depth within reasonable bounds through
manual control of a rudder in the prow. The large varia-
tions in depth made the crew somewhat reluctant towards
the benefits of automatic control. This attitude was
changed drastically when the depth control system designed
was finally put into operation. To determine the amplitude
ratio in this case the low frequency variations were eli-
minated graphically as indicated in Fig. 2.7. Notice

that this is a simple example of filtering.
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Fig. 2.6 - Input (rudder angle) and outputs (pitch angle

and depth) obtained in the submarine experi-
ment. The speed was 3 knots. (Redrawn from Garde
Persson (1960)).
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Fig. 2.7 - Pitch angle and depth obtained in submarine
experiment at 7 knots. Notice that the vari-
ations, due to the input, are superimposed on
a sinusoid of lower frequency and higher amp-
litude due to the instabilityv of the submarine
at high speeds. (Redrawn from material ob-

tained from the Royal Swedish Navy).
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Experiments were performed at three speeds 3, 5 and 7
knots. At each speed the value of the transfer function
was determined at six values of the frequency using two
different amplitudes of the input signal. The frequencies
chosen correspond to periods of 30, 40, 60, 100, 150 and
200 s. The accuracy in the determination of the gain was
about 10% and the error in the determination of the phase
angle was about 10°. The results are summarized in the
Bode diagrams in Figures 2.8 and 2.9. The results indi-
cate that it seems reasonable to model the dynamics re-=
lating pitch angle to rudder angle as a linear system of
at least second order. The results given in Fig. 2.8 clear-
ly show that the dynamics is speed dependent. The damping

in particular will decrease significantly with increasing
speed.,

As a complement to the frequency response analysis the stea-
dy state gain in the response of pitch angle was also mea-
sured statically.

A mathematical model of the submarine dynamics can be ob-
tained from Newton's equations expressing the conserva-
tion of linear and angular momentum. Such an analysis

leads to transfer functions of the form

L{e} bls + b,

3 =3
al:.u + a2S + a

L{&}

6]
+

L{h} c

' 3 2
L{&} s[s” + a;s” + a,s + a3]

Transfer functions of this type can clearly be fitted to

the data shown in FPig. 2.8 and Fig. 2.9.
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“Pupillary Light Reflex Dynamics.

The second example is taken from physiology. It concerns
the control system in the human eye which controls the
size of the pupil in order to regulate the light intensi-
ty at the retina. The example is based on investigations
by Stark (1959). The example is a good illustration of fre-
guency response techniques and also a good illustration

of clever experimental work. A block diagram of the con-
trol system is shown in Fig. 2.10. The area of the pu-
pil is adjusted based on the light intensity at the retina
to insure that this intensity is appropriate in spite of
large and rapid changes in the light intensity outside the

eye.

There is also another complex slow feedback which directly
changes the sensitivity of the retina. This feedback
accounts for the significant changes in sensitivity re-

quired for light and dark adaptation.

Light flux

Brain

A

Pupil —®Retina

Fig. 2.10 - Block diagram of the control system which
controls the pupil area in order to main-
tain the correct light intensity at the

retina.
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The area of the pupil can be determined optically by mea-
suring reflection of infrared light. By stimulating the

eye using an external light source and by measuring the
area of the pupil it is possible to measure the closed

loop response, i.e. the response in pupil area due to chan-

ges in the intensity of the external light source.

A fundamental property of feedback systems is that the
closed loop response is usually fairly insensitive both
to disturbances and to variations in the system parame-
ters. The open loop system i1s often much more sensitive
to parameter variations. Since one motivation for ana-
lysing physiological systems is to get insight into the
physiological mechanisms it is thus of great interest to
measure the open loop system. Such measurements are in
general very difficult to perform on physiological sys-
tems because it is necessary to break the loop at a
point, inject a signal and measure the signal which re-
turns at the break point. Moreover, the signal transmis-
sion is often extremely complex, and it is difficult to

find a suitable "break point".

In the particular case of the eye there is, however, a
simple and elegant solution to the problem. The open loop
response can be measured by varying the light intensity
at the retina and measuring the size of the pupil. The re-
tina can be stimulated directly by using a light beam
which is so narrow that its cross section is smaller than
the contracted iris. Hence by considering the pupil

area as the output and the light intensity as the input
both open loop and closed loop responses can be measured.
The closed loop response is obtained when a broad light
beam is used and the open loop response is obtained when

a narrow beam is used. See Fig, 2.11.
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Fig. 2.11 - Illustration of the light stimulation method.
Picture A shows the normal condition in which
the variation in the iris changes the intensi-
ty at the retina. This gives the closed loop
response. Picture B shows the technique used
to obtain the open loop response. Due to the
narrow beam the light intensity is not affec-

ted by the movement of the iris.

The following quotation from Stark (1959, p. 1930) explains

why the frequency response method was chosen:

"There were three reasons for our use of sinusoidal sti-
muli: experimental techniques for obtaining given level
of accuracy are simple, the mathematical analysis is well
understood and relatively easy to manipulate, and system
design and performance are evaluated readily. As an
example of the first point, once the retina had adapted
to mean light intensity, we were able to vary sinusoidal
modulations over the entire frequency range while the pu-

pil system remained in steady state."

Stark determined both the open loop and the closed loop
transfer functions for the pupillary system using the

techniques described above by varying the light source
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intensity sinusoidally and measuring the pupil area. A
sample of the measured inputs and outputs is shown in
Fig. 2.12. A Bode plot of the open loop transfer func-
tion obtained is shown in Fig. 2.13. The individual mea-
surements shown in Fig. 2.13 give an indication of the

accuracy of the results.

© o o
N W
1 1

o
—
|

Light flux I[mlm]

o

30

20 -

Pupil area [mm?]

10

0 5 10 15 20 25
Time (sl

Fig. 2.12 = Input (light flux) and output pupil area ob-
tained by an open loop experiment according
to Fig. 2.11B. The curves are typical showing
dominant fundamental response with harmonic
distortion, high frequency noise and drift.
The frequency of the input signal is 0.6 Hz.
(Redrawn from Stark (1968))
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Fig. 2.13 = Results of the determination of the open loop
transfer function relating pupil area to light

flux. (Redrawn from Stark (1959))

To obtain an analytic approximation of the measured fre-
quency response it is first observed that the amplitude
ratio can be approximated by a rational transfer function
of the form Gl(S) = a/(l+sTl)3. By crude graphical curve
fitting it is found that the values a = 0.19 and T, = 0.09s
give a reasonable fit. The amplitude curve obtained is
shown in Fig. 2.13. The corresponding phase curve is also

indicated by the dashed line in the figure. Since the
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dashed curve gives a Very poor fit to the measured phase
curve +the difference between the dashed curve and the
measurements is approximated by the transfer function
Gz(s) = exp(—sTZ)'which‘has unit gain. It is found that
the value‘T2 = 0,188 is adequate. To summarize it is found
that the measured points can be approximated by the trans-

fer function

1 . e—O.lSs (2.3)

G (s) = G (8)Ga(S) = 0.19 —
0 12 (14+0.09s)

This transfer function gives the relations between the nor-

malized signals i.e.

82 - - g, ()22 (2.4)

where A is the pupil area and ¢ the light flux at the reti-
na, oA denotes deviations in area and A, the reference

value.

The frequency response method gives primarily the frequency
curve which is a nonparametric representation on a linear
system. It is sometimes of interest to have a parametric
representation of the system dynamics. The method outlined
above is a simple way to approximate a frequency curve by

a rational function and a time delay. It is commonly used
when high accuracy is not desired. Technigques to obtain pa-
rametric models are dealt with in depth in the following

Chapters.
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Unstable Systems.

The frequency response method cannot be applied to an un-
stable system if the experimental arrangement of Fig. 2.1
is used. The sinusoidal input will excite the unstable
modes, the corresponding components of the output will
then grow without bounds and totally dominate the compo-
nent of the output which is due to the forcing input. Fre-
quency response can, however, be used if the experimental
conditions are changed by introducing a stabilizing com-

pensator as shown in Fig. 2.14.

. ; Stabilizin
Sinusoidal 9 A B
: compen- » System
input sator

Fig. 2.14 - Experimental arrangement for frequency response
of an unstable system. A stable closed loop sys-
tem is obtained by introducing a stabilizing
feedback. The reference value of the control
loop is perturbed sinusoidally. The transfer
function is measured by determining the ampli-
tude and phase relations between the system in-

put. (A) and the system output (B).

Notice, that when a stabilizing feedback is used it is im-

portant that the reference input is perturbed. If this is
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not done and if there are disturbances in the system, to-
tally misleading results may be obtained as shown by the

following example.

" Example 2.1. Consider the closed loop sYstem shown in Fig.

2.15. Assume that it is desired to determine the trans-

fer function GS by measuring the signals u and y.

Uref u L

Fig. 2.15

Elementary calculations give

G G
y = —SF U + L N
1 + GGy 1 + GGy
Gy Gp
U=———"——"U. e~ N
1 + GGy 1 + GGy

where Uref’ U, Y and N denote the Laplace transforms of
Ueogr Ur Y and n. If the disturbance n is zero frequency

response analysis gives the following transfer function
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as could be expected. Notice, however, that if the refe-

rence signal u is zero the following estimate of the

ref
transfer function is obtained

G :X.:m‘_}_
U

Cp

The procedure will thus give the negative inverse of the

transfer function of the stabilizing regulator, instead

of the transfer function Gs of the system.

Nonlinear Systems.

The steady state response of a linear time-invariant dy-
namical system to a sinusoidal input is a sinusoid. It is
thus possible to judge gqualitatively if a system is line-
ar and time-invariant by inspecting the output obtained
from a frequency response test. Quantitative information
can be obtained by using harmonic analysis or by determi-
ning the transfer function for different amplitudes of
the input signal. Using the frequency response method it

is thus possible to explore the signal amplitudes for which

a linear time—-invariant model is appropriate.

When performing a frequency response analysis of a nonli-
near system several unexpected phenomena have been ob-

served. For example it may happen that there are several
equilibrium values of the amplitude of the steady state

output. The servo system with a saturating amplifier shown

in Fig. 2.16 has this property. This is illustrated in Fig.

2,17 which shows the outputs obtained when the system is
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excited by a sinusoidal perturbation u(t) = 0.5 sin 1.3t.
The phenomenon which is also found in many other nonlinear

systems is called jump resonance.

5 J 20 y
1 ) s(1+5s)

Fig. 2.16 - Block diagram of a servo system with a satu-

rating amplifier.

oL/
>
5
a .
=]
o ‘5 T T T T
0 10 20 30 40 50
Time [s]

Fig. 2.17 - Outputs obtained when the réference input of

the servo in Fig. 2.16 is u(t) = 0.5 sin 1.3t.

Notice that there are two possible steady

state outputs.
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Exercises.

1. A common, practical method for determining the phase
angle and the amplitude is to estimate the phase angle
by taking averages of several zero crossings and to es-
timate the amplitude by averaging either the extrema
or the amplitudes midway between the zero crossings.
Demonstrate that this procedure is reasonable by ana-
lysing the model

y(t) = a sin(t+p) + n(t)

where it is assumed that the density of the pro-
bability distribution of n is symmetric and that n(t)
and n(t+t) are independent if tv > n/2. The estimate of

¢ is given by

(t
1

/\_l el
(.D—-N- k=)

Kk k

I~

where {tk} are the zero crossings. The estimates of the

amplitude a are given by

=1 T v
a, = = yv(t, +n/2
1 N k=1 k
and
N
~ 1
A4 = = y(t,) |
2 N kzll i

where'{ti} are the points where the signal has extre-
ma. Show that the estimate ¢ is unbiased and that the

estimates’él and éz have the properties
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E él‘ akE 1 —V[ﬁ(t)/ajz
Ea, =at 1 —V(fx(t)/ajzr

Notice that neither method will give good estimates
if the disturbances are large. More efficient methods
to handle large disturbances are discussed in the next

section,

Consider the rudder angle and the depth curves shown in
Fig. 2.6. Determine the magnitude and the phase angle

of the transfer function.

Consider the pupillary light reflex dynamics according
to Fig. 2.10. Let the light intensity be E, let the area
of the light beam be a, the pupil area A and let the
light flux be ¢. For small perturbations the open loop
response in pupil area to light flux is given by (2.4)
where GO is the transfer function given by (2.3). As-
sume that the light beam is so wide that it covers the
pupil completely. Show that the closed loop response is

given by the transfer function

Determine the closed loop transfer function and parti-
cularly its low frequency gain. By direct measurement
of the closed loop transfer function Stark found a low
frequency gain of 0.15.

Consider the pupillary light reflex dynamics. The open
loop gain can be increased artificially by using a nar-
row light beam which is focused on the edge of the pu-~

pil as shown in Fig. 2.18. Assume that the cross sec-
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tions of the light beam and the pupil are circular and

that the light beam is positioned as indicated in Fig.
2.19.

R
Fig. 2.18 CFig. 2.19

Show that the closed loop response is given by the trans-
fer function

SA %0 _ _ __G(s)
&0 Ao 1 + kG(s)
where
2
k = 117 sin l(r/R sin ¢)
nr

Use the result to suggest an experiment which will give
an unstable system. (This method was actually used by
Stark as a verification of the open loop measurements.)

5. Simulate frequency response analysis of the servo mecha-
nism with a saturating amplifier shown in Fig. 2.16 and
verify the results of Fig. 2.17. Determine the frequen-
cies for which there may be several amplitudes of the
steady state output. What happens if it is attempted to

determine the frequency response experimentally?
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6. Demonstrate the possibility of performing frequency re-
sponse of an unstable system by applying the scheme
shown in Fig. 2.14 to determine the frequency response
of a system described by

.gi =y + u
dt

Simulate the results.
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3. THE CORRELATION METHOD.

The method discussed in Section 2 is sensitive to dis-—
turbances because the amplitude ratio and the phase shift
were evaluated in a primitive way using graphical methods.
The accuracy of the determination of amplitude ratios and
phase shifts in the presence of disturbances can be im-
proved significantly by using correlation methods. A scheme

which exploits this is shown in Fig. 3.1.

— — — — — ___

" Sine channel |

y ysnna)t(: 'l Vs
Sincot System ™7

L o e

Signal

generator ) -
| | Cosine channel:
‘ Y cos() I Ye
|cos wit '| |
b e e e e e — — 1
Fig. 3.1 - Frequency response analysis using an effective

noise elimination scheme based on correlation

of the output with sine and cosine functions.

The system is excited by a sine wave from the signal ge-
nerator which also has a synchronized cosine output. The
system output is multiplied by the sine and cosine sig-

nals and the products are integrated. The signal channels
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are referred to as the sine channel and the cosine chan-

nel. The method requires a signal generator with syn-

chronized sine and cosine signals, multipliers and inte-

grators. Since the output of the multipliers is inte-

grated, a bias in the multiplier output can lead to large

errors. When using analog devices the analyser can be

implemented using a servo multiplier, where the process

output is applied to the servo potentiometer. It will be

shown that the outputs of the sine and cosine channels are

proportional to the real and imaginary parts of the trans-

fer function.

Analysis.

The scheme for frequency response analysis shown in Fig.

3.1 will now be analysed. Let the input signal to the sys-

tem be
u(t) = ug sin ot
and let y(t) denote the output of the

tem is stable and if the disturbances

steady state output is given by

y(t) = yo sin (wt+o)
where
Yo = |G(iw)|uO

© = arg G(iw)

and G is the transfer function of the

(3.1)
system. If the sys-
are neglected the

(3.2)

(3.3)

(3.4)

system.
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The outputsyS and Yo of the sine and cosine channels

are given by

T T
y (T) = [ y(t) sin wt dt = | Yy sin ot - sin(ot+e)dt =
0 0
Tyo Y T
= —— cos @ = — [ cos(2wt+p)dt (3.5)
2 2 0
T T
vy (T) = [ y(t) cos wt dt = | Yy cos wt « sin(wt+e)dt =
0 0
Ty, Yo T
= —= gin ¢ + — [ sin(2wt+yp)dt (3.6)
2 2 0

If the integration time is selected in such a way that

wT is a multiple of n we get

1 T - .

yS(T) =5 yOT cos P = 5 uO Re{G(iw)}, wT = w, 27,... (3.7)
(T) = % vy T sin o = L u. Im{G(iw)}, wT = =, 2n (3.8)

Yo 2 Yo 2 Yo ’ 1AMy .

Hence if the integration time T is a multiple of

n /w . the outputs of the integrators will be propor-
tional to the real and imaginary parts of the transfer
function. The scheme proposed thus appears to be a con-
venient scheme to determine the transfer function. No-
tice that a constant error in the measurement of the
output will not influence the values of Y and Yo for

arguments which are multiples of 2ﬁ/w,
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It will now be shown that the frequency analyser shown in
Figure 3.1 has an excellent ability to reject disturban-
ces. For this purpose it is convenient to give a frequen-
cy domain interpretdtion of the correlation channels. Con-
sider for example the sine channel as a dynamical system
with one input y and one output Vg The input-output rela-
tion (3.5) is given by

ys(t) = y(s) sin w,S ds (3.9)

ot

This input-output relation represents a time-varying li-
near dynamical system and it has not a convenient frequen-
cy domain interpretation. Consider, however, the dynamical

system characterized by the input-output relation

v (t) =% (-1)2t f v(s) sin wy(t-s)ds (3.10)

Apart from the scaling factor 1/T which is introduced for
convenience only the value of the output of (3.10) for
t = T will be the same as that of (3.9) if w,T = .nw. For

0
a fixed integration time T chosen as a multiple of ‘n/bo

the sine channel of the correlator can thus be described
by the linear time invariant system (3.10). This system
will therefore be called the time invariant dynamical sys-
tem associated with the sine channel. The frequency domain
properties of (3.10) will now be investigated. The impulse

response of the system is

1 _
T (—l)n 1 sin w,t 0 g t<T

h (t) = 0 (3.11)
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Since’hé(t),= 0, for t > T, the filter has a finite sett-
ling time. To compute the transfer function of the filter
(3.11) the transfer function G, of a filter with the

weighting function

1/t 0
hl(t) = : | (3.12)
0 t > T

"
ot
n
=1

will first be determined. The transfer function Gg is then
obtained as the convolution of Gl with the Laplace trans-

form of sin wot. Observing that

1 [ lO)Ot —lwot:\
e - e

and using the formula for translation in the s plane we

get

G () = (-1)™7F 211G, (sming) - G (s+iug)] (3.13)

The transfer function Gl is obtained simply by Laplace

transforming hl' Hence

Py T
_ -st _ 1 -st _ Yr,__-sT
Gy (s) = g e ~'hy (t)dt = 5 g e ~rdt = Sx[l-e T7]
_ ,o-sT/2 ' sinh sT/2 ' (3.14)
sT
For mOT = ¢, 27,... the transfer fuaction GS associated

with the sine channel of the correlator thus becomes
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Wa
5 g (l+e ST) mOT =7, 31,...
(s +wO)T
Gy (s) =7
“0 ~-sT
I S v (1l-e wOT = 27, 47m,...
(s +w0)T

A similar analysis of the cosine channel gives the fol-

lowing transfer function

( _ S (l+e_ST) wOT = 7, 3T,;¢e.
(82+w§)T
G, (s) =5
25 5 (l—e—ST) wOT = 2w, 4m,...
(s +mO)T

Fig. 3.2 and Fig. 3.3 show the amplitude curves of the
transfer functions Gg and Gc‘ It is clear from these
graphs that the correlation channels can be interpreted
as bandpass filters with a center frequency o and a
bandwidth proportional to 1/T. The bandwidth can thus
be made arbitrarily small by choosing sufficiently long
integration time. The sine channel has a higher gain
than the cosine channel for frequencies w < wg and a
lower gain for frequencies w > mOL

Let it finally be emphasized that the correlation chan-

nels are time-varying linear systems. The transfer func-

tions (3.15) and (3.16) will describe the correlation

channels only for integration times which are multiples of
ﬂ/wo. The transfer functions are useful to get an in-

sight and to analyse the effect of disturbances on the cor-

relator.

The filters with the transfer functions (3.15) and (3.16)
have relatively high sidebands as is shown in Fig. 3.3.

This is due to the discontinuities of the function h, of

1
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1Gg (i)

0

0 , 1 2

a)/ w,

Fig. 3.2 - Amplitude curve for the transfer function Gg s
given by the equation (3.15), which characte-
rizes the sine channel of the frequency ana-

lyser. The curve is drawn for w,T = 207,

0.5

" Fig. 3.3 - Amplitude curve for the transfer function Gqr
~given by the equation (3.16), which characte-
rizes the cosine channel of the frequency ana-

lyser. The curve is drawn for mOT = 20mw.
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(3.12).., The sidebands can be reduced if the function hl

is replaced by a smooth function for example

(L - cos 2nt/T)/T 0 <t ¢T

hl(t)‘= - : (3.1%)

This 1is often referred to as a time window. The scheme

can be implemented by multiplying the sine and cosine
signals from the signal generator by the function 1 -
- cos 2nt/T before they are multiplied by the output y(t).

Simulations.

Some properties of the correlation method will now be il-
lustrated by simulations. For this purpose a system with

the transfer function

is considered. The input is chosen as a sinusoid with
unit amplitude and the frequency 1 rad/s. For this fre-
guency the amplitude ratio of the transfer function is
1//2 and the phase angle is -n/4 or -45°, Fig. 3.4 shows
the input u, the output y, the integrator outputs Yg and
yc and the estimates of the magnitude and the phase angle

of the transfer function.

The possibilities to use the correlation method when there
are large disturbances are illustrated in the simulations
shown in Fig. 3.5. Results are shown for the noise free

case (A) and when disturbances are added to the system
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Fig. 3.4 - Results of simulation of frequency analyser

based on the correlation method. The graphs

show the system input u, the system output y,
the outputs of the correlation channels and
the estimated magnitude and phase angle of the
transfer function. Notice that the estimate
of the transfer function can be expected to be

correct only for t = w, 2w, 3w, 4m.
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output. The disturbance was generated by feeding white
noise through first order filters with time constants
0.1 s and 10 s in cases B and C respectively. The signal
to noise ratio was one in both cases. The integration
time T was five periods.

The simulations show clearly that a frequency analyser
based on the correlation method has excellent noise re-

jecting properties.

The estimates obtained are given in Table 3.1.

Table 3.1 - Estimates of the transfer function obtained

from the experiments in Fig. 3.5.

Case abs G arg G
A 0.707 -0.754
B 0.702 -0.792
C 0.714 -0.695

true 0.707 -0.785

The deviation from the true values in case A depends on
the fact that the system was not in steady state when the
measurement was started. The deviations in the other ca-
ses are also due to the disturbances. Notice that it is
possible to determine the magnitude with an accuracy of
about 1% in spite of the large disturbances. The error

in the phase angle is 1% in case B and 10% in case C. Al-
so notice that the error in the phase angle due to non-
stationarity is very significant 4%. It is thus important
to make sure that the system is 1n a steady state before

the measurement 1s started.




39.

¢ *HBTJ UT se dSwes Y3 Sar anduT Syl pue WS3ISAS BYL

-UOT3RTSII0D UO paseq IosATeur %ocmﬂwmﬁw.mo uoT3EBTNWIS FO sansay - §°¢ °bTd
[s]awl] [s]8wlL [s]9wiL
o€ (074 : o 0 O_m O_N O_— 0 3 0z 0l 0

0¢ 0z o 0 og 0¢ o 0 o€ 0z o 0
NI L Nl 1 1 I Nl
& - -1 L=
-0 0 -0
k
n
H -l n Hl
4 z 4




40.

Power Network Dynamics.

When designing control systems for electric power sta-
tions it is important to know how the network
frequency is influenced by the power generated in
one station. A crude estimate of the dynamics involved
can be obtained from an energy balance for the whole

power network. Let E denote the total stored energy, P

g
the generated power, Pc the consumed power and EQ the
power loss. An energy balance for the whole power net-
work then gives
dE _ P ~-P_ - P : (3.18)
dt g c 2

The major part of the energy is stored in terms of kine-
tic energy of rotating machines. If it is assumed that

all rotors are in synchronism their angular velocities

w are identical and proportional to the frequency f of

the network. The total stored energy can then be expressed

as

E = % Jo? = k£

where J is the sum of the moments of inertia of all rotors.
The consumed power P also depends on the frequency.

Introducing the above expression for E into (3.17) and
linearizing the resulting equation, it is found that for
small deviations the relation between the frequency £
and the generating power can be expressed by the trans-

fer function

L{sf} _ K (3.19)
L{sP_ } 1 + sT
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where

=
]

1/pL(£,)
T = B'(£,)/PL(£,)

The model (3.19) will hold only for slow variations in
the generated power. For rapid variations in generated
power the rotors of the different machines will no

longer be in exact synchronism. There will also be ener-
gy stored in transformers and power lines. To describe
the system in such cases it is then necessary to make a
much more detailed model. The dynamics will” also
depend on where the power is injected and where the fre-
quency is measured. The transfer function (3.19) for the
Swedish power network was measured by Garde, 0ja and Pers-
son of the ASEA Company in collaboration with the Swedish
Power Board in 1949,

In the experiments the governors of all turbines were
locked firmly and the frequency was held by manual reqgu-
lation. The output of one 50 MW machine at the Midskog
power station was varied sinusoidally at different fre-
quencies in the range 0.05 - 1.0 rad/s. The resulting va-
riations in the net frequency were measured. The ampli-
tude of the power fluctuations was about 10 MW. The to-
tal generating capacity of the system was about 2200 MwW.

Fig. 3.6 shows the normal fluctuations in frequency as
well as the fluctuations, observed when test signals were
introduced in the system. As is clearly seen from Fig.
3.6 the normal fluctuations are much larger than the fluc-
tuations generated by the perturbations. For the frequen-~
cies w = 0.105 rad/s, w = 0.22 rad/s,
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and w = 0.42 rad/s the effect of the input is clearly
visible in the graphs. At the higher frequencies w = 0.84
rad/s and w = 1.05 rad/s the effect of the input is hard-
ly noticeable in the output. It is thus not possible to
determine the transfer function of the power system by

a direct comparison of amplitude ratios and phase shifts
for the input and the output. Using the correlation me-
thod it is, however, possible to obtain good results even
for the data shown in Fig. 3.6 for w = 1.05.

In the particular case the necessary multiplication was

done with a watt-meter and the integration was done by a
ballistic galvanometerl) whose deflection was read manu-

ally. To overcome the problem of finite scale the polari-
ty of the signal was reversed when the meter deflection
reached the limit. Fig., 3.7 shows the outputs of the
sine and cosine channels for measurements at w = 0.42
rad/s. In Fig. 3.8 are shown the Nyquist curves obtained
from the experiments. The results show that a linear model
relating frequency changes to power input can be described
by the transfer function (3.192) where the gain K and the
time constant depend on the operating conditions. Typical

values are given below.

T[sec. ] Klhz/MW]
Weekday 13 - 15 7.2 0.0084
Weekday night 7.7 0.013
Sunday afternoon . .. 5.9 ... ..0.07 ... .

1 s .
) A ballistic galvanometer is a galvanometer without

spring restraint. Its transfer function is approxi-

matively given by K/(32+Ds).
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w = 0,105 rad/s
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g e i AN BT T
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Time [s] Time [s]
Fig. 3.6 - Measurements of fluctuations in frequency of

the Swedish power net during normal conditions

and when sinusoidal power perturbations of dif-

ferent frequencies are injected. The ordinate

is the net frequency [Hz] in all graphs. (Redrawn
from Persson (1967)).
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Fig. 3.7 - Outputs of the sine and cosine channels when
measuring the frequency response of the Swedish
power net at a frequency of 0.42 rad/sec. (Re-
drawn from Almstrém and Garde (1950)).
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Fig. 3.8 - Nyquist diagram of a linear model of the Swe-
dish power net obtained from the ASEA measure-
ments. The circles indicate measurement uncer-
tainty. (Redrawn from Almstrdm and Garde (1950)).




Thermal Conductivity of Metals.

A very neat application of frequency response analysis
was published in 1861 by the Swedish physicist Angstrém,
who used the method to determine thermal conductivity of
metals. A simplified diagram of Angstr®m's apparatus is
shown in Fig. 3.9. The basic idea is to take a long me-
tal rod with a small cross section. By periodically va-
rying the temperature at one end point, a heat-wave is
generated. The thermal diffusivity is then determined by
analysing the attenuation and phase shift of the heat
wave as it progresses down the rod.

Cold water  Steam

Valve

Thermometers

L

1
r Metal rod

L]

Fig. 3.9 - Simplified diagram of the apparatus used by
Angstrdm to determine thermal diffusivity of
metals. In the original experiment the copper
rod had a length of 570 mm and a diameter of
23.75 mm. Several holes of diameter 2.25 mm
for thermometers were drilled at positions
of 50 mm apart.

To carry out the analysis it is assumed that the system
can be described as a semi-infinite rod with small heat
losses to a medium of constant temperature. The rod can

then be described by the one-dimensional heat equation
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where u(t,x) denotes the temperature at time t at a point
along the rod with coordinate x. The parameter « is the

thermal diffusivity defined by

Y | (3.21)

where A is thermal conductivity, ¢ specific heat, and o
density. The term uu in equation (3.20) represents any
heat loss to the environment due to radiation, conduc-
tion, or convection. Since the heat losses in general are
nonlinear functions, the approximation by a linear term
is valid for small deviations only. The value of the pa-
rameter u will then also depend on the chosen operating

condition.

The mathematical model (3.20) contains two parameters,
« and u, and the problem is to determine the thermal dif-

fusivity «.

By taking Laplace transforms, it is easily shown that the
transfer function relating the temperature at coordinate

x to the end point temperature is given by

G(s) = Uls,x) - exp(- x /(s+ﬁ)7K) (3.22)
U(s,0) '

Also notice that this function can be interpreted as thé
transfer function which relates temperatures at two ar-

bitrary points on the rod with spacing x.

Straightforward calculations give
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Tog|Gtin) | = - xV (VuZenZay /(20

arg Glig) = - x \( 02 %=1 / (2k)

Multiplication now gives the equation

log‘G(i@)l « arg G(iw) = X w (3.23)

2k

which according to Angstrdm is "ein durch seine Einfach-
heit merkwilirdiges Resultat". By measuring the value of
the transfer function at one particular frequency w, the
thermal diffusivity can thus easily be determined by Ang-
strdm's formula (3.23). Apart from the discovery of equa-
tion (3.23), there are several interesting features of
Angstrém's experiment. The heat-wave was generated manu-
ally by changing a valve which either admits steam or
cold water to the small chamber at the end of the rod.

It follows from the transfer function (3.22) that higher
harmonics are significantly damped, which means that the
signals will resemble sine-waves at some distance from
the end point. See Fig. 3.10.

The periods chosen in the experiment were 12 16 and 24
minutes. The spacings between the thermometers. were
selected as 50 mm, 100 mm, and 150 mm.

It is clear from Fig.3.1l0 that the temperatures are not
well approximated by sinusoids. To remove the remaining
harmonics a trigonometric polynomial was fitted to the
data. This is mathematically equivalent to using a cor-
relation technique as was described in the beginning of
this section. For the data shown in Fig. 3,10 the follow-
ing result was obtained.
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Fig. 3.10 - Results of Angstrdm's experiment. The curves
are temperatures of a copper rod at points
spaced 0.lm. The end point temperature is va-

ried periodically with a period of 24 min.

yy(t) = 80.39 + 31.745 sin (15t+134.10°) +
+ 4.578 sin(30t+14.53°%) + 3.717 sin(45t+104.55°)
yt(t) = 88.86 + 13.010 sin(15t+109.04°) +

+ 1.591 sin(30t+337.26o) + 1.187 sin(45t+61.97o) (3.24)
The time unit is minutes.-

To eliminate in the thermometer scale factors ‘Ang-
strom simply repeated the experiment with the thermome-
ters interchanged. For this case he obtained the follow-

ing trigonometric series:
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y7 (€)= 74.57 + 25.203 sin(15t+142.35°%) +
+ 2.186 sin(30t+54.48%) + 4.334 sin(45t+112.42°)
yo(t) = 82.93 + 23.885 sin(15t+117,79°) +

+ 1.665 sin(30t+18.46°) + 2.969 sin(45t+70.68°) (3.25)

Let the scale factors of the thermometers be o4 and x5
and let the true temperatures by Y1 and Yoo The first

measurement gives
1
Y1 = %9
1 _
Yo T %2¥2
and the measurement with the thermometers reversed gives
2 _
Y1 T %V
2 _
Yo T %1¥p

Elimination of the calibration factors oy and o gives

The magnitude of the transfer function is thus given by

1
. _[13.010 - 23.885
IG(l“)l-J = 0.6232

31.745 - 25,203




and its argument is given by
arg G(iw) = - 24.8° = - 0,433 rad
Since w = 2n/(24+.60) and x = 0.1, eguation (3.22) gives

xzw 10—2i2ﬂ -

K: = (=4

2 log |G(iw)| arg G(iw)  2-0.473:0.433:24-60

1.07-10"% [n?/s]

4 2

This value agrees favourably with « = 1.18 10 - m“/s

(100°C) given in Goldsmith (1961, 247-266).

To obtain a value for the thermal conductivity X, Ang-
strém used equation (3.21) and available values for the
density p and the specific heat c¢. Through his method
Angstrém could improve the determination of thermal con-
ductivity significantly. Earlier values obtained by Pé&c-
let were 79W/m+K for copper and 30W/m-K for iron. Ang-
strbm obtained the values 382W/m+K for copper and 68W/m<K
for iron which are very close to values found in modern
tables. By applying frequency response analysis Angstrdm
was thus able to make a significant improvement in the de-
termination of thermal diffusivity.
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The Multifrequency Method.

One disadvantage of the frequency response method is that
the experiments may take considerable time since the mea-
surements have to be repeated for each frequency. A modi-
fication by Jensen (1959) eliminates this drawback at the
price of increased complexity in the data analysis. The
basic idea is simple. The time is reduced by introducing

several sinusoids simultaneously. Jensen starts with the
signal

u(t) = cos wt - cos 2wt + cos 4wt - cos 8wt +
+ cos 16wt = cos 32wt + cos 64wt (3.26)
which is periodic with period T = 2n/w and contains se-

ven harmonics.

The signal actually used is a sampled signal defined at
the sampling points

t = nh h = T/320

The signal is obtained as follows:

a ul(t) > 0 ,
ul(t) = t =0, h, ..., 319 h (3.27)
-a u{t) < 0

Half a period of this signal is shown in Fig. 3.11.

[ LT L rore g

L 1 T

0 50 100 150

Fig. 3.11 - Half a period of Jensen's multifrequency

signal. (Redrawn from Jensen (1959)).
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Jensen has shown that the signal (3.26) has several nice
properties. Most of the signal energy is contained at
the 7 frequencies. It has also been demonstrated that
the calculations required for correlating the input and

the output can be organized efficiently.

Notice that Jensen's method is similar in spirit to the
determination of the transfer function as the ratio of
the Fourier transforms of the system output and the sys-
tem input. Since efficient methods to compute Fourier
transforms are now available (see Chapter 5), Jensen's

method will not be elaborated further.
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Exercises.

1. Consider a frequency response method where the ampli-

tude and the phase are determined by fitting the para-

meters A and B of the function v(t) = A sin ot + B cos wt

to the output using least squares, which means that the

function

T
f[y(t) - A sin ot - B cos mt]zdt
0

is minimal. Show that this method is equivalent to the

correlation method if wT = nn. (Compare with Angstrdm's

. method.)

Consider the correlation method for frequency analysis.

Assume that the amplitude and phase are estimated from

~

Yy cos

>

S
il

2y (£)/t

~

Yo sin

b

S
I

2y (£) /t

Estimate the maximum error in the estimates obtained
when t is arbitrary. How many periods are required in
order to make the amplitude error less than 1% and the
phase error less than 1°7? Disturbances in the output
can be neglected.

Derive the formula (3.16) for the transfer function of

the cosine channel.

Assume that the correlation method is used for frequen-
cy response analysis. Let the amplitude of the input
signal be unity and assume that the error in the mea-

surement of the output is white noise with spectral
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lo.

density ¢ Determine the measurement error, give practical-
ly useful error estimates and show that the uncertain-
ty in the transfer function can be represented as circles

in a Nyquist diagram.

Consider Fig. 3.5. Explain why the outputs of the sine
and cosine channels have a significant component of fre-
quency 2w in case A and of the frequency o in case C.

Compare also with Fig. 3.7.

Consider the results of Angstrdm's experiment given in
equations (3.24) and (3.25). Determine the thermal dif-
fugivity by analysing the second and third harmonics.

Compare with the results obtained for the first harmo-

nics.

Simulate a frequency response analyser based on the cor-
relation method and verify the results shown in Fig. 3.4
and Fig. 3.5.

Show that it is a coincidence that the estimates of the
transfer function obtained for t = m and t = 3w in Fig.

3.4 are correct.

Show that if the sidebands are eliminated by using the
window (3.17) then the transfer function associated with
the sine channel is given by (3.13) with

G, (s) = - (l-e
1 sT(l—sT/Zn)2

gimulate a freguency response analyser based on the cor-
relation method and investigate the effects of a sinus-
oidal disturbance in the process output. In particular
demonstrate the effect of the high sidebands and the use

of a time window..
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1ll. Find the effects on the frequency analyser of a dis-

turbance in the process output of the form n(t) =
= a + bt.
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4, TREND ELIMINATION.

Tt was shown in the previous section that the correlation
method was very effective in eliminating the effects of
disturbances in a frequency analysis. The analysis showed
that the correlation channels could be interpreted as band
pass filters whose center frequency was automatically equal
to the frequency of the input signal. For integrating times
equal to multiples of 2n/co0 it was also shown that the cor-
relation channels could be characterized by the transfer
functions (3.15) and (3.16). A series expansion of these

transfer functions give

;

2 S . —
T T o + . on =, 3w,
O (o]
Gs(s) =4
2
s s T _
oy + 2“0 + .. wOT = 2n, 47w, .
.
2
2s s
- 3 + M§~+ . wOT = 7w, 3w,
w w
o) o
G, (s) =9
2 3
s. .81 + w T = 2%, 47,...
2 2
W’ 2w
L o) fo)
The transfer function Gc(s) will thus wvanish for s = O.

The transfer function GS(O) is also equal to zero if
wOT = 2n, 4m,... i.e. if the integration is a multiple
of the period of the input signal. Notice however that
GS(O) = 2/(wOT) if wOT = T, 3T, 400

This means that a constant level in the output gives no
error in the outputs of the correlation channels, if the
integration time is chosen as a multiple of the period

of the input signal.
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A linear'trend in the process output will, however,
result in an error of the sine channel even if the
integration time is chosen as a multiple of the pe-
riod of the input signal. This is illustrated by the
simulation results shown in Fig. 4.1. This figure
shows the results obtained when analysing a system with

the transfer function
G(s) = 1/(1+s)

The input signal is u(t) = sin t, and a trend n(t) =

= 0.1 T is added to the process output.

With no disturbance in the output it follows from (3.7)
and (3.8) that the outputs of the correlation channels

are
vy (T) = T/4 o T = m, 2m,...
YC(T) = T/4 w,T = m, 2T e as

ivhere n is a positive integer. Furthermore it follows

from (4.1) that the drift n(t) = 0.1 t will give the
following contribution to the output of the sine chan-
nel

Yo (T) = T Gg(p)n(T), w,T =, 27, ..

where p is the differential operator p = d/dT. Hence
0.1 T W T =T, 3T;¢0.

- 0.1 T w T

27, 4w, ...
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Fig. 4.1 - Results of simulation of frequency analysis based

on correlation when there is a linear trend 0.1 t

added to the process output. The input is u(t) =

= gin t and the system has the transfer function

G(s) = 1/(l+s). Notice that there is a bias in the
sine channel and no error in the cosine channel as
can be expected from (4.1) if the integration time

is a multiple of the period of the input signal.
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The output of the sine channel in the presence of the drift
thus becomes

0.35 T wOT = 7w, 31,...
Yo (T) =

i

0.15 T wOT 2w, 4n,...

Compare with the results of the simulation shown in Fig.
4.1. The simple calculation illustrates the usefulness
of the transfer functions GS and Gc to get insight and

error estimates.

Persson's Device.

A technique to eliminate the effects of drift and other
low frequency disturbances will now be discussed. Assume
for example that the measurement error is a polynomial
in t of degree %. In principle such a disturbance could
be eliminated by performing the frequency analysis of
the signal, obtained by differentiating the output sig=-
nal %+1 times. Such a solution will, however, increase
the high frequency noise considerably. A similar scheme,
which does not introduce high frequency disturbances, would
be to calculate the integrals Vg (3.5) and y_ (3.6) over
separate half periods and to take differences of order
L+1. Schemgs Qfrthi$ type,have_beén usé&“wben analysing
nuclear reactors. See Schmid (1956) . The particular me-
thod described here is due to Rolf Persson (1955),

Consider the output of the sine channel of the system and
assume that the integration time is chosen in such a way
that oT is an integer multiple of m, say wT = Nn. The out-
put of the sine channel then becomes

T lwIII T
Yg = g y(t) sin wt dt = = g y[6151n dt =
1 ?, %F T
= = y[~}sin tdT (4.3
© k=1 (k-1)n " @ )
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The basic idea used to eliminate the effects of trends
is to modify the frequency response analyser so that
the output is given by

%F (1
o y[—]sin Td'r (4.4)
1 K ok-yyn W@

e
L
cir
e~

k

instead of (4.3). It will be shown that the parameters
%) can be chosen in such a way that an error in the out-

put in the form of a polynomial will not have any effect
on the function §s’

Assume that there is an error in the process output which

is a polynomial in t of degree &. Since

K

1,= J <" sindt o= =05t e+ -0t -
(k=1)m
~ g (e-1)T

=2
we find that the polynomial error will give the contribu-
tion

-1
Pl(k) (4.5)

to the output of the sine channel, where Pl(k) is a poly-
nomial of degree g in k. Notice that the coefficients of
the polynomial do not depend on k! Now let g denote a
shift operator in k defined by

gP (k) = P (k+1) (4.6)
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For any polynomial of degree less than or equal to g we

have the identity

+
(-1 * e (k) = 0 (4.7)
Hence if the coefficients Oqe in (4.4) are selected in
such a way that the linear operation defined by (4.4)

corresponds to the difference scheme (4.7) we get

Il

0 (4.8)

0o
Il
I o~123

- +
o (-1 e () =:Bq~1)z lpz(kﬂ
k=1 k=1
This is possible if N = 2+2 and if the coefficients are

chosen proportional to the binomial coefficient

(2+1)!
(k=1) ! (o-k+2)!

-(2+1) (4.9)

The coefficients are normalized in such a way that their

sums equal one.

In the particular case of a linear trend we have & = 1,
N = 3 and ®y = 1, Oy = 2 and O,y = 1.

Fig. 4.2 shows a simulation of the trend elimination

scheme (4.4) with the parameters given above.
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0 . 50
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Fig. 4.2 - Outputs of the sine and cosine channels for
a frequency analyser with trend elimination
in the sine channel. The system has the trans-
fer function G(s) = 1/(l+s), the input is
u(t) = sin t and the trend 0.1 t is added to
the output.
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Exerc¢ises.

1. Consider the correlation method. Assume that the
output is disturbed by a constant level. Deter-
mine the errors in the sine and cosine channels

for on =7, 31,... and wOT = 27, 4m,... .

2. Simulate a frequency analyser when there is a
trend error in the system output and verify the

results shown in Fig. 4.1 and Fig. 4.2.
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5. SAMPLED SYSTEMS.

Many systems of practical interest have parts which cor-
respond to sampled systems. Typical examples are control
systems with computers or special digital devices. Other
examples are systems where signals are transmitted digi-
tally. Such systems are found both in technical and bio-
logical applications. Certain processes like internal
combustion engines have mechanisms like the ignition sys-
tem which are naturally described as sampled systems due

to their physical nature.

There is a fundamental difficulty in trying to identify
a sampled data system because such systems are not time
invariant. If the sampling is periodic the systems are
periodic with a period equal to the sampling interval.
The notion of transfer function which is properly de-
fined only for time invariant system thus must be used
with some care. The periodicity is usually avoided in
the analysis by considering the values of the system va-
riables only at discrete times which are synchronized to

the sampling instants.

The fact that sampled systems are not time invariant
implies that the steady state output generated by a si-
nusoidal input will have components with frequencies
different from the frequency of the input signal. The
effects are particularly pronounced at frequencies
approaching half the sampling frequency.

There are several cases reported in the literature where
difficulties have been encountered by ignoring the time

varying nature of sampled systems.
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Frequency Analysis.

The difficulties associated with frequency analysis of
a sampled data system will now be demonstrated in a
simple case. Consider the system shown in Fig.. 5.1
consisting of a sampler and a linear time invariant

system with the transfer function G(s).

» G(s)

Fig. 5.1 = Block diagram of a simple system with a

sampler,

It is assumed that the reader is familiar with the basic
concepts of classical sampled data theory. See Ragazzini
and Franklin (1958).

An idealized model of the sampler gives the sampled

output as
u*(t) = u(t)s(t) (5.1)

where S(t) is a train of impulses which is formally

written as

S(t) = ) &(t-nT) = %[l + 2 ) cos nwst] (5.2)
n=1

n=-oo

where T is the sampling period and mST = 2m.

Let the input signal to the sampler be
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u(t) = sin(wt+o)
The output then becomes

u*(t) = %[sin(wt+m) + 2 zlcos(nwst)sin(mt+@)] =
n=

[o.e]

= %{sin(wt+¢) + 7 [sin(nmst+mt+@) -
n=1

- sin(nmst—wt—w)]}

Notice that the sampled signal u* can be considered as
the modulation of u with the impulse train S. The
sampled signal u* contains components with the frequen-

cy w and with the side-band frequencies nwg + w. See

Fig. 5.2.
| ' | |
o | | |
| 1] | ! I |1
] ] ] |
7 2wg N\ 7 - wg \ -w w 7 wg \ 7 20 N
-2u-w 20tw Wrw - W wgtw 20w 2w5+co

Fig. 5.2 - Illustrates the frequency content of the sig-
nal obtained by sampling a sine-wave with fre-

gquency .

The output signal is easily obtained by superposition.

Hence -
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) i(nwst+mt+m)
+ G(i(nws+w))e -
n=1

(5.3)

The output thus has components of the fundamental fre-
guency w as well as side-bands nwg + . These components
will in general be filtered out when performing a fre-
gquency analysis., For o = nws/z the frequency of one of
the side-bands will,however, coincide with the frequen-
cy of the input signal. The component of the output with
the same frequency as the input (the fundamental component)
is then given by

?(t) = % Im{G(iw)ei<wt+@) - G(im)ei(wt_w)}

=i

- Im{(1—e‘21@)c(im)ei(“t+@)} -

= % Im{Zei(n/Z_w)sin ) G(iw)ei(wt+m)}, w = nws/Z (5.4)

Y
For w # nws/z the fundamental component of the output

(5.3) is
y(t) = % Im{G(im)ei(wt+@)} (5.5)

Hence if a frequency analysis is performed by exciting
the system with a sine-wave and if the amplitude and
phase relations between the fundamental component of
the input and the output are measured the following

estimate of the transfer function is obtained

A G (in) 0+ /2
G(iw) = (5.6)
% ei(“/z_m)sin @ G(iw) w = nws/z
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A frequency response analysis of the sampled data sys-
tem shown in Fig. 5.1 will thus give the estimate G =

= G/T for all frequencies except those which are mul-

tiples of the Nyquist frequency (ws/2). At -frequen-
cies nws/Z the estimate of the transfer function will
depend on the way the sinusoidal input is synchronized

to the sampling instants. For ¢ = 0 the estimate is

G =0 while ¢ = n/2 gives G = 2 G/T and @ = 31/2 gives
é = ~2 G/T. If it is attempted to measure the value of
the transfer function at w = nws/2 and 1f great care
is not taken to synchronize the sine-wave with the

sampling frequency the points will be widely scattered.

Finite Measurement Time.

In the analysis performed it was assumed that the equip-
ment used for the frequency analysis was perfect in the
sense that the fundamental component is perfectly sepa-
rated from the side-bands. In practice it may happen
that the side-bands are picked up. The estimated é will
then be different from G/T also at frequencies different
from nws/s. For example, if a frequency analyser based
on correlation is used to analyse the system shown in
Fig. 5.1, it can be shown that the lower side-bands
(nms-w) will give a significant contribution even if the
integration time is fairly long. It follows from equa-
tion (5.3) that the contribution due to the frequency
nog = o will depend on ¢ i.e. the synchronization of

the sine wave with respect to the sampling periods. A
noticeable scatter of the estimates will thus be observed
if the sine wave is not synchronized to the sampling in-
tervals. Empirically it has been found that the effect

is noticeable at frequencies above ws/4. See Fig. 5.3,
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Fig. 5.3 - Results of frequency response analysis using

the correlation method applied to a system
consisting of a sample and hold followed by

a system with the transfer function 1/{1l+s).
The sampling frequency is 10 Hz (=62.8 rad/s).
Depending on the synchronization between the
input and the sampling, any values in the =
shaded region can be obtained. The integra-

tion time is 5 cycles.
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Diesel Engine Dynamics.

A diesel engine is intrinsically a sampled data system
because of the ignition mechanism. To explain this let

T denote the time for the motor to complete one cycle.
The fuel injection time is so short in comparison with

T that it can be considered as instantaneous. The igni-
tion comes after a certain delay and results in a torque-
pulse which lasts for about T/4. The area of the torque-
pulse is proportional to the injected fuel. The torque-
pulse results in a motion of the motor which is deter-—
mined also by the moment of inertia of the load and the
damping. For the purpose of control the diesel engine

can be considered as a system whose input is the setting
of the fuel rack/which determines the injected fuel and
whose output is angular velocity. In early models the
sampled nature of the system was disregarded, and the mo-

tor was simply described by the transfer function

-sT
G(s) = —K% o 4 | (5.7)

Js + D

where K is the mean torgque per fuel flow rate, J the
moment of inertia, D the damping and Td the time bet-
ween firing strokes. A significantly different model
is obtained when the diesel engine ismodelled as a
sampled system. The model will, for example, critical-

ly depend on the number of cylinders.

For a long time diesel engines were studied using frequen-
cy response methods. The transfer functions obtained were
reproducible for low frequencies, up to about a quarter of
the sampling frequency. The sampling frequency is the ra-
tio of the number of independently fired cylinders and

the time required for a full cycle. At higher frequen-

cies, however, a large scatter in the estimates of the
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transfer function was observed. This problem was not re-
solved until the consequences of the sampled nature of
the diesel engine were analysed by Bowns (1971) . Frequen-
cy analysis was also applied by Flower (1973) who applied
correlation techniques. By using a synchronizatioh device
which starts the correlation at a coincidence of a posi-
tive zero crossing of the sine wave with an ignition, it
was possible to obtain reproducible results for fregquen-
cies higher than the sampling frequency. This gives a

specified value to ¢ in (5.6).

The experiment was performed on a closed loop system
consisting of a motor with governor. The input was cho-
sen as the reference value of the speed governor, Ssee
Fig. 5.4. A sample of the results obtained is shown in
the Bode diagram of Fig. 5.5. The results cannot be

well explained by the continuous time model (5.7).

Trigger Syncronization

an detector
delay

.l

v

Sine wave
generator

Fig. 5.4 - Arrangement used by Flower to determine the
transfer function of a diesel engine. The
correlation method was used and the integra-
tion was started when the input signal zero
crossing coincided with the ignition impulse
suitably delayed. (Redrawn from Windett and
Flower (1973)).
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Fig. 5.5 -

Frequency [Hz]

Frequency response of a diesel engine running at 600 RPM.
The motor is a six—cylinder, four-stroke engine which
means that fS = 30 Hz. The correlation method is used
and the input synchronized for measurements above 7.5
Hz. The integration time used was 100 cycles. (Redrawn
from Windett and Flower (1973)).
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Exercises.

1. Consider the sampled data system shown in the figure
below which consists of an analog to digital conver-
ter, an algorithm characterized by the pulse transfer
function H(z) implemented on a digital computer, and
a digital to analog converter which holds the previous

value until a new value is received.

— A/D > H(2) DI/A

Assume that the input signal is a sinusoid

u(t) = Im{ei(wt+w)}

Show that the output of the analog to digital conver-
ter in the steady state can be written as

Z (l—ele)H(ele)e
n=-co (iw+inws)T

y(t) =

oo 1 i(mt+nwst+w)
o )

Discuss what would happen if it was attempted to ana-

lyse the system with a frequency response analyser.

2. Consider the digital control system illustrated by
the block diagram below

SA§ G(s)

D/IA H(z) A/D \
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Assume that the loop is broken at the point A and
that a frequency response analysis is performed by
sending in a sinusoid and measuring the amplitude

and phase relation between the input and the funda-

mental component of the output. How can the result

be used to analyse the stability of the closed loop
system?

Assume that the system in Fig. 5.1 is analysed by
frequency response based on correlation. Neglect all
frequencies in the output given by (5.3) except the
fundamental w and the first side-band ws/2 - w, De=-
termine the output of the sine and cosine channels
and analyse how the result depends on the synchro-

nization of the input to the sampling intervals.

Simulate frequency response of a sampled system and
verify qualitatively the results shown in Fig. 5.3,

Also analyse the signal wave forms.
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6. SUMMARY.

Frequency response is a very flexible and useful tool for
determination of the transfer function of a linear system.
The method is also useful in order to explore the region
in which a system can be considered as linear. Frequency
response is also conveniently used to find the model com-
plexity required to describe the dynamics of a system over

a given range of frequencies.

Frequency response requires very little equipment. For high
signal to noise ratios a sine-wave generator and a two chan-
nel recorder is sufficient. By using correlation techniques
with time windows and trend elimination the method can also

be used for very low signal to noise ratios.

The transfer function is obtained directly during the expe-
riment  without extensive calculations. This is very conve-
nient because measurement can be repeated if doubts occur
and the experiment can be planned adaptively exploiting

previous results.

The only case when it is very inconvenient to use frequen-
cy response is when analysing systems with very long time
constants. In such a case it takes a long time to wait for
steady state and to make measurements for many frequencies,
particularly if the signal to noise ratio is so low that

the correlation method must be used.
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8. NOTES AND REFERENCES.

Frequency response analysis is exXtensively used and well
covered in literature. Tt was applied by the physicist
Angstrém as early as 1861. After the discovery of the
Nyquist theorem, frequency analysis was a standard tool

in the design of electronic amplifiers. A typical example
is given in Bode (1945, pP. 491-492). 1In the field of au-
tomatic control frequency analysis was used before World
War II by Charles Stark Draper in his investigations of
dynamics of aircraft inétruméntation repoftea in Draper
(1953) and by Gordon Brown in studies of hydraulic trans-
missions. A good source for the early work is Oldenburger
(1955) which contains original papers and many references.
Frequency analysis is now a very useful standard tool
which has been applied to a larqe variety of technical and

nontechnical systems.

The submarine example discussed in Section 2 is taken from
Garde and Persson (1960) and from material which has been
kindly supplied by the Royal Swedish Navy. Determination
of aircraft dynamics by frequency response is described in
Campbell (1947).

Frequency response has also been widely used in investiga-

tions of chemical processes; a survey is given in Williams

(1961), which contains many references. A typical applica-

tion is given by Hoiberg et al (1971). They investigate the
dynamics of a fixed-bed reactor produ01ng water from hydro-
gen and oxygen.

Frequency response has been applied to several physiologi-
cal systems. Several examples are given in Milhorn (1966).
The example on pupillatory light reflex dynamics is based
on Stark (1958 , 1968). In Herman and Stark (1963) frequen-

Cy response analysis is used to inveStigate'the'dynamics of
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a single photoreceptor neuron. When investigating the
pupillary light reflex dynamics it was possible to open
the loop in a very elegant manner. In general it is, how-
ever, very difficult to open the loop in a physiological
system. Most frequently it is necessary to use surgery.

A typical example is given in a sequence of papers by Sa-
waga et al (1961, 1962). The control loop which regulates
cerebral blood flow by changing systemic arterial pressure
was investigated. Two dogs were used in the experiment.
The blood vessels supplying the blood to the brain of dog
A were cut and connected to dog B in such a way that the
blood flow through the brain of dog A could be regulated.
Frequency response was applied by varying the blood flow
to the brain of dog A and by measuring the response in
systemic arterial pressure of the same dog. In this way
the open loop transfer function was obtained. The gain
necessary to give :an unstable closed loop system was cal-
culated from the open loop measurements. The results were
verified by connecting the signal from the blood pressure
measurement to the flow regulator through an amplifier.
Frequency response has also been used in investigations

of the circulatory system by Grodins (1963.

Frequency response analysis of nonlinear systems is dis-
cussed in Graham and McRuer (1961). The measurements on
the Swedish power network discussed in Section 3 were
done by Almstrdm and Garde (1950). The work is also de-
scribed in Oja (1955). Application of frequency response
to control of water turbines are discussed in Hutarew
(1969) .

The section on determination of thermal conductivity of

metals is based on Angstrdm (1861). Angstrdm's method,

which has been rediscovered several times, is a standard
method to determine thermal diffusivity. Extensive dis-

cussions are found in the classic Carslaw and Jaeger (1959)
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and the more practically oriented monograph Tye (1969).
A recent application of more advanced parameter estima-
tion methods to the determination of thermal conducti-

vity is given in Leden (1973).

The trend elimination device discussed in Section 4 is

due to Rolf Persson (1955). It was developed in connec-
tion with frequency analysis of nuclear reactors. A re-
view of trend elimination schemes is given in Schmid
(1956) . Frequency analysis has in fact become one of the
standard methods for analysing the dynamics of a nuclear
reactor. The reactivity of the reactor is varied sinus-
oidally, and the corresponding change in neutron flux is
measured. Early determinations of zero power transfer
functions were carried out in Chalk River and Argonne Na-
tional Laboratory before 1950. For measurements on low
power graphite moderated reactors the simple amplitude and
phase comparison discussed in Section 1, can be used be-
cause the neutron flux signal is virtually noise free. For
boiling water reactors the situation is very different, be-
cause the boiling generates noise in the flux signal

(5% of the total signal). In such a case the correlation
method is used. See Schmid (1956). To generate the sinus-
oidal variations in reactivity, a special control rod, of-
ten called pile oscillator, is used. In a typical case

such a reactivity oscillator is composed of a rotor and

a stator, on which are mounted sine and rectangular shaped
strips of an absorber. When the sine strip is rotated with
respect to the rectangular strip at a constant speed, a si-
nusoidal variation in reactivity is obtained. The frequen-
cy is changed by changing the speed of rotation. Typical
frequencies that are used in the experiment are 0.002 - 10
Hz. A general survey is found in Harrer (1963). More details

are given in DeShong (1960) and in Tosi and Akerhielm (1964).
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The multifrequency method described in Section 3 is de-
scribed in Jensen (1959). Jensen's notes contain much in-
teresting material on fregquency énalysis. The test sig-
nals proposed by Jensen have the interesting property
that their power is concentrated at narrow bands around

a fixed number of frequencies. Further aspects on the ge-
neration of such signals are found in van den Bos (1967,
1970) .

Application of frequency response analysis to modelling

of diesel engines is described in Welbourn et al (1959)..
A sample data model for the diesel engine is given in
Bowns (1970). This paper also contains results of expe-
rimental frequency analysis. Frequency response of sampled
systems is also discussed in Flower et al (1971). An app-
lication to diesel engines is given in Windett and Flower
(1973) .

Frequency response analysers have been implemented in ma-

ny different ways. Using the technology available before
1960, the generation of low frequency sinusoids was dif-
ficult. Much ingenuity therefore went into the design of
such equipment, see St. Clair et al (1955), Ahrendt (1960),
Balchen (1962), Hutarew (1969). With the technology that

is available today the implementation of low frequency

sine wave generators and correlators is straightforward.
Equipment for frequency response analysis is now available
from many instrument suppliers. A review of available equip-

ment is given in Strobel (1967).

A frequency response analyser can, of course, also be
easily implemented on a minicomputer with A/D and D/A
converters or with an interface to a sine cosine signal
generator. See Persson (1973). Using such an imple-
mentation it is easy to incorporate effective filtering
procedures to eliminate both drift and high frequency

disturbances.
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APPENDIX A -~ SIMULATION PROGRAMS.

This appendix gives computer programs for a frequency ana-
lyser and programs which have been used to simulate the
analyser in different situations. The programs were used
to generate several of the figures in this chapter. They
are also useful for the solution of some of the exercises.
The programs are written in the interactive simulation
language SIMNON described in Elmgvist (1975). There
should, however, be little difficulty to rewrite the prog-
rams in any other language.
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To simulate the jump resonance phenomenon shown in Fig.
2.17 a system SSERV representing the saturating servo
shown in Fig. 2.16 was generated. The sinusoidal input
was generated in the connecting system INSI. The program

listings for these programs are given below.

CONTINUQUS SYSTEM SSERV "SERVO WITH SATURAT|ON

INPUT U
QUTPUT Y
STATE X1 X2
DER DX1 DX2

INTTIAL
X130
X210
Al==A

QUTPUT
Y=X1

DYNAMICS

E=i-Y

MisMIN(E, A)

MaMAX (M1, A1)
DX1=X2
DX2=~0,2#(X2-K#M)
Asi

Ki20

END

TR U em mm o mm e e e Mmoo e g e

CONNECTING SYSTEM INS| "S|NE GENERATOR
TIME T

UISSERVI=A#S|IN(W*T)

At O
Wit

- en

[OS RN

END




89.

To carry out the simulation and to generate Fig. 2.17
the following dialogue was performed using SIMNON.

>SYST SSERV INSI
>AXES H @ 5@ V -4 8
>PLOT Y
>SIMU @ 58~
>INIT X1:8
>SIMU

> gt

A2, A Frequency Analyser.

The program for a system representing a frequency analy-
ser using the correlation method FREQA is listed below.
The program listing is largely self explanatory. The sys-
tem FREQA generates a sinusoidal input, performs the cor-
relation and computes the magnitude and phase angle of
the transfer function. There are options to eliminate
sidebands by using the time window (3.17) and for trend
elimination as was described in Section 4.
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CONTINUOUS SYSTEM FREQA "FREWUENCY ANALYSER

"FREQUENCY AMALYSER USING THE CORRELATION METHOD

"THE ANALYSER GENERATES THE [INPUT UsA%*SIN(H®T) TO RBE APPLIED
"TO THE SYSTEM AND CALCULATES THE TRANSFER FUNCTION USING THE
"CORRELATION METHOD

"THERE ARE THREE SETTINGS

A | STGNAL AMPLITUDE A

"2 FREQUENCY W

o3 INTEGRATION TINME (SPECIFIED A3 NUMBER OF PERIODS NP)
"THERE ARE THREE OFPTIONS

"ol TIME WINDOW 1-COS(2#P1#T/T1) TO ELIMINATE SIDERANDS

" ACTIVATED BY SETTING THE PARAMETER CWii,

"2 TREND ELIMINATION IN SINE CHANNEL USING PERSSONS DEVICE
" ACTIVATED RBY SETTING YP>O0

INPUT Y

DUTPUT U ARGG ABSG
TIME T

STATE ¥S YO

DER NDYS DYC

INTT AL

A=A

YC 0
TIaNP#2Z®P | /W
TEPS=TI*1E~4
TP=R /W

QUTPUT

SEAXSINC(WRT)

CzA®COS{WET)

U=sg

Td=MINCT,T 1)

Te=MAX(T1, TEPS)
ABSG=SORT (4% (YS*YS+YC*Y(C) ) /T2
ARGG=ATANZ(YC,YS)

WE=1~CW*COS(2#PI*T/T1) "TIME WINDOW
TH=MOD(T,Z4TP)

TW=0.75%C|F TMCTP DR TH>2#TP THEN 1 ELSE 2)

YRP1=1F YP>0 THEN TW ELSE 1 "TREND ELIMINATION
NYMNAMICS

DYS=F T<T1 THEN Y#S#WF*YR1L ELSE 0 "SINE CHANNEL

DYC=IF T<TI THEN Y#C»WF ELSE 0 "COSINE CHANMNEL

At "SIGNAL AMPLITUDE

Wi YEREQUENCY [RAD/S)

NP 120 TNUMBER OF PERIODS

CHen BRUT CWiL IF WINDOW DESIRED
YPi-1 BRUT YP>0 FOR TREND ELIMINATION

P113,1418926

END
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To study the frequency analyser it 1s necessary to simu-
late the system representing the process dynamics. The
simple first order system with the transfer function
G(s) = 1/(1l+s) is used in many of the examples. A program
PROC to simulate this system is listed below. The inter-
connection between the process and the analyser is given
by the system LINKl. This program also admits the possi-
bility to simulate a disturbance in the process output of
the form

n(t) = a + bt + ¢ sin(wt+y)

The program listings for PROC and LINK1l are given below.

CONTINUOUS SYSTEM PROC "PROCESS DYNAMICS

INPUT U
QUTPUT Y
STATE X
DER DX

QUTPUT
Yz X

DYNAMICS
DX=U~-X

END

- - - e - P ™ T - - [ e - o em "~

CONNECTING SYSTEM LINK1
TIME T

YSR=T/4
YCR=~T/4
ABSGR=1/SQRT(2)
ARGGR=~P|/4

YIFREQA)=Y[PROCI+A+B*T+C#S INCW#T+F 1)
ULPROCI=U[FREQA]

pelinc s - E o vl —d
Lo s S e

D———— - w2 BB Be
on an we

m
=
o}
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The programs FREQA PROC and LINKL can be used to get an

insight into the properties of the frequency analyser.

Some examples are given below.

To generate Fig. 3.4 the following dialogue is carried

out using SIMNON.

>SYST FREQA PROC LINK!I “GENERATE SYSTEMS TO BE SIMULATED

>PAR NPs2
>I NIT XIPROCI:-€.5
SAXES H 2 15 V -4 3

"SET INTEGRATION TINME TO 2 PERIODS
"SET INITIAL STATE OF FROCESS
"SET SCALES FOR GRAPH

>PLOT Y{FREGA] ULFREAA] "CHOOSE VARIAELES TO BE PLOTTED

>SIMYy @ 13

>PLOT YS YC YSR YCR
>AXES

>5 I

"SINMULATE
"CHOOSE VARIABLES TO BE PLOTTED

>FLOT ABSG ARGG ADBSGR ARGGR

*AXES V -2 2
>510U

>

The programs FREQA PROC and LINK1l are conveniently used

in order to find the effect of disturbances of the form

(Al) on the results. For example, to find the effect of

a sinusoidal perturbation, the following dialogue is car-

ried out.

>SYST FREQA PROC LINKI
>PAR NP: 1@

>PAR Cs: 1

>P AR WILINKIYe 1,1
*AXES H @ 1zp v -22 15
*PLOT YS YC YSR YCR
>SIMU @ 78

>PAR WILINKII=-\:1.,15
>STKY

>PAR FI:p1,7

>SImy

>PAR WILINKII: L, 2
>FLOT YS YC

>5IMU -MARK

>

"ACTIVATE SYSTENMS TO REE SIMU

. = [ P " 1l AT 1
"SET INTEGRATION TINE TO 1@ éER?gﬂg
"INTRODUCE SINUSOIDAL DISTUSEANCE |
FREAUENCY OF DISTUREBANCE 1.1 RAD/S

"CHANGE PHASE OF DISTURBANCE



3. Effects of Random Disturbances.

Random disturbances are conveniently generated using SIM-
NON because the language contains a white noise generator
NOISE. A disturbance with an arbitrary spectral density
can then be generated by filtering the white noise. This
is accomplished by the system FILT. The necessary connec-
tions are given in the system LINK2. The programs FILT and
LINK2 are listed below.

CONTINUQUS SYSTEM FILT "NUISE FILTER
INPUT U

QUTPUT Y

STATE X

DER DX

QUTPUT
YzKF#X

DYNAMICS
DX=(U=-X)/TF

CONNECTING SYSTEM LINKZ
TIME T

YSR=T/4

YCR=~T/4
UIFILTI=ELINO|SE]
UIPROCI=U[IFREQA]
YIFREQA)=Y[PROCI+YI[FILT]

END
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Generation of Fig. 3.5B.

As an example of a simulation of the effect of random

disturbances the dialogue used to generate Fig. 3.5B

is given.

>3YST FREQA PROC FILT NOISE LInke

>PAR DT:'}. "
PAR 91124@5 LSET SAMPLING INTERVAL Fog NOISE
PR Kre b USET NOISE COVARIANCE & °©
ZPAR Aot "SET FILTER GATWN

10, SET FILTER TINE CONSTANT

>AXES H @ 50 V -3 3
>PLOT Y[ FREQA]
>SIMU @ 31,41592¢6
>AXES V -7 7

>PLOT YS YC YSR yvcRr
>51MU

>
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A4, Trend Elimination.

The effect of trend disturbances in the process output
can be eliminated using Persson's device as was described
in Section 4. Mathematically the necessary operation is
given by equation (4.4). The scheme can be implemented
by multiplying the process output with the weights Qg
which are constants for each half period. This facility
is included in the frequency analyser FREQA. Trend elimi-

nation in the sine channel is activated by YP > 0.

To demonstrate trend elimination we give the following

dialogue which was used to generate Fig. 4.1 and Fig. 4.2.

>3YST FRERA PROC LINKI
>PAR NP: 12 " "SET INTEGRATION TIME TO 12 PERIODS

>PAR B: 2,1 "INTRODUCE TRED\ND ERROR IN PROCESS QUTPUT

>INIT XIPROC):=-0.5

>AXES H @ 128 V =40 3¢

>PLOT YS YC YSR YCR

=510 @ 84

>PAR YPs | "I NTRODUCE TREKD ELIMINATION
>PLOT YS

>SImU

>







