LUND UNIVERSITY

A Real Time Environment for Expert Control

Arzén, Karl-Erik

1987

Document Version:
Publisher's PDF, also known as Version of record

Link to publication

Citation for published version (APA):
Arzén, K.-E. (1987). A Real Time Environment for Expert Control. (Technical Reports TFRT-7314). Department
of Automatic Control, Lund Institute of Technology (LTH).

Total number of authors:
1

General rights

Unless other specific re-use rights are stated the following general rights apply:

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors
and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the
legal requirements associated with these rights.

» Users may download and print one copy of any publication from the public portal for the purpose of private study
or research.

* You may not further distribute the material or use it for any profit-making activity or commercial gain

* You may freely distribute the URL identifying the publication in the public portal

Read more about Creative commons licenses: https://creativecommons.org/licenses/

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove
access to the work immediately and investigate your claim.

LUND UNIVERSITY

PO Box 117
221 00 Lund
+46 46-222 00 00

https://portal.research.lu.se/en/publications/6d7a7076-b19c-41c3-84cd-7a2e67a277ac

P.O. Box 118

Department of Automatic Control
Lund Institute of Technology

S-221 00 Lund Sweden

Document name

Report

Date of issue

December 1987

Document Number

CODEN: LUTFD2/(TFRT-7314)/1-15/(1987)

Author(s)

Karl-Erik Arzén

Supervisor

Sponsoring organisation

Title and subtitle

A Real Time Environment for Expert Control.

Abstract

A real time environment for experiments with expert control is presented. Different methods for communica-
tion between processes on VAX/VMS are discussed. Special attention is paid to communicate between Lisp
and Pascal. The Lisp dialect used is Franz Lisp together with EUNICE.

Key words

Classification system and/or index terms (if any)

ISSN and key title

Supplementary bibliographical information

ISBN

Language
English

Number of pages

15

Security classification

Recipient’s notes

The report may be ordered from the Department of Automatic Control or borrowed through the University Library 2, Box 1010,
§-221 03 Lund, Sweden, Telex: 33248 lubbis lund.

A REAL TIME ENVIRONMENT FOR EXPERT CONTROL

Karl-Erik Arzén
Department of Automatic Control
Lund Institute of Technology, Sweden

Abstract: A real time environment for experiments with expert control is
presented. Different methods for communication between processes on VAX/VMS
are discussed. Special attention is paid to communication between Lisp and Pascal.
The Lisp dialect used is Franz Lisp together with EUNICE.

1 INTRODUCTION

This report presents a real-time environment suitable as a test bench for
experiments with expert control. Expert control refers to a control system where
an expert system is used to execute a collection of control algorithms. The reader
is assumed to be familiar with the general concepts of Al and automatic control.

Expert control is presented and explained in chapter 2. Chapter 3 deals with a
suitable software structure and in chapter 4 the available hardware and software
tools are presented. In chapter 5 the real-time environment is presented and in
chapter 6 the impact of this environment of Lisp is displayed.

2 EXPERT CONTROL

The notion of expert control was proposed by Astrém and Anton (1984). The
idea is to remove much of the branching and logic statements from the control
algorithms and implement them in an expert system. With this approach it is also
possible to augment the control algorithm by incorporation of heuristics and
rules of thumb about control in general. A different kind of controller is thus
achieved that can include functions difficult to implement in ordinary control
algorithms. It is in particular possible to include tuning rules and to achieve a
self tuning regulator more general than the existing ones, Astrém (1983).

Most of the existing expert system are written in Lisp, Prolog or some of their
derivatives. The reasons for this are not only historical. Lisp is well suited for
symbolic data processing. Its interactive environment also simplifies program
development. The latter is particularly important for large, experimental
programs. Control algorithms, however, are preferably written in a traditional,
numerically oriented programming language such as Fortran or Pascal. It is thus
desirable to use several languages in the implementation of an expert control
systems. In this particular implementation the expert system is written in Lisp,
and the control algorithms are written in Pascal. These two parts must be able to
communicate with each other in some way.

Control is a typical real time problem and ordinary controllers are implemented
with this in mind. Communicating concurrent processes are used and care is
taken to achieve mutual exclusion and to avoid real time problems such as
dead-lock. This concurrency must be taken into consideration in the expert
controller. Different priorities are needed for the different parts of the
controller. The Pascal system which executes the control algorithms must have a
high priority. The Lisp part which searches among large rule sets and is very
time consuming could be given lower priority.

3 A PROPOSED STRUCTURE.

A software structure for expert control was proposed in Arzén (1986). A
slightly modified version of this can be seen in figure 1. It consists of three
processes, Lisp-Expert, Lisp-lo and Pascal-Controller. The Pascal-Controller
executes the control algorithms. It consists of a control loop and a library of
numerical algorithms. Lisp-Expert is the actual expert system with a database and
rule sets. These two processes need to communicate with each other. To start or
stop an algorithm or to change the parameters of an algorithm are typical
messages from Lisp-Expert. Return messages can be sent when a change in
behaviour of the controlled plant has been detected by some algorithm.

Lisp-lo is needed for the man-machine communication. It should handle manual
changes of parameters in the controller. Another aspect is that the expert system
must be able to explain what it is doing, e.g. which algorithms that are currently
running and what the state of knowledge is of the controlled plant. By
implementing this process as well in Lisp, substantial simplifications are obtained
in the communication with Lisp-Expert. This is explained in detail in chapter 6.

Pascal-
Controller

Figure 1. Proposed process structure. The ellipses represent processes and the
rectangles represent communication media.

4 AVAILABLE HARDWARE AND SOFTWARE .

A VAX 11/780 computer running under VMS is available for the project. The
different processes can be implemented as subprocesses having different
priorities. The operating system can be used for scheduling. A process can be
delayed by calling appropriate system services.

The operating system VMS has three different methods for communication
between processes, eventflags, mailboxes, and global sections. Common event flags
provide a means for event synchronization of processes. The main operations
are setting a flag and waiting for a flag to be set. This method can, however, not
be used for exchanging data and it is thus not suitable for our application.

A mailbox is a record-oriented virtual I/O device that can be used by cooperating
processes for exchange of messages. There are system services to create, write
to and read from a mailbox. A mailbox can hold multiple messages, which are
stored on a first-in first-out (FIFO) basis. Mailboxes can be used to implement the
ADA rendezvous primitives as shown: by Tengvall (1982).

A global section is an area of memory containing data or code that can be shared
between communicating processes. Global sections are the most general
communication method since it allows processes to have common variables. An
implementation of ADA rendezvous primitives with global sections has been done
in Elmqvist and Essebo (1982). Using global sections with Pascal works well, since
there is a direct correspondence between variables and memory cells. A Lisp
symbol, that corresponds to a variable in Pascal, does not, however, correspond
directly to a memory cell. Lisp has an internal data structure for each symbol. It
is perhaps possible to overcome this in some way and use global sections
together with Lisp but my intention have been to keep the internal structure of
the Lisp interpreter. '

Franz Lisp by Foderaro and Sklower (1981), is the dialect available on our VAX.
This Lisp is quite general. It contains most of the common software tools such as
structure editor, file package, compiler, debugger, trace and step possibilities, etc.
One problem however, is that it is designed for the operating system UNIX ,Unix
(1981). EUNICE, Kashtan (1982), is a software package that allows users to run
program written for UNIX on VAX/VMS with little or no modification. EUNICE
functions as an interface between UNIX and VMS that performs the necessary
translations. One of the major differences between VMS and UNIX is their
different file format. VMS has a record oriented format and UNIX has a stream
oriented format. This is handled by EUNICE, so that each program sees its
appropriate format.

I/O data is transfered between Franz Lisp and external media through a port
structure. The standard input and output ports are the terminal, but a port can
also be connected to a file or to a pipe. A pipe is an UNIX method for
communication between different programs.

Franz Lisp allows the user to write his own procedures and functions. These can
be written either in C, Pascal or Fortran. The value returned from a function can
be an integer number, a real number or an arbitrary, valid Lisp object. The
compiled user written functions are dynamically loaded into the Lisp. They can be
called and used just like ordinary Lisp functions. Using C as the language has one

major advantage. Since Franz Lisp is written in C, it is possible to use the same
data structures to provide valid Lisp objects. It is only necessary to include the
Franz Lisp declarations in the user written functions. It is also possible to call
both the UNIX system services emulated by EUNICE and the VMS system services
using C.

5 THE REAL TIME SYSTEM

The processes can be implemented as VMS subprocesses. Since global sections
require an extensive modification of the internal structure of Franz Lisp,
mailboxes are the only feasible method for communication. The actual software
structure is illustrated in figure 2. Two mailboxes are used as communication
media. Lisp-lo uses the same mailbox as Pascal-Controller for communication with
Lisp-Expert. There may possibly be one extra mailbox for communication from
Lisp-Expert to Lisp-lo, but since most of the messages in this directicn will be
printed on the terminal, the two processes can share the terminal.

Mailboxes are created with calls to the system service SYS$CREMBX. This can
theoretically be done either from Pascal-VMS or from Lisp-EUNICE. In this
implementation it is done from EUNICE. The mailboxes can be created in a user
written C function which is called from Lisp-Expert. The code for this function
can be seen in the appendix 1. The function creates the two mailboxes, starts
Pascal-Controller using the system service SYS$CREPRC, and writes the mailbox
names in the group logical table so that Lisp-lo can access them. The mailboxes
are connected to UNIX files which are then connected to two Lisp ports. The
value returned from the function is a list consisting of the two ports. When
Pascal-Controller is initialized its standard input and output are set to the two
mailboxes.

A mailbox may be accessed from three different levels. The lowest level is the
system service level. The service for accessing a mailbox is SYS$QIO. The next
level is the VMS Record Management Service (RMS). On this level the mailbox is
associated with a file. Access is done with get and put operations. RMS internally
uses system services to implement these operations. The third level to access a
mailbox is from a high level language. From this level the mailbox can not be
separated from an ordinary file. All access is done with ordinary read and write
statements.

Much is gained by only using the highest level for accessing the mailbox. The
mailbox mechanism becomes a very general way of communication. A message is
simply a line of text if the mailbox is associated with a text file. This high level
association defaults to a synchronous communication. A process that writes a
message into a mailbox waits until the other process has read the message. This
is not suitable for my purposes. The time critical process Pascal-Centroller can
not wait for the time consuming Lisp-Expert to read the message. There is,
however, a possibility to change a timeout parameter in the VMS Record Access
Block (RAB) so that the communication will be asynchronous. Each VMS file has a
associated RAB on the RMS level. It contains information about access of the
records in the file. This RAB block can also be accessed from EUNICE because
each "UNIX" file in EUNICE has an internal structure that among other things
contains the VMS RAB block. Details are shown in the appendices.

Another problem is that Pascal-Controller must have a possibility to check if it
has got something to read before it actually reads it. If not, the Pascal-Controller
will be halted until a message is sent and the control of the plant will stop. A
possibility to check whether a mailbox is empty or not is to use the system
service SYS$GETDEV which brings information about different devices. One of the
parameters brought back is the number of messages in the box. This can be used
as a check before reading.

Another demand is that messages should be inserted into Inbox according to their
priorities and not by a FIFO scheduling. This is needed to assure that an alarm
message is handled before some other less important message. This can be solved
by letting Lisp-Expert have an internal mailbox structure. Instead of reading the
first message from Inbox it starts with emptying Inbox and inserting the messages
in its own box according to priority before it reads the first message from its
own box.

Cutbox

Figure 2. Process structure. The ellipses represent processes and the rectangles
represent mailboxes.

Concurrent Lisp

Using a text file as a mailbox has a very powerful impact on the communication
between the two Lisp processes. It means that the message format is totally free.
A message can be an arbitrary Lisp expression. Since Pascal is a compiled
language, the message format between Lisp-Expert and Pascal-Controller must be
predefined and cannot be altered during execution.

When Lisp-Expert receives a message it can simply test if it is a Lisp expression
and if so evaluate it.

(if (Lispexpression message) then (eval message))

The test for legal Lisp expressions can be based on the presence of parenthesis
at the beginning and end. It is also very simple to print and read a Lisp
expression to a port. Franz Lisp has built-in functions that prints and reads Lisp
expressions to ports. They have the format

(print mess outport)
(read mess inport)

To change some symbol in the other process, one needs only send an assignment
statement. For example

(print ‘'(setq symbol 'newvalue) outport)

This free message format makes it possible to evaluate Lisp functions in a real
time process almost as if it was running interactively.

In particular it is possible to change the code of the executing process on-line.
There are three different ways to do this. One is to send a new function
definition for an existing function in the other process. Another is to edit the
existing function, print it on a file and then send a message to the other process
to load this file. The third way is to edit the function, print it on a file, compile
the file and then send a message to the process to load this compiled file. This is
possible since interpreted and compiled code can be mixed in Lisp. All functions
in the process can, in fact, be changed except the function which involve the
reading and evaluation. This is no serious limitation since reading and evaluation
can be confined to small well defined code sections,

One objection against this on-line changing of code in a real time process is that
it is extremely dangerous. The process will stop if an error occurs during
evaluation. There is, however, a way around this problem. It is possible to
evaluate the message in an environment that catches an error and then returns
without stopping. This is easily done with the Lisp function (errset expression).
This function evaluates expression and if an error occurs then the function will
return the value nil. This can be used as a test for successful evaluation.

This preservation of the interaction is extremely important in a test bench for
expert control. It makes it possible to inspect, change and trace the expert system
on-line.

CONCLUSIONS

A real time environment has been presented that has all the qualifications to be a
basis for further experiments with expert control. An interesting communication
method between parallel Lisp processes has been presented that preserves the
interaction of Lisp.

REFERENCES

Arzén, K-E (1986): Expert systems for process control, CODEN:
LUTFD2/TFRT-7315, Department of Automatic Control, Lund Institute of
Technology, Lund Sweden.

Astrém, K J (1983): Implementation of an auto-tuner using expert system ideas,
Internal report Dep. of Automatic Control Lund Institute of Technology.

Astrém K J and 1.J. Anton (1984): Expert Control, Proc. 9'th IFAC World
Congress, Budapest, Hungary

Digital (1983): VAX/VMS Manuals, Digital Equipments Corp.

Foderaro J K and Sklower K L (1981): The Franz Lisp Manual.

Kashtan D L (1982): EUNICE: A system for porting UNIX programs to VAX/VMS
Artificial Intelligence Center, SRI International, Menlo Park Ca.

Tengvall F (1982): Rendezvous primitives for intertask communication on
Vax/VMS, CODEN:LUTFD2/TFRT-7234, Dep. of Automatic Control Lund
Institute of Technology.

Unix (1981): UNIX Programmer's manual, Computer Science Division, Dep. of
Elec. Engineering and Computer Science, University of California, Berkeley
California.

ENVIR.REP

/*
* User written C function that creates two mailboxes
* and starts a Pascal program with these as standard
* input and output. Returns a list with the two ports.

*# Inclusion of prefix files e.g. global.h that contains
*+ Franz Lisp’'s type declaration

+/

include </usr/src/cmd/1lisp/franz/h/global.h>
include </usr/include/vms/dibdef.h>

include </usr/include/vms/ssdef.h>

include </usr/include/eunice/eunice.h>
include <stdio.h>

lispval
crembx ()

{ struct {int size; char sptr; } inbox, outbox, imagename;
struct {int size; char sptr; } In_Descr, Out_Descr, logname;
int Status, fdi, £d2;
short int unitnrl, unitnr2;
int pidnr;
char mbx_name1[9];
register char xcpl, xcp2;
register int i, j;

FILE *xinport, soutport;
lispval list;
char mbx_name2[9];

#define CHECK_STATUS

if
#define END_CHECK)

(
1

(* ({status =
& 1)

) printf ("ERROR");

inbox.ptr = "INBOX";
inbox.size = 5;
outbox.ptr = "QUTBOX";
outbox.size = 6;
imagename.ptr = "PASCONTR";
imagename.size = 8;
logname.ptr = "PASCONTR":
logname.size = §;

10

/*

* Two mailboxes are created.
%
x/

fdl = creat(&inbox,0777."ipc".256,"tmp",&unitnr1);
fd2 = creat(&outbox.0777,"ipc",256."tmp",&unitnr2);

/*

* The mailbox names are created from the unitnumbers
*+ and entered in the group logical table.

+/

1 = unitnr2;

cp2 = &mbx.name2[9];
*Cp2-- = '\0';
¥Cp2-- = ":';

while(i) {
*cp2-- = (i ¥ 10) + '0"';
i/=10;

*Cp2-- = 'A’ ; xcp2-- = 'B' ; xcp2-- = 'M' ; *cp2 = '_";

Out_Descr.ptr = cp2;
Out_Descr.size = 9;
strcpyn(Out_Descr.ptr,cp2,9);

CHECK_STATUS
sys$crelog(1,&outbox,&0ut_Descr,0)
END_CHECK

j = unitnri;

cpl = &mbx_name1[9];

*cpl-- = '\0';

¥cpl-- = ":*;

while(j) {
*cpl-— = (j % 10) + '0";
i /= 10;
}

*cpl-- = 'A' ; #cpl-- = 'B' ; *cpl-- = "M’ ; xcpl = '_";

In.Descr.ptr = cpi;
In_Descr.size = 9;
strcpyn(In_Descr.ptr.cpl,9);

CHECK_STATUS
sys$crelog(1,&inbox,&In_Descr,0)
END_CHECK

[* = \
x The process PASCONTR is started with the mailboxes
* as standard input and output.

*

+/

CHECK_STATUS

sys$creprc(&pidnr,&imagename,&Out_Descr,&In_Descr.&In_Descr,
0,0.&logname.4.0.0.0)

END_CHECK

[*

* The mailboxes are connected to UNIX files and opened.

+/

inport = fdopen(fd1,"r");
outport = fdopen(fd2,"w");

/*
* The rab structure of outport is changed to allow
* asynchronous communication.
x

+/
FD_FAB_Pointer[fd2]->rab.rab$l_rop |= RAB$M_TMO;

[*
* The UNIX files are associated with LISP ports
* and a list with the ports as car and cdr is

% returned.

+/

ioname[PN(outport)] = (lispval) inewstr (Out_Descr.ptr);
ioname[PN(inport)] = (lispval) Inewstr(In.Descr.ptr);

list = newdot();
list->d.car = P(inport);
list->d.cdr = P(outport);
return(list);

}

12

1

[inherit('SYS$LIBRARY:STARLET')]Vprogram pascontr(input,output};
type Ptr_to_RAB = ~RAB3TYPE:

unsafefile = [unsafe] file of char;
var RAB : Ptr_to_RAB;

FUNCTION PAS$RAB(var f:unsafefile) : Ptr_to_RAB; EXTERN;

13

{
function MorelInBox(name: packed array [integer] of char): boolean;
{
Returns true if there are more messages in the mailbox name.
}

var status: integer;
dbuff: packed array{1..DIB$K_LENGTH] of char;

begin

status : = $GETDEV(DEVNAM: =name , PRIBUF: =dbuff);

if not odd(status) then writeln('MorelInBox: ',status);
MoreInBox := ord(dbuff[9]) > 0;

end { MoreInBox };

(w———

{ Communication is changed to asynchronous }

begin
RAB: =PAS$RAB (output);
with RAB- do
begin
RAB$V_TMO: =true;
end;

{ Main loop in PASCONTR }

while true do
begin
if moreinbox('SYS$INPUT') then readmess;
control;
end;
end.

14

This C written procedure is compiled separately with the command
%cc -c crembx.c

This results in an object file that can be loaded into Franz Lisp on line with the
command

> (cfasl 'crembx.o '-crembx 'crembx "function").
A call to crembx will look like.

> (crembx)
(%-MBA:1256 . %_MBA:1257)

