
LUND UNIVERSITY

PO Box 117
221 00 Lund
+46 46-222 00 00

A Real Time Environment for Expert Control

Årzén, Karl-Erik

1987

Document Version:
Publisher's PDF, also known as Version of record

Link to publication

Citation for published version (APA):
Årzén, K.-E. (1987). A Real Time Environment for Expert Control. (Technical Reports TFRT-7314). Department
of Automatic Control, Lund Institute of Technology (LTH).

Total number of authors:
1

General rights
Unless other specific re-use rights are stated the following general rights apply:
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors
and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the
legal requirements associated with these rights.
 • Users may download and print one copy of any publication from the public portal for the purpose of private study
or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal

Read more about Creative commons licenses: https://creativecommons.org/licenses/
Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove
access to the work immediately and investigate your claim.

https://portal.research.lu.se/en/publications/6d7a7076-b19c-41c3-84cd-7a2e67a277ac

Documcnt name

Report
Datc of íssuc

December 1987

Department of Automatic Control
Lund fnstitute of Technology
P.O. Box 118
S-22L 00 Lund Sweden

coDEN: LUTFD2/(TFRT_7314)/1_15/(1e87)
Documcnt Numbc¡

SupcrvisorAuthor(s)

Karl-Erik Àrzén

A Real Time Environment fcr Expert Control.

Titlc and sub¿itjc

Abstract

A real time environment for experiments with expert contrci is presented. Different methods for communica-
tion betlveen processes on VAX/VMS are d.iscussed.. Special attention is paid to communicate between Lisp
and Pascal. The Lisp dialect used is Franz Lisp together with EUNICE.

Key words

Classifrcation systcm and/or index terms (if any)

Supp,lcmentar y b ib lio gra ph ical infor mat io n

ISSN end key t,itle ISBN

Language

English
lVumbe¡ of pages

15

Security cl¿ssi¡lcation

Recipient's notes

The report' may be ordcred from the Depaúment of Automatic Control or borrowed. througå the University Library 2, Box 70J0,
S-227 03 Lund, Sweden, Telex: SS24B lubbis lund.

i--

1

A REAL TIME ENVIRONMENT FOR EXPERT CONTROL

Karl-Erik Ã,rzen
Department of A,utomatic Control

Lund Institute of Technology, Sweden

^A'bstract: A real time environment for experiments with expert control ispresented. Different methods for communication between processes on VAXIVM-are discussed. Special atþntion is paid to communication between Lisp and pascal.
The Lisp dialect used is Franz Lisp together with EUNICE.

2

This report presents a real-time environment suitable as a test bench forexperiments with expert control. Expert control refers to a control system wherean expert system is used to execute a collection of control algorithms. fn" readeris assumed to be familiar with the general concepts of AI and automatic control.

Expert control is presented and explained in chapter 2. chapter 3 deals with asuitable software structure and in chapter 4 the aïailable hardware and softwaretools are presented. In chapter 5 the real-time environment is presented and inchapter 6 the impact of this environment of Lisp is displayed.

1 INTRODUCTION

2 EXPERT CONTROL

The notion of expert control was proposed by .A,ström and Anton (lgga). Theidea is to remove much of the branching and'logic statements from the controlalgorithms and implement them in an expert system. with this approach it is alsopossible to augment the control algoriìhm by incorporation of heuristics andrules of thumb about control in general. A airrerent kind of controller is thusachieved that can include functions difficult to irnplement in ordinary controlalgorithms' It is in particular possible to include tuiing rules a¡rd to achieve aself tuning regulator more general than the existing o.r"i Art.O* iiOaã¡.
Most of the existing expert system are written in Lisp, prolog or some of theirderivatives. The reasons for this are not only historical. Lisf is weil suited forsymbolic data processing' Its interactive environment also simplifies programdevelopment. The latter is particularly important for large, experimentalprograms' Control algorithms, however, are preferably written in a iraditional,numerically oriented programming language such as Fortran or pascal. It is thusdesirable to use several languages in the implementation of an expert controlsystems' In this partieular implementation the expert system is written in Lisp,and the control algorithms are written in Pascat. ihese two parts must be able tocommunicate with each other in some way.

Control is a typical real time problem and ordinary controllers are implementedwith this in mind' Communicating concurrent processes are used and care istaken to achieve mutual exelusion and to
"rroia real time problems such asdead-lock' This concurrency must be taken into consideration in the expertcontroller' Different priorities are needed for the different parts of thecontroller' The Pascal system which executes the control algorithm, *,rrt have ahigh prioritv. The Lisp part which searches among rarge iule ;"ì; ;; is verytime consuming could be given lower priority.

3

3 A PROPOSED STRUCTURE.

A software structure for expert control was proposed in Ä,rzen (19g6). Aslightly modified version of this can be seen in figure l. It consists of threeprocesses, Lisp-Expert, Lisp-Io and Pascal-Controller. The Pascal-Controller
executes the control algorithms. It consists of a control loop and a library ofnumerical algorithms. Lisp-Expert is the actual expert system with a database andrule sets. These two processes need to communicate with each other. To start orstop an algorithm or to change the parameters of an algorithm are typieal
messages from Lisp-Bcpert. Return messages can be sent when a ctranlå inbehaviour of the controlled plant has been detected by some algorithm.

Lisp-lo is needed for the man-machine communication. tt should handle manual
changes of parameters in the controller. Another aspect is that the expert system
must be able to explain what it is doing, e.g. which algorithms that arl curyen¡yrunning and what the state of knowledge is of the controlled plant. Biimplementing this process as well in Lisp, substantial simptificatiorr,

""" obtainedin the communication with Lisp-Expert. This is explainea in aetait in chapter 6.

Figure 1. Proposed process structure. The ellipses represent processes and therectangles represent communication media.

Li sp-
Expert

Pascal-
Control I er

Lisp-Io

4

4 AVAILABLE HARDWARE AND SOFTWARE

'A' V'A'x 111780 computer running under VMS is available for the project. Thedifferent processes can be implemented as subprocesses having differentpriorities. The operating system can be used for sc'heduling. A proc-ess can bedelayed by calling appropriate system services.

Ih" operating system vMS has three different methods for communication
between processes' eventflags, mailboxes, and global sections. Common event flagsprovide a means for event synchronization ãf p.o""r"es. The main operations
ane setting a flag and waiting for a flag to be set. This method can, however, notbe used for exchanging data and it is thus not suitable for our application.

A mailbox is a record-oriented virtual I/o device that can be used by cooperatingprocesses for exchange of messages. There are system services to create, writeto and read from a mailbox. A mailbox can hold multiple messages, which arestored on a first-in first-out (FIFO) basis. Mailboxes c"n t" used to- implement theADA rendezvous primitives as shown by Tengvall (19g2).

A global section is an area of memory containing data or code that can be sharedbetween communicating processes. Global sàctions are the r¡ost general
communication method since it allows processes to have common variables. Animplementation of ADA rendezvous primitives with global sections has been donein Elmqvist and Essebo (1982). Using gtobal sectionsïith p"r"al works well, sincethere is a direct corresponãence between variables and memory cells. A Lispsymbol, that corresponds to a variable in pascal, does not, however, coryesponddirectly to a memory cell' Lisp has an internal data structure for each symbol. Itis perhaps possible to overcome this in some way and use global sectionstogether with Lisp but my intention have been to keep the internãl structure ofthe Lisp interpreter

Franz Lisp by Foderaro and Sklower (1981), is the dialect available on our vAX.This Lisp is quite general. It contains most of the common software tools such asstructure editor, file package, compiler, debugger, trace and step possibilities, etc.one problem however, is that it is designea Ìãr the operating iyitem UNIX ,Unix(19s1)' EUNICE, Kashtan (1982), is a software package rhat allows users to runprogram written for UNIX on VAX/VMS with little or no modification. EUIVICEfunctions as an interface between UNIX and vMS that performs the necessarytranslations. one of the major differences between vMS and uNIx is theirdifferent file for mat. vMS has a ¡ ecord o¡-ienied fo¡-mai anci UN¡X has a streamoriented format. This is handled by EUNICE, so that each program sees itsappropriate format.

l/o data is transfered between Franz Lisp and external media through a portstructure' The standard input and output ports are the terminal, but a port canalso be connected to a file or to a pipe. A pipe is an uNIx method forcommunication between different programs.

Franz Lisp allows the user to write his own procedures and functions. These canbe written either in c' Pascal or Fortran. The value returned from a function canbe an integer number, a real number or an ar¡itrarv,
"ãriã-iis!'Il¡u",. Thecompiled user written functions are dynamically loaded into the Lisp. ttrey can becalled and used just like ordinary Lisp functions. Using C as the håguage has one

5

major advantage. Since Franz Lisp is written in C, it is possible to use the same
data structures to provide valid Lisp objects. lt is only necessary to include the
Franz Lisp declarations in the user written functions. It is also possible to call
both the UNIX system services emulated by EUNICE and the VMS system services
using C.

6

5 THE REAL TIME SYSTEM

The processes can be implemented as VMS subprocesses. Since gtobal sections
require an extensive modification of the internal structure of Franz Lisp,
mailboxes are the only feasible method for communication. The actual software
structure is illustrated in figure 2. Two mailboxes are used as communication
media. Lisp-lo uses the same mailbox as Pascal-Controller for communication with
Lisp-Expert. There may possibly be one extra mailbox for communication from
Lisp-Expert to Lisp-Io, but since most of the messages in this directicn will be
printed on the terrninal, the two processes can share the terminal.

Mailboxes are created with calls to the system service sys$cREMBX. This can
theoretically be done either from Pascal-VMS or from Lisp-EUNICE. ln this
implementation it is done from EUIJICE. The mailboxes can be created in a user
written C function which is called from Lisp-F.xpert. The cocle for this function
can be seen in the appendix 1. The function creates the two mailboxes, starts
Pascal-Controller using the system service SYS$CREPRC, and writes the mailbox
names in the group logical table so that Lisp-lo can access them. The mailboxes
are connected to UNIX files which are then connected to two Lisp ports. The
value returned from the function is a list consisting of the two ports. When
Pascal-Controller is initialized its standard input and output are set to the two
mailboxes.

A mailbox may be accessed from three different leveis. The lowest level is the
system service level. The service for accessing a mailbox is SYS$QIO. The next
level is the VMS Record Management Service (RMS). On this level the mailbox is
associated with a file. Access is done with get ancl put operations. RMS internally
uses system services to implement these operations. The third level to access a
mailbox is from a high level language. From this level the rnailbox can not be
separated from an ordinary file. All access is done with ordinary read and write
statements.

Much is gained by only using the highest level for accessing the mailbox. The
mailbox mechanism becomes a very general way of communication. A message is
simply a line of text if the mailbox is associated with a text file. This high level
association defaults to a synchronous communication. A proeess that writes a
message into a mailbox waits until the other process has read the message. This
is not suitable for my purposes. The time critical process pascal-Controller cannot wait for the time consuming Lisp-Expert to read the message. There is,
however, a possibility to change a timeout parameter in the VMS Rlcord Access
Block (RAB) so that the communication will be asynchronous. Each VMS file has a
associated RAB on the RMS level. It contains information abou-t access of the
records in the file. This RAB block can also be accessed from EUNICE because
each "UNIX" file in EUNICE has an internal structure that among other things
contains the vMS RAB block. Details are sholvn in the appendices.

Another problem is that Pascal-Controller must have a possibility to check if it
has got something to read before it actually reads it. If not, the pãscal-Controller
will be halted until a message is sent anctr the control of the plant will stop. Apossibility to check whether a mailbox is empty or not is to use the system
service SYSSGETDEV which brings information about different devices. One of the
parameters brought back is the number of messages in the box. This can be used
as a check before reading.

7

Another demand is that messages should be inserted into lnbox according to theirpriorities and not by a FIFO scheduling. This is needed to assure that an alarm
message is handled before some other less important message. This can be solved
b¡,' letting Lisp-Þcpert have an internal mailbox structure. Instead of reading thefirst message from Inbox it starts with emptying Inbox and inserting the messages
in. its own box according to priority beforã ii reads the first .uiu"gu from its
r',Yn boX.

0utbox

Figure 2. Process structure. The ellipses represent processes and the rectanglesrepresent mailboxes.

InboxLisp-
Expert

Pascal-
Control I

Lisp-Io

8

Concurent Lisp

using a text file as a mailbox has a very powerful impact on the communication
between the two Lisp processes. It means that the message format is totally free.A message can be an arbitrary Lisp expression. since pascal is a compiledlanguage, the message format between Lisp-E*ou.t and pascal-Controller mus1 bepredefined and cannot be altered during ui""rrtìorr.

when Lisp-Expert receives a message it can simpty test if it is a Lisp expressionand if so evaluate it.

(if (Lispexpression message) then (eval message))

The test for legal Lisp expressions can be based on the presence of parenthesisat the beginning and end. It is also very simple to print and råaa a Lispexpression to a port- Franz Lisp has built-in functions that prints and reads Lispexpressions to ports. They have the format

(print mess outport)

(read mess inport)

To change some symbol in the other process, one needs only send an assignmentstatement. For example

(print '(setq symbol 'newvalue) outporr)

This free message format makes it possible to evaluate Lisp functions in a realtime process almost as if it
"r"r ..rrrrring interactively.

In particular it is possible to change the code of the executing process on-line.There are three different ways to do this. one is to send a nerv functiondefinition for an existing funetion in the other process. Another is to edit theexisting function' print it on a file and then send a message to the other processto load this file' The third way is to edit the function, print it on a file, compilethe file and then send a message to the process to load this compiled file. This ispossible since interpreted and compiled tode can be mixed in Liip. All functionsin the process can, in fact, be changed except the function which involve thereading and evaluation. This is no serious limitation since reading and evaluationcan be confined to small well defined code sections.

one objection against this on-line changing of code in a real time process is thatit is extremely dangerous. The process wilt stop if an eror ì"".r." duringevaluation' There is, howevu., J -"y around this probrem. It is possibre toevaluate the message in an environn¡ent that catches an error and then returnsv'rithout stopping' This is easily done with the Lisp function 1"..r"t expression).ThÍs function evaluates expresiion and if an erroi o""r,r, then the function willreturn the value nil. This can be used as a tcst for successr.rt
"rr"luatlon.

This preservation of the interaction is extrenrely important in a test bench forexpert control' It makes it possible to inspect, change and trace the expert systemon-line.

I

CONCLUSIONS

A real time environment has been presented that has all the qualifications to be a
basis for further experiments with expert control. An intereiting communication
method between parallel Lisp processes has been presented that preserves the
interaction of Lisp.

REFERENCES

.Â,rzén, K-E (1986): Fxpert systems for process control, CODEN:
LVTFD?ITFRT-7315, Department of Automatic Control, Lund Institute of
Technology, Lund Sweden.

.Â'strö-m, K J (19S3): lmplementation of an auto-tuner using expert system ideas,
Internal report Dep. of Automatic Control Lund Institute of Technology.

Âström K J and J.J. Anton (lgga): Fxpert control, proc. g'th IFAC world
Congress, Budapest, Hungary

Digital (1983): VAX/VMS Manuals, Digitat Equipments Corp.

Foderaro J K and sklower K L (1g8l): The Franz Lisp Manual.

Kashtan D L (1982): EUNICE: A system for porting UNIX programs to vAx/vMS
Artificial Intelligence center, sRI International" Menlo park ca.

Tengvall F (1982): Rendezvous prirnitives for intertask communication onvax/vMS, CoDEN:LUTFD2/TFRT-2234, Dep. of Automaric control Lund
Institute of Technology.

unix (1981). UNIX Programmer's manual, computer science Division, Dep. of
Elec. Engineering and Computer Science. University of California, Beitceley
California.

to

ENVIR.REP

It
* user written c function that creates two mailboxes
* and starts a Pascal program with these as standard
* input and output. Returns a list with the two ports
*
*l

Inclusion of prefix files e.g. global.h that contains
Franz Lisp's type declaration

l*
*
*
*l

include
include
include
include
include

Iispval
crembx ()

{ struct {int size; char *ptr; }struct {int size; char *ptr; }int Status, fdl, fd2;
short int unitnrl, unitnr2;
int pidnr;
char mbx-name1[9];
register char *cp1 , *cp2;
register int i, j;
FILE *inport, *outport;
lispval list;
char mbx-name2[9];

fdefine CTIECILSTATUS
#define END-CHECK

< | usr I src/ cmd/ I i sp/ franz/h/ gtobat . h>
< | usr / inc lude/ vms/ dibdef . h>
<l usrl inctude/ vms/ ssdef . h>
<l usr I include/ eunice/ eunice . h>
<stdio. h>

inbox, outbox, imagename;
In-Descr, Out-Descr, logname;

if(! ((Status =
) & 1)) printf("ERRoR");

i nlr^v ñ+F - [ltttt^vtr..¡.sv^. ¡/ e¡ - l¡tDV^ ,

inbox.size = 5;
outbox.ptr = "oUTBOX";
outbox.size = 6;
imagename.ptr = "PASCONTR";
imagename.size = 8;
Iogname.Ptr = "PASCoI{TR";
logname.size = 8;

11

l*
*
l3

*l

Two mailboxes are created.

The mailbox names are created from the unitnumbers
and entered in the group logical table.

I11 - creat(&inbox,OT7T,"ipc",256,"tmp",&unitnrl);
f d2 = creat (&outbox ,OT7T ,"ipc" ,256,"tmpr,aunitnråi;

l*
*
*
I
*l

- i = unitnr2;
cp2 = &mbx-name2[9];
*cp2-- = '\0';
*cp2-- = ': t;
while(i) {

*cp2-- = (i $ 10) +
í l= 1o;
)

*cp2-- = 'A' ; *cp?-- = 'B' i

Out-Descr.ptr = cp2;
Out-Descr.size = g;
s trcpyn (0ut-Descr . ptr, cp2, g) ;

CHECILSTATUS

_syslc¡elog (1 , &outbox , &Out-Descr ,0)
END-CHECK

j = unitnrl;
cpl = &mbx-name1[g];
*cpl-- = '\0';
*cpl-- = ':';
while(j)

cpl-- =
t= to;

(i r to¡ + 'o';

*cpl-- = *cpl-- ='B'

In-Descr.ptr ! cpl;
In-Descr.size = g;
strcpyn (In-Descr. ptr , cpl , g) ;

CTIECILSTATUS

rcpl-- - 'lf ' ; fcpl =
I l.

t0t;

*cp2-- = *cp? ='ll '

{
t
j
)tA'

I

-ytq:.{og (1, &inbor, &f n_Descr, O)
END-C:{Eß

12

l*
I
*
*
*l

The process PASCOMR is started rith the mailboresas standard input and output.

CI{ECILSTATUS
sys$creprc (

END-C}IECK

inport = fdopen(fdl,"r");
outport = fdopen(fd2,,ou,,li

The rab structure of outport is changed to allor
asynchronous communicat ion.

FD-FAB-Po i nt er[f d2] ->rab . ra b$ I _rop t = RAB$]I-T!{O;

The UNIX files are associated with LISp ports
and a list r{ith the ports as car and cdr isreturned.

&pidnr , &imagename , &Out-Descr ,¿,Jn-Descr , &fn_Descr ,0,0,&logname,4,O,0,O)

l*
f, The mailboxes are connected to urIIX files and opened.*l

l*
*
,l
ri

*l

l*
*
t
t
*l

loname
ioname

PN(outport
PN(inport)

t
t ìl =,f lirp"ll) . inewstr(out-Descr.ptr);

J = (lispvat) inewstr(in_Descr.ptr);

list = newdotO;
list->d.car = p(inport)

;list->d- cdr. = p(outpori)
;return(list);

)

I inheri t ('SYS$LTBRARY: STARLET ')] .program pascontr (input , output) ;

type Ptr-to-RAB = ^RAB$Ty?E.
unsafefils = [unsafe] file of char;

var RAB : Ptr-to_RAB;

FuNcrION PAS$RAB(var f: unsafefite) : ptr-to-RÄB; EI(TERN;

l3

{

function llorernBox(name: packed aray linteger] of char): boolean;

{
Returns true if there are more messages in the mailbox name.

)

var status: integer;
dbuff: packed array[l. .DIB$ILLEI{GTH] of char;

begin
status : = $GETDEV{DEVNAIí: =name,pRIBUF: =dbuff)i
-if not_odd(status) then writeln('t{orelnBox:',status) ;llorelnBox := ord(dbuff[9]) > O;'
end { llorelnBox };

)

{

{ Communication is changed to asynchronous }
begin
RAB: =PAS$RAB (ourput) ;nith RÂB^ do

begin
RAB$V-THO: =true;' end;

{ }lain loop in PASCONTR }

while true do
begin
if moreinbox('SyS$INPUT') then readmess;
control;
end;

end.

)

14

This c written procedure is compiled separately with the con¡mand

o/occ -c crembx.c

This results in an object file that can be loaded into Franz Lisp on line with thecommand

> (cfasl 'crembx.o '-crembx 'crembx "function,,).

A call to crembx wilt look like.

> (crembx)
(70-MBA: 1256 . olo-ìtlBlr: t217l

