
LUND UNIVERSITY

PO Box 117
221 00 Lund
+46 46-222 00 00

Patterns in Embedded Control Systems

Eker, Johan; Blomdell, Anders

1997

Document Version:
Publisher's PDF, also known as Version of record

Link to publication

Citation for published version (APA):
Eker, J., & Blomdell, A. (1997). Patterns in Embedded Control Systems. (Technical Reports TFRT-7567).
Department of Automatic Control, Lund Institute of Technology, Lund University.

Total number of authors:
2

General rights
Unless other specific re-use rights are stated the following general rights apply:
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors
and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the
legal requirements associated with these rights.
 • Users may download and print one copy of any publication from the public portal for the purpose of private study
or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal

Read more about Creative commons licenses: https://creativecommons.org/licenses/
Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove
access to the work immediately and investigate your claim.

https://portal.research.lu.se/en/publications/5ba4d499-83b1-43ee-b554-79588c369683

INTERNAL REPORT
Docunteøt name

Date of issue

October 1997

Departrnent of Autornatic Control
Lund fnstitute of Technology
Box 1L8
S-22L 00 Lund Sweden

ISRN LUTFD2/TFRT__ 7 567 _ _SE

Dog¿mcat Numbcr

Superrrrisor
Johan Eker, Anders Blomdell

Author(s)

S p o ns oring organis at íon

Patterns in Embedded. Control Systems

Ti tle and subtitle

.4bst¡act

In this report we present a framework for implementation of embed.ded controilers. A discussion on designdecisions are given' Further two pattern and one id,iom used in ihe framework a¡e presented. Finally a newlanguage for implementation of embedded. cont¡olrers are introd.uced..

Design pattern, framework, embedded control, reai-time

Key words

and/or uny)Classifrcat,ion temsys index terms (

bibliographical inîormatiSupplementary on

LS,SN and key title
0280-53 1 6

.TSBN

Lznguage

english
Numbcr of pages

24
Secuilty classifrcation

.Recþicnt's aoÉes

The report may be o¡dered from the Department oî Automatic control or borrowed through:University Library 2, Box 3, S-22j. 0O Lund., Sweden
Fax *46 46 222 44 22 E-mai| uL¡2@uub2.lu.se

1. fntroduction
The traditional way of implementing rear-time systems using ranguages
such as c or c+* gives deficient support for reuse of code. onã protr-t"rri i,
the diffi.culty to separate timing specifications from logical specifications.

Due to this, embedded control sofbware often has to be constructed from
scratch, even for minor changes of system requirements to existing imple-
mentations.

In the field of automatic control many implementations have a similar
internal structure and one of the major driving forces when creating the
Pam;ö[8] framework has been to support this conmon structure.

To support implementation of features that are characteristic to control
svstems a dedicated language pAL (par,s"rö Algorithm Language)[5] has
been developed. Control algorithms can in most cases be described-uith"r.
as periodic tasks, or as finite state machines. pAr, supports those types of
algorithms. Furthermore, the language supports datå-ìypes such as poly-
nomials and matrices, which are extensively used in control theory. par,s"ro
has been designed to support rapid prototyping of control systems. off-line
the engineer defines a set of blocks which at run-time can be instantiated.
on-line and connected to form a control system. Blocks in a running system
can be replaced without having to stop the system.

The system consists of two main parts; a compiler and a run-time sys-
tem. The run-time system provides a text interface for the ,r.u. urrd u
network interface for data transmission. pÄ¡-s.lö is primarily designed to
run in a host-target configuration. Stand alone tools for on-line data dis-
play have been developed. Reuse of algorithms is possibie through a block
library facility.

In this report first the PÅ¡,s.1ö framework wili be presented. Then f,wo
patterns and one idiom used in the framework are discussed. The fi.rst pat-
tern is called Calculateoutput-UpdateState, and deals with the u**",_rlion
of systems of periodic algorithms. The other pattern presented is parame-
terswap, which is pattern for assigníng values to paiameters of real-time
processes. Finally the PAL language for controller design is presented.

2. A Framework for Real-time Control

2.1 fntroduction
In this section the PÁ¡,s.iö framework fs¡ irnplementation of real_time con_
troi applications is presented. The presentation will loosely follow the out-
line for patterns given in [g]. First we will give a motivation why the
pattern is needed, and then a description of the intent of the pattern is
given. The driving forces are presented together with a solution. A num-
ber of well known patterns that are used in the framework will also be
discussed.

2.2 Block diagrams
Block diagrams are used to schematically express the functional entities
and their interconnections in a control system. Figure 1 shows a block
diagram with a control block, a process block and a negative feedback
loop.

"l
3

1

Controller Process

-1

Figure 1 controllers are usually described using brock diagram. A block is de-

F9d ¡v a set of input and output signals, parameters and states. A brock diagram
defines how data flows between a set ofblocks.

A block diagram basically consists of connections and blocks that do
some kjnd of processing to produce output values that somehow reflect
their input values.

2.3 Motivation
Many control applications today are implemented using assembler or a low-
level language such as Forth or C. The reason for this is the need for fast
execution and small programs. Another choice is to use a language with
built-in support for concurrency, e.g. Modula-2, ADA or or Grafcet. Thor"
languages provides a higher abstraction level when it comes to real-time
programming, but will give larger and slower programs. No matter which
approach that is used, the implementation of real-time controllers becomes
very time-consuming and error prone. The internal structures for many
controller implernentations are very similar. The same kind of building
blocks are used and their internal communication follows certain patterns.
But even though the implementation structures resemble each other a
lot, it is very hard to ïeuse code from one application to another. This is
of course extremely frustrating having to rewrite previously implemented
algorithms just in order to make them work in the new applicãtion. one
reason why it is so difficult to reuse code is that logical and temporal
statements are mixed together.

Figure 2 shows the structure of a typical control application. It consists
of four main modules.

' OperatorCommunication which handies the interaction with the user,
i.e. setting and reading parameters.

o Reference Generator which is used to calculate the set point for the
controller.

. Controller implements the control algorithms

o Plotter handles displaying data for the user

2.4 Tntent
This section describes the goals that were set up when designing the frame-
work. The main idea is to take advantage of the similar structure of many
control applications. If those cornmon features can be encapsulated in a
framework, then a large percentage of the total. code that have to be writ-
ten could be avoided. Further it is possible to introduce a suitable abstrac-
t'ion level, that will support control algorithms in particular. The goal is
to give such a high degree of support so that the program.mer can focus

2

PIoner

Conroller

A,/D D/A

Reference
Generator

Figure 2 A iypical control application consists of fo'r main mod.ule s. operator
cornmunication whicin hand.les the interacbion with the user, i.e. setting and read_
ing parameterc. Reference Generator which is used. to calculaie the desired position
for the controller. Controller implements tb.e control algorithms anð. plotterhandles
disptaying data for the user. The dashed lines mark asynchronous comm¡nication
while the solid lines mark synchronor:s commr:nication

only on implementing the actual control algorithms, and. iet the frame-
work take care of user interaction and. nehvork interaction. Figure B shows
the general structure of such a f¡amework. The left figure shows the pro_
cesses of the framework. There exist processes for neiwork manageni.ent
and operator comrnunication. Further there are two processes thairepre-
sent the actual control application. Those two processes are initiated by
the user through the user interface. Each of those processes consists of
a set of algorithmic blocks that describe the algorithm of each processes.
The dashed lines marks as¡mchronous cornmunication while the solid line
marks sSmchronous communication. To the right in Figure B, a user pro-
cesses is shown. A number of algorithmic blocks ur"

"o.rrru.ted
togeiher

and form the algorithm of the processes, i.e. each processes represents a
block-diagram of its own. Another very important aspect when designing a
framework is the support of code reuse. This is achieved through thã poÃl-
bility to reuse blocks and order them in libraries.Finally as little overhead
as possibie should be introduced when building an application using the
framework compared to building it from scratch.

2.5 Forces
There are a number of forces that are taken into account when designing
the framework.

. Rapid prototyping
one of the main reasons for us to use a framework is to d.ecrease
development time. The framework is not intended to be used in the
creation of end-user products, but instead as a flexible lab tool.

. Code Reuse
In order to support rapid protobyping there must be good support for
reuse of aigorithms.

. Expandable
The framework must be expandable so that new features easily can
be introduced. For s¡arnple it should be possible to use data_lypes
that were not avaiiable in the original setup.

¿)

J--

Operator
Network

Filter Obseruer

Periodic

I

I

J

I

I

-.--:-!

User Process I User Process n

Plant IO

Inputs
Outputs
Parameters
States

CalculatesOutput0
UpdatestateO

Figure 3 The left figure shows the processes of the framework. The processes
for network management and operator communication are initiated automatically.
The processes marked (Jser process l-n ate user deûned process which contains
the¿ctual cont¡ol aigorithms. The dashed lines mark

"ryrr.hro.roos
communication

while the solid lines mark synchronous commu¡,ication. To the right a user process
is shown. Ttre atgorithm is decsribed by a blockdiagram.

c On-line confr,gura.ble
The system shoúld be configured on-rine, and not at compile-time.
changes in running setups should be allowed without slops. one
way to handle this couid be by interpeting the algorithms, ãnother
way would be to use dynamic linking.

. Effi,cient
For the framework to become really useful it must be efficient and
allow fast sampling rates. The timing must also be accurate.

. Dístributed
Many controi applications are distributed over several components
and support for such systems must be taken into account-

. Fault-Tolerønt
some control systems are mission-critical and are not allowed to
crash. rn case ofa fault, the system should support recovery features
so that a failure can be avoided.

. Generic interfaces
We want the framework to provide interfaces to the controller. One
interface towards the user for asynchronou.s information and another
synchronous interface for network communication and data logging.
The user interface should be implemented in such a \4¡ay thallt is
platform independent.

¡ Executíon Anølysis Global versus locai sorting

These are the forces that have beepÅr.s¡ö framework.

2.6 Solution
In this section the basíc ideas behind the implementation wiil be presented,
i.e. the major design choices made to fi:lfiit the specification discussed
above.

4

7-

The main abstraction used in controi engineering is bloch d,iagrams.
Block diagrams are very powerful ways of der."ilirrg ãlgorithms and data-fl.ows..Further they *,rppoit modular trxogr¡mmirrg..ra a=re thus well suited
as an implementation model. In the system a block is the smallest program-
ming entity. Abiockcan be describedas aseven tuple B : (I,O,p)5,'ø,-l,pl

' A block can have a set of input signals /. An input signal must be
connected to the output signal of another block or itself. It is not
allowed to assign values to input signals.

' A biock can have a set of output signals o. An output signal may be
connected to an input signal of another block or itself.

' A block can have a set of parameters p. parameters can only be set by
the user or the system. The varue of a parameter cannot be changeä
internally in the algorithm.

' A block can have a set of states ,s, which describe the internal state
of the biock. A state can only be set internally.

. A block can have a set of events .E that it responds to. An event can be
either s¡mchronous or asJmchronous. synchronous here means that
the event is taken care of at the next sampling instance. A asyn-
chronous event on the other hand will ¡e tran¿teã immediately wúenit arrives. A synchronous event could for example be a request for
changing controller mode, while an emergency stop should be a asyn-
chronous event.

' A block can contain sequentiar Logre L, which is described by a state
machine.

. A block can contain aperiodic argorithm p that describes the periodic
behavior of a block. If a block contains periodic algorithms it must be
executed periodically.

User-Defined Classes

FigUre 4 The inheritance stnrcture of the fr¡mework. A ContaiaerBlock is a
block type that is designed to encapsulate a set ofblocks. TTvo subclass".

"r"ã"uif-able, Periodic and Sporad.ic. The Period.lc block executes its chiid blocks period-
icaily according to the data flow between the chi]d. blocks. All timing and. synchro-
nization between the child blocks is taken ca¡e of by the sched.uler in periodic.

To support reuse of algorithms a desigrr decision was made to separate
temporal and functional speciûcations. A user-defined block cannot cãntain

5

System BlockType

Updaresm)

Addo
Rcmovet,

Cetchild(in!¡

Algorithms ContainerBlock

UpdaresrateO
Add0

Renove0
Cetch¡ld(in0

Filter Observer Confoller
PeriodicCalculateoutpu(

Updrteshre0 Updatcsbte0

Updarcsrate0 Updates tateO

RunTimeSystem

BlockFactory
Client

AddBlockType(...)

CreareBlock(...)

BlockTemplate BaseBlock

BlockTemplatel BlockTempiate2 Blockl Block2

Figure 5 The mn-time system add.s new block-types to the BlockFactory. when
the client, in this case the user by typing in a block creation command, wants to
create a new biock it calls the BlockFactory, which d.oes the actual allocation.

any temporal constraints and neither can it demand synchronization. All
temporal functionality is taken care of by desigaated system-blocks, which
handle the actual execution of the user-defined blocks. Using this approach
the prograrnmer does not have to deal with any real-time programming,
further it is possible for the_systems to optimize the execution and pr"rr"rü
problems, for example jitterl [18]. The inheritance structure of the different
block types is shown in Figure 4.

A containerBlock is a block type that is designed to encapsulate a
set of blocks. Tlvo subclasses are available, periodic and sporåd.ic. The
Periodic block executes its child biocks periodically according to the data
flow between the child blocks. Al1 timing and s¡mchronization between the
child blocks is taken care of by the scheduler in periodic. The inheri-
tance structure is know as the Composite pattern[g]. A sporadic block
only executes when it receives an event, i.e. similar io interiupt handling.
A Periodic block can be viewed as a special case of the sporad.ic driven by
time events. Using containerBrocks the system supports the hierarchical
structure that was specified above.

A block is coded, compiled, and linked off-rine. vrhen the system is
started, blocks are instantiated and connected on-line by the opeiator, us-
ing a special configuration language. Instances ofthe system blocks period.
and sporadic are created to manage the execution. A user block must have
a containerBlock as a parent in order to be executed at all.

Dynannic creation of Datø types a,nd Bloch t5tpes In order to make
the system as useful as possible it must be possible to extend the framework
in a simple \May. In the Pålsjö framework algorithmic blocks and all data-
types used by the system are only loosely coupled through the use of an
Abstract Factory pattern [9].

Figure 5 show the class diagram for the block factory. The run-time
system calls the BlockFactory upon initialization and registers each avail-
able block type by giving a name tag and a constructor function. The
BlockFactory keeps a table over ail registered block types.

when the client wants to create a new block it calls the BlockFactory
with the name of the block. The BlockFacrory tries to find and run the
constructor for the wanted biock type, and upon success it returns a handie

t)

rJitter refers to non intentional variations in the sampling period.

to the new block instance.

__ It is possible to register new block types and delete old during execution.
This means that it is possible to extend the system with new functionality
without having to shut it down.

A similar factory is used for dealing with data-types. whenever a nev/
block is instantiated the first thing it does is to àllocate its variables
through the Vari ableFacr ory.

The available block and data types can thus be changed during run-time
without having to stop and restart the system.

Portabílity The system is implemented. on top of our real-time kernelsroRK [1]. The kernel is available for wïndo*r ñT, Motorola 6g000, Mo_
torola Power PC and Sun Solaris 2.x, and so is pålsjö

Figure 6 The framework takes care of the interaction with the user, the network
communication and manages the block instantiation and execution. A user defined
block is inherited from a pre-defined class. The user wiii simply modify a small
number of functions to implement the control algorithm for the new block type.

2.7 Structure
The inheritance structure of the framework from an end user's point of view
is shown in Figure 6. The framework is a so calted black box frarnewoik[].8j.

The framework takes care of the interaction with user, the networL
communication and manages the block instantiation and the execution.
A user defined block is inherited from the pre-deûned class Algorithms,
see Figure 4. The user will simply modifr a small number of functions to
implement the control algorithm for the new block type.

2.8 Consequences
. Rapid prototyping, is resolved through the use of a new dedicated

language PA-I-, which is a highly specialized ianguage for description
of control algorithms. The use of it will speed up the implementãüon
process. PAL supports code modularization and will thus resolve the
code reuse force.

. The system is Expøndøble in the sense that new data types and new
block types easily may be introduced. This is achieved through the
use of register functions and factory patterns as discussed above.

. All configr:ration of the system is done on-line w.ith ïrith a speciai con-
figuration language, the systems is thus on-rine configurable. Further
new types can be added to the factories on-line.

. The use of the Forward Baclnvard pattern and parameter swap pat-
tern is aimed at making the execution efficient.

t7
I

User
Interaction

Network
Communication

Block
Library

Workspace Manager

User
Block

¡ Distributed applications are simply treated. as several stand-alone
applications communicating using system network blocks.

' Ih" problems regarding fault-tolerønt contror application is not han-
dled sufficientiy in the current version of the frãmework.

' Th" system provides two interfaces. one text-based interface for con_
figuration and one network interface for data logging.

3. The calculateoutput-updatestate pattern

rntent rhis pattern addresses the problem where the computational re,suit from a function can be divided into two parts, one w.ith a harder time
constraint than the other. A typical example is a control algorithm, where
it's important to finish the calculation of the new control signal as fast aspossible, but where the calculation of the state updates is aliow to be more
time consuming.

Another important use of this pattern is when several blocks are used to
calculate an output sienal, which depends both on external inputs and. on
internal states in each biock. For example, consider the case when three
functions are needed ,to calculat"

" t"r,rrt, and. the output from the fi.rst
biock is used as input to the second., and so on. It is cimmon in control
algorithms, that to update the states in the first block, the result of the
second block must be know. This problem is also addressed by this pattern.

Variøtions - Also known øs Forward-Backward

Motíuøtion consider the control system in Figure z. The controlier in-
ternally consists of a set of blocks. ¡'irst the rraluelf the process is sampled
and the signal propãgates from the first block to the seiond one. The out-
put of the second block is then passed on to the third block and so on. Theinput signal is sampled and a new output signal is calculated periodically
at a specified sampling rate. fn a control system the stability oi the

"lo"uäioop- system is dependent on the time it takes for a process measurement
to show up in the actuation signals to the process. if th*ru are multiple
blocks between the input and output, special care has to be taken to en-
sure that no unnecessary delays are introduced due to improper ordering
of calculations. Consider the following two different execution orders for
the blocks in the controller in Figure ?.

Backward order Forward order
An{og.Out^(out3); inl :: Analogln$;
out3 :: in3; outl :: in1; -
in3 :: out2; in2 :: outl;
in2 :: outl; in3 :: out2;
outl :: in1; out3 :: in3;
in1 :: Analogln$; AnalogOut(out3);

If the calcuiations are done in backward ord.er, the input values reach
the output after 6 sampling intervals, wtrile in forward order they reach

B

er

Figure 7 A schematic view of a confroler which consists of a number of sub
blocks' The output from the plant is sampled by AnalogIn, and. then the sig:nal is
propagated from left to right until it reaches Analogout, which sends the õontuol
signal to the actuator. The calculateoutput-updatestate pattern addresses the
problem of minimizing the time delay between process measurement and. actuation.

the output in a fraction of a sampling interval, and this seems to be the
obvious choice since we want to minimize the time delay.

on the other hand, as mentioned earrier, when updating the internal
state of block l, information about the output signar of-block ,+ r i" needed.,
and this would motivate another order.

Stnt'cture The discussion above suggests a division of a the calculations
made in a block into two parts as shown below.

CalculateOutput
(Forward)

Read inputs
Do calculations needed for outputs
W'rite outputs

UpdateState
(Backward) Do all other calculations

Again consider the controller in Figure 7, andlet each of the sub-blocks
have h¡¡o functions CalculateOutput) and, Upd,øteState).The execution of
the blocks would now be the following.

AnalogOut. CalculateOutput 0
Biock2.CalculateOutput()
BlockS.CalculateOutput()

AnalogOut. CalcuiateOutput0
AnalogOut.UpdateState ()

Block3.UpdateState0

Block2.UpdateState0

AnalogOut.UpdateState ()

9

Controller Plant

Ana.logln Inl kû In3 Analogln

3.1 Participants
In the Pålsjö Framework the execution of a block-diagram ís taken care of
by an object inherited from the class containerBlocþ see Figure 4.

3.2 Sample Code
Consider the implementation of a Pl-controller. The controi law is described
by the following equation, where e(t) : r(t) - y(t) is the control error and
u(t) ís the control signal.

u(t):rþrtl.+l'"(")0"] :p*/ (1)

To implement this algorithm is must first be discretized. The proportional
term P in Equation(1) is then replaced by

P(tù : Ke(t) e)
a1d

-the integral part ìs replaced by the following recursive expression
which is extended with a tracking term for hanãling actuator satura_
tions [3].

I(tn+t) : I(tn) +
Kh
T¡

e(th) (u -u) (3)
h

-t_ _,7,

The pseudo code for the implementation of a pl-control algorithm would
then look like this

module Controller;

block PI

r,!,u: input real;
u :: 0.0 : output real;
-f :: 0.0, e :: 0.0 : real;
K :: A.5,?l :: 10000-O,Tr:: 10000.0
å : sampling interval;
bi: K x hlTi;
br: ¡¡7r'
calculate
begin

e::r-li
u::K*e*I;

end forward;

update
begin

I::I*bi*e*br*(u-u);
end backward;

end PI;

end Controller.

parameter real;

Now consider the case when the controller consists of several sub-blocks,

t0

7

where each block is divided into two functions similar to the Pl-controller
above. The execution of the whole block-diagram would then be

block Periodic

blocks: array [1..5] of block;
n:: 5: integer;

calculate
I : integer;

begin
forI::]-tondo

b I o c k s [i].c aI c uI at e 0 ;

end for;
end forward;

update
I : integer;

begin
for I :: n to 7 step -1 do

blocks[i).update;
end for;

end backward;

end Periodic;

This algorithm is illustrated below.

UpdateState

3.3 Known Uses
This is a well known pattern in the control community. use of this is
suggested in many control textbooks. One known industrial application is
Sattline from Alfa Lava Automation[12].

4. The Parameter-Swap Pattern

4.1 fntent
The Parameter-Swap pattern is a real-time pattern which deals with the
problem of assigning vaiues to process parameters in a fast and consistent
way.

4.2 Motivation
Consider the following piece of code. It is an algorithm expressed. in pAl,.
The block has one input signal in, one output signal out, orte state s, and.

r

v

v

Reference

PI Lryet AnalogOut

Analogln

11

User
Process

BlockControl
Loop

User
Process

Cunent
Pdameter

Set

Scatch
Pæt€r

Set

ScrPrameær0

Figure I The block algorithm is executed by the Control Loop process. Here the
algorithm uses the Current Paramete¡ Set. For assip.ing values to parameters the
Scratch Parameter Set is used. when an assignment operation is finished and all
necessary calculations are made the two sets are swapped.

three parameters a,,b and c.

block par

lz : input real;
out : orutprut real;
s : state real;
o : parameter real;
ä : parameter real;
c:d,*b;
forward
begin

out:: ...
end forward;

backward
begín

ò .- . ..
end backward;

end par;

Parameters are deûned as special variables that can only be assigned
from outside the block. When the parameters ø and ó are assigtled new
values, a new value for c must also be calculated. a aîd á are calleddirect
parameters and c is an ind,irect parameter.

Assume that the algorithm is executing and using all three parameters
and the user at the same time wants to change the value of one or several
of the parameters. If the user is allowed to directly assign the parameters,
the risk for a non consistent parameter set is evident, since a change in
one direct parameter must propagaf.e to all dependent parameters before
the new values shouid be used.

4.3 Structure
The solution that this patterns suggest is to have two parameters sets, see
Figure 8. One parameter set that is used by the block algorithm, and an-
other that is used for assigning direct pa¡ameters and calculating indirect
parameters. When a assignment operation is finished the block gets access

L2

7

AbstrøctParameters
AssígnA
Assign0
Calculate0GetUpdatedSet0

Run0
A

SetParameter0
SetParameters0

Parameters
Block

Algorithm0
AssignAll0
Assign0
Calculate0

Figure g The two classes AbstractBlock AbstractParameters are super classes
that the user will use when implementing new blocks. All interaction between the
user, the framework and and the parameters are specified in the relation between
AbstractBlock and Abstractpara¡eters.

to the ne'\Ã¡ parameter set through a pointer s\Ã¡ap

4.4 Sample Code
The class AbstractBlock constitutes a logical block that can be accessed
from the surrounding framerÃ¡ork. It has basically two interfaces, Run for
executing the block algorithm, and setparâmerer and setparameters for
assigring block parameters. Usually those two interfaces are access from
different processes which are not synchronized. Further it is necessary
that the Run method may be executed without any interference from other
methods.

class AbstractBlock {
public:
Ínt SetParaneter(int parlD, parVal value);
int SetParâmeters (Parameters *newpars) ;

void GetUpdatedSetO;
void RunO;
vj.rtuaL void AlgorithnO {}

private:
i-nt parChanged;
Event event;
AbstractPar2meters *current, *scratch;

ì-.
Jt

The class Parameters is used to encapsulate the parameters of a block.
AbstractParameters is an abstract class which simply provides the in-
terface between the block class and its paremeters. Each block has two
instances of the
AbstractParameters class, current that is used by the Run method and
scratch that is used by the assigrrment methods. The third method Calcutare
is used for calculating the values of the indirect parameters based on the
nev/ values of the direct parameters.

class AbstractParameters {
Monitor non;

public:
virtual int Assign(parfD, valueType) { return 0; };
virtual void AssignAll(newpar) {};
vlrtual void CalculateO {};

13

7

Ì.

A block is a way of encapsulating an algorithm in a straightforward
and-convenient way. The algorithm is executed by the ror.orr.rdi..g frame-
work through the Run method. Run simply does hvo things, firsf it calls
GetUpdatedset to get the latest parameter set and then it calls algorith:n.

The parameters are shared by several processes and must thus be pro-
tected so that no inconsistencies arise, This is usually done using primitives
such as semaphores and monitors. The probiem with this approach is that
it is possibie for one process to block another. In our setup we do not want
to allow the real-time process to be blocked. The solution suggested here is
to simply disable the interupt when the real-time proces is accessing the
data- A flag parchanged is used to indicate if new parameters are set.

void AbstractBlock: : GetUpdatedSet o
{

fnterruptMask roask;
AbstractParâmeters *tmp ;

nask = Coroutines.DisableO ;

if(parCuanged){
tmp = scratch;
scratch = current;
current = tmp;
parChanged = FALSE;
event.CauseO;

]
Coroutines . Reenable (mask) ;

¡

)

Run is called by the framework to execute the block algorithm.
voi.d AbstractBlock: :Ru¡o
{

GetUpdatedSet O ;

AlgorithnO;
t_
J

The AbstractBlock provides two methods for the assigningparameters,
setParameter for assiga one parameter at a time, and setparameters for
assigning all parameters at once. The monitor non is needed since there
may be several user process trying to assign parameters.
j.nt AbstractBlock: :SetParameter(int parID, valueType vaLue)
{

int result;

mon.EnterO;
mask = Coroutines.DisableO ;

if (parCtranged) {
event.Ar¡aitO;

t_
J

Coroutines . Reenable (nask) ;

resuLt = scratch->Assign(parID, value) ;

if(result){
scrat ch-)Calculate () ;

mask = Coroutines.DisableO ;

L4

parChanged = TRUE;
Coroutines . Reenable (nask) ;ì

-r

mon. Leave O ;
return result;

]

void AbstractBlock
{

noa.EnterO;
mask = Coroutines.Di.sableO ;
if(parCuanged){

event.Aú¡aitO;
)

nask = Coroutines.DisableO ;

s crat ch->Ass ignAll (newpar) ;
scratch->Calculate () ;

nask = Coroutines.DisableO ;
par0hanged = TRUE;
Coroutines . Reenable (nask) ;
non. Leave O ;

Ì
The two classes AbstractBLock and AbtractParaneters handle all the

interaction with the environment. An algorithm is added. to AbsrractBlock
in Block. The algorithn works on dataln the para¡etàrs class.
class Block : public AbstractBlock {
public:
virtual void AlgorirhmO ;

'ì- .

void Block : :Algorithno
{

Parameter *tmp = (Parameters *) current;

// Here comes the algorithn cod.e

]
In the Parameters class all the parameter variables are added. Further

three functions for managing them are implemented. ih" t*o methods
Assign and AssignArl implement the assignment of one or several param-
eters, respectively. The third method Calculate implements the caicllation
of indirect parameters.

cLass Parameters : public Abstractparameters {
public:
virtual int Assiga(parfD, value);
virtual- void AssigaAl] (Abstractparaneters*) ;
virtual void CalculateO ;

private:
/ / Here the parameters are defined
double par1, par2, par3;

Ì.

SetParamet ers (Parameters r.newpar)

.+
?

15

void Parameters : : AssignAll (Abstractparameters {<newpar)
{

Parl : = ((Parameters r,) ¿s!¡par) ->par1 ;
par2 1= ((Para¡neters x) ner¡par)->par2;

Ì

int Parameters: :Assi_gn0ne(parID j.d., valueType value)
{

int result = TRUE;
sç¡itch(id) {
case 1:
parl := ((Parameters x) newpar)->par1 = value);
break;

^^^^ ô-L4Þg Z.

par2 := ((Para¡reters i.) a""nar)->par1 = value);
break;

default:
result = FALSE;
break.;

]
return result;

Ì
voi.d Parameters : : Calculate o
{

par3=par1+par2;
)

4.5 Known lJses
The basic ideas behind this is pattern are \Mell known [2]. The sample code
here is based on [16].

5. The Register ldí-om

5.1 fntent
The register idiom provides a method to add new code to an existing frame-
work without having to recompile the main progïam.

5.2 Motivation
when working with a framework, such as the pålsjö environment users
need to add new classes. When the new classes are compiled they need
to be integrated with the rest of the code. This could be done by adding
the appropriate code in the main program so that the new code will bé
included during linkage. This approach requires that the user has access
to the source code.

when designing the Pålsjö we want to avoid this. Instead the user
should only need to add the names of the new files to the makefiIe. To
solve this we used the Register idiom.

5.3 Structure
The way the register idiom works is similar to dynamic linking of code.
The basic idea is that that when a ne\M class is added to the framework

16

RegisterBlock

Registerl.JEi

RegisterBlock

RegisterBlock0 o

AbstractBlock

Block
äègister(...)

rn the example berow a new ciass called Block which is inherited from thesuper class AbstractBlock is discussed.. The g";il; t ,eg:ist", this newclass with the framework in a ri-orã and conienient way. This is sorvedhere by creating a small crass caileãîJg:."t"ratock which is inherited fromthe super class Registercrasses. Thepurpose of this crass is simply to no_tify the framework of the r.* .tu* eioc*. This_is done by defining a staticinstance of RegisterBlock in the header fire. when RegisrerBrock is arlo_cated the constructor wilr registerthe Brock ctass wiilithe eroc$acrory.The RegisterClasses class i, a"nrr"J below

Figure 10

5.4 Sample Code

#include,rAbstractBlock. h,,

class RegisterClasses {
public:

,,totd
Register(char *þ16ç¡, AbstractBLockx (*f) O) ;

In this example there exist one gl0bal instance of BrockFactory.
#include "RegisterClasses. h,,
#include "BlockFactory. h"
#include "AbstractBlock.h,,

extern BLockFactory *blockf actory;

void RegisterCLasses: :Register(char i.b1ock, AbstractBlock* (*t) O)

it notifies the main progîam that a new crass is available and it arso telrsthe main program hì- to .ruut* ur, ìì.turr.e of this ne* .rasr. The crassis said to register, when it
"otin". thu fru_u*o.k. ffr" ,"girt ation can bedone either on rhe,srarj up_ by ".;; ;;"rt. åojJ.r., i'"io",oo or duringrun-time' when a class has- u"å" r*g,i"rtered witfi tne rràmework the clientmay create instances of it through J so called fJ"ry i;i.,

lf (lblockfactory) {

,
blockfactory = new B1ockFactoryO;

. blockfactcry->RegisterBlockType(block, f) ;)
Now the user defined cfasses wil be presented. First is the Block crassthat shouid be integrated with rh" ;d"";;.1,-;;d ;il; second class isRegisterBlock, of wfuch a statici"rtårr." is defined.

L7

#include "AbstractBlock.h,,
#incLude 'tRegisterCLasses . h"

class Block : public AbstractBlock
{

public:

Ì
// l{,ere the block methods and attributes are d.efined.

static class Regi.sterBlock
{

private:
static int called;

public:
RegisterBlockO;

Ì registerblock_Block;

public RegisterClass

When registerblock-B1ock is allocated its constructor is executed. Theconstructor calls the.Brocklactory objegt and passes on a functi"; p;i"t";to create-B1ock, which is then ".ø gy the er.oåkru.r"ryìo
"ilo."t"ãnj".i,of the Block class. The static variabie called is used as flag to preventmultiple registrations.

#include "B1ock.h"

/ / Here the bod.y of the class Block should be inpleurented.

statlc BaseBlock xCreate_BlockO {
BaseBlock *result = new glockO;
retu.rn result;

)

int RegisterBlocks::called = 0;

RegisterBlocks : :RegisterBlocksO {
if (tcalled) {

called = 1;
Register(',Block", Create_Block) ;

Ì
]

5.5 Participants
The Factory[9] pattern is used for creating objects of the ne\ /' classes

5.6 Related Patterns
The idea behind Singleton[9] is similar to this.

6. PAL - Pålsjö Algorithm Language

Initially the Pålsjö project was aimed at designing a set of classes that
would support impiementation of embedded coniroi,y"t"*r. Tþically there
would be ciasses for real-time management, user-interaction and. so on. The
ciass library soon become very complicated and hard to use. Further the
typical user of the framework wourd be a control engineer and not a experi-
enced progÌ'ammer- In that situation there were two possibilities. Either the

1B

class library could be made simprer to use, but less flexible and. powerful, orthe code could be generated automaticarly from a dedicated lurrguuge. wuchoose to create a ne\M language called pAL, which stands ro, p.Åîs.1õargo-
rithm]'alguage. The languagã is designed to support implementations ofcontrol algorithms. The contror engineer will specify an aigorith* io.pgi,
and the compiler will generate the glue needed to incorporate the code with¡ne rramework.

In the control engineering discipline, a number of abstractions are used.
These range from block diagrams to various mathematical formalisms.
Here we will focus on

' Block diagrams, for defining the data flow between algorithms.

' Grafcet[7], as a way of describing sequentiai algorithms.
. Writing control laws, using

- matrices for state-space design, and

- polynomials for a transfer function approach.

6.1 Feedback
Feedback is a fundamental aspect of almost all control systems. The prin_
ciple behind it is very simple:

observe the system to be controiled and take appropriate ac-
tions to keep the system within [some predeflnedjii*it".

_ when implementing blocks in a digitai computer, there are a few forces
that have to be considered:

. All measurements have to be filtered so that frequencies above the
Nyquist frequency are removed, otherwise aiiasing wilI occur.

' The time delay between measurement and actuation should. be kept
as small as possible.

The first force can be dealt with by using an analog prefilter, but in
practice it is often handled by a combination of analog á"a aig-it.l ûlters
giving rise to the need of multi-rate sampling.

The second force can be dealt with by applyrng the calculateoutput-
UpdateState pattern.

6.2 Why a ne\{¡ language
PAL was designed as an attempt to insurate useïs of the p.Ä,r,s.lö framework
from the idiosyncrasies of both the framework itself, as well as the c++
language.

Since the PÅr,s.lÖ framework uses introspection to display the contents
of blocks, the first thing a C++ progïammer is burd".r"å *ith is to keep
the introspection code in sync with the actual implementation. parts of
this can ofcourse be achieved by (ab)using the pr"pto."r"or, but in case of
improper use, only the most experienced c++ prograrnmers will be able to
decipher the resuiting error messages.

The next thing to keep in mind, is that the framework (currently) stip-
ulates that all block inputs and outputs are accessed via an extra level of

t9

indirection, further burdening the progranuner with a task unrelated tothe control problem to be solvid.
By introducing pAL, those tasks are handled by the compiler, whichmeans that the programmer can be more productive. Thereby

"rrurrg",
i'the framework onry triggers a re-compilatiãn of code, instead of a [partialjrewrite. An added beñefit of using a special lu.rguag" and associated com_piler, is that multipre back-ends ãan be impiemãntãJ, and designs can beused for more purposes, such as simulation and docuientation.

Another driving force behind. abandoning the c++ language, v/as its lackof support for data-types often used in contiol theor¡a so"h as matrices andpolynomials. Even though this can be overcome with new crasses, their useoften turns out to be very confusing for an ,r.,.,r.p".tirrg programmer whodoesn't write C++ programs frequently.
There is also no simple way in c++ to represent Grafcets, which arecommonly used in control engineering to exprÀss sequences in control sys_tems' By introducing a language that includes the Grafcet notatiorr, ífruprogrammer's productivity is further enhanced. A speciatized languagecan also capture the lifetime patterns of variables in control algoriîhm"s,thereby decreasing the computational road on the contror computer.
After initial experiments with the first version of the compiler, we foundthat in our environment the documentation aspect v/as more importantthan initially envisioned. The latest version of the compiler therefore in-cludes back-ends to generate both HTML and rþ[ror*ãtt"¿ d,ocuments asweil as a prototype of a Grafcet figure generator. Due to this we have alsoextended the lexical analyzer to allow identifiers to include Tþ[formatü;g.,

making PAL programs-a good candidate for documenting argorithms. Byusing this, the same code can be used both for documentation, simulationand control purposes, thereby reducing the risk of transcribation eïrorswhen moving an algorithm between different r"pr"r"rriutions.
In its current form, pAr, is not a very mature ranguage, but it is stil a

3":h faster way to get new algorithms up and t,r.rr,åg than to code themrn u++.

6.3 Decomposition and structure
During the design of a control system, the control engineer uses many dif_ferent tools and abstractions. The design ofLen startr-*itr, a decomposition
into a block diagram, where blocks typicariy correspond to either physicalparts of the process to be controrled or to functionaliy separate parts of thecontrol strategy. This strateg¡r is cornmonly referr"á to-., a regulator. Inthis report we will only focus on the controi strategy, and. will not consider
how the process should be designed.

Each block communicates with other blocks through inp'ts and out-puts. The blocks also contains state variables, whose lorpor" is to let the
block keep track of historical data. In order to make Ltoãt, more useful,they often contains parameters that do not affect the structure of the
biock, although they may well affect the computations done by the block.

Another way to make blocks more versatile is to design them in such
a r ¡ay that the sizes of internal and external variables can be decided at
instantiation time by using dimension specifiers.

I

20

6.4 Inputs and outputs
rnputs are special variabres whose varues come from other brocks, oftenas a result of externar stimuli. rn the current version of pAr./par,sJö, in_puts are read-only, but-when ;.;k-;;p"gation of variabie limitations aretmplemented, thev can-be assignedìo ã,rrirrg.th" b;;I;;d sweep.outputs are ïariabres thå ptopug"tu the resuits ãf carculations toother blocks and to the externar

"""rr**ent. outputs are currenily write_
f,}};J*

if back-propagation is used, thev can be råad a"rirg the backward

A special kind of inputs are parameters, whose varues are not direcryaffected bv the process. Th"ir *ori,ierrifi.:lt pro;*r;ñ that they changeat a much slower rate than other inputs. often trr"tï.ir"s stay constantfor the entire lifetime of a regutatorî

E t: !.!^:^parameter real;
^'1'¿

t:100.0 : parameter róal;
Parameters can be changed as a result of operator intervention, changeof operating mode,,or an auto-tuning experiment. since parameters areseldomly changed, it is computrü;;;iry efficient to .r.ãJr.u* to precarcurateparts of expressions in control algoritirms.
block PI

î, !,LL-: input real;
? ': 9.q : outpur real;
{_:= 0.0, e := 0.0 : ,e^i;
5 .:7 0.5,.!i:: L0000-é,7"::10000.0 : paramerer reat;I : sagr{ing interval;
b¡=K*h/T¡;
br: hlTr;

6.5 Parameters

forward begin
e::r_!]
u::Kxe*I:

end forward;
backward begin

I-:: I _+ b¿ * e + b, x (u _ u);
end backward;

end PI;

: input real;

.'-:TtpTt majrix [1..4, 1..1] of real;
: output real;
: parameter real;

6.6 Data types
PA-T' includes common data-types such as boolean, integer and real. Inorder to support the abstra"tiårrs used in .orrtJãgirråirirrg, it arso sup-ports matrices and porynomiars. This unique featuie in combination with
..t1"

ttN-*matting ãf iãentifietr *ut", it possibre to å*pr".* argorithmsrn a way that closely match the theoretical design, tt ur"¡y making theresulting programs ress distant from its theoretiîri ,r.rãu.pinnings thannormally expected.

block esiimator

v
G
c

)"

2L

Q,+r,0 : m-at$x [1..4, 1..11 of reat;p' : matrix f1..î, L..41 of'real.p : marrix ¡i..+,'t..+l'oi;;;i,'
den,)" : ,""i; -- - ----'

forward beg[n -€::y_Qr *0:
Ol::P*Ø:
d,en:= i" + óT * ø:
G :: ú¡ * G.n/¿en\;

end forward;
bagkwa¡rd begin

0::0*G*6;
end backward;

end estimator;

6.7 Sequencing
often control includes sequencing, either of the controled process or ofthe internal aigorithms. such sequencing is convenienily expressed byGrafcet, which is a simplified form of Petri-nets. In Grafcet one or morestep may be active at the same time. Activation and. deactivation of stepsare done by firing transitions between them.

6.8 Sampling
Most control algorithms make use of the time elapsed. between invocations
9f tl" algorithm, which is commonly referred to as the sampling interval.In PAr, this time is expressed in seconds and then translated to the properunit for the chosen target system. In pAL the name of the ,"*priis-å;
be chosen arbitrarily. 'what

varue the sampling interval will have during
execution, is determined at system conûguration time either by the useîor the run-time system itseif.

6.9 Dimensions
Many-control algor:thms can be expressed in a generic way, where onry thesize ofconstituent data structures need to be siecified to create a concreteinstance of the block. To make such brocks possible to write, dimension
identifiers are used.

block Sum

z : dimension;
in : array [1..n] of input real;
out : orutput real;
forward

I : integer;
result: real;

begin
result:: 0.0;
forl:=ltondo

result :: result + ín[il;
end for;
out:: result;

end forward;
end Sum;

22

7. Summary

rn this report we have presented a framework for implementation of em_bedded controrer' Th" *";ki;;;;; ror rhe fr"*";;;; is p,Ä'.s"rö andcurrently it is running on thr; diff"rent platforms, vME, .windows_NT
and solaris. rt has ¡"ãrr'"u¿¡ã*.i". control u"puri**t and as a plat_
lfJiff"ffi.-rime research' Further rwo pa*erns;;J;^" idiom used in
introduced resented. Finally a ne\il. dedicated iurrgr"g" pA-L is

8. Acknowledgrnent
'we

would rike to thank Görer Hedin, Roger Henriksson, Nicras Landin and
lärÏuo"nsson

for giving r.al,rabî.-omm"rrt. on the áraft version of this

9. References

[1] L'Arr¡o¡nssoN and A. Br,o¡¿oelr,- ,A rear-time programming environ-ment and a rear-time kerner." In Aspr,rrv¡ ,Ei.: ;ir;Ï"rar swedísh sym-posium on Real-Time svstems, T".hrj.;i R"p;;ïo B0 1991 _06-2L.
ir"fi.

of compur"' sv'i"^r,-îppruru u"i""'lrir þp*ul", sweden,

[2] I(-8. Ånzow- "Lecture notes on rear-time contror systems.,, 1996.
[3] K' J. r{srno¡r and r. rf:i,ccr,rr¡,¡o . p. rD controlrers: Theorl4 Design, and

,ff'å";ffi ï:ä: : ""i "tv
or a*erica, Res earch di angte park, NC,

[4] K' J' .Åsrnovr_and B. wr*u¡lvren K. computer controlled systems_
{i::f

";fri :,"i;ffi. .
p."" ti. u -Ha il, E n 91 ew"

"
J ö r i r., New Jer s ey,

[5] A. Br,o¡¿oor,r,. "The pålsjö algorithm_ language.,,. Master,s thesis,Department of Automåti. "co"ìrii,
Lund rrr.íit"î"

"f
Technology, rgg7.

[6] F Buscr{rr'raN, R. Mer-r¡¡i¡n, p. Ro¡nreRT, H. sorvr¡¿¡ni¿o, and M. srer,.
lf{;."-

of pa tterns -patt ern ori en te a soft *uru Ãr"lr¡ te ch t ure.lvirey,

[7] R. Devro. "Grafcet: A powerfur toor for speciûcation of rogic controüers."
,yr{{

rbansactíon" on contÃi s*tu^" rb"h";i";ä,s, pp. 258_268,

[8] J' Exrn and A.- Br,ompLL. "A structu¡ed interactive approach toembedded control." In submitt
"alo rn" ¿tn ¡ità-åü"ral symposiumon Intelligent Robotic Systems, iìrnoo, p"ri"irî,*iîia

[9] E' GAVnrA, R' H¡¿¡n, J. R., and J. Vr,rss¡op s. Design patterns-E.ements
of R e u s a b I e o bj e c t - ori ení t u d s o ft**u. Adis on-wes ley 1 g g5.

oo
át)

[10] J. GRoscu. "Toolbox introduction." Technical Report 25, Gesellschaftflir Mathematik und Datenverarbeitung mbH, vincenz-prießnitz_str.
1, D-7500 Karlsruhe, 1991.

[11] INrnnNATroNAr, Ei,pcrnorscnNrcAr, com¡rssrox. rEC rlai-s, pro_
grammable controllers, part S: programming languages, lgg2.

[12] G' Jouaw¡mssoN. Object-oriented Process Automation with SattLine.
Chartwell Bratt Ltd,, Lgg4. ISBN 0_86238-259-5.

[13] E. R. Jo¡nrso¡r and B. Foor¡. Ðesigniag reusable classes.,, Journal of
O bj ect- Oriente d programming, June, Ju¡e 19 g g.

[14] S. B. Lrppuaw. C++ primer. Addison-'Wesley, 19g9.

[15] B. Mnven. object-oriented software construction. prentice Hall,
1988.

[16] K. N¡r,ssol. "Private communication." 19g6.

[17] H. Rurrsneusøn. Descrþtion of Algol 60. Handbook of Automatic
Computation, Vol. 1a. Springer, Berlin, 1967.

[18] M. TÖnNcnpx. Modelling and Design of Distributed Rea\-time Control
Applications. PhD thesis, DAMEK Researh Group, Department of
Machine Design, Royal Institute of rechnorogy, stoåkholm, 1g95.

[19] l\L wrnrn. Programming in lvlodula-2. springer, New york, Bd edition,
1985.

24

