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1. Introduction

The traditional way of implementing real-time systems using languages
such as C or C++ gives deficient support for reuse of code. One problem is
the difficulty to separate timing specifications from logical specifications.

Due to this, embedded control software often has to be constructed from
scratch, even for minor changes of system requirements to existing imple-
mentations.

In the field of automatic control many implementations have a similar
internal structure and one of the major driving forces when creating the
PALsJ0[8] framework has been to support this common structure.

To support implementation of features that are characteristic to control
systems a dedicated language PAL (PALsJO Algorithm Language)[5] has
been developed. Control algorithms can in most cases be described either
as periodic tasks, or as finite state machines. PAL supports those types of
algorithms. Furthermore, the language supports data-types such as poly-
nomials and matrices, which are extensively used in control theory. PALSJO
has been designed to support rapid prototyping of control systems. Off-line
the engineer defines a set of blocks which at run-time can be instantiated
on-line and connected to form a control system. Blocks in a running system
can be replaced without having to stop the system.

The system consists of two main parts; a compiler and a run-time sys-
tem. The run-time system provides a text interface for the user and a
network interface for data transmission. PALSJO is primarily designed to
run in a host-target configuration. Stand alone tools for on-line data dis-
play have been developed. Reuse of algorithms is possible through a block
library facility.

In this report first the PALSIO framework will be presented. Then two
patterns and one idiom used in the framework are discussed. The first pat-
tern is called CalculateOutput-UpdateState, and deals with the execution
of systems of periodic algorithms. The other pattern presented is Parame-
terSwap, which is pattern for assigning values to parameters of real-time
processes. Finally the PAL language for controller design is presented.

2. A Framework for Real-time Control

2.1 Introduction

In this section the PALSJO framework for implementation of real-time con-
trol applications is presented. The presentation will loosely follow the out-
line for patterns given in [9]. First we will give a motivation why the
pattern is needed, and then a description of the intent of the pattern is
given. The driving forces are presented together with a solution. A num-
ber of well known patterns that are used in the framework will also be
discussed.

2.2 Block diagrams

Block diagrams are used to schematically express the functional entities
and their interconnections in a control system. Figure 1 shows a block
diagram with a control block, a process block and a negative feedback
loop.

A Y ag



Controller Process

=

Figure 1 Controllers are usually described using block diagram. A block is de-
fined by a set of input and output signals, parameters and states. A block diagram
defines how data flows between a set of blocks.

A block diagram basically consists of connections and blocks that do
some kind of processing to produce output values that somehow reflect
their input values.

2.3 Motivation

Many control applications today are implemented using assembler or a low-
level language such as Forth or C. The reason for this is the need for fast
execution and small programs. Another choice is to use a language with
built-in support for concurrency, e.g. Modula-2, ADA or or Grafcet. Those
languages provides a higher abstraction level when it comes to real-time
programming, but will give larger and slower programs. No matter which
approach that is used, the implementation of real-time controllers becomes
very time-consuming and error prone. The internal structures for many
controller implementations are very similar. The same kind of building
blocks are used and their internal communication follows certain patterns.
But even though the implementation structures resemble each other a
lot, it is very hard to reuse code from one application to another. This is
of course extremely frustrating having to rewrite previously implemented
algorithms just in order to make them work in the new application. One
reason why it is so difficult to reuse code is that logical and temporal
statements are mixed together. -

Figure 2 shows the structure of a typical control application. It consists
of four main modules.

* OperatorCommunication which handles the interaction with the user,
i.e. setting and reading parameters.

* Reference Generator which is used to calculate the set point for the
controller.

e Controller implements the control algorithms.

* Plotter handles displaying data for the user

2.4 Intent

This section describes the goals that were set up when designing the frame-
work. The main idea is to take advantage of the similar structure of many
control applications. If those common features can be encapsulated in a
framework, then a large percentage of the total code that have to be writ-
ten could be avoided. Further it is possible to introduce a suitable abstrac-
tion level, that will support control algorithms in particular. The goal is
to give such a high degree of support so that the programmer can focus
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Figure 2 A typical control application consists of four main modules. Operator
Cormmunication which handles the interaction with the user, i.e. setting and read-
ing parameters. Reference Generator which is used to caleulate the desired position
for the controller. Controller implements the control algorithms and Plotter handles
displaying data for the user. The dashed lines mark asynchronous communication
while the solid lines mark synchronous communication

only on implementing the actual control algorithms, and let the frame-
work take care of user interaction and network interaction. Figure 3 shows
the general structure of such a framework. The left figure shows the pro-
cesses of the framework. There exist processes for network management
and operator communication. Further there are two processes that repre-
sent the actual control application. Those two processes are initiated by
the user through the user interface. Each of those processes consists of
a set of algorithmic blocks that describe the algorithm of each processes.
The dashed lines marks asynchronous communication while the solid line
marks synchronous communication. To the right in Figure 3, a user pro-
cesses is shown. A number of algorithmic blocks are connected together
and form the algorithm of the processes, i.e. each processes represents a
block-diagram of its own. Another very important aspect when designing a
framework is the support of code reuse. This is achieved through the possi-
bility to reuse blocks and order them in libraries.Finally as little overhead
as possible should be introduced when building an application using the
framework compared to building it from scratch.

2.5 Forces
There are a number of forces that are taken into account when designing
the framework.
* Rapid prototyping
One of the main reasons for us to use a framework is to decrease

development time. The framework is not intended to be used in the
creation of end-user products, but instead as a flexible lab tool.

e Code Reuse
In order to support rapid prototyping there must be good support for

reuse of algorithms.

* Expandable
The framework must be expandable so that new features easily can

be introduced. For example it should be possible to use data-types
that were not available in the original setup.
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Figure 3 The left figure shows the processes of the framework, The processes
for network management and operator communication are initiated automatically,
The processes marked User Process I-n are user defined process which contains
the actual control algorithms. The dashed lines mark asynchronous communication
while the solid lines mark synchronous communication. To the right a user process
is shown. The algorithm is decsribed by a blockdiagram.

* On-line configurable
The system should be configured on-line, and not at compile-time.
Changes in running setups should be allowed without stops. One
way to handle this could be by interpeting the algorithms, another
way would be to use dynamic linking.

e Lffictent
For the framework to become really useful it must be efficient and
allow fast sampling rates. The timing must also be accurate.

e Distributed
Many control applications are distributed over several components
and support for such systems must be taken into account.

o Fault-Tolerant
Some control systems are mission-critical and are not allowed to
crash. In case of a fault, the system should support recovery features
so that a failure can be avoided.

e Generic interfaces
We want the framework to provide interfaces to the controller. One
interface towards the user for asynchronous information and another
synchronous interface for network communication and data logging.
The user interface should be implemented in such a way that it is
platform independent.

» Execution Analysis Global versus local sorting

These are the forces that have beePALSJO framework.

2.6 Solution

In this section the basic ideas behind the implementation will be presented,
i.e. the major design choices made to fulfill the specification discussed
above.



The main abstraction used in control engineering is block diagrams.
Block diagrams are very powerful ways of describing algorithms and data-
flows. Further they support modular programming and are thus well suited
as an implementation model. In the system a block is the smallest program-
ming entity. A block can be described as a seven tuple B = (1,0,P,S,E, L, P).

* A block can have a set of input signals /. An input signal must be
connected to the output signal of another block or itself. It is not

allowed to assign values to input signals.

* A block can have a set of output signals O. An output signal may be
connected to an input signal of another block or itself,

* Ablock can have a set of parameters P. Parameters can only be set by
the user or the system. The value of a parameter cannot be changed
internally in the algorithm.

* A block can have a set of states S , which describe the internal state
of the block. A state can only be set internally.

* Ablock can have a set of events E that it responds to. An event can be
either synchronous or asynchronous. Synchronous here means that
the event is taken care of at the next sampling instance. A asyn-
chronous event on the other hand will be handled immediately when
it arrives. A synchronous event could for example be a request for
changing controller mode, while an emergency stop should be a asyn-
chronous event.

* A block can contain sequential logic L, which is described by a state
machine.

* Ablock can contain a periodic algorithm P that describes the periodic
behavior of a block. If a block contains periodic algorithms it must be
executed periodically.
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Figure 4 The inheritance structure of the framework. A ContainerBlock is a
block type that is designed to encapsulate a set of blocks. Two subclasses are avail-
able, Periodic and Sporadic. The Periodic block executes its child blocks period-
ically according to the data flow between the child blocks. All timing and synchro-
nization between the child blocks is taken care of by the scheduler in Periodic.

To support reuse of algorithms a design decision was made to separate
temporal and functional specifications. A user-defined block cannot contain
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Figure § The run-time system adds new block-types to the BlockFactory. When
the client, in this case the user by typing in a block creation command, wants to
create a new block it calls the BlockFactory, which does the actual allocation.

any temporal constraints and neither can it demand synchronization. All
temporal functionality is taken care of by designated system-blocks, which
handle the actual execution of the user-defined blocks. Using this approach
the programmer does not have to deal with any real-time programming,
further it is possible for the systems to optimize the execution and prevent
problems, for example jitter![18]. The inheritance structure of the different
block types is shown in Figure 4.

A ContainerBlock is a block type that is designed to encapsulate a
set of blocks. Two subclasses are available, Periodic and Sporadic. The
Periodic block executes its child blocks periodically according to the data
flow between the child blocks. All timing and synchronization between the
child blocks is taken care of by the scheduler in Periodic. The inheri-
tance structure is know as the Composite pattern[9]. A Sporadic block
only executes when it receives an event, i.e. similar to interrupt handling.
A Periodic block can be viewed as a special case of the Sporadic driven by
time events. Using ContainerBlocks the system supports the hierarchical
structure that was specified above.

A block is coded, compiled, and linked off-line. When the system is
started, blocks are instantiated and connected on-line by the operator, us-
ing a special configuration language. Instances of the system blocks Period
and Sporadic are created to manage the execution. A user block must have
a ContainerBlock as a parent in order to be executed at all.

Dynamic Creation of Data types and Block types In order to make
the system as useful as possible it must be possible to extend the framework
in a simple way. In the P&lsjé framework algorithmic blocks and all data-
types used by the system are only loosely coupled through the use of an
Abstract Factory pattern [9].

Figure 5 show the class diagram for the block factory. The run-time
system calls the BlockFactory upon initialization and registers each avail-
able block type by giving a name tag and a constructor function. The
BlockFactory keeps a table over all registered block types.

When the client wants to create a new block it calls the BlockFactory
with the name of the block. The BlockFactory tries to find and run the
constructor for the wanted block type, and upon success it returns a handle

LJitter refers to non intentional variations in the sampling period.
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to the new block instance.

Itis possible to register new block types and delete old during execution.
This means that it is possible to extend the system with new functionality
without having to shut it down.

A similar factory is used for dealing with data-types. Whenever a new
block is instantiated the first thing it does is to allocate its variables
through the VariableFactory.

The available block and data types can thus be changed during run-time
without having to stop and restart the system.

Portability The system is implemented on top of our real-time kernel
STORK [1]. The kernel is available for Windows NT, Motorola 68000, Mo-
torola Power PC and Sun Solaris 2.x, and so is Pélsjo.

User Network Block
Interaction Communication Library

‘_o Workspace Manager A

~g| User |
Block

Figure 6 The framework takes care of the interaction with the user, the network
communication and manages the block instantiation and execution. A user defined
block is inherited from a pre-defined class. The user will simply modify a small
number of functions to implement the control algorithm for the new bloclk type.

2.7 Structure

The inheritance structure of the framework from an end user’s point of view
is shown in Figure 6. The framework is a so called black box framework[13].

The framework takes care of the interaction with user, the network
communication and manages the block instantiation and the execution.
A user defined block is inherited from the pre-defined class Algorithms,
see Figure 4. The user will simply modify a small number of functions to
implement the control algorithm for the new block type.

2.8 Consequences

* Rapid prototyping, is resolved through the use of a new dedicated
language PAL, which is a highly specialized language for description
of control algorithms. The use of it will speed up the implementation
process. PAL supports code modularization and will thus resolve the
code reuse force.

* The system is Expandable in the sense that new data types and new
block types easily may be introduced. This is achieved through the
use of register functions and factory patterns as discussed above.

¢ All configuration of the system is done on-line with with a special con-
figuration language, the systems is thus On-line configurable. Further
new types can be added to the factories on-line.

* The use of the Forward Backward pattern and Parameter swap pat-
tern is aimed at making the execution efficient.



* Distributed applications are simply treated as several stand-alone
applications communicating using system network blocks.

* The problems regarding fault-tolerant control application is not han-
dled sufficiently in the current version of the framework.

* The system provides two interfaces. One text-based interface for con-
figuration and one network interface for data logging.

3. The CalculateOutput-UpdateState Pattern

Intent This pattern addresses the problem where the computational re-
sult from a function can be divided into two parts, one with a harder time
constraint than the other. A typical example is a control algorithm, where
it’s important to finish the calculation of the new control signal as fast as
possible, but where the calculation of the state updates is allow to be more
time consuming.

Another important use of this pattern is when several blocks are used to
calculate an output signal, which depends both on external inputs and on
internal states in each block. For example, consider the case when three
functions are needed to calculate a result, and the output from the first
block is used as input to the second, and so on. It is common in control
algorithms, that to update the states in the first block, the result of the
second block must be know. This problem is also addressed by this pattern.

Variations - Also known as Forward-Backward

Motivation Consider the control system in Figure 7. The controller in-
ternally consists of a set of blocks. First the value of the process is sampled
and the signal propagates from the first block to the second one. The out-
put of the second block is then passed on to the third block and so on. The
input signal is sampled and a new output signal is calculated periodically
at a specified sampling rate. In a control system the stability of the closed
loop system is dependent on the time it takes for a process measurement
to show up in the actuation signals to the process. If there are multiple
blocks between the input and output, special care has to be taken to en-
sure that no unnecessary delays are introduced due to improper ordering
of calculations. Consider the following two different execution orders for
the blocks in the controller in Figure 7.

Backward order Forward order
AnalogOut(out3); inl := Analogln();

out3 := in3; outl := inl;
in3 := out2; in2 = outl;
in2 := outl; in3 := out2;
outl := inl; out3 := in3;

inl := AnalogIn(); AnalogOut(out3);

If the calculations are done in backward order, the input values reach
the output after 6 sampling intervals, while in forward order they reach
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Figure 7 A schematic view of a controller which consists of a number of sub
blocks. The output from the plant is sampled by Analogln, and then the signal is
propagated from left to right until it reaches AnalogOut, which sends the control
signal to the actuator. The CalculateOutput-UpdateState pattern addresses the
problem of minimizing the time delay between process measurement and actuation.

the output in a fraction of a sampling interval, and this seems to be the
obvious choice since we want to minimize the time delay.

On the other hand, as mentioned earlier, when updating the internal
state of block £, information about the output signal of block +1 is needed,
and this would motivate another order.

Structure The discussion above suggests a division of a the calculations
made in a block into two parts as shown below.

Read inputs
CalculateOutput .
Do calculations needed for outputs
(Forward) .
Write outputs
UpdateState
P Do all other calculations
(Backward)

Again consider the controller in Figure 7, and let each of the sub-blocks
have two functions CalculateOutput() and UpdateState(). The execution of
the blocks would now be the following.

AnalogQOut.CalculateOutput()
Block2.CalculateOQutput()
Block3.CalculateOQutput()
AnalogOut.CalculateOutput()
AnalogOut.UpdateState()
Block3.UpdateState()
Block2.UpdateState()
AnalogOut.UpdateState()



3.1 Participants

In the Palsjo Framework the execution of a block-diagram is taken care of
by an object inherited from the class ContainerBlock, see Figure 4.

3.2 Sample Code

Consider the implementation of a PI-controller. The control law is described
by the following equation, where e(¢) = r(t) — y(¢) is the control error and
u(t) is the control signal.

u(t)=K [e(t) + %/te(s)dsJ =P+1 (1)

i

To implement this algorithm is must first be discretized. The proportional
term P in Equation(1) is then replaced by

P(ty) = Ke(ty) (2)

and the integral part is replaced by the following recursive expression
which is extended with a tracking term for handling actuator satura-

tions [3].

Kh h
I{thr1) = I(te) + —-e(te) + 7 (u —v) (3)
T; T
The pseudo code for the implementation of a PI-control algorithm would
then look like this

module Controller;
block PI

r,y,u : input real;
v := 0.0 : output real;
I:=0.0,e:=0.0: real
K :=0.5,T% := 10000.0, Tr := 10000.0 : parameter real;
h : sampling interval;
bi = K « h/Ti;
br="h/Tr;
calculate
begin
e:=r—y;
v:i=K=xe+1I;
end forward;

update

begin
I:=I+bixe+br*(u—uv);

end backward,;

end PI;

end Controller.

Now consider the case when the controller consists of several sub-blocks,

10



where each block is divided into two functions similar to the PI-controller
above. The execution of the whole block-diagram would then be

block Periodic

blocks : array [1..5] of block;
n =5 : integer;

calculate
[ : integer;
begin
for i:=1to n do
blocksl[i].calculate();
end for;
end forward;

update
i : integer;
begin
fori:=n to 1 step —1 do
blocks[il.update;
end for;
end backward;

end Periodic;

This algorithm is illustrated below.

CalculateQutput
Reference ' 4
I ] s L u S [ v i
PI h Liiter | AnalogOut |
Analogln l[—— | - :
h UpdateState

3.3 Known Uses

This is a well known pattern in the control community. Use of this is
suggested in many control textbooks. One known industrial application is
SattLine from Alfa Lava Automation[12].

4. The Parameter-Swap Pattern

4.1 Intent

The Parameter-Swap pattern is a real-time pattern which deals with the
problem of assigning values to process parameters in a fast and consistent

way.

4.2 Motivation

Consider the following piece of code. It is an algorithm expressed in PAL.
The block has one input signal in, one output signal out, one state s, and

11
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Figure 8 The block algorithm is executed by the Control Loop process. Here the
algorithm uses the Current Parameter Set. For assigning values to parameters the
Scratch Parameter Set is used. When an assignment operation is finished and all
necessary calculations are made the two sets are swapped.

three parameters a,b and c.

block par

in : input real;

out : output real,

s : state real;

a : parameter real;
b : parameter real;
c=ax*b;

forward
begin

out := ...
end forward;

backward
begin

si=...
end backward,

end par;

Parameters are defined as special variables that can only be assigned
from outside the block. When the parameters a and & are assigned new
values, a new value for ¢ must also be calculated. @ and b are called direct
parameters and c¢ is an indirect parameter.

Assume that the algorithm is executing and using all three parameters
and the user at the same time wants to change the value of one or several
of the parameters. If the user is allowed to directly assign the parameters,
the risk for a non consistent parameter set is evident, since a change in
one direct parameter must propagate to all dependent parameters before
the new values should be used.

4.3 Structure

The solution that this patterns suggest is to have two parameters sets, see
Figure 8. One parameter set that is used by the block algorithm, and an-
other that is used for assigning direct parameters and calculating indirect
parameters. When a assignment operation is finished the block gets access

12
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AbstractBlock AbstractParameters
SetParameter() AssignAll
SetParameters() A;j:gr’:( ) Y
GetUpdatedSet() Calculate()
Run()
Algorithm() Z’&
ZF Parameters
Block AssignAll()
Algorithm() éﬁéﬁ?ﬁe()

Figure 9 The two classes AbstractBlock AbstractParameters are super classes
that the user will use when implementing new blocks. All interaction between the
user, the framework and and the parameters are specified in the relation between
AbstractBlock and AbstractParameters.

to the new parameter set through a pointer swap.

4.4 Sample Code

The class AbstractBlock constitutes a logical block that can be accessed
from the surrounding framework. It has basically two interfaces, Run for
executing the block algorithm, and SetParameter and SetParameters for
assigning block parameters. Usually those two interfaces are access from
different processes which are not synchronized. Further it is necessary
that the Run method may be executed without any interference from other
methods.

class AbstractBlock {

public:
int SetParameter(int parID, parVal value);
int SetParameters(Parameters *newpars);
void GetUpdatedSet();
void Run();
virtual void Algorithm() {}

private:

int parChanged;

Event event;

AbstractParameters *current, *scratch;

};

The class Parameters is used to encapsulate the parameters of a block.
AbstractParameters is an abstract class which simply provides the in-
terface between the block class and its parameters. Each block has two
instances of the
AbstractParameters class, current that is used by the Run method and
scratch that is used by the assignment methods. The third method Calculate
is used for calculating the values of the indirect parameters based on the
new values of the direct parameters.

class AbstractParameters {
Monitor mon;
public:
virtual int Assign(parID, valueType) { return 0; };
virtual void AssignAll(newpar) {};
virtual void Calculate() {};

13
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};

A block is a way of encapsulating an algorithm in a straightforward
and convenient way. The algorithm is executed by the surrounding frame-
work through the Run method. Run simply does two things, first it calls
GetUpdatedSet to get the latest parameter set and then it calls algorithm.

The parameters are shared by several processes and must thus be pro-
tected so that no inconsistencies arise. This is usually done using primitives
such as semaphores and monitors. The problem with this approach is that
it is possible for one process to block another. In our setup we do not want
to allow the real-time process to be blocked. The solution suggested here is
to simply disable the interupt when the real-time proces is accessing the
data. A flag parChanged is used to indicate if new parameters are set.

void AbstractBlock::GetUpdatedSet ()
{
InterruptMask mask;
AbstractParameters *tmp;

mask = Coroutines.Disable();
if ( parChanged ) {
tmp = scratch;
scratch = current;
current = tmp;
parChanged = FALSE;
event.Cause();

I

Coroutines.Reenable(mask) ;

Run is called by the framework to execute the block algorithm.

void AbstractBlock: :Run()
{
GetUpdatedSet () ;
Algorithm();
}

The AbstractBlock provides two methods for the assigning parameters,
SetParameter for assign one parameter at a time, and SetParameters for
assigning all parameters at once. The monitor mon is needed since there
may be several user process trying to assign parameters.

int AbstractBlock::SetParameter(int parID, valueType value)
{

int result;

mon.Enter () ;

mask = Coroutines.Disable();

if ( parChanged ) {
event.Await();

T

Coroutines.Reenable (mask);

result = scratch->Assign(parID, value);
if ( result ) {

scratch->Calculate();

mask = Coroutines.Disable();

14



parChanged = TRUE;
Coroutines.Reenable(mask) ;
}
mon.Leave();
return result;

}

void AbstractBlock: :SetParameters(Parameters *newpar)
{
mon.Enter();
mask = Coroutines.Disable();
if ( parChanged ) {
event.Await () ;
}

mask = Coroutines.Disable();

scratch->AssignAll (rewpar) ;
scratch->Calculate();

mask = Coroutines.Disable();
parChanged = TRUE;
Coroutines.Reenable(mask);
mon.Leave();

The two classes AbstractBlock and AbtractParameters handle all the
interaction with the environment. An algorithm is added to AbstractBlock
in Block. The algorithm works on data in the Parameters class.

class Block : public AbstractBlock {
public:

virtual void Algorithm();

};

void Block: :Algorithm()
{

Parameter *tmp = (Parameters ) current;

// Here comes the algorithm code

In the Parameters class all the parameter variables are added. Further
three functions for managing them are implemented. The two methods
Assign and AssignAll implement the assignment of one or several param-
eters, respectively. The third method Calculate implements the calculation
of indirect parameters.

class Parameters : public AbstractParameters {
public:
virtual int Assign(parID, value);
virtual void AssignAll(AbstractParametersx);
virtual void Calculate();
private:
// Here the parameters are defined

double parl, par2, par3;
+;
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void Parameters::AssignAll(AbstractParameters *newpar)
{

parl := ((Parameters *) newpar)->pari;

par2 := ((Parameters *) newpar)->par2;
}

int Parameters::AssignOne(parID id, valueType value)
{

int result = TRUE;

switch(id) {

case 1:
parl := ((Parameters *) newpar)->parl = value);
break;
case 2:
par2 := ((Parameters *) newpar)->parl = value);
break;
default:
result = FALSE;
break;
}
return result;
}
void Parameters::Calculate()
{
par3 = parl + par2;
}

4.5 Known Uses

The basic ideas behind this is pattern are well known [2]. The sample code
here is based on [16].

5. The Register Idiom

5.1 Intent

The register idiom provides a method to add new code to an existing frame-
work without having to recompile the main program.

5.2 Motivation

When working with a framework, such as the P&lsjé environment users
need to add new classes. When the new classes are compiled they need
to be integrated with the rest of the code. This could be done by adding
the appropriate code in the main program so that the new code will be
included during linkage. This approach requires that the user has access

to the source code.

When designing the Palsjs we want to avoid this. Instead the user
should only need to add the names of the new files to the makefile. To
solve this we used the Register idiom.

5.3 Structure

The way the register idiom works is similar to dynamic linking of code.
The basic idea is that that when a new class is added to the framework
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instance of RegisterBlock in the header file. When RegisterBlock is allo-
cated the constructor will register the Block class with the BlockFactory.
The RegisterClasses class is defined below

#include "AbstractBlock.h"

class RegisterClasses {

public:

void Register(char *block, AbstractBlocks *£)0));
¥;

In this example there exist one global instance of BlockFactory.

#include "RegisterClasses.h"
#include "BlockFactory.h"
#include "AbstractBlock.h"

extern BlockFactory *blockfactory;

void RegisterClasses: :Register(char *block, AbstractBlocks (+£) )
{
if ( !blockfactory ) {
blockfactory = new BlockFactory();

}
blockfactory—>RegisterBlockType(block, £);

}

Now the user defined classes will be presented. First is the Block class
that should be integrated with the framework, and the second class is
RegisterBlock, of which a static instance is defined,
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#include "AbstractBlock.h"
#include "RegisterClasses.h"

class Block : public AbstractBlock

{
public:
// Here the block methods and attributes are defined
}
static class RegisterBlock : public RegisterClass
i
private:
static int called;
public:
RegisterBlock();

} registerblock_Block;

When registerblock Block is allocated its constructor is executed. The
constructor calls the BlockFactory object and passes on a function pointer
to Create Block, which is then used by the BlockFactory to allocate objects
of the Block class. The static variable called 1s used as flag to prevent
multiple registrations.

#include "Block.h"
// Here the body of the class Block should be implemented

static BaseBlock *Create_Block() {
BaseBlock *result = new Block();
return result;

}
int RegisterBlocks::called = 0;

RegisterBlocks: :RegisterBlocks() {
if (lcalled) {
called = 1;
Register("Block", Create_Block);
}
¥

5.5 Participants
The Factory([9] pattern is used for creating objects of the new classes.

5.6 Related Patterns
The idea behind Singleton[9] is similar to this.

6. PAL - Palsjo Algorithm Language

Initially the PAlsjé project was aimed at designing a set of classes that
would support implementation of embedded control systems. Typically there
would be classes for real-time management, user-interaction and so on. The
class library soon become very complicated and hard to use. Further the
typical user of the framework would be a control engineer and not a experi-
enced programmer. In that situation there were two possibilities. Either the
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class library could be made simpler to use, but less flexible and powerful, or
the code could be generated automatically from a dedicated language. We
choose to create a new language called PAL, which stands for PALSJO Algo-
rithm Language. The language is designed to support implementations of
control algorithms. The control engineer will specify an algorithm in PAL,
and the compiler will generate the glue needed to incorporate the code with
the framework.

In the control engineering discipline, a number of abstractions are used.
These range from block diagrams to various mathematical formalisms.
Here we will focus on

* Block diagrams, for defining the data flow between algorithms.
* Grafcet[7], as a way of describing sequential algorithms.
* Writing control laws, using

~ matrices for state-space design, and

- polynomials for a transfer function approach.

6.1 Feedback

Feedback is a fundamental aspect of almost all control systems. The prin-
ciple behind it is very simple:

Observe the system to be controlled and take appropriate ac-
tions to keep the system within [some predefined] limits.

When implementing blocks in a digital computer, there are a few forces
that have to be considered:

* All measurements have to be filtered so that frequencies above the
Nyquist frequency are removed, otherwise aliasing will occur. -

¢ The time delay between measurement and actuation should be kept
as small as possible.

The first force can be dealt with by using an analog prefilter, but in
practice it is often handled by a combination of analog and digital filters
giving rise to the need of multi-rate sampling.

The second force can be dealt with by applying the CalculateOutput-
UpdateState pattern.

6.2 Why a new language

PAL was designed as an attempt to insulate users of the PALSIO framework
from the idiosyncrasies of both the framework itself, as well as the C++
language.

Since the PALSJO framework uses introspection to display the contents
of blocks, the first thing a C++ programmer is burdened with is to keep
the introspection code in sync with the actual implementation. Parts of
this can of course be achieved by (ab)using the preprocessor, but in case of
1mproper use, only the most experienced C++ programmers will be able to
decipher the resulting error messages.

The next thing to keep in mind, is that the framework (currently) stip-
ulates that all block inputs and outputs are accessed via an extra level of
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indirection, further burdening the programmer with a task unrelated to
the control problem to be solved.

By introducing PAL, those tasks are handled by the compiler, which
means that the programmer can be more productive. Thereby changes in
the framework only triggers a re-compilation of code, instead of a [partial]
rewrite. An added benefit of using a special language and associated com-
piler, is that multiple back-ends can be implemented, and designs can be
used for more purposes, such as simulation and documentation.

Another driving force behind abandoning the C++ language, was its lack
of support for data-types often used in control theory, such as matrices and
polynomials. Even though this can be overcome with new classes, their use
often turns out to be very confusing for an unsuspecting programmer who
doesn’t write C++ programs frequently.

There is also no simple way in C++ to represent Grafcets, which are
commonly used in control engineering to express sequences in control sys-
tems. By introducing a language that includes the Grafcet notation, the
programmer’s productivity is further enhanced. A specialized language
can also capture the lifetime patterns of variables in control algorithms,
thereby decreasing the computational load on the control computer.

After initial experiments with the first version of the compiler, we found
that in our environment the documentation aspect was more important
than initially envisioned. The latest version of the compiler therefore in-
cludes back-ends to generate both HTML and TEX formatted documents as
well as a prototype of a Grafcet figure generator. Due to this we have also
extended the lexical analyzer to allow identifiers to include TEX formatting,
making PAL programs a good candidate for documenting algorithms. By
using this, the same code can be used both for documentation, simulation
and control purposes, thereby reducing the risk of transcribation errors
when moving an algorithm between different representations.

In its current form, PAL is not a very mature language, but it is still a
much faster way to get new algorithms up and running than to code them
in C++.

6.3 Decomposition and structure

During the design of a control system, the control engineer uses many dif-
ferent tools and abstractions. The design often starts with a decomposition
into a block diagram, where blocks typically correspond to either physical
parts of the process to be controlled or to functionally separate parts of the
control strategy. This strategy is commonly referred to as a regulator. In
this report we will only focus on the control strategy, and will not consider
how the process should be designed.

Each block communicates with other blocks through inputs and out-
puts. The blocks also contains state variables, whose purpose is to let the
block keep track of historical data. In order to make blocks more useful,
they often contains parameters that do not affect the structure of the
block, although they may well affect the computations done by the block.

Another way to make blocks more versatile is to design them in such
a way that the sizes of internal and external variables can be decided at
instantiation time by using dimension specifiers.
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6.4 Inputs and outputs

Inputs are special variables whose values come from other blocks, often
as a result of external stimuli. In the current version of PAL/ PALsJ0, in-
puts are read-only, but when back-propagation of variable limitations are
implemented, they can be assigned to during the backward sweep.

Outputs are variables that propagate the results of calculations to
other blocks and to the external environment. Qutputs are currently write-
only, but if back-propagation is used, they can be read during the backward
sweep.

6.5 Parameters

A special kind of inputs are parameters, whose values are not directly
affected by the process. Their most significant property is that they change
at a much slower rate than other inputs. Often their values stay constant
for the entire lifetime of a regulator.

K :=1.0 : parameter real;

7; :=100.0 : parameter real;

Parameters can be changed as a result of operator intervention, change
of operating mode or an auto-tuning experiment. Since parameters are
seldomly changed, it is computationally efficient to use them to precalculate
parts of expressions in control algorithms.

block PI

7Y, U : input real;
v := 0.0 : output real;
I:=0.0,e:=0.0: real;
K:=05T = 10000.0, 7+ := 10000.0 : parameter real;
h : sampling interval;
bi =K = h/T;;
b =h/T,;
forward begin
e=r—y;
vVi=K=xe+];
end forward;
backward begin
I:=I+bi$e+b,*(u—v);
end backward;

end PI;

6.6 Data types

PAL includes common data-types such as boolean, integer and real. In
order to support the abstractions used in control engineering, it also sup-
ports matrices and polynomials. This unique feature in combination with
the TEX-formatting of identifiers makes it possible to express algorithms
in a way that closely match the theoretical design, thereby making the
resulting programs less distant from its theoretical underpinnings than
normally expected.

block estimator

Y ! input real;

G : output matrix (1.4, 1..1] of real;
€ ! output real;

A : parameter real;
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¢,Ffo, 6 : matrix [1..4, 1..1] of real;
¢° : matrix [1..1, 1..4] of real;-
P : matrix [1..4, 1..4] of real;
den, A : real:

forward begin _
E=y—¢l %8,
@ =P = ¢;

den := A + ¢T « w;
G = o * (1.0/den);
end forward;
backward begin
8:=0+G=*e¢;
end backward;

end estimator;

6.7 Sequencing

Often control includes sequencing, either of the controlled process or of
the internal algorithms. Such sequencing is conveniently expressed by
Grafcet, which is a simplified form of Petri-nets. In Grafcet one or more
step may be active at the same time. Activation and deactivation of steps
are done by firing transitions between them.

6.8 Sampling

Most control algorithms make use of the time elapsed between invocations
of the algorithm, which is commonly referred to as the sampling interval.
In PAL this time is expressed in seconds and then translated to the proper
unit for the chosen target system. In PAL the name of the sampling can
be chosen arbitrarily. What value the sampling interval will have during
execution, is determined at system configuration time either by the user
or the run-time system itself,

6.9 Dimensions

Many control algorithms can be expressed In a generic way, where only the
size of constituent data structures need to be specified to create a concrete
instance of the block. To make such blocks possible to write, dimension

identifiers are used.
block Sum

n : dimension;
in : array [1..n] of input real;
out : output real;

forward
i : integer;
result : real,;
begin
result := 0.0;
for i :=1ton do
result := result + in[i];
end for;
out := result;
end forward,;

end Sum;
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