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UNIQUENESS OF THE MAXIMUM LIKELIHOOD ESTIMATES QF THE
PARAMETERS OF A MIXED AUTOREGRESSIVE MOVING AVERAGE
PROCESS.

K.J. Astrdm and T. S8&8derstrdm

ABSTRACT,

Estimation of the parameters in a mixed autoregressive
moving average process leads to a nonlinear optimization
problem. The negative logarithm of the likelihood fune-
tion, suifably normalized, converges to a deterministic
function, called the loss function, as the sample length
increases. The local and global extrema of this loss
function are investigated. Conditions for the existence

of a unique lecal minimum are given.
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1. INTRODUCTION.

Let {y{(t), t =1, 2, ...} be a stationary gaussian sto-
chastic process with rational spectral density. It fol-
lows from the representation theorem, see e.g. Astrém
(1870), that the process can be representated as a mixed

autoregressive moving average process, i.e.
Algly(t) = Clqle(t) (1.1)

where e(t) is a sequence of independent normal (0,1) ran-
dom variables. The operators A(q) and C(q) are given by

Alq) = q" + a,q L -
(1.2)

C(q)

it
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+
{
—
Q
+
&+
0

where q is the forward shift operator.

It follows from the representation theorem that the poly-—
nomial A(z) can be chosen so that it has all zeros inside
the unit circle. The polynomial C{z) may have zeros in-
side and on the unit circle. The number n can be chosen

so that A(q) and C(g) have no common factors.

The estimation of the parameters d9s vee 85 Cqy vew O
with the maximum likelihcod method leads to the problem

of minimizing the function

I‘j -~ - ~ _ 1

(ays wee 8y, €45 vew ©) = e T g2(1) (1.3)

1

1 i~1 =

T

See Astrém-Bohlin (1966).The vesidual e(t) is a function of
the observations y(1), y(2), ... y(t). It is defined by




2.
e(t) = 808 ooy o AGQIC(A) iy (1.4)
C(q) C(qlA(q)
where
( ACq) = " + é1qn-1 ool # én

(1.5)

Since & and A are assumed to have zeros strictly inside the
unit cirecle and since we onlty are considering asymptotic
properties the initial conditions of (1.4) are not important.
- They can e.g. be selected as zZero,

The maximum likelihood estimates of the model parameters
are obtained by finding the absolute minimum of VM for
each N. It can be shown that the estimate will converge
to the true parameter values if the polynomials A(z) and
C(z) have zeros strictly inside the unit circle. Since

~

the funetion VN is nonlinear in c1 cees Qo the minimiza-
tion must be done numerically. It may happen that

the function V has several local minima. The existence

of local minima may lead to wrong estimates and cause dif-

ficulties in the computations.

Since VN is a random variable it is in general very diffi-
cult to analyse the existence of possible local minima.

It ecan, however, be shown that VN under mild conditions,
see Hannan (1960), converges 'with probability one to the
function V, defined by




: = - - S S 3

V(a1 cee Bl Cq e cn) = éif Y (a1 cee @ Cy cn) =
1 2 1 A(Z)C(z}éfzn1)C(z—1) dz

= —2' Ee (t) = { - : __1-“ =1 - (1-6)
)51 A(z)C(z)A(z ")C(z ') =

where the integral path is the unit circle.

The purpose of this report is to find all the local extre-
ma of (1.6).



2. STATEMENT OF THE PROBLEM.
It was previously assumed that

o n = deg A(z) = deg C(z) = deg ACz) = deg C(z)
(2.1)
A(z) and C(z) have no common factors

This condition can be generalized somewhat. For technical
reasons it will be suitable to assume that

deg A(z) deg A(z)

o]
o
I

S (2.2)
deg C(z)

=]
i

deg C(z)

and allow common factors in A and C. It is not neces-

sary that n = m, although this may be & natural choice.
The apparently move general assumption

deg A(z) ¢ deg ACz)

deg C(z) g deg C(z)

is easily obtained from (2.2) putting the last a, and ¢y

parameters zero when necessary.

The polynomials involved are now rewritten as

¢ n
Alz) = 27 4 a1zn—1 + vee + a_ oz M{z=q.)
n 1 i
& . _ N n .
Alz) = 2D+ a1zn Ty iee + a_ = lz=g.)
3 - (2.3)
Clz) = 2™ + c1zm_1 ¥ oo Wies = Jlz~y.)
y i
m
A .om o, 2 m-T . 3
C(z) = z + Cqz LRI S n(z yi)

L . 1



To establish convergence of VN it is furthermore- assumed
that

< 1 1 ¢1 ¢n (2.4)

(2.5)

"
[
A
=

J;j‘ <1 1

~

" 1 = 1 . s » > = (4 i = 1
:L.’ l s s Iy C.E:I Cjn.l. s
«+sy M,can be & local minimum the following conditions are

To ensure that ai = a

assumed
la | < 1 1¢1i¢n (2.6)
fvj|<1 153 ¢gm (2.7)

The conditions (2.4) and (2.5) are required to guarantee
that the residuals will have finite variance. The condi-
tion (2.7) restricts all zeros of C to lie inside the

unit circle.

The ‘problem is to find all local éxtrema of the loss func-
tion V (1.6) subjeect to the constraints (2.4) - (2.7).



3. PRELIMINARIES.

The local extrema of the loss function will now be detep-
mined. The calculations aré technical but straightrforward.
The results are summarized as Lemma 4.1 in Section 4.

Introduce the reciprocials of the polynomials A, A, c,
and € defined :as

[ A%(z) = 1 +-a1z + oo + anzn = znA(z_q)
A”(z) =1 + £1z + ee. + énzn = znA(z'T)

{ (3.1)
C¥(z) = 1 + CuZ + ..t cmzm = sz(z”1)

| CX(z) = 1 + é1z Foeee + émzm = 2®Ccz" T

The stationary points of V are the solutions of

{3320

After some computations we find that these conditions can
be written as

1 % i A(z)C(zEC“(%) 92 .45 4 i cn
2ni A(z)A®(z2)C(z2)C*(2) 3
(3.3)
1 § 1 A(z)A”(z)?(z)?“(z)z‘gg‘z 0 1 ¢4 ¢m
A(z)A%(z)C(z)C*%(z)° =z

2ni

To avoid the formal difficulty that may arise if A and
C have a common factor the polynomials A' and C' are now
introduced.




[ A(z) = A'(z2)D(z)
C(z) = C'(z)D(z)
n~k
A'(Z) = n (Z"Qi)
.1
m-k
$ C'(z) = 1 (Z“'Yi)
1
k
D{z) = H(z-ai)
1
A'{z) and C'(z) relatively prime
(ai+~fj 1T ¢ 1 ¢ n-k, 1 ¢ 3 ¢ mk)

The case k = 0 is permitted.

In the same way assume

( Alz) = A'(2)D(2)
C¢z) = C'(z)D(z)
Af(z) = 1 (z~ai)
1
. nek
C'(z) = 1 (z=v;)
ﬁ
D(z) = n(z»ai}
1
A'(z) and C'(z) relatively prime

(3.4)

.5)
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Note that the value of k depends on the actual point (a
ces an, 01, o= o 5 c ) in the parameter space.

The polynomials A'%(z), A'“(z), C'%(z) and C'*(z) are de-
fined analogous with (3.1).

Furthermore introduce the function

Flz) = A’(sz'(zYC'*(7)
At (z)A'® (Z}C'(Z)C’"(Z)"V(Z)

(3.6

Using (3.4) =~ (3.6) the equations (3.3) are rewritten

2§ Abreenecn 92 . g 1 ¢4 ¢n
214 A
(3.7)
oo zlﬁ’“(z)f(z) QE = 0 1T <1 gsm
274 z
The definition of A'®(z) and C'¥(z) gives
r m—]:: -~ » .
] c! e % 21*3f(z) 92 < g 1T ¢1i gn
j=o0 3 opi ) zZ
(3.8)
n-k . .
} al, L % 2 ey 92 2 g T 1 gm
jso 3 2m z
Define for p 3 1
E = »-1-§ 2Pf(z) 92 (3.9)
p 2 mi z

Then (3.8) becomes




[~ A! 1
1 G seres Cp g F1
0
0 ‘ :
1" el et =it
N L= kile = 0 (3.10)
1 A .
1 ‘ ay - . . a k
) * G .
0 i ‘ )
Ai A! ~ - -~
] 1 &g ¢ . o an—K__Fn+m~K.

The matrix in (3.10) is (n+m) x (n+m~ﬂ). Since A'(z) and
C'(z) by assumption are relatively prime it follows from
elementary algebra that the rank of the matrix is n+m-i.
See e.g. Dickson (1922).

Thus
2 % zlf(z)ga = 0 1 £ 1 ¢ n+m-k (3.11)
201 z

The poles of f(z) inside thz unit circle new are relabelled

through
A n-k m—é . £ ti
A'(z)C'(z) = I (z-ai) I (z-vy.) = O(z=-u,) (3.12)
1 1 ] 1 *

where u; 1 uy if i 3, t; » 1 all 1 and

RI -~
; t; =n+m- k- k , (3.13)

This implies that £(z) can be written

£(z) = g(z) (3.14)

2 t.
1
'f (z ui)

i=1



where

Using matrix notation (3.16) can be expressed as

»

10.

£ 18
g(z) = A'(z)C'(z) - Ceild (3.15)
A"(z)C'"(z)C (z)
is analytic inside the unit circle.
Using (3.14), the equation (3.11) can be replaced by
i-1 % i-1
i W i g(zz‘ dz = } Res ~EE*—J§£%;-=
L M(z=u:) 2 & 2 1 (z—uj) J
= 3=1
R % 1 (tk‘1) z* g(z)
- t.
k=1 (=1 ﬁ (z-uy )
j:’l z—uk
Ik
t e
R RO e
— A ————— - ,t-
KE1 (511 v20 (v e I (zmu) 3
SES J e
where D denotes differentiaticw1with‘respect to z.
Hence
2 T -1
) E p{V),i-1; - d 0 1 ¢1i ¢ ntmk  (3.16)
" * v £ 1 € n+m- :
k=1 v=Q 2 kv
where
o (t =)
R e  ——— -
VIt ~T-v)! I (z-uy)"K k :
: Jfk




1.

5+6=0 (3.18)
where G is a (m+n-k-k) vector,

[dqg

d1,t1-1

G = (dyg

d

E,t£~1j

and S a (m+n—£) x (m+n~k-ﬁ) matrix

(t,~1)
K 0 1 p bt
1
uy u D [z']
2 ; (k-1 2.0 %
? -—
u 2u uy Dt [z, .
S = 1 1 2 Z_UZ
, : . ~ " (t,=1) ol
u?+n—k 1 (m+nmk-1)uT+n"k"2.,.u§+an~1 . D .l [mn=k=14
The matrix S is a generalization of the van der Monde
matrix. It follows from Kaufman (1968) that its upper,
square part is non-singular. Thus (3.18) implies
G =0 (3.19)

A useful lemma will now be proved.

Z=u
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Lemma 3.1. Let h(z) and g(z) be analytic functions in a

neighbourhood of z,. Assume that glzy) kE 0. Then

_D(Pjih(z)g(z)] = 0 0 ¢ps<n (3.20)

2=z
is equivalent to

pPln(zdy ., =0 0 ¢p¢n (3.21)
25k

Proof. The equation. (3,20) implies

"
<
"

o

P (P
1 .

D(i)[h(z)]zzzonép“i)[g(z)]z:ZO =0 0

1=0

(
|
\

1

or equivalent in matrix form

(ch)g(z)

pl1? plo?

g(z) g(z)

002y 0 Wgczy D Pg

_D(n)g(z) . ; , : . . D(U)giz)‘

-DCO)h(z)

D(1)h(z)
. - 0 (3.22)

(2]

227,
According to the assumption g(zy) § 0 the matrix is non-
singular and the equivalence between (3.20) and (3.21)

follows. o



13.
Equations (3.19) and (3.17) give
(t, =1~v)
p K Blz) = 0 (3.23)
k
m (z-u:) .
jke - 3 4EFK
0 g vs =1, 1< ke
and it follows from Lemma 3.1 that
(1)
D [g(z)1__ = 0
5 2=y (3.24)

0 ¢ i ¢t 41 sksn

Using the Lemma 3.1 again [with h(z) = Av(z)C'(z) cf.
{3.15)} the following equations are obtained.

(i)p; ]
DM AN(2)C ()], = 0

k (3.25)
IL 0 £ i £ tk"’ﬂ:, 1 £ ]( < &
Hence
A~ R: tkm'i ~
A (z)C'(z) = 1 (z-qk) ‘ = A'(z)C'(z) (3.26)
k=1

: \
Thus it has been shown that the stationary points, i.e. the

solutions pf (3,7) must fyulfil (3.28). Conversely, the calcu-
lations show that (3.26) implies (3.7). The latter assertion
can be proven directly since (3.26) implies that f(z) has no

poles inside the unit circle.
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4. MAIN RESULT.

The following lemma is a summary of the calculations in

the previous section.

Lemma 4.1. Consider the loss function (1.6) subject to

the conditions (2.4}, (2.7) and the constraints (2.5),
(2.6). Let A'(z), C'(z), A'(z), C'(z) be defined by (3.4),
(3.5). Then the stationary points of V are the solutions
of

A'(z)C'(z) = A'(2)C'(z) (4.1)
The next lemma deals with global minimum points.

Lemma 4.2. Consider the loss function V (1.6} subject to
the conditions (2.4), {(2.7) and the constraints (2.5),
(2.8). Then the global minimum points of V are the solu-
tions of

A'(2)C'(2) = A'(2)C'(z) (5.1)

Proof. Introduce

He(z) = A5(2ICE(Z) . 4, 5 n.pt
A¥(z)C*(z) 1=

where the infinite series converges: in and on the unit

circle. Put hD = 1, then

_ 1 S j. .~k dz _ 1( a2
W § hyizdh, z ~ 32 = 1|1 + h
e jzo obo NP 2 jZ i)

Thus
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Ve 1/2
with equality if and only if H{z) = 1 or
A(z)C(z) = A(z)C(z)

Invoking (3.4) and (3.5) we find that this equation is

0

equivalent to (4.1).

It remains to analyze the solution of (4%.1). The equa~

tion can be written as

C'(z) _ C'(z) (4.2)
A'(z)  A'(z)

The number k has not been determineéd vet. To establish
equality in (4.2) for all z it is necessary that both
sides have the same poles and zeros. Since there are
no common factor it is thus necessary and sufficient
that k = k, A (z) = A(z) and C (2) = C(z).

1}

Two cases can be separated:

i

1. k = 0. Then k 0 and the loss function has a unique

local minimum

2. k > 0. Then k > 0 and there are infinite many local
minimum points. In fact, these minimum points form a
manifold in the parameter space. On this manifold the
loss function obtains -its infimum. This case means that
thatt the model contains too many parameters.

Another way of characterization is the following. The un-

knownkparameters are k, a{, s = aénﬁ, c%, ol . s Cﬁ-ﬁ’ dys

B dﬁ. 0f these must for all minimum points
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k = k
al = a! 1T ¢ 1 g n-k
i 1
el = ¢! 1 ¢ 1 g m=k
i
while d, ... di (if k > 0} are arbitrary.

The result of the calculation and the discussion is summed

‘up in the following theoremn,

Theorem. Consider the loss function (1.6) subject to the
conditions (2.43, (2.7) and the constraints (2.5) and (2.6).
Asgsume that deg A(z) = n, deg A(z) = n+ﬂ, deg C(z2) = m,

deg C(z) = m+m where min(n,m) > 0 and that A(z) and C(z)

are relatively prime.

i} Tf min(n,m) = 0 there is a unique local minimum,
namely
a. 1 <« i «n
. : = 2
a, =
1 ‘ N
0 if i >nand n > 0 ;
|
c, 1 <1 < m
C . -
l» -~
0 if i >»mand m > 0
ii) If min(n,m) > 0 there are infinitely many local

minimum points given by the manifold

ACz) & L{z)A(z) V. .
P if m > n

Clz) = L(z)C(z)z™ "




iii

17.

oY
A(z) = L{z)A(z)z"™™

ifm<n
Clz) =z L{z)C(z)

L{z) is an arbitrary unitary polynomial of degree
min{n,m). Each point in the manifold also is a

globallminimum point.,

There are neither local maxima nor saddle points.
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CCRRECTTONS
The abbreviation pa.b means page a line b.

" p3.3 Read "the integration path"
p10.7  Replace "D{%i T 1 7 ¥ gy wpl = 1 = Ve

p10.12 and p13.2 Replace "I (z = u. )" with " 1 (z - u; yEgm

34K J fiS
& t
p13.12 Read " 1T (z =~ Yo
etk
p15.13  Read "C'(z) = C(z)"

p15.20 Delete "that"




