LUND UNIVERSITY

Interactive Programs
General Guide
Wieslander, Johan

1980

Document Version:
Publisher's PDF, also known as Version of record

Link to publication

Citation for published version (APA):
Wieslander, J. (1980). Interactive Programs: General Guide. (Research Reports TFRT-3156). Department of
Automatic Control, Lund Institute of Technology (LTH).

Total number of authors:
1

General rights

Unless other specific re-use rights are stated the following general rights apply:

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors
and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the
legal requirements associated with these rights.

» Users may download and print one copy of any publication from the public portal for the purpose of private study
or research.

* You may not further distribute the material or use it for any profit-making activity or commercial gain

* You may freely distribute the URL identifying the publication in the public portal

Read more about Creative commons licenses: https://creativecommons.org/licenses/

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove
access to the work immediately and investigate your claim.

LUND UNIVERSITY

PO Box 117
221 00 Lund
+46 46-222 00 00

https://portal.research.lu.se/en/publications/291c5168-1650-4f8d-9dcc-e102bfe243da

CODEN: LUTFD2/(TFRT-3156)/1-30/(1980)

Interactine Programs

-General Guide

JOHAN WIESLANDER

INSTITUTIONEN FOR REGLERTEKNIK
Lunps TEKNISKA HOGSKOLA
1980

INTERACTIVE PROGRAMS

GENERAL GUIDE

JoHAN WIESLANDER

DOKUMENTDATABLAD enl SIS 61 41 21

Organization Document name

LUND INSTITUTE OF TECHNOLOGY Project report STU
) Date of issue
Department of Automatic Control February 1980
Box 725
§-220 07 Lund 7 SWEDEN CODEN: LUTFD2/(TFRT-3156)/1-30/(1980)
Author(s) Sponsoring organization
Johan Wieslander Swedish Board for Technical Development

(STU}, contract No 77-3548

"Title and subtitle

Interactive Programs ~ General Guide -

Ad AS
Abstract
The report is a general guide to a family of
interactive programs, which use a common interactive
Tanguage. Command interaction is the basic form of
communication with the program. The general syntax
rules are described here. A short description of the
macro facility is included as is a list of general
purpose commands available. The standardized
file format is finally discussed.
Key words Ad s

Classification system and/or index terms (if any)

Supplementary bibliographical information Language
| English
ISSN and key title ISBN
Price

Recipient’s notes Number of pages
0

Security classification

Distribution by {name and address)

CONTENTS

1- INTRODUCTION I‘-l!ll"ll.l‘l.lll--lll'llll’ll'llﬂ

= GENERAL DESCRIPTION OF COMMANDS seeaaucacvanvnns
Z.1 Command MOOES wssssasrvsussnassssavsssnunnnn
2.2 Generic Description of Commands cavaeennuuon
2.3 Arguments and Variables ...cvirnvennsanansas
2.4 Glohal Variables ceecevasssssvnannannsranncnnw
2.5 Reserved Global Variables sssscassnscsveaanns

3 L] FACiLITIES IN INTRAC . ® X 2 3 R E §g s S EEW SR SE SN SAR " % B B
3.1 The Macro Faeilifty cwuevessnavsvusssannnansas
3-2 Int T‘Bc Cammandg ¥ m m @ BE WM EE R E 8 xR &E ¥ AKFRSSSNERE w & N @&

L. FILE FORMATS suunsvuvnsassncnussnnsannnnnsnnnnnas
4.1 Data Files and the File Head ccvscvriosscnsvuw
2 Access rules for Data FIlES cevasvascevursss
3 Bpecific Examples of Data Files cuvsasnexvus
4 AQOTEgAtES suasxsvassussnnasassusane e
5 Bystem FIleS tcecsvsnecrncravasrannvnransnns
& Aoeess Rules for System Files ceecevsnccnsnas
7 Specific forms of System Flle Sections
DISCRETE MISO TRANSFER FUNCTION cccnasuvausnva
STATE SPACE REPRESENTATION .scveasssarnecnns
POLYNOMIAL FORM ..suuanunwnnmnasssnnannsusus

5:! REFERENCEE " EEEEREEEEEREEEENE N NN I I SR SN N

21

29

30

1. INTRODUCTION

This qeneral guide describes a family of interactive
programs for data analysisy system identifications systenm
analysisy and system contreller design. They are intended to
be powerful tools in the hands of the experienced user.

Thuss talking to the beginner that reads this guide for the
first time! You will probably find it somewhat akward to get
started using these programs. But have hopes it won't take
very long until you too are experienced.

The programs usually interact with the user via a graphice
terminals i.e. outputs diagrams snd text on a screens and
accepts keyboard input in the form of command lines. This

T i S s . e ey b S frrat s St

command method of interaction has many advantages:

a) it is consises

by it is predictables i.e. the user can prepare himselfs

) it allows the user to improvise at any times

d) it allows macros,

@) it ise good for the programmer.

The drawback is that it leaves the beginner without support.

This general guide will give some background on how data is
organized and used by the programs and how the ’'intervactive
language’ is constructed and interpreted. A deep knowledge
on the organization of data is generally not necessary
unless the user attempts some non—standard operations but
some background wmight prove useful. This guide will also
give sufficient information on the general aspects of the
command language to enable the user to understand and use
the appropriate usev’s guide. The macro Ffacility of the
interactive language is however not treated in detail here.
The more active user is therefore strongly recommended to
study the Intrac language manual [11.

The abilities of the different programs arve summarized
below. To each program belongs a User's Guide giving
infarmation on the available operations and the accompanying
command syntaxes. Comments on the related methods as well as
hints on the use of the commands are frequently givens but a
working knowledge of the practical aspects of the underlying
thaory is assumed.

The User's Guides available so far arvre [21: [31s and L[4).

Idpae

ldpac is aimed at problems encountered in analysis of time
sevries. Typical sources of the time series would be recorded
measurements and control signals from industrial processes.
Examples where Idpac has been applied includes paper and
pulp industys power systems» chemical industyry and ship
huilding. Non-industrial applications are found e.g. in
biomedicine and econometvics.

The types of guestions Idpac may answer ares

a) What do the signals look like?

by What is the size of the disturbancies?

c) Where can we find them?

d) What are their properties?

2) How can the process be described?

f) How does the process react to specific inputs?

in order to answer such questionss lIdpac contains modules
far data conversions scaling and calibration. A
comprehensive plotting facility is also included in order to
vigualize the data.

The analysis tools available in Idpac are:

a) Correlation analysis.

b) Spectral analysis (Fourier transform of correlation
function as well as DFT).

c) Parametric model Fitting (maximum likelihood and least
squares method).

d) Normality and independence tests.

e) Bimulation

Modpac

Modpac is intended to be an interface between other program
packages. This need arises because ldpac =.9. gives as one
of ite results a system description on transfer function
forms while Synpac is aimed at a system description on state
space form.

Modpac resolves this conflict by offering a transformation
between these two forms of system descriptions. In shorts
Modpac will serve as a tool in handling different forms of
model descriptions. Today Modpac contains the following
facilities:

a) Transformation in both directions between continuous time
and discrete time state space systems.

B) Transformation in both directions between multi input -
single output transfer functions and state space systen
descriptions.

o) Transformation of state space descriptions to diagonals
balanced and Hessenberg forms.

d) Computation of the frequency response of a state space
system representation.

2) Plotting of frequency responses in Bodes Nichols and
Nyquist diagrams.

f) Computation of zerces for scalar polynomials.

g» Definition and * handling of polynomials and matrices and
evaluation of matrix expressions.

As indicated aboves Modpac is intended as a glue between
different program packages. It is therefore of course
compatible with thems both regarding its user interaction
and its data stuctures.

Synparg

Synpac is aimed at the desigh of control algorithms for
multi input = multi output dynamical systems on state space
form. Both continuous time and discrete time systems can be
handled.

The intended designh criteria are the shape and speed of time
responses as well as pole/zero configurations and frequency
responses. Also the influence of noise on the system may be
a design criterion. The main but not only design tool is
linear quadratic methodss used both for regulator and.
observer design. The ‘design knobs’ are in these cases the
assignment of values for the respective quadratic criteria.
This design scheme has proved intuitively natural and is
easy to learn. 1t is supported with a function that helps in
transforming the criteria matrices to a suitable form.
Methods also exist to adapt the resulting design to a
suboptimals but maybe more realistic one.

To achieve these goalss Synpac contains the following

facilities:

a) Matrix definitions handling and operations.

b) System definition.

o) Eigenvalue (pole) computations.

d) Fregquency response evaluation. -

e) Simulation.

f) Graphic output of time— and frequency responses.

g} Solution of the stationary Riccati eguation for optimal
regulators and obsevvers.

h) Design of reduced order regulators and observers.

i} Generation of deterministic and stochastic test signals.

2. GENERAL DESCRIPTION OF COMMANDS

The interactive programs described here are command driven.
The input of a command and the subsequent decoding is done
by a special set of subroutines with the collective name
Iintrac. Intrac is common to several program packages and is
fully described in a separate report [11. The following is a
short introduction.

R D e e e TR L s e i v e e e e

Normally: a program action is initiated by the user by
giving a command. When the program is in pormsl _mode (ov

command_mode) s the commands are entered from the keyhoard on
the user‘s terminal. A ready sign (>) is output on the
left hand margin when the program awaits a new command. In
normal mode essentially any command 1is legal though not

necessarily meaningful.

The second program mode is the macro_mode. In this case the
commands are read from a special macro files thus allowing
the user easy access to commonly used cowmmand sequences. A
special set of commandss meaningful only in macro modes

allow loopings testing» and jumps to be done.

In the macro modes a special input command (READY is
available. This command together with the ones previously
mentioneds give the possibility of a macro designed to
prompt the user to take certain actions or to make certain
decisions. In this way the classical ‘guestion & answer’
dialogue between user and program may be realised.

Some commands may require a more detailed specification than
the one given in the command line. In such a cases a8
subcommand_seguence is entered. This is indicated by the

ready sigh appearing a few steps to the right of the
lefthand margin.

In the subcommand sequences:s only & restricted special set of
commands depending on the main ones and those implemented
within Intracs are legal. The commands in the subcommand
sequence may be entered either in normal mode or in macro
mode. The seguence is terminated either with the comand X
(execute) or KILL (ignore previous subcommandss perform no
action).

e S e e T o e L T L A R L S B o L T e T W B I S AR e R

A command has the genevic form shown below:

CMND LARG1 awa LARG < RARGi “«nu RARGNR

NL.

The firet item is the command name or the command
identifier. After that follows the argument lists separated
into two parts by the left arrow (€). The left hand
arguments and the right hand arguments represent results and
inputs of the command respectively. In some commands one of
these parts is missings then the left arrow is also omitted.

In many commands some of the arguments are gptignsl. In the
detailed command description found in the User’s Guides L[211
£31s and [41s this is indiceted by enclosing optional
arguments in brackets (¢ £1 3. When the number of arguments
is optionals this is indicated with a series of dots (...).
Mutually excluding arguments or opptions are sepsrated by a
slash ¢ /). An argument may be replaced by a comma. If so»
the corresponding argument in the previous command is used
(short—hand featurel. In some casess sglashes (/ } are used
in the command line to delimit file identificeation flags.

any command line. An empty command line or one containing
only a comment is legal.

Comments are preceseded by a double quote (" 3} and may end

T e P i e it e A S L T o T I e P S i Iy A e T

p—F F A ¥4

They may be integer numberss real numbsrss some special
characters (+3 —3s % egtel) and Hollervith strings. An argument
is reopghized as a Hollerith string when its first character
is alphabatics the remaining characters being alphanumerio.
One form of a Hollerith string is a flag. In this rcase a
certain value of the argument specifies a special action to
be taken. In the detailed descriptions these values are
dencted by guotes (e.g. 'HP’'J). An unused flag is omitted or
the string 'VOID! is used.

The arguments of a command line can be of different types.

Other forms of Hollerith strings are namegs. The normal use
is as a name of a ecertain data sety e.g. & signals a
frequency responses or a8 dyhnamic system. Another instance is
as names of varigbles. Variables may be either local oar
global. Globatl variables are described below. Local
variables may be used in a macro. Within a macros names may

also be used as formal arvguments.

One or more arguments may be enclosed in paventheses. This
indicates that they are attributes to the previous argument.
Examples are column numbers in a data file or section name
in a system file.

2.4 _Global Variables

. i e e e P

Some variables may be referenced both in command mode and in
macro mode. They are called global variables. A reference to
a global variable is constructed in the following way!

NAME . LEXT1

Evidently: it consists of a name followed by a dot.
Optionally a second name follows as an extension.

The progam package contains a table of values to be
associated with these references. These values are of
certain types as described in the previous section. Whenever
a global variable reference is found in the command lines it
is substituted by the corresponding value and type by the
Intrac routines. Thuss e.g. a required integer argument in a
command line may bhe replaced by any global wvariable
reference provided that its corresponding value is of
integer type.

Yalues are assigned to the global wvariables e.g. via the
LET-command. Alsc some commands may deliver results to
global variablesy see ®.g. the command STAT.

e et v it T DD ey e R St e TR e e Pt e il it s S e e Vo P e S S

In order to make some commands shorter and easier to
remembers some variables or flags are left out of the
command line. They are instead implemented as a set of
reserved and pre-defined global vaviables. These variables
and flags are typically problem dependent and are seldom
altered during a run. It is therefore good practice to begin
a session with one of the programs by assigning suitable
values to such global variables. Note that this operation is
a typical use of a macro.

The namesy meanings and default values of the reserved
global variables are The list is in alphabetical -order.
Default values are given within parenthesis. When they are
installation dependents only their type is given. Note that
not all global variables are included in all programs. Note
also that the Intrac command WRITE when used without any
arguments will produce & complete list of global variables
including their respective values.

AEPS. (real’
is a test guantity used for absolute tests in some
commands .

AMP., (1.0
is the desired amplitude ©of a signal generated by the
commmand INSI.

CEPS. (reazl)
iz a test guantity used for convergence tests. Normallysy
it is larger than REPS.

DELTA. (1.0
is the sample intevrval of the problem in seconds.
Continuous time problems have DELTA. = 0.0.

FTEST. (02
iz the result of the file existence test command FTEST.

IFP. (12
is the sample point number where a sighal generated by
INSI will start.

INIME. <D2
is a flag used by the command ML indicating whether
initial values should be estimated or rot.

ITHML. <zt
is the iteration limit used by the command ML.

LIML. <O)
iz @ flag indicating whether to limit the residuals aor
nots used by the comomand ML.

NITER. (1000
is an iterative limit used hy some conmands.

NPLX. <1002
is the length of the horizontal axis in the command PLOT.

NOF. (1000
is the number of frequency points to be computed by some
commands giving frequency response results.

NU. (integer)
is the state of the random number generator.

PRIML. (O .
is a flag controlling the printed ocutput from the comnand
ML,

PRINT. (OO
iz a flag controlling the printing of results by some
commands. Generally? PRINT. = 0 means no printouts

PRINT. # O means that some output will be generated.

PEEPS. (real)
is a test guantity used in pseudo inversionss e.g. in
MATOP.

REPS. (real)
iz 'a test guantity used for relative tests in some
commands .

SCALES. (1)
is a flag controlling the allowable scales used by PLOT.

TICK. 1.0
iz the time quantum of the clock giving the sample
interval. The following must be trued DELTA. = n¥TICK.
where n is an integer.

WMAX. ¢100.00
is an upper limit for the angular freguency used by some
commands «

WMIN. (0.012
is a lower limit for the angular frequency used by somne
commands .

YMAX. (0.0
iz an optional upper scaling limit used by PLOT.

YMIN, (0.0)
is an optional lower scaling limit used by PLOT.

10

3. FACILITIES 1IN INTRAC

Ag mentioned earliers the complete FfFacilities of Intrac
should be studied in [1]. In addition to the decoding rules
and the handling of global variables described in previous
sectionss there are two other facilities the user should be
aware of. One is the macro facilitys the othaer ie the
Intrac—implemented commands.

e ik s i e g a2 e et

The macro facility gives the user the possibility to store a
certain series of commands for later and repeated use. This
could be of interest in a number of situations.

A. The same sequence of commands is in a given application
used several times with only minor modificetions. Storing
this sequence as a macro effectively defines a new
gpecial purpose command with greater efficiency and ease
of use as a result.

B. Defining problem dependent parvameters and saving ovr
restoring data files at the beginning resp. end of
session is a typical use of a macro. CF. the section on
global varisbles.

C. The form and the amount of interaction needed to solve
problens of a certain kind may be changed through the use
of & set of macros. The programs may in this way be
adapted to new uzser categories.

A macro is implemented as a symbolic file. It may be
generated either with the editor or with the command MACRO.
(In sither ceses this command is the first one stored in the
file.) Whenever a command line econtains a command that is
not found in the internal table of standard Idpac commandss
it is first assumed to be a macrc nhame and the wmemory is
searched for a file with that hame. If none is found:s an
ervor message PILLEGAL COMMANDY iz givens otherwise
execution of commands from that file is started. '

A macro call may contain arguments like other commands. The
code within the wmacro wmay rcontain not only calls to
application commands but also calls to other wmacros and to
structuring commands allowing looping and conditional
execution. Thus a macro corresponds in operation to
subroutines or procedures in high level programming
languages.

When executing a wmacros it may becoms suspendedi either
because of the command SUSPENDs actions taken in response to
the READ command: or because of an error detected in which
case the ervouneous 1line is displaved. For hints as how to

11

proceeds refer to the commands END: GOTO: READ» and RESUME.
When a macro is suspended s the program is in normal_mode
and the user may use any command he wishes. A natural choice
after an error would be & correct form of the erroneous

command .

e e e e o et i e e 7 ot ot L Bl el v St St e

Intrac implements & set of commands of a general and
application independent nature. These commands are described
in full in Chapter 4 of [11. Here only a very brief sccount
will be given.

MACRO NAME [ARG1 ...1]
This command defines the following command sequences to
be a macro with name NAME. The macro may contain formal
arguments. At time of call: a list of corresponding
actual arguments should be givens: but under certain
cirocunstances: the number of arguments need not agrees
although this is the normal case.

FORMAL. ARG1 [ARGZ ...l
This command extends the list of formal arguments within
a macro.

END
This concludes the definition of 8 wacro. If END is
entered from the terminal while a2 macro is suspendeds all
active macros will be asborted.

LET VAR = axpressiocn :
The variable VAR is given the value of the expression.
Some legal forms aret
LET A =0
LET P = 3 # 5.3
LET Gi. =2 + P
LET DATA = FILE1

DEFAULT VAR = ARG
The variable VAR is given the value of ARGs but only if
VAR previously was unassignhed or non—existent.

ILABEL L
L is defined as a labels i.e. it is & name of the
following command which therefore may be referenced in a
GOTO.

@OTOo L
The effect is that the next command to be executed is the
one named L (by a LABEL). GOTO may be used to resume a
suspended macro at a specified point.

12

IF relation GOTO L
The effect is a GOTC as aboves provided that the relation
is true. Examples of legal relations aret
A GT 2.5
B E@ FILE
The relatidnal operators available are: EGr NE: GEs LT
aT» and LT.

FOR V = BEGIN TG FINISH £STEP INCRI
The following commands will be executed for a sequence of
values of the variable V. The first value will be BEGIN»
the last will be less than or egual to FINISH. V will be
incremented by INCR if givens the default is 1.

NEXT V
This signifies the end of a FOR V = ... seguence. The
name of the variable (here V) indiceates the proper FOR -
NEXT pair.

WRITE L[{idevli[formlil [VAR/BTRING ...1

This command will cause output on the device named dev €
{DIB«TP:LP} (displays teleprinters: line printer) with
line advance form € {LFsFF} {(line feedy form feed). The
defaults are DIS and LF. Following this information:
there is a list of variables or strings to be output
according to the respective type. Strings are delimited
by string guotes. 1+ the list is emptys the default
action is to output all glebal variables. Examples

WRITE ’'The value of VAR is?’' VAR

READ V4 T1 LIVZ TZ21 ...1
This command demands new values for the variables Vi £roam

the terminal keyboard. The arguments T specifies the
i ,

required type of the answer. Under certain circumstancess

the user need hot give values to all arguments and may

also suspend the macro.

SUSPEND
An executing wmacro is suspended when this command is
encountered.

RESUME
Resumes a suspended macro.

GWITCH switch state
The switeh € {EXECy ECHOs LOGs TRACEY will receive the
state € {ONs OFFX. The default values are OFF. The sffect
of the ON state is:
EXEC a macro is executed while being defined.
ECHO a macrD is echoed while being executed.
LOG application commands are logged on the line
printer.
TRACE +he log also includes Intrac commands.

FREE LGVAR ...l
User~defined global variables are deallocated.

STOP
Execution of the program is stopped.

13

14

4. FILE FORMATS

The data sets operated upon in the commandss and referenced
by hame in the command arguments: are generally treated as
sequential files. This format has proved sufficiently
flexible for most application while at the same tine
providing good prospects for program portability.

in some implementationsy these files are from reasons of
efficiency actually not handlied by the normal file system.
This should be invisible by the users but . -specisl]l actions
may have to be taken to save and restore information of a
more permanent nature.

The following sections describe the file conventions uged.
Note that file nemes need to be unique only within ite own
groups i.e. a file name FN can be used simultaneocusly for a
data file: a system files and an aggregate file.

ks me A e e e o P ey e s P St W et s £ et e e A e e it (R Bt M STy A o

Data files is the common name of files of binary form. They
are used as ohe of the main forms of storing objects in the
data base of the interactive programs developed in Lund.

To be able to read a binary files one has to know in detail
how it was written. To seolve this problem a flexible
standardized file structure has been introduced. This has
been done in the following manner. Binary filess Jointly
termed data filess contain a first record of fixed lengths
the file head. The file head specifies the humber of records
to follows and their lengths which are constant within a
file. Figure 4.1 shows a detailed description of the file
head. I1s 12 and 13 describes the structure of the file.
Note that 12 specifies the record lengths thus it is
possible to correctly read the files once the file head has
been read and decoded.

I1 ¢(number of rows)

12 (nhumber of columns)

I3 {time dimension)

Sampling interval in time units

Date recorded

Time recorded

If zevos the record length is constant
Fingerprint (number of the generating command)
File type

Skip count

QO ERNEU LR -

Y

Figure 4.1. The file head format.

Ly — e]

15

Cther information in the file head is the sampling interval
wich is relevant if the file contains either measurement
data or parameters etec. of a discrete time model. The date &
time information in integers 5 & & is valuable as they give
an identity to measurements and to results derived from
them. The 7:ith integer serves as an gscape function as it
allows non standard files and provides a means to stop
reading such a file before any harm is done. The 8:th
integer is a gingerprint in the sense that all commands that
generates a file puts its command number there. This ecan be
used to check compatibility requirements. It may also serve
as & debugging aid.

The ?:th integer is used to indicate the logical contentzs of
a file. Examples of where and why this is useful is given in
the special sections on data files etoc. below.

The 10:th integers Ffinally» specifies a skip counts i.e. a
number of records to be passed before the file can be
treated in the standard fashion. This too is & kind of
escape facility and is primarily intended as a way to extend
the file head. In Simnon thie is used o indicate variable
names and associated system names in a BTORE files to allow
reference by name to the variables in & subsequent BHOW
command .

There has to be some rules for controlling the use of data
files. A few examples will illustrate this rneed. Assume that
DATOP is a command taking as input a column of the input
file and that the output will be a column in the output
file., The input and output could be thought of as a time
series. Thus a simple example would bet

al DATOP QUTFIL < INFIL (3)

Here column number 3 (i.e. signal #3) in INFIL is read:s
operated upons and the result is a new single column output
file OUTFIL. We have met the firgt rule:

12 I1f an output file name but no column number is givens a
new file is generated. any old file with the same name as
the new output file is lost.

If on the other hand we want to keep old information in an
existing output files we can do sol

bl DATOP OUTFIL (2) < INFIL (3)

In this rcase only column 2Z in the output file is changed
while all others are kept as before. a&s all files are
accessed sequentiallys this implies that the old version of
the output file 1is read and copied to & new file with

14

modifications made tor in this case:s column 2. This is
governed by the second rule which reads:?

2) 1f an output file with a3 column number is givens the nhew
column must replace an old column or be number N+1 iFf N
is the number of previously existing columns.

There is a shorthand description for the case where the
input and ocutput files have the same name!

) DATOP € INFIL (3}
The rule describing this case ist

3) 1If the output file nhame is omitteds the input file name
is assumed. If a column number is given for the input
files it is also used for the output.

It should be noted that these general rules are implemented
in the command decoding part of the command wmodules. They
may be augmented by other rules: specific for a single
command or for a group of commands.

A T o s e e e e e v e s e

Some specific details on how the data actuaslly are stored in
data files within the Lund programs will be given here.

Time Beries

Refer to Figure 4.2. A time series file is implemented as a
standard data file with I1 egual to the number of time
pointss 1Z equal to the number pf measured sigrnals (and the
record length) and 13=1. The file type number of a Time
Series file is O.

Frequency Responses

A fraquency response is stored in three columhs of a two
dimensional array. The frequency values are stored in the
first column and the amplitude and phase in the 2ind and
3=T‘d- :

The main feature wich distinguishes a frequerncy respohse’

file from a time series files is thus that dats is recorded
in groups of three columns. Bome commahds (like FROPsy RODE
and ABPEC: see Appendix) should recoghnize this. Therefore
this kind of file has a special file codey namely 1.

17

Iz

rd

Sighal #1-————~———1

Time instant #1—» | 1

e b 2 S e e ey et ot Sf

Loci

v

A locus file is used to store sets of complex hDumbervs
associated with a real parameter values (i.e. one pérameter
value per set). The use is5 tg store eigenvaluess polynomnial
zerces and the like. It is’ poésible to include several sets
to represent the dependance of the zeroes etec. BN the
parameter. '

¢
The file format for a locus file is that of a data file with
the parameter in the first column. The complex eigenvalues
or polynomial zeroes are stored with theip real and
imaginary parts in the’/ following 2n-1s 2n columne? n=1:2
.aax » Thus a single row contains the parvameter value and
the accompanying set of complex numbers. Several OWS will
store a3 locus. The file code is Z. ‘

18

Matrices and Vectors

Matrices and vectors are easily stored within a data file.
It is natural to store & matrix row wises i.e. 12 is the
number of columns in the same way as for a time series. The
number of rows is stored in I1. A vector is stored as a n¥i
or 1#%n matrix.

The time dimension I3 is used as a way to store time varying
matrices (vectors). For each time instant (sampled data
systems)s:s the matrix is stored as above. The number of
different time points is in I3. In the time invariant case
I3=1. The file code is 3.

Polynhomials

A polynomial matrix is represented with the matrix
coefficients for various powers of the independant variable
stored in the same way as time varying matrices. Thus a 2%3
polyhomial matrix of degree 3 is stored with 11=3s 12=2 and
I13=4+ 13 being the number of rcoefficients. The file code is
4.

Note that a scalar polynomial of degree N is stored as I1=1s
12=1 and I3=N+1. According to conventions the highest degree
coefficient is always included expliecitly and is stored
fFirgt in the file.

s s =x-1-r-t-r—1

An aggregate file is the concatenation of several individual
files of formats described aboves into a single segquential
file, The individual files must be of the same type. Figure
4,3 illustrates an aggregate file. It consists of a file
head with standard fFormat. It is flagged as an aggregate by
the file code being 100 in excess of the file code of the
individual files it is made up of. The number of
concatenated files is recorded in I1 which is also the
record count for the records immediately following the
aggragate file head. These records contain the file names of
the constituent files. These fileg are then included
sequentially in the order of their namess and are preceded
by their file heads in the usual manner.

The advantage of this scheme is that the file administration
overhead in the computer system is paid for only once for a
large set of related files. On the other hands the advantage
of the ability to handle these files separatelys as in
checking and wmodifying the datas is not lost. The program
modules that do these operations are made to allow a
specified file to be a member of an aggregate. The time

19

Aggregate head |

Records with file names

Head, file #1 |

Records, file #1

Head, file # 2

Records, file #2

Head, file #3

Records, file #3

Figure 4.4. The format of an agoregate file.

penalty for this is usually small since reading/writing past

othar files in the aggregate is & fast operation conpared Lo
the file asdministration.

Note theat agyregate files not only serve Bz a means of
increasing efficienny in acdedsing the data bases they also
give the possibility of a nice naming convention. For the
users this is the wmost important aspect. As an examples the
matrices are not requived to have distinct names. They may
be given standard names as found in literature such as
Ay By C etec.s functioning as ’forenames’. Only the name of..
their aggregate has to ﬁé distinct like a ’family name’. An -
example is the command ALTER AGIB where the matviy B in the
aggregate AG is altered. '

L — e 11

v is the measured output from the systems i.e. the signal
iz actually available for feedback but may be corrupted
through the disturbance e.

z is the desired outputs i.e. signals by which the
performance of the system will be judged.

K is the state of the systém.

These distinctions are intended For the benefit of the users
helping in the formulation and solution of problemss e.g. in
controller and observer design. ' All the distinctions are not
possible to maintain in all representation forms.

Each section must begin with the keyword BEGINs optionally
followed by the section nameg. The next line must contain the
section heading» specifying the kind of system
representation used in this section. The section ends with a
line with the keyword END. Comments may be freely used
throughout the section. They start with a8 double guote
{ "). Other information between BEGIN and END will depend
on the representation txﬁéias described helow.

1

20

U A3 P

A system can be represented in a number of wayss:s with
different types of data of wvarying structures matricess
polynomials ete.

Therefores system descriptions are based on text files. They
give a greater freedom of structure sinece information is
gasily tagged with keywords and the recordlength is no major
problem. Great amounts of datar e.g. matrix elementss
polynomial coefficients ete.s are stored in data files as
described abovel! in the system file only the appropriate
file names arve givens sometimes within a keyword structured
see the example in Figure 4.4. If matrices: polyhomials ete
are available as parts of aggregatess the aggregate filename
is included. Different representations may be included in a
system file using standardized keywords. If there are wmore
than one type of system representation present in the system
Files they are enclosed within a peir of keywords BEGIN -~
END. SBuch sections within a system file are hamed
separatelys the name appearing after BEGIN.

An example of a section of a system file is given in Figure
4.4, After BEGIN the section name appearss in this case
*pont! . Then the type of system representation is specified
by a seqguence of keywords: CONTINUOUS STATE SPACE
REPRESENTATION. The initial state of the system is specified
to be stored in a file with name xbvec. (In the example:s
filenames are written in lowar vcase letterss heywords are in
upper casel.

After thiss the state space system eqguations are specified
following the keywords DYNAMICES and AGGREGATE. The aggregate
name for the system matrices is given. The equations are
written in full. They contain elements recognizable by the
program such as DX/DT» #X. #Us Y= ete. These constructs
serve to delimit filenames where the appropriate matrices
are storeds 3+ bu etec. A matrixn together with its key
construct may be omitted and is then assumed to be zeros
2.9. if dw*ld is absent: then dw is assumed zero.

BEGIN cont
CONTINUOUS STATE SPACE REPREBENTATION
INITIAL STATE VECTOR:I x0Ovec
DYNAMICSs AGGREGATE:! sysagg:
DX/DT= a#¥ -+ bu%l + bwild + bv#V
Y= o¥X + du%lU + dw*l + dexE
Z= g¥*X + huxl + hwel
END

e e el s e e e vy by

21

—— — . T o WS Lk Sl i

In the case of data filesy the generation of a new file with
a given name implies that any existing file with that name
is lost and replaced by the new version. In the case of a
system file howevers the corresponding situation is when a
tiew section within an existing file is generated. OFf courses
the deletion of the entive old system file is out of
questions it may contain much useful information in other
sections. Therefore the old file is merely copied with the
new section added at the beginning. Thig can only be allowed
to happen when the operaton that generates the new section
{system representation) is such that the new representation
is just another way of representing the system.

The access rules are as followst

a) A command that generates a new system description will
check that there is no already existing file with the
output name.

h) 1If a command is used to transform system representationss
a new section name must be specified if the output file
name is the same as the input file name (or is omittedd.
If the output name differss: rule a) is applied.

c) A new section is placed first in the file. Any old
section with that name is retained but may be accessed
only through the text editor» rule d}.

d) Only the first section with a given name is accessible
through commands operating on system files.

— e B R IS B0 50 e e T s e o i T T s R i e e e e e S i R e S S M S FEvY W e b et e St Sl

A system can be described using different representation
formsy sometimes simultanecuslys resulting in a system file
with several sections. The form of the sections must follow
certain conventions described in the fellowing paragraphs.

The following signal name conventions will be used: compare
Figure 4.3. '

L is a control inputs i.e. an input we may manipulate in
controller design.

w iz a known disturbance inputs i.e. we know it but can’t
affert it.

v is an unknowns i.e. stochastiec input.

(] is an unknowns 1.e. stochastic disturbance on the

measured output.

DISCRETE MISO TRANBFER FUNCTICN
(polynomial image form)d

23

This section describes a linears discrete times wmultiple

input - single output dynamic system on the general form

The normal farm used in ldpac iss howevers

(Refer +o the description of individual commandes to
which form is used.)

The section heading must read:
DISCRETE MISO TRANSFER FUNCTION

The section must contain the following statementss
- sample interval definition
- one A-polynomial
-~ ogne B- or C-polynomial
~ at least one A definition if C-polynomials are
present.

This section may contain?

- geveral A-y B—y C—s and D-polynomials

- dinitial values for the output

- uncertainties of parameter estimates

- lopss function value '

~ Akaike’s test guantity

- povariance matrix of parameter estimates

- comments preceeded by & double guote ¢ M)
- blank lines (not between parts of a polynomial
description).

see

1f there are several polynomials of the same typer they must

be enumerated increasingly from 1 on.

24

Specifics

Sample intervali? SAMPLE INTERVAL t s
where t is the sample interval in seconds (integeyr oy
real)

Polynomialst XPOLYNOMIAL)
QaE(n Qai + o @al ...+ o Qai)
1 1 2 Z2

wheare X € {a4ByCsDY¥S 3 = 192y.. or omitted
inlsizs.. £ D integers

- the leading power of @ and the parenthesis are
optional

-~ the multiplication signs are optional

- ci may be written in free formets i.e. 10s; 10.
and 1.0E1 are all treated as 410.0

- Ei is treated as o Qa0
i

~ Qail is treated as 1.00aid
- tewrms equal to zero may be omitted
—~ the order between the terms is not essential

~ & polynomial speecificatipn may be written -over
several lines: but there must not be any blank lines
or comment lines in between

—~ there must npot be two terms of the same order of &

- the maximum order of any polynomial is 25 + the
order of the time delay

- a8 C-polyhomial definition must be followed by a
lambda definition

Noise standard deviations LAMBDA A :
where A is the noise standard deviation (integer or
real)

Loss function value! LOSS FUNCTION v
where v is the wvalue of a 1loss function (integer or
reald

Akaike's test guantity?! AIC v
where v is a test quantity computed by some
identification routines

Initial values for the outputt
INITIAL VALUES FOR THE QUTPRUT
+ @3'—'1 + wan
yG y~i
cf. polynomial definitions
Standard deviations of parameter estimates:
UNCERTAINTIES
QﬁK*(S @Ai + 5 @Ai + l!_l)
1 1 2 2
cf. polynomial definitions

Covariance matrix of parameter estimates:

COVARIANCE MATRIX

€49 F42 " Cim

€24

cni cnm
blank line

C1m+1 cin

()
nm+1 N

25

26

Examplet
(This is a system file produced by the ML command)

BEGIN
DISCRETE MIBO TRANSFER FUNCTION

"MAXIMUM-LIKELIHOOD ESTIMATION OF ORDER 2
"FROM THE DATA FILE WRK

"INPUTC(S2: COLUMNC(EY 1
"OUTPUT: COLUMN 2

SAMPLE INTERVAL 1.00 8

APOLYNOMIAL
1.0000 @.—-0 - 1.34684 @a—1 + 0.45712 Qa2

BPOLYNOMIAL
Qa—-1%x(0.8534633 Qa-0 + 0.06235Z2 @a—1)

CPOLYNOMIAL
1.0000 @~—-0 + 0.00000 @.-1 + 0.00000 Qa=2

LAMBDA 0.97626 +— 3.78357E-02
LOBE FUNCTION 142.94
AIC 548.95

END

DISCRETE MIS0 TRANSFER FUNCTION
(polynomial file form)

In the polynomial image form described abover the
coefficient values for the polyrnomials were included in the
gymbolic text. This is the form used in Idpacs i.e. the
result from the identification commands may be listed
directly. In other program packages: the polynomials are
assumed directly available as polynomial files. The DISCRETE
MISO TRANSFER FUNCTION section should then have a slightly
different form. The keyvwords APOLYNOMIALs BPOLYNOMIAL etc.
should be followed by a name of a polyhomial files e.g.

AFPOLYNOMIAL aname
and the polynomial coefficients should be absent. A new

optional keyword AGGREG followed by the name of an aggregate
file for the polynomials may alsoc be used.

27

STATE SPACE REFPRESENTATION

The state space representation section allows the optional
inclusion of all signals found in Figure 4.5. Both
continugous time and discrete time systems can be used as
given by the headings

CONTINUOUS STATE SPACE REPRESENTATION
ar
DISCRETE STATE SPACE REPRESENTATION

In the lstter cases a definition of the sample interval in
seconds wmust be included:

S8AMPLE INTERVAL v S

The matrices of the state space representation are given
through the equations in symbolic form. First a keyword is
givent

DYNAMICS»
or
DYNAMICS, AGGREGATE: dynags

where the second form names the aggregate file where the
matrices may be found. The equations have the formi

a#®X + bu¥U + bwilW + bvs*V
e#¥ + duxl + dw#d + de*E
g*X + huxU + hw#id

DX/DT
Y
Z

[

The following rules applyt

a) For a discrete time representation DX/DT is replaced by
XNEW.

b)Y The first equation must always be present.
c) At least one of ¥ = or Z = must be present.

All matrix definitions need not be includeds in which case
the corresponding keyword is absent. A null matrix of
appropriate dimension is then assumed. l.e.» if there is no
bw matrixs #W is omitted. The rule is?i

d) Enough matrices must be included to be able to determine
the number of statess inputs and outputs.

Note that the distinction between e.g. Us Wy and V or
between ¥ and Z depends on the operation performed. Many
commands will interpret bus bws and bv as blocks of a single
B-matrin.

28

The initial state of the system may optionally be given by
(and should be included at the end of the dyhnamics
aggregate:

INITIAL STATE VECTOR: xoveco

Far linesr quadratic problemss a loss functions an extended
loss functions and a covariance function may be specified.
For their uses refer to the SBynpac commands OPTFB: PENLTs
and KALFI. They may optionally contain an aggregate
specifications given within sguare brackets below. Their
respective form isi

LOSS FUNCTION: [AGGREGATE: laggsl
@0t ghs @1: gly @123 g12s @2t g2

EXTENDED LOSS FUNCTION: [AGGREGATE: elagg:sl
E@D: eqls E@1: eqlsy EQ1Z2: egl12y EQZ2: eqgy
E@3: enqdsy EG4: eg4s EQSE egb

COVARIANCE FUNCTION, [AGGREGATRE: cofagsl
RO: r0s Ri: ris R12% »12: R2Z: r2

In all three cagesy a matrix that is not included will be
assumed zero.

Note im the use of aggregstess that matrices should be
included in the order shown aboves from the left to the
right.

29

POLYNOMIAL FORM

This representation resembles in many respects the DISBCRETE
MISO TRANSFER FUNCTIONs but is the representation used
throughout POLPAC. The required section heading is

CONTINUQOUS POLYNOMIAL FORM
ar
DISCRETE POLYNOMIAL FORM

In the latter case» the specification SAMPLE INTERVAL v 8§
must be included. The system equation is also here given on
symbolic form with an optional aggregate names

DYNAMICS L[AGGREGATE daggs]
axyY = b*U + bex*E + bwisht + bwZalz + ...

The polynomials &+ bs bes bwl ete. all have scalar
coefficients and bwils...sbe are optional. Note that the rcase
where only 8 and b are present gives the transfer function
representation of classical control theory. The inclusion of
several inputs W and E allows the formulation of
i

feedforward design and minimum wvariance controller design
problems.

The gsection allows the inclusion of the keyword FACTOR
TABLES. After this keyword: a series of comment liness
generated by the command POLEYB: may follow giving the
factored form of the polynomials.

30

5. REFERENCES

11 J. UHieslanders H. Elmgvisti Intrac — A Communication
Module for Interactive Programs ~ Language Manual.
Report TFRT-3149s Dept. of Automatic Controls Lund
Institute of Technology» Sweden.

21 J; Wieslander: lIdpac Commands — User's Guide.. Report
TFRT-3137s Dept. of Automatic Controls Lund Institute
vf Technology» SBweden. E

[31 J. Wieslander: Modpac Commands — User’s Guide. Report
TFRT-3158s Dept. of Automatic Controls Lund Institute
of Technologys Sweden.

[41 J. Wieslander: Synpac Commands — User's Guide. Report
TFRT-315%: Dept. of Automatic Controls Lund Institute
of Technology: Sweden.

