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OPERATOR FACTORIZATION AND OTHER ASPECTS OF THE ANALYSIS
OF LINEAR SYSTEMS.

Applications of control theory appear in many branches
of engineering, biology and economy. The basic questions
are the same, although different aspects may be empha-
sized. Control theory discusses how to manipulate a pro-
cess and how to describe the resulting behaviour. A sys-
tem is called static if the current behaviour depends
only on the current values of the control signals. For
dynamical systems it may depend also on old values. Cau-
sality implies that future control actions must not have

any influence on the present behaviour.

The aim of control is to use the available input signals
to make the system behave as well as possible in spite
of uncertainty and disturbances. A regulator determines

the input signals from measurements of the process.

The formulation of mathematical models for a system usu-
ally involves many simplifications made in order to re-
duce complexity. Linearization is fréequently used. Un-

certainty can be taken into account by using random va-
riables. The objective of the system is also formalized

in mathematical terms.

Models for Linear Dynamical Systems.

There are mainly two types of descriptions of dynamical
systems. If only the input-output behaviour is modelled
it is natural to talk about an external description. The
output at time t is then expressed as a weighted sum of
the values of the input at past times, i.e.




t
y(t) = f h(t,s)u(s)ds (&P

for continuous time and

t
y(t) = § h(t,s)uls) (2)

-0

for discrete time. The function h is called the weighting

function.

For many processes there exists much knowledge of the in-
ternal behaviour. Physical laws may govern the dynamics,
and it may be possible to define a number of variables,
the state, that summarizes the influence of the past. The
concept originates from classical mechanies, where posi-

tions and velocities are typical state variables.

First order linear differential or difference equations
describing the change of the state are natural models.
The measurements are assumed to be linear combinations
of the state variables and the inputs. Vector and matrix
notation is widely used. A continuous time system could

thus be written

% x(t) = Ax(t) + Bu(t)  x(tg) = x;

(3)
y(t) = Cx(t) + Dult)
and correspondingly in the discrete time case:
x(t+1) = ¢x(t) + Tu(t) x(tgy) = x4
5 (1)

y{t) = ex(t) + Du(t)

It is possible to obtain an input-output description



from all internal descriptions like (3) and (4). In fact,
the models (1) and (2) are somewhat more general since it
may not be possible to find a finite number of state va-

riables.

The external model is just a linear map, an operator, that
relates output signals to the input signals. If there is
also an internal state variable description, it further

specifies the operator.

Two Problems.

Having some noisy measurements it is a natural problem
to try to describe the behaviour of a system, for in-
stance by estimating the state. A good estimate should
be close to the true value. It is therefore reasonable
that the estimation error should have zero mean value
and minimal variance. Another problem is to find inputs
to drive a system back to a desired state, for instance
zero, after some disturbance. For many linear systems
there ‘is an input signal, that makes the state zero in
a very short time at the expense of control energy. A
measure is usually defined that balances the deviation
at some final time, tqs against the required control
energy. The behaviour during the trajectory may also be
taken into account. The most common loss function is the

quadratic form

t

T o
J o= x (1 )Qpx(ty) + [ x (£)Qx(t)dt +
to
t
o
+ [ u (£)Q,ult)dt (5)

o




for continuous time and for discrete time

Ty

T
1w (t)Quult) (8)
=t

t
L

J o= ] x(0)Qx(t) +
=t 0

t=ty t

where QO’ Q1 and Q2 are symmetric and positive semi-de-
finite. In order to be able to penalize infinite values

of the inputs it is usually assumed that Q, > a.

Methods for Solution.

Around 1940 Wiener [11] and Kolmogorov [8] solved these
two problems using the weighting function representation.
Wiener used calculus of variations. He found that the
problem could be reduced to the solution of an integral
equation, the Wiener-Hopf equation. Wiener solved the
equation by funetion theoretic methods. In simple cases
this reduces to the problem of factorizing a polynomial
into a part with zeroes in the left half-plane and an-—
other part with zeroces in the right half-plane only (spect-
ral factorization). Twenty years later Bellman [2] and
Kalman [6] etc. applied dynamic programming and the Ha-
milton-Jacobi equation to the state variable representa-
tion and found a formally and computationally different
approach. The problem reduced to an initial value prob-
lem for an ordinary nonlinear differential equation, the

Riccati equation.

Tn this thesis the causal linear operator representation
is used to formulate the two linear problems discussed
above. The solution is obtained by factorizing certain
operators in order to solve operator equations corre-

sponding to the Wiener-Hopf equation. The state variable



description is utilized, and the Riccati equation gives

the factorization directly in the time domain.
The thesis is composed of the following publications:

I. The Use of Operator Factorization for Linear Con-
trol and Estimation. Automatica 9 pp 623-31 (1973).

ITI. Inversion of a Dynamical System by an Operator
Identity. Automatica 8 pp 361-362 (1972).

III. A New Proof and an Adjeint Filter Interpretation
for Linear Discrete Time Smoothing. Report 7330,
Lund Institute of Technology, Division of Automa-

tic Control.

IV. Xalman Filters for Processes with Unknown Initial
Values. Report 7332, Lund Institute of Technology,

Division of Automatic Control.

V. Numerical Solution of ATS + SA + Q = 0. Information
Sciences 4 pp 35-50 (1972).

The first three parts are devoted to the operator app-
roach to the control and estimation problems. Part I
treats the continuous time problems, part II deals with
the inversion of dynamical systems and part III demon-
strates the operator technique for discrete time applied

to the state estimation problem.

One problem of the linear theory that does not seem to
have a satisfactory solution is estimation for proces-
ses with unknown initial staté;'This problem is discussed
in part IV.

The application of the linear theory to any realistic




problem requires substantial numerical computation. Since
the different approaches to the linear problem also lead
to different computational methods it would be interest-
ing to analyse the numerical aspects. No complete study
has been made. Part V discusses a simplified problem,

which contains many of the more general aspects.

Operator Notation.

Estimation and optimization problems are easy to solve

for static systems. Dynamical systems can in fact also

be considered as static systems in spaces of much larger
dimensions. The discrete time systems on finite intervals,
say [0,t1], can equivalently be analyzed using vectors
like

x(0)
x(t)

x(t1)

The system (4) in weighting function form is:

t-1

x(t) = ¢(t,0)x0 + 7 ¢lt,s+1)rls)uls)
s=0

y(t) = ex(t) + Du(t)

It can also be written as

¥y = 8x + Du



using the block matrices:

T(0)
1 0 0
L= I=
0
[4Ct,51) T 0 i Flt,)
M6(0) T
0
g = g - $(1,0)
0 :
L 6(ty) L6(ty,0)
(o)
0
D =
= 0
D(t,)

The structure of the matrices should be noted. The mat-
rix L is lower block triangular, a consequence of causa-
lity. For time constant ¢ it also has a band structure.
The matrices I, § and D are block diagonal. The signals
u, x and y could be considered to be functions on the
discrete time interval [0,t;] instead of being vectors.
The block matrices then correspond to linear operators.

Introducing appropriate block diagonal matrices Q4 and
Q, the loss function (6) can be written as

J = x7Qux + uQ,u (8)
If the expression for x is inserted into (8) then

T T T TT.T TT ‘
J = w(Qtr L Q LIy + 2uITL7Q,8%, + X8 Q8% (9)

The dynamic optimization problem is thus rewritten as
a static problem. The solution is easily obtained as




u = - (Qu+I"L QL) I'LTQ,8% (10)

provided that the inverse exists.

For the estimation problem let u = 0 in (7) and add
white noise terms v and e with block diagonal covariance
matrices 31 and 32, R2 > 0. Assume also that Xg is a random
vector with covariance matrix RO' Thus

X = gxg + Lv

(1)
¥y T ex +e

which is also a static problem. Assume for simplicity

that all mean values are zero. The minimal variance 1li-
near estimate x of x based on y, i.e. y(t), t € [0,t1],
can be expressed in terms of covariance matrices by the

projection theorem

y 1y (12)

1%>

-1
= R__R = R_s (@R
xy Y ¥ z

provided that the matrix RX is invertible.

Both optimization and estimation are thus solved as sta-
tic problems in larger spaces. In fact, many problems in
linear systems theory can be explained easily in this
setting. Typical examples are controllability, observa-
bility and invertibility.

The continuous time problems are conceptually more dif-
ficult. Finite dimensional spaces are no 1onger suffi-
cient. Vectors indexed by an interval of the real line
could be used, but the function space interpretation is
the most natural. The vector - matrix analogy is useful
for intuition, so one can speak about triangular and

diagonal operators.




The continuous time system description is introduced
in part I. In analogy with (7) the system (3) is writ-
ten

3
n
[ta]
»
o
+
nw
les]
Ic

[
H
(@]
b
+
w)
c

It is shown that the adjoints E* and g* can be described
by the dual system, and that the operator L is only left
invertible. The analogues of (10) and (12) are also shown.
Systems with nonsingular D are invertible dynamical sys-
tems, and in part II it is shown how the inverse can be
obtained using operators. Let Xq be zero, then the in-

verse system 1is
u = (CLB+D) 'y = (D7 '-D7'cMBD Dy (13)
x = LBu = LB(CLB+D) 'y = MBD 'y (14)

where M is a new triangular operator. The result corre-
sponds to an elementary matrix lemma. In parts I and III

frequent use is made of this inversion lemma.

The advantage of reformulating the problems as static
problems is the simple formal solutions (10) and (12).
The drawback is that the recursive, dynamic nature of
the solutions is lost. A fundamental idea of this the-
sis is to use the static formulation with its simple
formal solution and then provide methods by which re-

cursive equations for the solution can be obtained.
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Solution Using Operator Factorization.

Both the estimation and the optimization problems require
the solution of a linear equation (12) or (10). The usu-
al way of solving such equations in finite spaces is by
Gauss elimination, i.e. triangularization and recursive

solution of a backward and a forward system.

In the discrete time the number of operations required

for Gauss elimination would be of the order of [n(t1-t0)]3.
The structure of the two operators to invert in (12) and
(10) for the estimation and control problems can, however,
be exploited to reduce the computations. For example if

Ry =I,R, =1, 0=1,C=1I,Ry=0, then R is given by

R =1I+LL" (15)
A
both in the discrete and continuous time cases., A symmetric

factorization of R_ into lower and upper triangular opera-
tors can be obtained using the Riccati equation. Ry can be

written

R = I + LL* = (I+LP)(I+PL™) (16)

17)

provided that P is the diagonal operator with P(t) sa-
tisfying the continuous or discrete time Riccati equa-
tion with zero initial value. These identities and their

generalizations are shown in parts I and III.

The continuous time solution in part I will now be demon-

strated. Using P the operator ny is



"

so that

R_rRV -
Xy ¥ - s T

Inversion of dynamical systems gives

(z+1p)” "' = I - MP, LP(I+LP)"' = MP, L*(I+PL®)"! = M*

where M is a new lower triangular operator like L. Thus

nyR;1 = (LP+PX*)(I-MP) = MP + PM"(I-MP) (18)

gives the so called smoothing estimate. The discrete
time estimate is given in part III. Eq. (18) represents
causal and anticausal integral operators. Using forward
and backward initial value differential equations it can
be reformulated as by Bryson and Frazier [3]. It is also
interesting that the operator MP gives the filter esti-
mate, i.e. the estimate of x(t) using y(s) only for sst.

This corresponds to the forward, equation.

Instead of a high dimensional Gauss elimination, a simp-
ler factorization and some dynamical system inversions
directly give the formulas used in practice. The matrix
Riccati equation with the dimension of the state plays
the central role of the factorization. It is thus found
how the internal structure, which is lost in the input
output formulation, can be exploited to obtain recursive

algorithms.

The continuous time regulator problem is treated in part
I, including also restricted end point, deterministic
disturbance known in advance and disturbances described

by stochastic ﬁrocesses.
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Earlier Work.

The operator notation, where the signals are considered as
time functions, has been used before, e.g. by Bellman [1]
and Kailath [5], but mostly descriptively. The connection
between Riccati equations and Fredholm and Wiener-Hopf in-
tegral equations was shown by the work by Kalman and Bucy
[8] and has been applied primarily in the field of two point
boundary value problems by Schumitsky [10] for the factori-
zation of Fredholm resolvents. Gohberg and Krein [41 have
given an important theorem on the existence and uniqueness
of such factorizations also for asymmetric problems. Kailath
[5] has applied the resolvent identity to signal smoothing,
i.e. estimation of (y-é&), in his innovations approach to the
estimation problem. Using the inverse of (16) in this way
there are difficulties when C#I opr Ry#0. Some extensions of
the solutions discussed here to infinite dimensional state
spaces  are possible. The extension to infinite time horizon
also requires some caution. Stable systems can be handled
without much extra effort. The factorization (16) directly
corresponds to spectral factorization of the corresponding
Laplace transforms. The system I+LP is stable and has a

stable inverse.

Processes With Unknown Initial Values.

In the well-established field of linear quadratic control
the estimation problem for a system with unknown initial
state has not been satisfactorily solved. This problem 1is
treated in part IV. The problem is the dual of optimal con-
trol for fixed end point. Intuitively speaking a "dead beat
filter" which eliminates the effect of the unknown initial
value should be applied. A special case was discussed early
by Kalman [7] in connection with observability. In practice
one usually solves the ordinary recursive equations starting
with a large covariance. This method is numerically ill-con-

ditioned. In part IV the discrete time optimal filter is ob-
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tained by letting the initial covariance go to infinity.
Two Riccati equations are then obtained, one for the error
covariance and one for updating the unobservable subspace.
A different type of solution obtained by duality is sugges-

ted for the continuous time case.

Numerical Aspects.

The numerical aspects of the problems discussed above are
important for economic realization on digital computers,
and by no means fully understood. One example, treated in
part V, is the problem of solving S in the simple nxn mat-
rix equation

ATs + sa + Q=0 (19)

This fundamental equation is often called the Lyapunov
equation, since it can be used to construct Lyapunov func-
tions. It also arises when evaluating steady state loss
functions in linear control and covariance matrices for
dynamical systems. More than ten different methods have
been proposed emanating both from internal and external
system descriptions. Part V gives a survey and classifies
them into direct methods, transformation methods and ite-
rative methods. The nine algorithms that seem to be the
best ones are coded and tested on a batch of representa-
tive A and Q matrices. The direct methods which convert
(19) to a n(n+1)/2 dimensional linear system thereby loos-
ing much structure, are good for small problems, say n<7,
but unfeasible at present stage for large problems because
of large core requirement and long computing time. The ite-
ration methods are the best for larger systems. The required
computing time dépends also on the numerical condition of
the equation. The fastest algorithm is a transformation me-
thod but the accuracy is too bad. If the A matrix is in any
special form like Jordan or Companion form or if the corre-

sponding transformations would be of any value in the fur-




(11
[2]

{31
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{51
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ther analysis of a problem, then it should be seriously
considered to use a method that takes advantage of this

structure.
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Brief Paper

The Use of Operator Factorization for Linear Control and Estimation*

L’emploi de Factorisation d’Opérateur pour le Contréle Linéaire et I’Estimation

Die Benutzung der Operator-Faktorisierung zur linearen Steuerung und
Schétzung

Ncrnonbzopanue omepaTopHOH (akTopysamuu [Uld JHHEHHOTO YNpaBieHUs W
OLICHKHU

PER HAGANDER{

Summary—The linear filtering, prediction and smoothing
problems as well as the linear quadratic control problems
can very generally be formulated as operator equations using
basic linear algebra.

The equations are of Fredholm type II, and they are
difficult to solve directly.

It is shown how the operator can be factorized into two
Volterra operators using a matrix Riccati equation. Recur-
sive solution of these triangular operator equations is then
obtained by two initial value differential equations.

The proofs of smoothing and optimal control under
known disturbances are in this way especially clear and
simple.

1. Introduction

THERE are many different ways to approach the linear esti-
mation and control problems. In the original estimation
formulation, due to Wiener, the problems were stated as
minimization of quadratic functionals in the Lj-space. It
was shown by Wiener that the minimization led directly to a
linear integral equation for the weighting function or the
transfer function of the optimal filter, the so-called Wiener—
Hopf equation.

There are no intrinsic difficulties involved in extending this
analysis to the time varying case. This leads to a time varying
version of the Wiener—Hopf equation.

The most serious difficulty when trying to solve the
Wiener—Hopf equation is that the problem is basically
infinite dimensional. As has been shown by Bellman,
Kalman and others the linear quadratic problems are sig-
nificantly simplified for systems governed by ordinary
differential equations. In such cases the difficulties can be
reduced by use of initial value problems for some ordinary
differential equations, Riccati equations, and the solutions
to all relevant problems can be written in terms of solutions
to the Riccati equation. This approach is for instance used
in[1, 3, 4, 8-12, 16]. The problems associated with ordinary
differential equations can of course easily be formulated as
integral equations, the kernels of which can be expressed in
terms of solutions to ordinary differential equations.

In this paper the integral equations, in more general form,
are obtained by operator formulation in function spaces and
basic linear algebra lemmas, almost the Wiener approach.

* Received 5 June 1972; Revised 5 December 1972, The
original version of this paper was not presented at any IFAC
meeting. It was recommended for publication in revised
form by Associate Editor B. D. O. Anderson.

t The author is with the Division of Automatic Control,
Lund Institute of Technology, Lund, Sweden.

The Riccati equation is then used to decompose the operators
of the resulting Fredholm equations into causal and anti-
causal parts, so that the solutions are obtained in the usual
form as differential equations. Thus the equivalence is
displayed between the two approaches, and the role of the
Riccati equation is emphasized. It also gives neat alternative
proofs of the results in linear estimation and control in-
cluding the smoothing case and optimal control under
known disturbances.

The operator notation has been used for instance by
BELLMAN [2] and MEE [14], and the correspondence between
Riccati equations and Fredholm resolvents is explored by
Kavasa [7], ScHumiTzky [15] and KaiLata [8-11], who
also in {10] indicated the operator problems solved in this
paper. The decomposition into causal and anticausal part
has been done frequently by other methods and is in fact
the spectral factorization of the Wiener theory, Kailath has
labelled it the innovations approach of the estimation
problems [8, 9, 11].

The disposition of the paper is such that the beginning of
the second section is devoted to the operator notation and
some useful results concerning these operators before the
problems are formulated and written in the new notation.
The operator factorization, the main result, is presented in
Section 3. In the fourth section this main result is used to
give the solutions of the stated problems.

2. . Definitions and formulation of the problems

Notation, scalar products and adjoints. Linear control
problems are often formulated using differential equations
of first order, the state equations. The state at time 7 can be
regarded as the value x(¢) of a function x on the interval
[to, £1]. Let this function be an element of the function space
X.

Introduce a scalar product and a norm by

ty
X'y =J‘ xT(Hy(Hdt
to
2=
The solution x to the differential equation

X=Ax+ Bu
x(t0)=x0

X(O)= (1, £,)%,+ J @1, s)Bu(s)ds

t
to

623
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that is the function x is a linear function of the vector x, and
the function u.
Define the operators g, L and B giving

x=gx,+LBu. 2.1)

Thus g is an operator from the state space R” into X, B is
an operator from a space of input functions to X and L is
an operator in X,

Scalar products introduce adjoint operators, so that
x=L*y means

>€(t)=J‘t1 ¢"(s, DY(s)ds.

t
Introduce also the operators /i:R¥— X; x=hb by
x(N=¢"(t, Db
T,: X—R" vy T,x=x(t,) and
T1 : X"’R” by Tlx =x(t1).

Let the following calculation serve as one example of
possible operator manipulations.

Example. Express g and / in terms of L, 7o and Ty. The
scalar product in Rr gives

ty
g*x-a =x-ga=J xT()P(t, t,)adt=
to

(J i (1, ta)x(t)dt> Ta=T,L*xa.

Thus g*=T7,L* and correspondingly i*=T1L.

Inversion. No inverse exists to the operator L. The
d
operatorg; — A
however, is a left hand inverse:

(S —A>L=I

dt ;

L(g ——A>x=x
de

is only true if x(#,)=0, in fact

but

d
U S—a)=1—gT. 2.2
(dt ) g @)

Correspondingly

< ~4 —AT>L*=I
dr

L*( - i'l_—AT> =I—hT,.

and

dt

Inversion of a dynamical system. The inverse system of

{x=Ax+Bu, x(19)=0 (2.3)

y=Cx+Du

or

y=(CLB+D)u
exists for a nonsingular D and gives according to {6]

u=(CLB+D)™ 'y
=(D~'=D~'CMBD™V)y (2.4)

where M fulfils

{i—(A—BD*C)}M:I.
dt

Space of stochastic processes. In order to treat the
stochastic problems the space X must be extended to contain
stochastic processes generated by linear Wiener process
driven differentials, cf. [16], like

dx=Axdt+ Budt+dv; x(t,)=x,.

The operator L should then be replaced by L defined by
the stochastic Ito integral

el 2(t)= J " b, $)dx(s)= j bt s)(Ax

+Bu)ds+J‘t o(t, 5)dov(s). (2.5)

Also other dot operators will appear in the sequel.

Note that the usual deterministic functions can be
regarded as special cases of stochastic processes. This
motivates the need for a pure integration operator, in the
subspace of deterministic functions:

z:jx; z(t)=Jt x(s)ds (2.6)

with the adjoint

2= J " 2(t)= f " x(5)ds

z=LJ'x=Lx.

so that

Define also the scalar product in the space of stochastic
processes

Xy= EJ " xT(Hy(t)dt Q.7

to

which is consistent with the scalar product in the deter-
ministic subspace. Notice that the processes are not required
to have zero mean function.

It is possible to show that interchanges of integration
order are allowed also in the stochastic space, a fact that is
used frequently.

Opitmal control problem. Reformulate the problem to
minimize

J=J\ ) (xTQx+u"Qu)dt+xT(1)Qx(t)  (2.8)
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under the constraint
X=Ax+Bu, x(t,)=x, 2.9

using the introduced notation.
Define operators Q; and Q; suitably, then

J=x0x+uQu+T;xQ,Tix
x=gx,+ LBu

or

J=(gx,+LBu) Q,(gx,+ LBu)+u-Q,u

+ Ty(gx,+ LBu)-Q,T,(9x,+ LBu)

=u(Q,+BY(L*Q,L+hQ,h*)B)u+

+2u-BY(L*Q, g+ 1Q,T(g)x,

+ %, (T,L*Q 9 + T,hQ, T 9)x,
=wPu+2ur+ec.

The minimizing « is now easily obtained by completing
squares. It is then necessary to solve

Pu=—r (2.10)

where
P=Q,+BYL*Q,L+hQ,h*)B.

Equation (2.10) corresponds to a Fredholm II integral
equation.

Using the technique of Section 3, P can be factorized into
a causal and an anticausal part, and (2.10) can be solved
recursively by differential equations.

Linear estimation. Also the estimation problems of linear
systems can be handled with the operator technique.
Consider

{dx= Axdt+do, x(t,)=x, 2.11)

dy=Cxdt+de, y(t,)=0

where x, has zero mean value, covariance Ro, and where v
and e are independent, zero mean, Wiener processes, inde-
pendent of x,, with incremental covariance R;df and R,d:
respectively. It is also assumed that R, is nonsingular.
Rewrite

x=Lv+gx, (2.12)

according to (2.5).
Now find the best linear estimate % of x in the minimum
variance sense. That is, find a linear operator X with

£=Ky (2.13)

meaning
()= J "k, s)dy(s)=J‘tl k(t, )Cx(s)ds

+ J " k(t, $)de(s)

such that the variance of ¥i(#)=x;(t)— %:(¢) is minimized for
all 7 and ¢
Notice that this is the smoothing problem. The infor-

mation available to form % is dy (or ») during the interval

[#6, t1]. This includes the filter problem as a special case.
Prediction can be handled with only minor extensions in the
following.

Introduce a Hilbert space of one dimensional, zero mean
stochastic variables with the scalar product

<¢, n>=cov(¢, 1)

and apply the projection theorem, e.g. [13, p. 51], for each
component xi(z) at all times ¢. Observe that they have zero
mean. Thus there exists a unique best estimator £;(z) in the
closure of the linear subspace spanned by y;(s), each com-
ponent at each time regarded as a one dimensional stochastic
variable. Moreover,
<KD, y(5)>=0 Vt,5,1i,].

Now assume that % really belongs to the subspace, that is
can be generated by a K, a fact that will be verified in
Section 4. Then the orthogonality condition results in the

Fredholm equation corresponding to the Wiener-Hopf
equation of the filtering case,

f
Folt, 8)= J~ k(t, ©)dry(z, s) Vi,
1=t
or

R,,=KR,. (2.14)

The covariance operators for the system (2.12) are

R,,= {LRIL*+gRog*}CTJ’T

(- Ed
Ry=J C{LR,L* +gRag*}CTJ + JRZJ

with | defined by (2+6). (2.6)
Thus from (2.14)
{LR,L*+gR,g*}CT =K[C{LR,L*
+gR,g*}ICT+R,] (2.15)

with a structure similar to (2.10).
Separation. Regard a linear stochastic system

dx=Axdt+ Budt+do, x(¢,)=x,
dy=Cxdt+de, y(,)=0

where v and e are defined as in (2.11). x, has mean value m
and covariance R,.
Rewritten in operator notation this gives

x=LBu+gx,+Lv (2.16)

y =J. C[LBu+gx,+Lv] +e.

Now define the loss to be minimized under the constraint
(2.16)

J =EJ " [P0 () + 4T (H)Qu(D)]dt
’ + ExT(t)Q,x(t)

or with scalar products between stochastic processes as (2.7)

J=xQx+uQu+TixQ,Tx.
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Rewrite using (2.16) and adjoint operators

J=u[Q,+B(L*Q,L+hQ,h*)Blu
+2u-BT[(L*Q,g9 +hQ,T,g)x,
+(L*Q L +hQ,TiL)v]
+Lv'Q Lv+ T Lv-Q, Ty Lo
+2x,[g*Q, L+ T,hQ,T,L]v

+x,[9%Q19+ T,hQ, Tig]x,. (2.17)

In order to minimize with respect to u, integral equations of
the same kind as (2.10) and (2.15) have to be solved.

3. Main result, factorization using the Riccati equation

The operators in (2.10), (2.15) and (2.17), which have to
be inverted, are of the same structure. When neglecting
boundary values, R, or Q,, they consist of the sum of one
“diagonal” operator and the product of a ‘‘triangular”,
Volterra, operator and its adjoint,

Consider the simplified equation

(I+LL¥)x=y. (3.1)

In analogy with the decomposition idea of linear algebraic
equations (3.1) could be solved by recursions, differential
equations, if (I4+LL*) were rewritten as a product of a
“triangular” operator and its adjoint. For instance, try to
find a “diagonal” operator P, corresponding to mutli-
plication with a symmetric matrix P(¢), such that

I+LL*=(+LP)I+LP)* (3.2)
or
LL*=LP+PL*+LPPL¥ (3.3)
and using
L( i —A > =I—gT,
dt
and

( ~i—AT>L*=I
dt

+PP—I]L*+gT,,PL*.

This is certainly true for P such that

0=£P—Pi—PAT—AP+PP—I (3.4
dt dt

and

0="T,P. (3.5)

Since
2 Pyt = P(O)x(0)+ P(5) S x(t)
& ar

an operator P fulfilling (3.4) and (3.5) must have P(¢) as the
solution to the matrix Riccati equation

P(1)=AP(f) + P( AT + I — P()P(f)
P(t,)=0. (3.6)

This can be summarized into the main theorem:

Theorem. The operator I4+LL* operating in a space of
Sfunctions on [t,, 11} with L defined by (2.1) can be factorized
into

I+LL*=(I+LP)(I+LP)*

where the operator P means multiplication with the sym-
metric solution P(t) of the matrix Riccati equation (3.6).1

Themain theorem can now be generalized, giving the fact-
orizations shown in Table 1 together with their associated,
Riccati equations. First boundary values, I, are introduced
then R;, Ry and R, or Qz, Q1 and Q,, and finally the
rectangular matrix C, or B. This gives formulas (7) and (8),
that solve the estimation and control problems, as will be
shown in the next section.

TABLE 1. OPERATOR FACTORIZATION USING RICCATI EQUATIONS

() I+LL*=(I+LP)I+LP)*

@) I+L*L=(+SLy*(I+SL)

(3) I+LL*+gg*=(I+LPYI+LP)*

(@) I[+L*L+hh*=(I+SLy*(I+SL)

(5) Ra+LRiL*+gRog*=(Ro+LP)R2 (R, +LP)*

(6) Q2+L*Q1L+hQoh*=(Q2+SLY* Q2 =2+ SL)

(7) Rp+C(LRiL*+gRog*)CT=(R2+CLPCT)R; (R4 CLPCT)*

(8) Q2+BT(L*Q1L+hQoh*)B=(Q2+BTSLB)Y* 03 1(Q>+BTSLB)

9 Mp+LiMLE=(M2+LiR)M>~1(M2+RLY)

P=AP+PAT+I—PP P(1)=0
—S=ATS+SA+I—SS S(t1)=0
P=AP+PAT+I—PP P(to)=1
—S=ATS+SA+I—SS S(t1)=I
P=AP+PAT+R;—PR,~'P P(t))=Ro
—S=ATS+SA+Q1—850>~18 S(t)=0Qo
P=AP4+PAT+R,—PCTR,"1CP  P(t)=R,
~S=ATS+SA+0Q1~SBQ;1BTS  S(t)=Qo
R=AR+RAT»+M;—RM,-1R R(t:)=0
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The solutions to the Riccati equations (1)-(8) exist
uniquely as long as R1<0 and R,>0, or 01=<0 0,>0,
and with suitable restrictions on the time variation of the
matrices 4, C, Ry and R», or the corresponding B, O, 0>.
The asymmetric equation (9) is still a further generalization,
but the solution R of the Riccati equation might diverge
in finite time, so the factorization is only possible for time
intervals where the solution exists.

For discrete time systems exactly the same program might
be performed.

Let L be defined by x=Lz

t—1
x()= ;} o1, s+ 1)z(s)

and define suitable scalar products.
Then the main theorem corresponds to

(I +LL*)=(I+LoP)P+I)~(I+LpP)*
with P(¢) from
Pt+1D=¢(t+1, DPOPT(t+1, )+1
—¢(t+1, DPOLPO+T]T POt +1, 1)
P(t,)=0.

The generalizations are done correspondingly.

It is also interesting to note the connections with spectral
factorization and transfer functions. In the frequency
domain L corresponds to G(s)=[sI—A]~1, L* to GT(—s)
=[—sI—AT] -1, and the operations are just multiplication
of transforms.

Spectral factorization yields

[I+G(s)GT(=9)]=[IT+G(s)G"(—s)]*[I
+G()G(=9)]"

where the causal operator [[+G(s)GT(—s)] * corresponds to
[I+4LP] in the time domain.

For discrete time systems the z-transform gives the same
analogy.

4. Alternative proofs for the linear estimation and control
problems

The solutions to the problems formulated in Section 2 are
now easy consequences of the factorization theorem.

Optimization.

Corollary 1. The criterion (2.8) is minimized under the
constraints (2.9) by the control

u=—0Q;'B"Sx 4.1

where S(t) is the solution to equation (8) of Table 1, giving
the closed loop performance

(

and the loss

d

% (4.2)

—A+BQ;13TS>x=0

Tx=x,

J=x,8(,)x,.
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Proof. Regard equation (2.10). The factorization 8 of
Table 1 gives

P=0,+BT(LQ,L*+hQ,h*)B
=(Q,+B"SLB)*Q;'(Q,+B"SLB)
r=B"[L*Q,g+hQ,Tig]x,
=(Q,+B'SLB)*Q; 'BTSygx,
and

T,[L*Q19+1Q,T,g]=T,(Sg + L*SBQ; ' B'Sg).

Both the dynamic system (Q.+BTSLB) and its adjoint
are invertible since @, is regular. Thus

P '+=(Q,+BTSLB)"'B"Sgx,
and
J=+P 'r)Pu+P '¥)—rP r+e
=[(Q, +B"SLB)u+B"Sgx,]-0; '[(Q,
+BTSLB)u+ B"Sgx,]—B"Sgx,Q; 'B"Sgx,
+x,T,(Sg +L*SBQ; ' BTSg)x,
or
J=(Q,u-+B"Sx)-Q;*(Q,u+B"Sx)
+x, T,8g%,=(u+ Q3 " B"Sx) Q,(u
+05 *BTSx) +x,-S(1,)x,

J is certainly minimized for
—1pTQy
u+Q; 'B'Sx=0.0

Now it is also simple to minimize J under the restriction
that linear combinations of the final state are fixed:

Nx(t,)=b. 4.3)

Introduce s and xy, the solution of the free end point
problem

up=—P" lp= —(Q,+B*SLB) " 'B"Sgx,
—Q;'B"Sx,

and x7 satisfies the homogenous equation (4.2).
Define v by

v=u+Q; 'BTSx=u—u,+Q; 'B"S(x—x,)
=(I+Q3'BTSLB)(u—u,)
and thus

x=LB(u—uy)+x,=LB(I+ 0;'BTSLB) v

-1
+xf=<%-A+BQ2’1BTS> Bo+x,.
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Let

-1
U=NT1<(%—A+BQ§1BTS> B

and
y=b—NTyx,. (4.4)
Then the constraint (4.3) can be expressed by

Uv=y
and the loss (2.8) is

J= U'Q20+xo's(t0)xa'

When UQ351U* is invertible, a well-known lemma [3]
says that the minimal J

J=y(UQz UM ™ y+x,S(1,)x,
is obtained for
v=0; ' UNUQ; ' U*) 1y.

Introduce the fundamental matrix W(¢, s) for (4.2) then

fy
W= UQZ_IU*-——NJ Y(t,, s)BQ; 'BT¥(t,,s)
to
dsNT, (4.5)

where the integral is the controllability Gramian of the
closed loop system (4.2),
and

(=05 'BTWI(t,, HNTW 1y,

Summarize this in
Corollary 2. The criterion (2.8) is minimized under the
constraints (2.9) and (4.3) by the control
u=-—Q;'B"Sx+Q; B¢

where & is given by

dt

d
—— —AT+SBQ2"1BT>€=0
T1€=NTW_1y

(4.6)

and y and W defined by (4.4) and (4.5). The closed loop per-
Jformance is described by

d
[ <Et —A+BQ2_1BTS>x=BQz_lBT€
i (4.7)

Tx=x,
and the loss is
J=x,8(t,)x,+y W™ 1y.0

Remark. Tt is interesting to notice how the solution
consists of a factorization into one causal part (4.7) and one
anticausal part (4.6). The latter vanishes when there are
no restrictions on the final state.

Another simple extension of Corollary 1 is to let the
system (2.9) be corrupted by a known deterministic dis-
turbance w so that [1]

X=Ax+Bu+w, x(t,)=x, 4.8)
or

x=gx,+LBu+ Lw.
Thus the criterion (2.8) gives
J=u(Q,+BY(L*Q,L+hQ,h*)B)u
+2u-BT{(L*Q19 + hQ,T,9)x,+(L*Q,L
+hQ,h")w} + o (L*Q, L+ hQ,h*)w
+2x,(T,L*Qs L+ T,hQ,h )+ x,(T,1*Q1 g

+T,hQ, T g)x,=u-Pu+2ug+d. (4.9)
Factorize P and ¢ using equation (8) of Table 1,
P=Q,+BY(L*Q,L+hQ,h*)B=(Q,
+BTSLB)*Q; '(Q,+B"SLB)
q=B"{(L*Qyg
+01Q,Tyg)x, +(L*Q: L+hQ.h")w} =(Q;
+BTSLB)*Q; *B"S(Lw +gx,)+BTL*Sw

and using that P is composed of two invertible dynami cal
systems and thus invertible

J=(u+P 1g)Pu+P 'q)—qP 'q+d
which is certainly minimized with respect to u for
u=-p~'q=—(Q ,+B'SLB)"{B"S(Lw+gx,)
+0,(0, -I—BTL*SB)— 1BTL*SQ)}.
But using an inversion lemma similar to (2.4)

(0, +BTL*SB)‘1BTL*=Q2“1BT< - % —AT

-1
+ SBQ;‘BT) )
Introduce # by

( - di—AT+SBleBT>;1=Sw (4.10)
t

n(t)=0
then
(Q,+ BTSLB)U = —BTS (TLw +gx,)+ BT1]
or using (4.8)
u=—05'BT(Sx+p).
This can now be summarized in

Corollary 3. The criterion (2.8) is minimized under the
constraint (4.8) by the control

u=—0; 'BT(Sx+n)
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where n is defined by (4.10).
The closed loop performance is described by

<_§} _.A_{.BQZ"lBTS)x:a)—BQ{lBTﬂ 4.11)

Tx=x,0

Remark. Notice how the solution consists of a causal
part (4.11) and an anticausal part (4.10). The latter vanished
in Corollary 1. The control obviously contains feed forward.

Estimation. The smoothing estimate of (2.11) given by
(2.13) and (2.15), is solved using equation (7) of Table 1.

Corollary 4. The smoothing estimate X(t|ty) for the
system (2}1) is obtained by first calculating the filtering
estimate x(t|t) from the information available at time t

d2(1]f)=(A—PCTR; 1O)%(1])dt + PCTR; 'dy(1)
£(t,]t,)=0. (4.12)

The innovations dy(t)=dy(r)—Cx (t/t)dt during [t, 1] are
then calculated by integrating (4.12) up to t5.
The adjoint equation

J’ —di(t)=(A—PCTR; *C)T A(f)ds
+CTR; dj(1)
1 M) =0 (4.13)

is solved from t| and backwards and finally
2(t1t) = £(t|D) + P(OAQD). (4.14)

Proof. Rewrite (2.15) using equation (7) of Table 1.
C(LR,L*+gR,g*)CT+R,=(R,
+CLPCT)R; (R, + CLPCT)*
(LR,L*+gR,g*)CT=PL*CT + LPC"R; (R,
+CLPCT)*,

Notice that both (Rp+CLPCT) and the adjoint system
are invertible since R, is invertible! Thus

K =[LPCT+PL*C"(R,+CPL*C")"'R,](R,
+CLPCT)™?

Introduce

K;=LPC'(R,+ CLPC") '= <(% —4

-1
+PCTR;1C> PCTR;'  (4.15)

where the last equality is obtained by an inversion lemma
similar to (2.4). Notice that T1L*=0 giving T"K;=T1K,
and X;(t,) defined by the stochastic integral

is thus the filter estimate of x(7y).

Similar to (4.15) and (2.4)

d

24T
dt

L*CT(R,+ CPL*CT)" 'R, = { -

-1
+cTR;1cp] cT

and
(R2+CLPCT)“1=R;1—Rz—lc(c%—A
\——1
+PCTR;1C) PCTRZ~1
giving
K:Kf+P[ 4y
dt

-1
+CTR2‘1CP] C'R;'[I-CK,].
Finally define A so that
£=Ky=K,y+Pi=%;+PJ

which is fulfilled for A according to the adjoint dynamics
(4.13).03

Remark. Notice how the smoothing estimate consists of
a factorization into one causal part (4.12) and one anti-
causal part (4.13). The latter vanishes in the filter case.

Notice also that the estimation problems for the inno-
vations representation of (2.11), cf. [8, 9, 11, 14],

df,; =A%, dt+PCTR; 1dy
ﬁf(to)zo
dy=C%,dt+dj

is already factorized. Furthermore the smoothing and
filtering estimates are equal. There is no randomness in the
initial condition. If there were, a full factorization would be
necessary.

Separation. Minimization of the functional (2.17) very
much resembles the minimization of (4.9) in Corollary 3,
but instead of the deterministic component Lw, (2.17)

contains the stochastic term vL.

J=u[Q,+BY(L*Q,L+hQ,h*)Blu
+2u-BY(L*Q g +hQ,Tig)x,
+2u-BT(L*Q, L+ hQ, Ty Lyv
+ Lv-Q Lo+ T,Lv-Q, T, Lv
+ 25, [g*Qu L+ T,hQ, T, L]v
+x,[9%Q19 + T,hQ, Tig %,

=y Pu+2uq,+2uq,+d,.

Factorize as before using equation (8) of Table 1
P=(Q,+B"SLB)*Q;*(Q,+B"SLB)

q,=(Q,+B"SLB)*Q; 'B"Sgx,

q2 =BTJ : ¢ (s, HS(s)dv(s)+(Q2
+BTSLB)*Q5BTSLuv.
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Thus since P is invertible

J=[u+P~YQ,+B"SLB)*Q5 'B"S(yx,
+Lv)]P[u+P~YQ,+B"SLB)Q; 'B"S(gx,
+Lv)]—(Q, +B"SLB)*Q; ' B'S(gx,
+Lv)P~Y(Q,+ B SLB)*Q; ' B"S(gx,+ Lv)

+d, +EJ " uT(t)[BTJ " d7(s,

to t

HSdu(s) ] dt. (4.16)

Now assume that an admissible z(z) is a function of the
state x(t), possibly of old values, not of future values to
any extent, Consequently there may be no dependence
between an admissible #(r) and the increment dv(s), s>¢
Thus the last term of (4.16) vanishes for all admissible u.
Tto integrals are being used, and the increments dv(f) have
zero mean. Now insert the expression for P

J=[Q,u+BTSLBu+ B"S(gx,
+ L)]05 1 [Q,u + BTSLBu +B*S(gx,+ Lv)]
—BTS(gx,+ Lv)-05 *B"S(gx,+ Lv)+d,. (4.17)

Corollary 5. (Complete state information.) Let the
admissible controls, u(t), be functions of the state up to
time t. The functional (2.17) is minimized for the system
+(2,16) by the control

u=—0Q; 'BTSx. (4.18)

Proof. Since (4.18) is an admissible control (4.17) is
certainly minimized for this control.[]

To obtain the minimal loss d; should be decomposed.
Strictly done without introducing white noise this is rather
technical in the introduced notation. Then cf. {16}

Jy=mTS(t,ym+1trS(t,)R,

+J " SR, (DAt (4.19)

which is larger than the loss that would be obtained with
feed forward if the disturbance was known in advance. A
combination of Corollaries 3 and 5 is useful to handle noise
with a mean value different from zero.

If complete state information is not available, (4.18) is
not an admissible control.

Corollary 6. (Incomplete state information.) Let admis-
sible controls u(t) be linear functions of the output up to
time t. Then (2.17) is minimized for the system (2.16) by
the control

u=—Q5'BTS%,

where ¢ is the filter estimate of x (cf. Corollary 4).

Proof. The expression (4.17) is still valid since n(r) and
dv(s), s<t are independent and dv zero mean. Rewrite
(4.17) using

Then

J=(u+Q3;'B"S%,)Q,(u+Q; 'BTS%))

+2u-BTS%,+B"S%,0; ' B'SX,+d,
— BTS(gx,+Lv) Q5 'BTS(gx,+ Lv). (4.20)

But §7(7) has zero mean value and is independent of y up
to time ¢ and consequently of an admissible u(r)

U'BTS/%f=O

J is then certainly minimized* for the control (4.19).01
The minimal loss can be expressed using J; from (4.19)

J,=BTS%,Q5 'BYS%,+J,

1y
=J trPSBQ; 1BTSdt+J, (4.21)

to

where the last equality is obtained using
P()=EX (NZ}(D).

5. Conclusions

The linear estimation and linear quadratic control
problems are very generally formulated using operator
notation. Solutions can be obtained using completion of
squares and the projection theorem, resulting in Fredholm
integral equations, and it is shown for the finite order
system case how the Riccati equation decomposes the
equation into two Volterra equations.

The well known solution of the problems are obtained as
the recursive solution of these initial value differential
equations.

The proofs of smoothing and optimal contro! under known
disturbances are in this way especially clear and simple.
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Résumé—Les probléemes de filtration linéaire, de prédiction
et d’adoucissement ainsi que ceux de contrdle linéaire
quadratique peuvent généralement étre formulés comme
équations d’opérateur utilisant P'algébre linéaire fondamen-
tale.

Les équations sont du type Fredholm II et sont difficiles
3 résoudre directement.

11 est montré comment 'operatuer peut étre factorisé en
deux opérateurs Volterra utilisant une équation de matrice
Riccati. On obtient ensuite la solution récursive de ces
équations d’opératuer triangulaires par deux équations
différentielles & valeur initiale.

Les prueves d’adoucissement et de contrdle optimal dans

des conditions de dérangements connus sont ainsi spéciale-
ment claires et simples.

Zusammenfassung—Die Probleme der linearen Filterung,
der Vorhersage und der Gléttung, ebenso wie die der linear-
quadratischen Steuerung konnen unter Benutzung der Grun-
dlagen der linearen Algebra sehr allg—ein als Operator-
gleichungen formuliert werden.

Die Gleichungen sind vom Fredholmschen Typ II und
schwierig zu losen.

Gezeigt wird, wie der Operator in zwei Volterra-Operat-
oren faktorisiert werden kann, wobei eine Riccatische
Matrix-Gleichung benutzt wird. Eine rekursive Losung
dieser Dreiecks-Operatorgleichungen wird dann durch
zwei Anfangswert-Differentialgleichungen erhalten.

Die Priifung von Glittung und optimaler Steuerung bei
bekannten Storungen ist auf diese Art besonders klar und
einfach.

Pesrome—IIpobnemer sinHeliHol ¢GUNbTpauu, npenckazaH-
U], COIIAXHBAHNA, KAK W HPOOIEMbI JIRHEHHOTO KBaApaTHY=
HOTIO YIIpaBJIeHAs, MOXHO B IOCTATOYHO 00IIeM BHIE OmMC-
aTh ONEPATOPHBIMHA YPABHEHUAMH C UCIIOIL30BAHUEM OCHO-
BHBIX 3aKOHOB JIHHEHHOM anrebpEl.

‘VpasHeHus OTHOCSTCS KO 2-0My THITY ypaBHEeHHI GpHIXO-
JIMA B BECbMa TPYIHBI U1 HENOCPEICTBEHHOI'O PEMICHNs.

TToxa3aHO KaK OEPATOP MOXET OBITH C HOMOHIBIO MATPU-
YHOr0 ypaBHeHHS PukatTi, HakTOpH30BaH B Ba OIepaTopa
BombTepa.

PekypcuBHOE pelmeHue 3TOr0 TPEYTONBHOIO ONepaTOpH-
OT0 YpaBHEHHS IIOIYIAETCS 32T6M C IIOMOIIBIO ABYX muddep-
SHIIAJILHEIX YpaBHeHHH HaYalbHOTO Iopsanka. Taknu nyreMm
BECBMA IIPOCTEI IPOBEPKYU CIIIaXXWBAHUS ¥ ONTHMAaIbHOCTB
YIPaBIEHUS MIPH U3BECTHBIX BO3MYHIEHHSX .
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Correspondence Item

Inversion of a Dynamical System by an Operator Identity*

Inversion d’un systéme dynamique par une identité d’opérateurs
Inversion eines dynamischen Systems durch eine Operatoridentitét
WuBepcust TUHAMMYECKON CUCTEMBI C TIOMOIBIO ONEPATOPHOU MAEHTHYHOCTH

PER HAGANDER?

Summary—Inversion of a linear dynamical system is shown
to be an operator equivalence to the well-known matrix
lemma:

(D+CLB)y '=[D'—-D~'Cc(L™?
+BD"1C)y"1BD™1]

CONSIDER the system

x(ty)=a

{)‘;(t):Ax(t)+Bu(t)a (1)

y(O=Cx()+ Du().

If (1) has the same number of inputs and outputs and if the
matrix D is regular, the inverse system [1] is easily obtained
as

X0)=(A—BD7'C)x()+BD ™ y(1),  x(tp)=a.

@

{u(t)= —D7ICx()+ D™ 1y(1)

Now specialize to a=0, and let o(¢, s) and w(z, s) be the
fundamental matrices corresponding to (1) and (2). Define
the operators L and M in the space of continuous vector
functions by

x=Lz, x(?) =Jt o(t, s)z(s)ds

x=Mz, x{t) =Jt W(t, s)z(s)ds

and regard the matrices B, C, D and D-1 as operators in the
function space.

The input-output relation of the system (1) can then be
written as

y=(CLB+ D)u. 3)

* Received 15 November 1971. The original version of
this paper was not presented at any IFAC meeting. It was
recommended for publication in revised form by Associate
Editor B. Anderson.

t The author is with the Division of Automatic Control,
Lund Institute of Technology, Lund, Sweden.

This work was supported by the Swedish Board for Tech-
nical Development (contract 70-337/U270).
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Notice that

and therefore define
C))
Correspondingly we have for M

d -1
——(A—BD™7'C) Mz=z
dt

and the inverse of M can thus be defined as

Mt =c%—(A—BD”1C)=L“1+BD‘1C. (3)

Insert (5) into (2) giving

x=(L"'4+BD 'C)"'BD 'y

and
u={D"'=D 'C(L~'+BD7'C)"!BD }y.  (6)
A comparison of (6) with (3) now gives the identity:
(D+CLB) '={D™'—D~'C(L™!
+BD™1C)"'BD™!}. @)

For matrix inversion this identity is well-known, see Ref. [2].

The inversions of L and M and especially (L-1-+4+BD-1C)
are here defined only formally. In order to be more strict
the initial values have also to be considered.

References

[11 M. K. SaiNv and J. L. Massey: Invertibility of linear
timeinvariant dynamical systems. JEEE Trans. Aut.
Control AC-14, 141-149 (1969).

[2] T. E. ForTMAN: A matrix inversion identity. IEEE
trans. aut. control AC-15, 599 (1970).
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Résumé—L’article montre que Iinversion d’un systéme
dynamique linéaire est une équivalence d’opérateurs au
lemme bien connu de matrices:

(D+CLB) '=[D"'— D 'C(L™*
+BD™1C)"'BD™Y]

Zusammenfassung—Die Inversion eines linearen dynami-
schen Systems ist, wie gezeigt wird, eine Operatoriquivalenz
zu dem wohlbekannten Matrix-Lemma

(D+CLB) '=[D~t-D"iC(L™!
+BD™1C)"1BD™1]

Pesrome—IToxa3zaHo YTO MHBEPCHS NHHSHHON IUHAMUIECKOH

CHCTEMEBI TIPEICTaBIsgeT COBOM OMEepaTOpPHYIO HKBHBAJIEHT~
HOCTh XOpOIIO 3HAKOMOM MaTPHYHOR JIEMMBL

(D+CLB) '=[D™'= D C(L™*
+BD™1C)"1BD™Y]
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A NEW PROCF AND AN ADJOINT FILTER INTERPRETATION FOR LINEAR DISCRETE TIME SMOOTHING

Per Hagander

Abstract

Linear discrete time systems, usually formulated using difference equations can
also be described by operators, which is more general. The covariances for a
stochastic system are expressed as operators, and the solution of the fixed
interval smoothing problem is obtained by use of the projection theorem:

-1,

y

A=RR'
= Nyty

The computation of :;a is conveniently done if Ry can be factored into two
Volterra (triangular) operators. It is shown how this factorization ean be
carried out using the Riccati equation, so that the estimate can be expressed
as two adjoint coupled filters, the Bryson-Frazier formulation.

From the operator identity used for factorization it is seen that the one step
ahead predictor is fundamental. Bokth the forward backward difference equations
and the weighting function representation are presented, and the weighting func-
tion is shown to be the error covariance of the one step ahead predictor.
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1. Introduction

The two approaches to linear estimation problems, the Wiener filter using covariance
functions and the Kalman filter directly using difference or differential equations

can be unified by use of the Riccati equation. {7,12). In [7] the continous time

linear control and estimation problems were analysed using operators in function
spaces. The same'technique is applicable in the discrete time case. This is
demonstrated here on the smoothing problem. The projection theorem gives an
equation in covariance operators from which the difference equations are ob-
tained by operator factorization using the discrete Riccati equation. The re-

solvent identity searched for by Kailath and Frost [9] is thus presented.

2. Notations

Consider a discrete time system for te{to,t1}

X)) = g (Eet, Ox(t) + vit),  x(t) = x | (2.1)
¢ b 8] [o]

The state of (2.1) x{(t}, at all times t during the discrete time interval {t@,t1],
can be formed as a long vector &di?xr%t1~to+i) elements, but it can also be regarded
as a tire function on {toﬁtj}‘ The difference equation (2.1) can bhe formulated using
linear operators in a space ¥ of such functions:

X = gX, + v

with Lt X > X and g: RY >+ X . The operator formulation is more general than
(2.1)yand (2.1) thus introduces special structure on the operators.

Using the long‘vector'interpfetation these .operators are in fact large matrices.
Since L is causal it corresponds to a lower block triangular matrix.
Define in X the scalar product
t’i . )
XpeXy =X x1(t)x2(t)

t=t
o)

giving the adjoint of L:
' RE £-1

X ¢T(s,t+1)x(s) ,  6t,s) = W $(i+l,1)
szt #1 j=s

it

s X > X3 z = lfx, z(t)

Define also the functions from X to R:

T x = x(to), T,x = x(ty)




(A

~

3. Linear Stochastic, Time Discrete Systems

The space X can be extended to contain stochastic processes generated by linear systems

driven by white ncise. Such a Hilbert space is often used in the theory of stochastic

processes, of [U], let v and e of
x(E+1) = ex(t) + v(L), x(to) = X,

(3.1
y(t) = Bx(t) + elt) )
be zero mean, independent white noise with covariances R and R, (? >0), and let X,

have zero mean value, covariance R and be independent of v and e. The operators L

and ¢ are directly generalized. A new scalar product
1

X, %X, 5L L X
) =t

S 0%, (6)

gives the same adjoints. Notice that the deterministic functions constitute a subspace.
The covariance operator of x is easily obtained from the reformulation of (3.1).
= v o+ ogx
8%
using the matrix point of view:

% ¢
Rx = LR1L + gROg
where R1 is now an operator in X (or a block diagonal matrix). -

Mcreover, R = RXGT and Ry = eRxeT +R,. 8° iz a dlagonal pperator with 87 () in the

Z
diagonal.

4. Smoothing Fstimate

All linear estimates of x hased on {y(ta),...,y(tq)} can be written
x = Fy

If the operator P is such that the error variance in each component xi(t) ig mini-

mized then x is the smoothing estimate of x.

Using the projection theorem [4], T nmust satisfy

operators like R into a product of a causal and an anti-causal part [7,8,12]. The

L<1

alpebra of the discrete time case is more involved and a corresponding identity has

not been obtained previously, of[9].

In its most simplified form the discrete time identity can be formulated as




Theorem 1: Let P(t) be the solution of

w

D{t+l) = @P(t)¢T + T = ¢P(£) (4P (£)) P(t}¢
P(to) = 0
then

g .
I+ LL = (T4P+L4P) {T+P) 1

&
(I+P+P¢TL )
vhere P is a hlockdiagonal operator with P(t) in the diagonal.
Proof: With the forward aﬁd backward shift operaters g and q defined by
(ti=x(t+1), qx(t y=0, n x(t}~x(t~1), q x(t )=0, it is easy to prove that

Lig=¢) =T - oT, (4.1}

popee

@ =TTk = 1 - (gm ) (4.2)
so that the proposition
I+ I = T4P +LoP + P LY + Lop(p+T) TppTr*
could be written‘
HIL*s TG0 P (g =g )L HL4R (07 T8I L (0-0) Po T S Top (p4T) "Lpg TL e
+ gT P +_L{q~¢)9(gTo) + LoP(gT )™ + gTOP¢TL*
When,Tonz 0 this requires
L {I-agpg !+ oPeT - ¢p(1+p)“1p¢T} ¥ =0
which is true for P(t) from the Riccati equation.o

The problem of decomposing Ry is solved by a generalization of Theorem 1,

Corcllary 1: Let P be defined by

T T T -1 T
= 0 _‘1 i - P* P ' J-~
P(t+1) = ¢P{t)¢™ + R1 sPe=(6Po +R2) 6P¢ (1.3)
PCtO) =
‘then
r % M ¥ - %
R = L4P + P+ Po'L" + L¢Pei(8PeT+R2) TopgTL,
m % T 23l ’ — B Tox
Rxn = P(T+6°L Yo~ + L¢P6l(8PeT+R ) 1(ePa*+RQ+eP¢fL aT>
A ,
fapat T T A T
R = [8P61+R?+814“9 ‘{6P8T+R ) [GD8T+R?+GP¢“L BTJ
‘): -
Proof: The only difficulty compared with T Theorem 1 is the initial value. Just prove
that
sk mok
P; = }'OK{?‘—[..’ -+ i}

ard use TP =R T, o
o oo

The srmoothing formula can now be obtained using inversion of operators.

~

I@eoremuiz The smoothing estimate for the system (3.1) is given by

~

x(tlt,) = xUte21) + PEEIA(E-1) ot s tst,

where x(t|t=1) = xr(t) is the one step ahead predictor.
4




Iy

xp(+¢ )y = w(t+?5t)xp(ﬁ} + Ky lt), Xp(to)': 0 (1.14)
(e, = ¢lt+,t) = K(E)a(t) (4.57
K= ¢P8 (8P6 4R, (h.6)
and » the sclution to an adioint equation

T T T - ~
A=Y = oyt (el da () + SL(8P6‘+R2) q(y(t)~6xp(t)), A(t1) =0 (4.7)
P(t) is defined by (L,3),
Proof: Sinece the operator [ (6P +R,; + 9L¢P9 ] represents an invertible
dynanﬁca& gsystem (6], Ry is also invcrtlbie and using corollary 1 and (4.2):
% = (P(T+e L) 0T (o6 4R +ep<;) 1¥Ty "L epej‘+R2)+L¢PeT}(epeT+R2+eL¢PeT)"1y
Introduce an operatar M analogously to L:

t-1 -1
Mx) (&) = I ¢(t,s+l)x(s) c Wltes)y = 5 p(i+di) (4.8)

S i=g '

o

with ¢ from {4.5). Using the same technigue as in [6] it is possible to prove the
following operator ldentities:

T
]

S| . r e}
(8p6 4R +0LgPo™) T = (0P8 THR,) T - (aPoTHR,) oMK

L6P8 *‘(9P9T+R,,+GL¢P9T)” = MK

'isaT

L*s" (0P8 +‘*?<,,+spa> o7y = w*eT (ope 4R,

with X from {(4.6), so that

% = MRy + P(I~6 K'M*+¢ M*)0 fePaT+R?>”1(z~er@K}y = MRy + P(szM*)eT(ePe*"+RQ)“l(:[uemx)y

~

Note that x_ and A defined by (4.4) and (4,7) can be written as
o ,

D
® T T o~ -
A= M BT(EPET4R,) 1(y~9xp) (4.10)
<

which proves the theosem., o

5. Adjoint Filter Intierpretation

Introduce
% ) = x(£) - % _(t)
8
‘37_‘(?} = y(t) = ox ()
B P
and the covariance function P(t,s) of &D’ of [21.
{plt,s)P(s) t > s
P(t,s) =4 P(t) -5 (5.1)
: m
LRy (s, t<s

and define




B g
N =z A AP? j}/ (,i} s £ )
Y,
m 2
T T ey
y TN Ty s
U =g ‘:[f‘i:m ‘f'I’:A} Vi (r\’g)
T £ P

The adioint filter form of the smoothing estimate was derived in [9] for the continucue

time case. A corresponding formula for discrete time can be Formulated:

Corollary 2: The smoothing estimate for the system (3.1) is given by

PR

i t,
“ N C=1 i
x(t) = x(t]t) = ¥ PE,s)y (8) + I Plt,s)v (s) (554)
5:%0 g=t

with P{t,s), ¥, and Vi defined by (5.1), (5.2) and (5.3).

Proof: First notice that

[ P

K = PO (0P0 4R ) = (o-4Po" (ore T+ ) 0)Pe R, ™1 = (g-ke)IPe R (5.5)

Hence from (4.9)

. -1 Tl
x (1) = T P(t,s)P(s)8 R y(ﬁ) = L P(t,s)y (s}
P - 2 .
£ szt s=t
o) o

and from {(4.10) ‘ .

K B —ivd!
1 T =Tn, ! .
w ( ,t)d (ePrs +R )y (8) = L P(t,s)v ()
s=t P g=t
which proves the Corollary. o

I o

PCEIA(E-1)=R(t)

Remark: The fixed point smoothing problem is divectly solved from eq (5.4),

;(f§s+1) = x(t|s) + Bls+ Dy (s31) 5 > t-1
: (5.6)
B(t) = P(t)

B(s+1) = B(s)pl (s41,8) = B(s)[4 (s+1,8) - 67¢s) Ki(s)]

Eq (5.6) could also be used tc evaluate the fixed interval estimate x(t it,). This

recursion is on the stability boundary but i% has computational adVdntages since it

can be performed in parallei with the one step shead predictor and the Riccati equation.,

Variants of Theorem 2 and (5.8) have been predented earlier, see [3,9]. Some other

formulations contain an unstable vedursion or inversions to be performed in each time
ep [1,5,10,117.

5. Conclusions

This note presents a new proof of the discrete time smoothing problem by means of an
operator identity searched for by Kailath and Frost [9]. It also gives the adjoint
formula in the sense of [9, p 656]. The main difference between earlier derivations

and this one is that the estimation is don= once for all directly in the function




space glving an analogue of the Wiener Hopf equation, and not performed recursively

The role of the Riccati equation in the factorization of the critical operator PV

is made clear, and the importance of the one step ahead predictor is more obviou
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KALMAN FILTERS FOR PROCESSES WITH UNKNOWN INITIAL VALUES.

P. Hagander f

ABSTRACT,

A Kalman filter needs an & priori statistics for the ini-

tial state. It is shown how the filtey should bz started
f some part of the initial state is totally unknown. The

1
uality with optimal control with end point constraints

$1-' }_n

is very useful both for procfs and intultion.
y

The usual way of starting with a very large covariance
cal properties. The optimal discrete

has very bad numeri

g

time filter is determined by two "Riccati equations", on
matrix to keep track of the bias until the unknown initial

H
s
D

.

.

value is observable, and one matrix for the error covari-

ance.,

In continuous time the estimation is move complicated,. The
rvable at once., After an initia

whole system becomes obse

discontinuity a usual Kalman filter could be started, but
the gain would be almost infinit

e, It is therefore sugges-

foc)

ted how the estimate should be calculated using a separa-

tion into two estimates. The optimal linear stochastic

- .

control is also discussed.
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a
it

aration into two estimatess. In Section 2

ghown, giving one filter for the stochastic Terms and one

for the unknown initial Teprms that measurement nclise.

The latter case where recursive equa-
tions are given also 3 : the system has become observable.

It is shown in ters combine to one,

ariable "dead heat’ filter, which
is especially simple in the single output case. Two mat-
i e et the filter gain. One
matrix is the error covariance, and the other spans the
bias of *the estimate. As soon as the unknown initial
a

s is zero, and the filter will

In Section 6 the sgeparation principle is applied, and
t

the linear stochastic regulator problem is discussed.
Finally, it is shown that the problem is the dual of op-

timal control for fixed end state, and the solution for
continuous time is obtained in this way. The difficulties
with the differential equation formulation are discussed

for time invariant systems, and a smoothing type algorithm
i

15 reccmmended for continucus time.




2. PROBLEM FORMULATION AND MAIN THEOREM.

Consider the discrete time systenm

where v and e are uncorrelated white noise sequences with

covariances R, and R,. For the initial state probability
} < -

will be introduced in varicus degrees

S l
X S Xa X
0 0 0

N . . . ,
N 15 that 1t is restricted to

e spanned by the full column rank rectangular

N T :
@é = N g ¢ arbitrary

X, is uncorrelated with v and e and has zero mean value

W

and covariance R;. A very natural assumption, which will
v - )
nowhere be used, is that XS is restricted to a subspace
m
c .. L
disjoint from the range space of N'.

Introduce Y, as the function y(s), s € ftos...,tl. It is
£ u
now interesting to express Y, as a linear function of g
and a., a process into which all introduced random variables
are collected. a, has zevro mean value and covariance
I}
N
b4 - T - {r‘\ ,»;,\
J,t W_{Tt; + D‘_t Ld e L)




4,
A linear unbiased estimate of ¢ is a function Fooof Y
uch that '
EF. Y _ =
the ° 6

for all values of

f.u

. The minimal variance unbiased est

ST

mator is given by the well-known Gauss-Markov Thecrem,
1

see e.g, » 71s provided that Q. is nonsingular
[

ety = (wiop'w )”1WEQ:1Yt (2.3)

-t

It should be noted that if ¢ is assumed to be a random

variable independent of a1l other introduced random va-
. L . -

riables, with covariance ) “I and zero mean value, the

Projection Theorem, e.g. [7], gives

I _ -1
wl+Q) v = (WRQ twaa’1) wipTly (2.3a)

and (2.3) is obtained as the limit when A » 0, infinite
C
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et
H
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O
<
o
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}_.J -
o
-]

If the system (2.1) has only white measurement noise,

(2.3) directly solves th

]
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ot
o
=
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Q
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®x(t). Since x(t) is a deterministic iinear function of

£, it follows that

~
2]
By
et

x(tt) = @(f,tO)NT%(t)

where




o

Eg. (2.3) is also much simpler than in the general case

-

L

because o and thus Q are especially simple. The inverse
) a

In the general case (2.1) it is more complicated to ob-

tain x(t|{t). The system can be wpitten as

i x(t) = ¢(t,tO)ng + (L)

where a and B are correlated, and the state estimate will

£+ g{t) (2.6)

Operator formulas like in [4] could be uszed to evaluate
(2.6), or the problem could be converted to a problem

with only measurement noise, see Section 3. A third pos-

sibility is to use the limit argument of (2.3a) applied

to the usual Kalman problem.




The infinite covariance limit of the Kalman filter.

If again xg of (2.1) is a stochastic variable independent

of xg, v and e and with covariance A*ZNTN, a minimal variance
unbiased estimate for the original problem could then be ob-
tained by letting X go to zero. The usual Kalman Filter gives
the minimal variance estimate:

x(t]t) = x(t]t=1) + KO y(r) - exctiec-1] (2.7)
)(t+1]t) = ¢x(t]t) x(tylty=1) = 0
K(t) = PCtye (sP(t)e + R))7

Pr+1) = s[PC) ~ K(£)oP(t)]g" + R,

- ™ - 7 S -
P(ta) = R, = RD + A

2,T
N
0 N

N

Theorem 1: The minimal variance unbiased linear estimate
for (2.1) is obtained by (2.7) and K(t) from

;o T T+ B T T +:
K = A6~ (ors )'[I - (6P 6" +R,) [acep s +R,)A] 7+

T T +
+ P 6 [A(BP 8 +R,)A] ; (2.8)
with
a =T - (sre)* coneT) | (2.9)
Mt = ofa - neTceneTYenleT  ace ) = n'N (2.10)
; . e L wp W TL.T
P (t+1) = R, + ¢{(I KYP, (I-K0)" + KR K" fo

S
Pm(to) = RO (2.113

+ .
M’ denotes the Moore Penrocse pseudo inverse of M.
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0
[e 2

- L e A W L
Prlt+1) = Rq + ¢{Pyp - ast(uTu*(r-n*tH) 3Py -
m = Ty W aT ot . ;
- Ppot(I-H¥m)y wTuyten - pPoet(Atmy*ep, +

and
Kty = aetuTuyt(r-g+m7T + p oT(HTH)*
which directly gives (2.8).

The induction is completed.

bt

18 also clear from (2.12) that P will be large if A
not zero. In the limit this means that the system is
lase

20 it remains to show that

Pl (HTEY*ep, + aeT(uTu)*uTqueo)rQu(uTur*en = kuTHkT

But rewrite the right hand side using:

Pl (AT *rTr(ETMY Yep, = p e T(ETH) top,

Ppel (AT *HTHIT - (ATH) *uTHIuTu)*en = o

neTuTuytir - wTa@ETH)y* 1aTuir - (AT *aTulTu)ter =
= aeT(UTUY* [HTH - aTrETH) raTaiuTu)ter

and the seéond term of the left hand side:

HToMeo)Qd = BH(I-A*n = wTe - wTEETE) ETH -

= HTH - HTH(ETD) +5TH

which completes the proof of (2.11) and the whole theo-
rem.
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Examnle 2.7
Mmo1 4]
I ia 1 ﬁi s = [1 0o 0] Ry =0 Rp = 1
100 d
M o o 7 /2]
Py = lo 1 o K(0) = |0
| —y i
o o o |
[M/72 0 o 7 ’ [3/2 1 0 o o d]
P - KeP = |0 10 | P(1) = |1 10l + 2% 0 1 1
Lo 0 22 o o o o 1 7j
3/5 (o.s 0.4 d} (b 9 0]
) |
K(1) = |2/5 Po- KeP = f0.u 0 D‘ + o “;0 T
0 Lo 0 0] o 1 1]
2 1 0] o2 T
P(2) = {1 0.6 of + 2722 4 2
lo o 0] 12 1]
(1’"27 ;‘1“{} KB
- wol -
K(2) :’1, ?)\?‘zi . 1”:’“ M
]OJ 1/ )
M o2 1
P o~ K&P m (A~ ~x"2>£2 [1 2 1]+ {2 8.5 5! Ao+ 0
1] 1.5 3]
which implies subtraction of very large numbers. This is
avoided by theorem 1., The two terms of P - KeP are stored
separately in A and P
In order to be able to use calculation by hand the example
ig very much simplified, and the illconditioness might
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seem reasonable, but for a real system there is no signi-

ficance left after a few such subtractions. The gain X
contain serious errors, and the real error covariance

11
will not decrease although P does,
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after very illconditioned operations!

Comments: The new formula (2.8) may be seen as a way of

improving the numerical condition of the calc

keeping track of the large terms using the new matrix A,

When A has become zerc the filter is identical with the




m

7
N

o~ PR N e T A
NOTe that (2.711

usual Kalman filter, and the error covariance is P = P .
} is the form of the covariance updating

formula that is valid for any K. It is not possible to

rewrite (2.11) as a simple Riccati equation.

The interpretation of the optimal

obvious in the single output case. Then A is either 1 or

0, and

7 Y‘{'! -
(-Aef'(e.f\e*) ! if A = 0
}
L

4

»
™

(2.13)
T T, -1 NP .
(aPme +R2) if A = 1

If A = 0 the measurement
ty of £, and if A = 1 the

brove the current estimate Jjust as in a Kalnman i1t

Often the whole
Then A = 0 and

where n 1s the

surements contribute to the chservability. The filter

could be called a d

in analogy with dea

the unknown initial value orn the estimation error at

t = n is zero. The estimate %(ngd;i) is unbiased. In this
special case there are in fact no other unbiased esti-
mates at t = n., Even the time constant dead-beat filter
ould have given the same x(n|n-1). It can be shown that

W d

the gain of the time constant filter is KC = Ki{n-1) =
)67) 1, When the dead-beat filter is not

is freedom left *to minimize the error co-

variance. This is why the more complicated expressions

(2.8) and (2.13) should be used in the multi-ocutput case

and when only part of the initial state is unknown. The

»

filters are still time variable dead-beat filters!




The simple formulas (2.13) can be used also in the multi-
output case, if the noise of the elements in the output vec
are uncorrellated, i1.e, if R2 ig diagonal. The 2lements can
be used one at a time to update the estimate.

In order to give an interpretation of A and of the esti-
mates for times before A(t) = 0, the theorem will be re-
derived using a separation into two estimates, one for

the stochastic terms and one with only measurement-noise

for the unknown initial value.
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3. SEPARATION INTO TWO ESTIMATES.

The formula from Section ?2:

A

Q(t[t) = ¢(t,tO)NTg + é(t)

shows that x can be written as a sum of tTwo estimates.
It seems reasonable to separate the state into a stochas-

tic term and a deterministia g~term like in (2.5):

X = x4 + X, (3.1)
{ X CEHT) = g% (8) + w(t)  x,(tg) xg (3.2)
( yq(t) z ex1(t) + e(t)
X (t+1) = pxa(t) %ot = = yTe (3.3)
2 2 2V 0 “0 B :
yz(t) = sz(t)
The Kalman filter for (3.2) would be
X, (EH1]E) = g, (t]t=1) + oK () [y, (£) = ax, (t]t=1)]
xq(tOltO—i) = 0
Kn(t) = n(t)eT[enCt)eT +.R2)'1 (3.4)
\ T S
nCt+1) = ¢[n(t) - Koem(e) Jg™ + Ry nlty) = L (3.5)

Or in operator form

R~1
x1(t+1)Y1t Y

Y

x, (t+1]t) = R 1t

1t




lu.

Since y. is not available for measurement it is interves-

ting to define X, as the same linear operator applied to
i

y instead:

~ \ ‘_41
x (t+1]t) = R N
1 X1(t+1)¥1t Yyt
or
x (t+1]1) = ¢§<F<t;~t—~;>+¢}<n<t>[y<t> - ox (t]t=1)]
xn(tolt0~1) = 0 (3.86)

Assume for a moment that ¢ is a stochastic variable inde-

pendent of v, e and xg. Then by the projection theorem

n"qY

N [ i
x{t+1|t) = RX<t+1)Ytan +

which will be expressed in xp(t+11t). Drop the time indices:

" - r ‘“1 T "'1
x = (R R ¢ JRe Y = R [RY1

~R2'R, ROy 4 R
1 Xoly 141

-1

o ROy =

¥, Ny, X, ¥,

R Ry 'Ry JRY'Y
S R B |

by linearity. Since (3.2) and (3.3) are independent

RK2Y2 = RXQY and RY2 = RYQY and since

-1
R, Y
x,]Y1 Y1 2

it follows that

-1
R,
Yq

RX Yy © Rx Y V

R
2 1Y4 Y




W o - .,' e S + —
1Tz 18 defined as

z(t) = x,(t) - X Ceft=1) + %, (x]t-1) (3.7)
The projection theorem gives z = RZVR;1Y so that
I ~ #. ~ v"“?
X o=z X + 7 oz X + R 3.

o z )H RZYIY Y (3.8)
Introduce also the eouivg&ggg measuremaent
noF Yy - 8x (3.9)

1

It can be shown that z and n satisfy a simple dynamic sys-
tem:

Theorem 2: z and n defined by (2.7) and (3.9) satisfy the

system

( z{(t+1) = ¢(I~Kne)z(t) z2(ty) = x, = N'¢g (3.10)
) :
&

n(t) = sz(t) + e(t)

T

where e is white noise with covariance [en(t)e

e
Ky and I are defined by (3.4) ‘and (3.5).

+ R,

Proof:

z{t+1)

ti

xp (1) = xpCt+1ft) + xq(t+1]t) =

§t

plegCe) = xpCelt-1) + Rq(t|t-1)] -

- K (O [y (e - e%n(tét-1) ~ yq{t) + e;q(tlt-ﬁ)} =

= 02(t) = oK) [y (t) + 82(t) - exp(t)] =

z(tg) = xp(tg) = Xpltgltg=1) + Xq(tglty=-1) = x

[s - oK (t)e ]z ()




nled = yle) ~ g t]e=1) = yq(t) = 8xq(t]t=1) + az(t)

The innovations e(t) = vy (t) = oxq(t]t-1)
. £ - m '
covariance Ko + gn{t)sgt

-t
p—_
@
.

{

IT the covariance of ¢ goes to infinity,

ted. The original problem with unknown £

are white with

resumed. x is the minimal variance unbiased estimate

if z is so of z. Theorem ? is not influenced by the 4if-

ferent interpretations of ¢,

Define the estimation errors

Y

X’—'X“'X:X,}‘sz"

. N R «
Since X4 and z are uncorrelated, define 3

ance of 7 so that

¥ N i r v S “

Cov x(tit=1) P(t) = cov X (t]t=1) + cov
() ()

In order to get recursive formulas

formulas must be obtained for z. °

tains only measurement noise.

is unknown. Such systems will be

section.




ction 2 the Gauss Markov Theorem was used to express

iven Y,. The relations (2.2) and (2.3) are now simple

Ct) = 6¢(t,tO)NTg ¥ oe(t)
and

T T T T
No“(s,ty)e R, e¢<s,tO)N* = NM_, N (4.1)

S:to

o T T ~1
N¢*<s,t0)a R, vls) = Ny

-—Zt

57ty

by obvious definitions of M and X,
. T

g(t) = (NMt+1N ) 'th+1

Minimal bias estimates: It is possible to get an unbiase

estimate £ = FY only if (4.1) is invertible. Tf not it is

possible to estimate some linear combinations of ¢
blas. Those components of ¢ that lie in the null-

W cannot be estimated without bias. There is, how-~

£t to decide, without knowledge of &£, in

ry subspace the estimate should be unbiased.

e is called a minimum bias estimate. If the
rows of W are linear dependent, the freedom should .be used to
minimize the variance of the estimate. A minimal variance mini-
mal bias linear estimate thus obtained by the orthogonal

ig
bseudo inverse, see also [8],




o =
N
iil
for which the components of &€ in

will be estimated without bias.

By (Z.%) a good state estimate is

T

~ . i'IrYJ’\

x (tit) = plt, € INE (t)
' J i

For the degenerate case when Q is

formulas exist [1] but they v 711

proofs and the interpretation in +

complicated although the final res

The estimates can also be obtained ¥ soma minimization of

N t i
the mean square error V in some norm || hc
s o~

. . . T
dratic form x qx

a qua-

Vo= Bl e-Fy 1] = Bl e-rwe-re 2 = (] e-rue ig + Bl Fe
Z i he

which, of course, cannot be done directly if nothing is known
&

stimate is

S N i I
L, = q NMNT{NMN g NMN

Tt
-
=z
-
Faan S
g
.
(&S
Wl
L

b=t

V is minimized for the worst £. The bias term is Fivst mini-

Tized, then the variance term.

Note +that gq = Em if g = I. If £ is observable £, = &, Tor &it o,
e} 3 i




It is easily verified that £y 15 the minimal variance un-
. ) . N T TR L . .

piased estimate of NMNT(NMN™) ¢, and . defined by

2y r:{t T 4 -~

o= NMNTOIMNYY e - & (4. 1
“m ¥ Nk / > ,-m \ )

) ot N - c e c =
tas covariance (NMN') . The biag of Em a8 an estimate of

5 is

PR U AR BN P

ECe-€ ) = [1 - ) e (1.5)

. . T T+, . T
with covariance ¢(t3tO)N‘(NMN ) N9

Example:

y =We +e = [1 1]+ Ee = 0
IR .
AN
1 5—1‘; "y
= -5 e cov &
m rd L,Tj m
L1 =1
1 E
il 1
2 1 ' 2
= min{ {| &-Fwe {|? + &
q faln g
( 2 T
= 1l g, g * mgn{!!e1

ra

(£,

i

“

8

| A

—_

S

o

ps

e
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20,
AT e Y- - * I ~ T > YT
Wie e VV\.',O - O % <gA 3QO>"}- - i,z‘:lng - O 5 qg,] E R(\'\J’ }3
LT &gty
E.g. q = I:
o I T
11 ; . 2 1T g
P SR - We = | H = T -
fm T E T g T N =D HEg i 78 i
A Lo 1
el = 172
1 0]
E.g.ooq = | :

by r' }1 ~ 4 72"{ A q rzw
F R F J £ A (Y é. = - &
q o L" r< -Jq C& } - hq 3 1 4 =
i / 2 Lﬁ.j i l‘_
LT -7 IR
£ = i ' t = =g £
S, 3 L g H 50 e 75 i 5
R LR R S

. . y , T+
cursive equations: The pseudo inverse (NMN7) can be

e
evaluated recursively using formulas derived by Cline

{31, and both Eqn and x  satisfy difference equations like

Theorem 3: The minimal variance linear estimate of the
state x of (2.1) obtained from the minimal variance, mi-

nimal bias, linear estimate of ¢




4 .:, A — :; FARTURS R LW i R § . s ") v
,~,m‘\L¥.v) = on (it b)) 4 l\,(t)Ly(t; me(t]‘t !)] (4.7)
4

j ~ ~

U (e E) = ex (it

wherea

] T, Totf, _ L T , T Y
K= ke {snr0™) {I = (eP 6 7+R[ACEP 6 +R,)A] } +
+ P ST[A(BP 8 4R alt (4.8)
S m “m RS o
A= T - (ene)(ens)? (4.9)

An alternative expression for K is

“

, T T, p =1
=] &1
K= (a8 (eP 67+R,)

1

+ T T \
oA} A8T (0P 8 +R,) 1 +

4.

7 ;
+ Pme*gA(apmaT+R A1 (4.8a)

2

P.{t), the covariance of

u

T T wTyte _ o
X Celt=1) = 4 CINMONT M N Y T - g (1)
%o € fe~1) $ (t,t )N [N JOQRLNTY T - g (1 1) ]

satisfies

; . T . . T T “
P (t41) = @[(I~K6)Pm(IMKe) KR, K Jg 0, Po(tg) = 0 (4.10)

The matrix A defined by

Te - , T . LT 9 T .
ACE) = (.t OINT[T - NMTN”(NMtNL)+jN¢‘(t,tO) (4.11)

0

N (4.12)
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27,
30 that
E e
th , - ] T C "f; ™
Mx, = > py s Moo= NM.NT = ¥V o -
il \N?_ - Z qufy L v) L—.:&_ - L.V:_%_A\I ilJ ("SLL
-k i i s=1,
O {
N =4 4 - o4
F o = MM e - Pt W 1 M ey )
£ {t-1) thli £, (1) i@T+CtCtJ {dxtkcﬁlj(hsl

Now use the pseudo inverse formula and delete indices +t:

. Ty 4 = = , by
T = [T - (TD)YeT1IMY -~ MtegBecTHY NN +

+ (D™ ¢ (I - (ToyteT it - ftcopaelitt] .

+ Jo - c(Dc}+C}}$y(f)
Yoty e /Ty~ - N S T - Tyt -
but @ = clbe)’e = ¢ ~ c(De)’De = c@ and_{(Decc D) ¢ =
= {Dec'D)TDe = (c'D)' = Del(elpedt and [Ft - fiteepecTitlee -
= M7eG{I ~ BGe'MTeB16 = MtoG@BG. Hence

- De(eTpeytel tMteane) -

Gl + MTeGRGIr

“T"
e T s , , s
U@LL5EG)N Eqp =12} {u.13)

-, et

MPer ™ [A(Rg+r~ Tl op




)

(el

f w4 T - ~1 T -
where A = I -« (7 'c*Der  ti(p e Don t)

It remains to prove (4.82a) and +the re
(4.12). Since Ry > 0 eq. (M la} 1s a
quence of Lemma 3 in A Appern re

cursions (4.10) and
rather direct con
a

L

oo

™ e y - r rr%ﬁ %, r? % Y +
T = Deyn o= 1{ Mte1 = [I ~ {c'Di¥el 1iMY ~ HtegreeTHM* 18 +
e xyd —_— T 1 oy T
+ (elD) el + [T - (TDyteT it enngeT =
- . T o i 4T
= [T -~ CeToy*eTiiT-D] + (Tpytel -

- {1 - (eIoyteTtteesecT(1-D) -~ Mtegpeel) -
= I =D+ (IT;teTn + 11 - eToy*eTiftegpaeD

= 0 80 Dyyq = D - pe(eiDeyten. The algebra in

and (4.172) follows immediately.

= g (E=1) =~ KO [yt = 0 (t,tg)eg(t-1)]1 =

= Em(t=1) = K'(t) (o 0%t t=1) + e(t) + agCt,tpNTDe] +
+ De(elDe)*eThe
But since GeiDd = 0
K'eo(t,t)N'D = K'r~1eTh = (Da(eTne)*[T-cTHtcenal +
+ MteeBayeln = Felp
and thus
Xp(t+1]t) = pII-KCE)e ¥ (t]t=1) ~ pK()el(t) (4.15)




o -« a . 1’r"! Eaud
FrCrs1) = o {[T-KelPulT-10 1T + KR KT 4]
which concludes the proof of the theoremn.

£

Comments: In the consideread special case Theorem 1 and

Theorem 3 give the same estimate. Theorem 2 also gives the

iﬂterpretatien of Tw as a covariance nmatrix and shows +hat
~ i ~

known initial value. It is verv natural to assume that NN
i ans that the unknown parts of I
initial value are "equally unknown". For inetance by direct

verification of the pseudo inverse conditions it then fol-

owe that

fryl [sx [xa] fax]

L, 4 - Lo o 4 +
N IR A
NOCHNME T ) W = (NTNMNTND
and

r‘p i3l [xal L t‘r,

. T
W e N oMMt

{1 - wrt oo D e = TN z-met Ty

.l , - A T T \ -

ACE) = ¢t ,t N{L“M+Mt}h Ng <tst0) (u,18)
e

o T . , .

Thus N'DN is the projection on the unobservable part of

the unknown initial value. A ig the projection transformed

to x(t).

In the next section the full problem with also x. and v

will be treated, and the interpretation of the estimate

and the matrices P_ and A will be similar
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o1
»

lem (2.1) and to the sepa-

there shown that

where x_ was the stochastic ferm (3.6) and z the bias ternm.
According to Theorem 2 z was the state of a system with

only white measurement noise. Such systems were treated in

Section 4, and a good minimal variance estimate of

z
obtained from the variance, minimal bias linear

catimate of £,

»
-
R

G(t,t )¢

i - t 5
m g 7m(t) (

“m\#.-/ S
ST 3
~~
™
¥
T
i

(i) = 2z (t]t-1) + K _()[y(ty = ex_{(t]t=1) =
i m Z il
-0z (t]t-1)] (5.2)

T (53l I I 2] Lsal 3
i, N I A 1 T +
o= AB (A7) 4T - (az_8 +5nak+mq}{A(az 8 +816 +R,IA] Lo+
z { m Z m £ }
" T f T T . + ¢ ~
+ £ a JA{asg o aT 4] \ I
p 8 [AaCas s +om R2>A} (5.3)

. N A T T+ T T
ACt+1) = o (I-K_a)in - ae (ene ) eA](Iane) )
ks
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'J"\ o5 . et o+ s 3 =7 <~ > |4

where & is the covariance of z_(t|t-1)
it )

T lal=Ea) T . e T S ) o ¥ - k3 v
+T can now be proven that (2.8) gives the same estimate as

Thecrem 1:

The minimal variance linear estimate of the

2.1) obtained from the minimal variance, mi-
e

of the unknown initiel state
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Caet
+
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e
4
s
Fan
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N’
FaaN
on
o0
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;fies the

e

with x. defined by (3.6) and Z. DY (5.1) sati

oA
"y
rt
ot
&
13
5
Py
and
T
r
g
N
[€e]
g

- s sl N ° ! RN ;o
1) + K(t)[ykt) ox (t]t=1)] (

- - ;"'n z« j o s '11, " ;on T +\
K= ae (s8pr87) éL mv\ere TRQ)EAQGPmS +R2)A] J +

,TE' - 3] » ’
6 [ACoP o +R,)AT" (5.10)
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f (aal +

A=T - (ereT)(0r80) (5.11)
An alternative expression for K is
— T T -1 + T T -
K = [as (8P 6 +R,) "aA]l Ao (6P 6 +R,)  +

+ P o [ACeP 8 +rR)A]T (5.10a)

m m s
P (t), the covariance of %m(tit-ﬂ)
" ) ~ - N 1 n, La s -
X (elt=1) = X (e]t-1) + z (t]t-1) (5.12)
with %m from (5.8) satisfies
r‘rl [nal
PLt+1) = Ry + ¢E(I~K8)PT(I~K8)“ + KRQKL]¢*
P (t.) = RO (5.13)
me 0 0
and A, the transformed projection on the unobservable
part of the unknown initial value satisfies
m T - d 23]

ACt+1) = ofn ~ a6t Cene)Tonlel  ACt.) = NN (5.14)

Proof: -

PSSR

Xp(t1E) = xpCele) ¢ 2p(elt) = xp(t|t=1) + 2,0t]t-1) +

it

t

x(tle=1) + KO Iy(t) ~ ax(t]t-1)]
with K = Ky + (I-K;8)K;. Note that (I-Ke) = (I-K;6)(I-Kzs).

The covariance Fp of Xy is Py = 1 + 3, so that by (5.5)
and (3.5)

Pu(t+1) = Ry + ¢{(I-Ky8)T + (I-K;6)(T-K,8)En(I-Kze)T -

e (I-Kpe)T + (I«Kna)KZ(R2+eneT)K§(I-Kﬁé)T}8 =

H

Rp + ¢{(I-Ke)Pp(I-Ke)T + KR, KT}y




~¥Kg)nw - (I-Ke)n(I~K
= § which follows £

- . - g 80 2 ) . o .
(T-xedn(T-xe T = 1 - Kem - 76TkT + Keme KT

i
(K=K ) (Rp#omeT)(K-KkT = KRoxT + KomeTkT - (K-Kp) -

ot

. (Ro+eneTHKT - Ky(Rp+ens kY =

s

= ¥r,¥T + KomeTkT - (K-Kpyen - nelkT
L defined by (5.u4) also Ffulfils (5.14), since
o (A - A@(@AST)+9A} = 0.
I+ vemains to prove that X = Ky + (T Ky 8)Ky can be eva-
luated by (5.10). Then (5.10a follows like in Theorem

3. Denote Ry + 6ueT + sznGT by R:

K o= K, + Kp(T-0K,) = n0TARATY + 2eTCene®)¥ (I - RIARATTY +

]

bRy - ezoTlARAITY - KpeneT(eno™)TIT = R(ARAIT] =
= (n+s) 6TIARATY + neT(oneTyt (T - RIARAITY +
# K (I = [CemeT4Ry) + arpaTllARATT) + KglT - (oh8T) -
o ConeTH*IIT - RIARAI®Y = K {I - R(ARAT) =
= P oTIARALY + neTCons™)*{I - RIARAIT)

ince A(I - R(ARA)T) = 0

i

Comments: In order to get a correct interpretation of A
in (5.14) and (5.4) it must be noticed that the unobserv-
able subspace is the same for the z-system of Theorem 2
and the original cystem (2 1), so both I- MM and A are

%

the same! Thus if N N is a projection

ey . : 37 ‘(‘T \T T ,-+ r T ‘ .

Aty = @(LﬁtD)N h(L“MtMt)N Né (t,ta) (5.15)
T ‘ Tt m

M, = ¥ ¢i(satabelﬁ®(sgt0) (5.18)
s=t , :



In the same way with z_(flt-1) = p{t,t. )N £ _(£-1) and
o a, n m ‘ a in
With = X, + z the bias term can be written
~n

E(x“;

iy
P
ot
ot
H
N
p—
13
by
L
oF
R
¥
e
o
—~
-
+
]
—
St
i
v
e
ot
r—,‘_
i
7
N’
i

r‘P i
= e, T N N(T-M MO ¢ (5.17)

¢oc that A spans the bias. Pm is the covariance of x -~ X
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5. LINEAR STOCHASTIC CONTROL.

ion of the above filter results is the con-

g :
i

a linear stochastic system for which a quadratic

e
]
¢
Lo
Q
h

loss function
N«‘? { [ T T

J = E {5 (0QxCe) + u <t>Qqu<t>} £ % (NIQyx(N)  (6.1)
Tzt = J

should be minimized with respect to u(tO),...,u(N) sub~

act to the constraint

Ldn

{ x(E+1) = ox(t) + ru(t) + vit), x(t.) = x, = %
i (6.2)
L vty = ex(t) + R(L)

with v, e, Xq defined in Section 2. The expectation in

S

i
(6.1) is taken with respect to the introduced statistics
v, e and X - The choice of u(t

Y iz restricted to linear

maps of Ytnﬁ'

Rewrite J as in [2] using S and L defined by

L{t) - {QQ + r186t+1)r}"rTS(t+?>¢ (6.3)
SCE) = 97S(tr1)y = ¢ S(t+1IIL(E) + Q,, SO = Q,  (6.4)
Ty s A g , T
J o= ExgSlegdx, + £ ) iv COSCe+DIv(t) + (u(t) + LlOHx()) -
- t=t,
)

Q¢ TS T) ule) + L(Ox(6)) =

: - . N1 N-1
[ T
= ENS(EIN'E + tr RS(t) + ] to ROSEHD +E ) (ulo” -
t=t =t
0 0
© {Q,HTVST) (ublx) (6.5)







and the minimal T is

,‘.‘O —t 4V I ? i v iy "
I = Eilx . + x W= i x ! trl{gecov x_J =
q ap ' q SIS 1
TR [T T |
= xS+ tpdp LT(Q 4T STOL Y
QLD S L q - J

do not change with dif-

(8), s e s ar functions of
YS*1, a fact that is fairly easy to show using for in-
stance inno 1 sum in (6.5) is mini-

v
mized, starting with the term T,_,, Dy u from (6.9). The

minimal J is thus

INTE + tr RIS(ty) + ] tr R, ()8 Ct+1) +
) t=t

This concludes the proof of the following theorem.

P

“heorem 5: The loss function (6.17) for the system (6.2)

=

is minimized for worst possible £ by the input
u(t) = - Lix (tit-1) (6.1

, (6.7)Y. L{t) is
the ﬁinimal variance,
minimal bias linear estimate of x(t) with the error mea-
sured by the matrix q in (5.8). The minimal loss, which

depends on the unknown constan

o+
oy
-
!.,J
(J
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0 T T g N3 .
JU o= EONS(rINTe + tr ROS(ty) + ] tr R (0)5(e+1) +
c=ty
N-1 T N-1 2
+ ) tr P_L (Qu+r 300L + ) JIx_ ||° (5.11)
t=t, = t=t, U@ 4

Comments: The bias terms gqb will be zero as soon as £ is
observable. The restriction (6.7) on u is rather natural
since all the random variables have zero mean value, but
it can be argued that it implies that possible values of
£ are assumed to be centered around zero. If a bias term
is allowed in u, it is no longer meaningful to minimize
the bias of x. The estimate ;m of Theorem 1 would be as
good as any X since the estimates will become unbiased
at the same time. Since qQ is time varying there seems to
be no hope to obtain simple general recursive formulas

for x .
*q
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‘ . . N=-1
JT = ETNS(EONTE ¢ tr RIS(t.) +  § tr R, (t)S(t+1) 4
0 0”" t 1
t=t
0
N-1 o N-1 ,
+ ] 10 PLT(Quer sDIL + ) % |2 (6.71)
:=t0 E t:to 4y 4

y

Comments: The bias terms ﬁqb will be zero as soon as £ is
observable. The restriction (6.7) on u is rather natural
since all the random variables have zero mean value, but
it can be argued that it implies that possible values of
¢ are assumed to be centered around zero. If a bias term
is allowed in u, it is no longer meaningful to minimize

the bias of ;. The estimate ém of Theorem 1 would be as

good as any xq, since the estimates will become unbiased
at the same time. Since q is time varying there seems to

be no hope to obtain simple general recursive formulas
for x_.
q
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In the continuous time case it is not possible to obtain
imateg by letting the covariance increase
like in Section 2 or by =zome pseudo inverse formulas like
in Sections 4 and 5. The minimal unbiased estimate will

be cobtained by duality. Consider the system

. . , S N
X =T Ax + v x(to) = Xg T Xyt X (7.1)

where v and e are uncorrelated white noise with covari-

ances R,48(t) and R,8{(t), R, » 0. x. is uncorrelated with
1 2 > 2 ( s

. Pl
e and v, has zero mean value and covariance RO.

. ; N . ; . . . ;
thing known about xg is that 1t 1g vestricted to a sub-

space spanned by the full column rank rectangular matrix

It is a celebrated fact that the filter prohlem is the

m {2, 5, 9] and that was

dual of an optimization proble
used for the proof of the continuous time filter

problem in {2]. There is alsc a well-known duality bet-
ween observability and controllability, i.e. reconstruc-
tion or unbiased estimates and fixed end-point problemsg
[2, 6, 9]. |

®

These two dualities will here be shown to combine.
Consider tThe minimal variance unbiased estimate for the
system (7.1).It is convenien® first to estimate an arbi-~

. , . T
trary linear combination of x(t), say a x(t). Thus the

variance
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= K a x(t} ] (7.2
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3

i

u (s)vls)ds 7.3)
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}
D et
)

the constraint of being unbiasec

. o
oL N LA,
Fa"s(t) = a Ex(t) (7.4
T
e notation a " x(t) will be justified later. There is
e
_ o ol v ~ Lo . - -
really an x(t) such that a x(t) is the best estimate for
all a.

e
I8
—r
£y

[R
P
i
~
+
joo
-3
~
n
S
X
[
ol
PN
v}
N
Rmmed
jar
0
=
~J
o
-

O S - o by e~
NG tne constraints
P \r]"l "Jr p
. T R - = )
5oz . Cha z{(t) = a (7.6)

| (7.7)

T

Tr .
, a x from (7.3) and the
same way as in [2] to re-

©rom Aty = 2 (e gdn(ey) ¢ [ oz (s)visdds +

Ty

u {s)e(sglds

o
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Note that the minimal V is

T T T T
g [nCe) + (4 ,te)lh (I!M(tgg’r‘””} Nyt =
= alln(e) + n(x)la
defining the error covariance P(t) = qnlt) + plLl.
It is now possible to state the theorem
Theorem 7: The best linear unbiased state estimate for

NMCt, ONT) NACEy, ) (7.13)

0

with %, M and @I from (3.9}, (3.10) and (3.8) and x_ and
i

: ’ \ T =1
£) = Ax (t]t) + H(EICTR,

[y(t) - cx (t])],

[

' - de,t) = (A - H(s)C R C)als 1) +
ds 20 ’
{ + gTRET{;(S} - CtE(Sls)} (7.15)
\ a(t,t) = 0
The error covariance is P(t) = q(t) + z{t).
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= I (q,tG)C R, L{J[wkggsjﬂ(s)L R, y(s)ds}dq
0 ‘o .
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T 1 Lo T - | - s - h]
Example 7.1: A = 0, Ry = o7y R, = 1, x(0) = £ unknown,
C =1,
5 ‘2 2
I = 0" = 017, T(0)Y = ¢ = 1{t) = ¢ tanh ot

K ‘
U(t,s) = expi/ - o tanh oq dqt = cosh os/cosh ot

5 j

o
(..t.
F%
]
i
§
3
e
P-.J *
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i otscosh ot) + > 0
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e
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o

I3
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CO ey T

. ~ t
. . o wig -
{‘f_{{_) = Xﬁ{ti~t) 4 J{' ) XH(S!S) dS -
sinh ot 0 cosh os
kN
o -
= f cosh os y{(sg)ds t > 0

sinh ot O

o0
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be obtained analytically using P(t)

w(trlty = f
0

(AR

+
i
o ;

7 e | C0OSH oSV (5 )ds
sinh gt 0

but to equa-

o
n
6]
Q
s
43
I
}.J *
[}
533
}.J
o
s
i)
O
s
#,_J -
ot
s
=
=
-+
a
]
ot
S
ot
L
)
fte
{
[
et}
[ e o
}..J

5
]
=,
Qki
-t
8]
iy
[a%

tion started with a large variance

O

enor-

mous difficulties,

‘l"' 3 ~ o,
Example 7.2: A = -a, C = 1, R, = 0, R, = 1

n(t) = 0, wlt,z) = g(t,3) = exp{~ al(t-s)}

- Y t = "";L‘r

Lot L I3 AAVArS D -~ = ¢ h
PE) = s(x) = e “7°/ [ e ds = 2a e /(e t > 0
0
n —at T e -%at
x{tit) = 2a e 77 [ e TTy(sids/{t-e “TV) © » 0
H ?i‘ -~

The initial estimate in both the examples is
lim  x(t]t) = y(0)
+o0 +
which has infinite covariance.

Comments: The best unbiased estimate obtained by Theo~
a

rem 7 is a sum of two estimates, simil
T a

time oase. The last term consists of transformed
smoothing estimate of the initial constant £.
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he “continuous time
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APPENDIX ‘

RO

Althoug

gh pseu

the necessary
lemmas will be

rem 3. A pood

5 ey e - g o " . R R
metric matrix and ¢ & rectangular

be an invertible matrix, then
1 T =T, =1 T. =T+ . N
r o Der “{r <« Dor ") can be ob-

spans the subspage or;hogonal tTo

e. Gx = _x, thenpxir™ 'cTD. R(A) =
o oo . .
riGr(ptCr)*t is the unique ortho-

Lemma 2: With r, D, 6, ¢, M and A as above and with B =
L T -
: [T+ectfitec]

rleBar = [a(vvTi+r,)a]’

Ly

-3

- T - 1

1 . =1 T=+ T .
R2 and » ¢ M or = VY

é_.)a»
h
*3
¥
)

Proof:

Tey Th =1 Tl T 1=1 T
r-GBGr = r‘br[RQ' + rrErVVEirtGr T i Gy =
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2N
in quantities defined above.
Proof: Since DeG = 0, (A.4) and (A.2) give
De(eTpe) (1 -~ (I+cTH*+e)EBeIr =
= Der™ TrTeToer M) * (1-r=Tar i (T ~ (Ryp+VVT) [A(R,+vVT)ATH)

From (A.3) r=1Gr = (AR,A)*, and since Ry has full rank
AV € R(ARy) so that

(ARpAY* (T - (R,+Vv ) (AR, A+aVYTATY) =

2
= (ARpAIH{I ~ A(Rp+VVT)A[AR,A+AVYTAI*Y = 0

which proves (A.5).




REFERENCES.

(1] Albert, A.: Regression and the

Inverse, Academic Press, lew

[21 Astrdm, K.J.: Introduction to Stochasti

L
Theory, Academic Press, MNew York, 1970,

{31 Cline, R.E.: Representation for the Generalized Tn-
verse of Sums of Matrices. Siam. J. Numer. Anal.,
Serie B, 2, 89 - 114 (1865),

fu] Hagander, P.: The Use of Operator Factorization for
Linear Control and Estimation, Automatica, 9,

rrﬁ

Theo~

™t
i
Borocad
-~
3]
et
o
=
i
=y
3

New Methods in Wiener Filtering
vy, in Proceedings of First Symp. on Eng. Appl.
of Random Function Theory and Probability, J.L.
Bogdanoff and F. Kozin (eds.), Wiley, New York,
3.

o}

e
1~

an

{51 Kalman, R.E., Ho, Y.-C, Narendra, K.S.: Controllabi-

’

lity of Linear Dynamical Systems, Contributions

to Differential Equations, 1, 189-213 (1861),
(71 Luenberger, D.G.: Optimization by Vector Space Me-

thods, John Wiley, New York, 1969.

[8] Rao, C.R., Mitra, S.K.: Generalized Inverse of Mat-
rices and its Applications, John Wiley, New York,
1971,

[9] Sorenson, H.W.: Controllability and Observability
of Linear, Stochastic, Time-Discrete Control Sys-~
tems, in Advances in Control Systems, C.T. Leon=-

des (ed.), Academic Press, New York, 13968,







INFORMATION SCIENCES 4, 35-50 (1972) 35

Numerical Solution of ATS + SA + Q =0%

PER HAGANDER
Division of Automatic Control, Lund Institute of Technology,
Lund, Sweden

Communicated by K.-J. Astrém

ABSTRACT

A survey of techniques to solve A7S + S4 + Q = 0 is presented, and nine algorithms are
coded and tested on a batch of examples. Which algorithm to be recommended depends
mainly on the order of the system. '

1. INTRODUCTION

In recent time [2,4,5,6,9,13,14,19,20,21] great attention has been drawn
to the equation
ATS+ SA+ Q0 =0, €))

solved for S with Q symmetric of order » x n and thus also the solution S.
This equation plays a central role in the theory of stability for linear
continuous systems. It also arises in pole assignment [11], in sensitivity
analysis [2d], and when evaluating loss functions in optimal control and
covariance matrices in filtering and estimation for continuous systems.
The more general equation '

ATS + S84+ 0, — SBQ[I BTS =0, )

appearing in spectral factorization [1], filtering and optimal control, has been
solved by iteration of (1) [10].
Another generalization of (1) used in, e.g., network theory,

ATS+SB+ Q =0, 3)
is possible to solve by slight modifications of some of the methods indicated
below. :

+ This work has been supported by the Swedish Board of Technical Development under
contract 69-631/U489.

Copyright © 1972 by American Elsevier Publishing Company, Inc.
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The equation corresponding to (1) for discrete time systems,

$TSp+ 0 =5, 4

has somewhat different properties and use has been made of transformations
between the two equations.

In many of the applications above it is necessary to solve (1) many times.
The equation is therefore worth severe numerical interest. Tt is my intention
to survey possible methods and to present algorithms. These algorithms are
coded and tested on a set of examples and their accuracy and computing time
are compared. All programming was done in FORTRAN for Univac 1108,
The algorithms are grouped in three sections:

(1) Direct Methods. Solution of a large system of linear equations by general
methods,

(2) Transformation methods. Use of the structure can be made by similarity
transformation of the A-matrix to some canonical form (Jordan or
diagonal form, companion form, Schwarz’ form). Some algorithms use
the same technique without explicitly performing the transformations.

(3) Iterative methods. The basic idea for these methods is that equation (1)
is transformed to equation (4) either by sampling or by introducing a
bilinear transformation. The equation

S =¢"Sedp+ 0 %)

is then iterated to stationarity by an accelerating formula.

2. COMPUTATIONAL AND PROGRAMMING ASPECTS

2.1. Direct Methods

2.1.1. Equation (1) has n(n + 1)/2 unknown variables. By organizing S
and Q as vectors the system is rewritten as common linear equations

As=q (6)

and this can be solved by general methods, like Gauss elimination. .27 can
be formed from A by use of either logical operations [5] or an indexing matrix
[4] or vector. The indexing vector form is found slightly more efficient.

If A; are the eigenvalues of 4, then the eigenvalues of &7 are sums A+ A
This implies that (6) certainly has a unique solution if A is stable. If 4 is
unstable, 27 might be ill-conditioned or singular. The original equation (1)
is, however, then also ill-conditioned or singular. The equation can be solved
for different Q-matrices (g-vectors) with little extra effort without inversion
of 7 [8]. This can, for instance, be valuable when improving a solution.
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Algorithm 1 utilizes these ideas. The programming is easily done. The
main disadvantages are that the memory requirement is (n(n -+ 1)/2)? cells,
and that the number of multiplicative operations for large # is of the order
ns[24.

2.2 Transformation Methods

2.2.1. By transforming 4 and AT to Jordan form it is possible to express
the solution S in the eigenvalues and eigenvectors of 4 and 47 [12]. This is
greatly simplified when A4 is diagonalizable:

THEOREM 1 [12]. Let U and V be the matrices that diagonalize A and AT:
A=U"'DU, AT =V DY, D =diag{A,..., A},
and let Q =VQU™" and §,; = —q,;/(\; + \,)). Then
S=v-18U. (7

This theorem is used in algorithm 2, thus requiring complex arithmetic.
The main drawback is, however, the eigenvalue eigenvector calculation for
nonsymmetric 4. This is done in an up-to-date QR-algorithm with inverse
iteration, but close eigenvalues lead to overwhelming problems. No advantage
of symmetry can be taken. The approach is out of the question in other cases
than when eigenvalues and eigenvectors are already obtained or wanted.

2.2.2. Eigenvectors can also be used in another §vay applicable even to
the quadratic equation (2) [15,18].

[o][2]

are the n eigenvectors corresponding to the eigenvalues with negative real part
of the 2n x 2n matrix

THEOREM 2 [18]. If

A —BQ;'BT
P ®
then the solution of (2) is

§= [cls'--scn] [bb'":bn]_l' (9)
The computational effort is simplified by the observation:

COROLLARY. Let
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for real eigenvalues A; and

[ ’} =Re [bi] +Im [bi] and [fi“] = Re[bi] —Im [bi]
8i 4] Ci Zi+1 ¢ ¢
for pairs of complex eigenvalues Xos Mivt> Aixy = A), then

S= [gl""agn] [fla"‘a.f;l]—l‘ (10)

Algorithm 3 is based on this corollary. Real arithmetic can be used but
otherwise the remarks for algorithm 2 still hold. A new Q needs a recomputa-
tion of the whole eigenvalue problem. The method is only of theoretical
interest for equation (1) but is reasonable for equation ).

2.2.3. The companion form and its transformations lead to interesting
algebraic manipulations and probably also to the fewest operations for large
dimensions. One method, emanating from Nekolny and Benes [16], deals
with the transfer function (G) of the system S(47,B,C). The covariance of
the output of the system for white noise input is

Y =CSCT (11

if S is the solution of (1) with
Q = BB". (12)

Astrom [23] has described this for single input, single output systems and
gives recursive formulas essentially using the Routh algorithm. These can be
extended to the multivariable case and used for solution of (1).

This is done in algorithm 4 including decomposition of Q [8], and computa-
tion of G(s) for S(47,B,I) by a Leverrier algorithm [7].

Full advantage of symmetry is taken, but different Q matrices are difficult
to handle.

9.9.4. Other authors have used the companion form to obtain an explicit
solution without performing the transformation. Smith [21a] developed an
expression in powers of 4, and Miiller [14] used the matrices 4; from the
Leverrier algorithm and achieved a nice formula:

THEOREM 3 [14]. Let

. 1
kak=—7étrAAk_1, a0:15A0=I9

AszAk_l+akI, k=1,..., (13)
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and let ¢ be the solution of

1/2
He = 0 (14)
0
where H is the Hurwitz matrix, then
S= ?:) Ci+1 éfo (=14, QA4,;_;. (15)

Note that 4; = 0 for i > n, because of the Cayley-Hamilton theorem. From a
numerical point of view the formula is not a satisfactory solution.

Jameson [9,20] developed and tested a procedure closely related to these
Leverrier computations:

THEOREM 4 [9]. Let L and G be defined by

G=An_al 4! 4o +(_1)nanls (16)
L=Cn+al Cn—l+ "t +an—lcl, (17)
where
Cl = Q, )
C=ATC\_, + QA L, k=2,...,n. (18)
Then
S=G LT (19)

Algorithm 5 solves (1) by this theorem. It is sensitive to round-off errors,
Jameson used triple precision accumulation in his tests, and the main part of
the computation must be redone for new Q:s.

2.2.5. By using the Danilevskii algorithm [7], Molinari [13] reduced some
of the difficulties with the companion form transformation.

THEOREM 5 [13]. Let T transform A to the companion form A,
TAT ' = 4,

and let
O=TTAT' and S=TTST L.
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Define the vector b by

i . +1
1 > Dm0 i=1,..., " ,
k=1 2
bi= (20)
2n+1-2i 1
3 2 D G ok 20mnm 140 i= [n—zl— ] +1,...,n,

and x as the solution of
Hx =b.

H is the Hurwitz matrix, and [n] denotes the integer part of n. Then the first

column of S is obtained by
§iy= (D, (21)

and the other n — 1 columns by the recursion for j=1,...,n—1:

Si 01 ="Gi; + P;Si1 +DiSj1 — Siv1,5 i=1,..,n~-1
§n,j+1 = —lnj +pj Spt + Da Sji1- (22)

Algorithm 6 is based on this work, which is an improvement of the fore-
going. A general companion form might be used, not only the canonical
forms corresponding to the transfer function, and this decreases the computa-
tion necessary and increases the pivoting possibilities. New Q-matrices can
be solved with reasonable effort and an improvement routine can be applied
inside the companion form transformation.

2.2.6. The Schwarz and Routh [2a,2¢,17,19] canonical forms have been
used in order to formalize the above algebra. The transformations are usually
done via the companion form, and show the same difficulties. The solution is
simple only for diagonal Q and a few other special cases.

2.3. Iterative Methods
2.3.1 The solution of (1) can for stable A be written as [3]:

S=[ et et (23)
0

Davison and Man [6] integrated (23) by the simple Euler approximation and
obtained ;
SO = 09

Sk+l = ‘lST Sk ‘IS + Q~s (24)
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where ¢ = exp{4-h} and O =h- Q, or accelerated
SO = Q;
Skr1 = (S{’T)zk Sk ({Z’Zk + S, (25)

and with [|S,., — Skl < 107¢ as a possible stopping condition.

Algorithm 7 is used to test the above formula. The properties specified
in [6] can be verified but one important fact is lacking: S, does not converge
to the correct solution of (1) if / is not chosen very small. The Euler approxi-
mation must be valid. On the other hand, the representation of ¢ will then
contain less information and large round-off errors will result. The iteration
must be redone for new Q:s. Molinari [13] refers to 7 as the commonly
preferred algorithm.

2.3.2. Tt is also possible to view (25) as the solution of
—dS[dt=ATS + SA + 0, (26)

which can be integrated either by Runge Kutta or other conventional methods
or by using the linearity for a fundamental matrix approach:

_ SIy L
m-en [ SR 2}
S(t) = [Z51(1) + Z50(1) S(0) 255(1)]- (28)

Define ¢ = Z5(h) and J = Z,,(h) Z1,(h), then (28) can be rewritten as (24).

Algorithm 8 is based on the accelerated version (25). ¢ is computed by
series expansion with 7 terms and automatic scaling. 0 is obtained by the
iteration:

l
Ti=0h  Towr= (T + (T, 29

Q1=T1, Qk+1=Qk+Tk+b

which is obtained by series expansion of

h

3= [ e g

0

No scaling is performed and the number of terms Ty is maximized to 35.
The stopping condition for (29) is

I T/l Qull < 1077, (30)

Both the 0 computation and the iteration must be redone for new Q:s. Better
methods for the J computation might exist.
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2.3.3. The two methods just described can be viewed as transforming
equation (1) to equation (4) by

A — ¢ =exp(4h). (31)

Another possibility for going from (1) to (4) by introducing a one-to-one
transformation mapping the left half plane on to the unit circle is the bilinear
transform [2b,19,21b,22]:

A > p=—(4+al)(4 —aly'. (32)
Q is then transformed to
Q= (AT —al)™ ' (4 —al)™})2a.

Algorithm 9 uses the acceleration formula to solve (4) obtained in this
way [21Db].

The convergence rate of 8 and 9 depends on the choice of ¢ and /4 and on
the spread of the eigenvalues of the matrix 4. The eigenvalues of ¢, z;, are,
respectively,

a-+ A
Iy and  z;= L
a - )\i

The absolute largest eigenvalue, A, times / is limiting for the convergence
of the 0 computation in 8, and the absolute smallest one, Ay, times /i deter-
mines the convergence of (25). This implies that smaller # means better Q
but more iterations of (25).

In algorithm 9 the choice

Zi=€

a= '\/)\min : )‘max
minimizes mgx[zi], for real A, thus leading to best convergence of (25).

The operations involved in 9 are simpler than in 8, and rough calculations
with only real eigenvalues indicate that 9 manages a far larger spread in the
A-eigenvalues, i.e., more ill-conditioned problems. A bad choice of g seems
to be less critical than a bad choice of .

3. THE NUMERICAL TEST

3.1. Test Examples

The algorithms are all tested for 17 different 4 matrices ranging in order
from 2 to 10. The sample contains both stable and unstable A, as well as
matrices with close eigenvalues and ill-conditioned matrices with a large
eigenvalue spread. Some of the matrices were used in [2b,5,13, or 20] but
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most of them are standard examples for matrix inversion and eigenvalue
calculation. A few of the algorithms are also tested for matrices of order 20.

Six different easily generated Q matrices are used for each 4 matrix.
Some additional testing is done with Q matrices designed to give simple
integer valued S matrices. The test batch is listed in the appendix (Section 5).

3.2. Numerical Results

The results of the test are summarized in Table 1. The accuracy is measured
by comparing the solution with the solution of algorithm 1 in double precision.

For n =20 the accuracy was evaluated as the error obtained when the
computed S was substituted into (1). The accuracy of algorithm 1 in double
precision is also estimated in this way.

When the two ways of measuring were compared for the low order systems,
no great difference was found. Call the first method “accuracy in S” and the
second ‘“‘accuracy in Q.” For ill-conditioned A matrices some divergence
could happen in the test batch mainly so that the “accuracy in S” was one
or two digits better than “the accuracy in 0.” For the worst 4 matrices the
difference could be even larger. On the other hand, for the specially designed
Q matrices giving simple integer valued S matrices the “accuracy in S” was
often worse than the “accuracy in Q.” When these differences occur they
most often do for all algorithms at the same time.

For fixed matrix order the results show considerable variation depending
on the actual 4 and Q. The figures in Table 1 represent an average for the test
batch. Matrices giving failure exit are not included in the average.

Tt is not possible to draw general conclusions about new test examples.
The only ninth-order 4 matrix tested is, for instance, very simple, resulting
in better accuracy than for the eighth-order average.

Generally it can be said that equation (1) is difficult for very large systems,
especially if A is ill-conditioned, that is, mostly if A has a large spread in the
eigenvalues. It should also be stated that different Q matrices can “hide”
these difficulties to varying extent.

3.3. Discussion of the Results

The methods described are tested as general-purpose algorithms and as
such there only remain two, algorithms 1 and 9.

The eigenvalue algorithms are neither accurate nor fast, and often fail
if two eigenvalues are close. Algorithm 3 is out of the question although the
computing time could be almost halved. Instead of computing all eigenvalues
and eigenvectors of the 2n X 2n matrix, it is sufficient to compute only the n
eigenvectors corresponding to the stable eigenvalues. Algorithm 2 is probably
the best of all methods if the eigenvalues and eigenvectors of A are known or
useful in the future analysis.
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Algorithm 5 has average properties, rather slow for small orders, pro-
portional to n* for large orders, memory requirement proportional to 72,
and with bad accuracy for the difficult large-order problems. Algorithm 1 is
better for small orders and algorithm 9 for large orders.

Algorithm 4 has properties similar to those of algorithm 5. It has, however,
some advantages. If Q is not full rank the calculations are considerably easier,
also if G(s) is known or otherwise wanted. Moreover if V= CSC”, and not
S, is the quantity desired, no other method should be used, especially if C
is just a vector.

Algorithm 4 needs positive semidefinite O and stable A4.

Algorithm 6 needs long code but small internal storage. Although there
are pivoting possibilities the accuracy achieved is too bad. Double precision
would make it possible to solve equation (1) for higher orders, but even in
double precision large systems are impossible to handle. The difficulties arise
from the companion form representation. The execution time is by far the
shortest, proportional to n*. Noncyclic matrices, like the ninth-order example,
are not possible to transform to companion form, and failure exit of algorithm
6 results.

Algorithm 9 is always better than 7 and 8 both in accuracy and computing
time. The figures presented are obtained for good values of the parameters
a and A, respectively. It is found that, with a minimum of a priori knowledge
of the system, both @ and / can be estimated sufficiently well to give only a
slight increase in execution time and round-off errors. All the iterative methods
give error indication for unstable 4 matrices.

Algorithm 1 is the best and easiest for small systems, and no free parameter
a or & has to be chosen. For large systems, however, the execution time is
proportional to #® and the internal storage proportional to #*. It was not even
possible to test for n =20 on the big Univac 1108 machine with more than
40k words available memory.

4. RECOMMENDATIONS

The simplest and best method for small orders is the direct solution 1.
For large orders, say more than six or seven, other methods supersede it, for
instance, iteration method 9. The fastest algorithm is Mohnarl s (6), which,
however, is too sensitive to round off errors.
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5. APPENDIX

The A matrices of the test batch (eigenvalues below) were:

2x2
f
30 2 -3 -1 +2
0o 2|’ -5 —10}’ 0o 2|
(=3, -2) (~11.56,0.44) (2,1
3x3
—0.1 10 -1 0 -3 —20 10 10 i
0 o 1 71, -3 -3 4], ~18 17 22}.
0 226 —02 0 0 —2 13 —13 17
(0.1 + 1.5, —0.01) (=3, -2, ~1) (=1, —0.5 £ 0.871)
4 x4
—10 -7 -8 1 8100 4 5 0 -3
-7 -5 —6 =5 19 01 0 0 -4 3 5
-8 -6 -10 91’ 22 0 0 1] -5 3 —4 0
7 -5 -9 —10 ~10 0 0 0 -3 0 -5 —4
(=30.3, —3.86, —0.84,—0.010) (-5, 14,1 (—12, -2, —1 £ 50)
6x6
—01 0 0 0 O 07 _100001'}
i1 -t o 0 0 0O 1t 1 0 0 o0 -1
0 0 -2 10 10 5 1 1 1 0 o0 1
o 3 o0 -3 1 oY 1 -1 1 1 o0 ~1
7 2 o 0 -0 O 1 1 -1 1 41 1
3 15 0 0 100 —50 | T T T N
(-50, —10, —3, =2, =1, ~0.1) (=3.03, +1.31 & 1.20i, + 147  0.35i, + 1.48)
8 x8
4 -5 3 1 -9 =2 -8 0 |
0 -1 0 0 0 0 0 0
o 0 -2 2 1 -3 —10 03
0 0 0 -5 0 0 0 0
o 0 0 0 —10 0 0 o |
o 0 o0 3 0 -01 0 0
0o 0 0 -2 0 0 001 1
L o 0 0 0 0 0 0 -05 |
(10, -5, =2, =1 £ i, —0.5,-0.1, —0.01)




NUMERICAL SOLUTION OF A¥S+ S4+ Q=0 47

[ —0.021516 —0.021516 0

0 —0.001138 0.662 0 0
0.132 —0.1469 0 0 0 0 0 0
0 0 -0.4241 © 0 0 0 0.5561
0 0 -0.516 0 0 0 0 0
0 0 27073 0 —0.4995 0 0 0 ’
0 0 0.5166 0 0 —1.834 0.1207 0
0 0 0516 0 0 ~1.332 0 0
0 0 —0.2346 0.0909 0 0 0 —0.4546
(1.7, -0.50, —0.39 + 0.304, —0.12, —0.11, —0.09, —0.05)
—0.15365  0.0040173 0.17786 —0.99009 0.075158 0 0 0]
1.2482 —2.8543 0 1.4324 0.72689 4.0383 0 0
0 1 0 0 0 0 6 0
0.56788 —0.27685 0 —0.28366  —2.0496 —0.13886 0 0
0 0 0 0 -10 0 0 0
0 0 0 0 0 -20 0 o
0 0 0 0 0 0 -3 =2
0 0 0 0 0 0 1 0

(=20, ~10, -2.79, -2, —1, ~0.27 + 0.89/, +0.0336)

9x%x9
[ -1.6667 0 13333 0 0 0 0 0 o0 ]
0 -2 0 0 0 0 o0 0 0
016667 0 13333 0 0 0 0 0 0
0 0 0 -3 0 0 o0 0 0
0 0 0 0 -3 0 0 0 0
0 0 0 0 0 3 0 )
0 0 0 0 0 0 -4667 0 13333
0 0.0 0 0 0 -25 -6 5
0 0 0 0 0 0 01667 0 —4.3333
(=6, 5, —4, =3, 3, -3, -2, -2, —1)
10 % 10
-1 -1 0 0 0 0 0 0 0 o]
-1 -2 -2 0 0 0 0 0 0 o
-1 -2 -3 -3 0 0 0 0 0 0
-1 -2 3 —4 -4 0 0 0 0 0
-1 -2 -3 -4 -5 -5 0 0 0 0
-1 -2 3 4 -5 6 6 0 0 0|
-1 -2 3 -4 -5 6 -7 -7 0 0
-1 -2 -3 —4 -5 -6 7 -8 -8 0
-1 -2 3 -4 -5 6 -7 -8 -9 _g
| -1 2 -3 4 -5 6 -7 -8 —9 —10

(—25.58, —14.76, —8.05, —3.89, —1.62, —0.62, —0.26, ~0.12, —0.065, —0.042)
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-1 -1 -1 2 =1 1 -2 2 -4 3]
1 2 =34 22 -4 4 -8 6
1 0 -55 -3 3 —6 6 —12 9
1 0 -3 4 -4 4 -8 8 —16 12
I 0 -3 6 -5 4 —10 10 —20 15
1 0 -3 6 -2 2 —12 12 —24 18
1 0 -3 6 -2 5 —15 13 —28 21
1 0 -3 6 -2 5 —12 11 -32 24
1 0 -3 6 —2 5 —12 14 37 26
1 0 -3 6 -2 5 —12 14 -36 25

(_’3’ —3) _37 ‘39 _2’ _2, _2a _2’ —25 _1)

20 x 20
a;=-—2, i=j,

=0, otherwise.

. ] _ _ 71

Eigenvalues: A 2(1 cos —— 1),
20 x 20
aij=—1, ]=i+1’

=—1.001, j=1i,

——(0.001)*,  j<i,

=0, otherwise.
Figenvalues: A =—1, i=1,...,[n2],

i —[n/
=—1— 0.004-cosz7u-2l), i=[[n2]+1,...,n

n+2

The six Q matrices were generated by:

19 12]9
ey qij={ 0, it/ pos. def.

2, i=j,
2 g,={-1, |i—jl=1, pos.def
0, otherwise.

1, i=j,
3 qi,-—{ 02, it) pos. def.

@ q;=1, alli,j pos. semi. def.
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5)  q;=0999, allij. pos. semi. def.

6)  qi;=2max(,j)—1. indef.
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