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A SURVEY OF ADAPTIVE CONTROL METHODS. T

B. Wittenmark

ABSTRACT.

This report will give the background to motivate why
~adaptive control may be necessary and will sketch the
common fTeatures of different adaptive controllers. A
classification of adaptive controllers is given and

a few typical systems in each class are described in
further details.
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of Technical Development under Contract 69-631/U489




- TABLE OF CONTENTS

INTRODUCTION

WHY ADAPTIVE CONTROL?

CLASSIFICATION OF ADAPTIVE CONTROLLERS

GENERAL PROPERTIES OF ADAPTIVE
CONTROLLERS

PLANT SENSING METHODS
5.1. Indirect Methods
5,2. Model Reference Methods
5.3. Learning Model Methods

EXTREMUM SEEXKING METHODS
6,71, Perturbation Methods
5.2. Gradient Methods

STOCHASTIC ADAPTIVE METHCODS
7.17. Non-Dual Control Methods
7.2. Dual Control Methods

REFERENCES

ACKNOWLEDGEMENTS

12

15

24
24
28
32

40
40
43

47
48
54

63

73



1. INTRODUCTION,.

In the classic servomechanism theory, which was
¢reated during World War IT, only-linear time invariant
systems were considered. Systems with a few nonlinea-
rities could be handled with describing function and
phase plane methods. Concerning time varying parame-
ters the philosophy was to make the systems as insen~
sitive as possible to variations in system dynamics
by means of fixed vregulators. In the 1950's one be-
came aware of the large difficu%ties of controlling
systems with widely varying parameters. During the
development of the supersonic aeroplanes one found
that the behaviour of the aeroplanes could not be sa-
tisfactorily controlled with conventional time inde-
pendent feedback and compensation. This leads to
programmed controllers, i.e. the controllers were
tuned depending on measured variables as altitude,
speed, dynamic pressure etc. This type of tuning is
open loop and there is no feedback from the behaviour
of the airframe to the setting of the controller, It
is very costly and time consuming to determine the
controller for all possible flight conditions. This
leads to the idea of adaptive control. By this is
meant automatic adjustment of the system in order to
adapt to changing environment, This idea was used as
early as in 1939 (see [31] p 57) in an anti-aireraft
fire control system., When the target was far away
the gain in the system was set to give a smooth
tracking. When the target came closer it was neces-
sary to have a faster tracking and this was obtained

by increasing the gain in the system,

"Adaptive" became a catch-word and great expectations
became associated with it. One hoped that the adaptive
systems could be the solution to all problems with
time dependence and nonlinearities., Even conventional




feedback was sometimes called "passive adaption”.
One definition of adaptive control originating from

Truxal [31]1 is:

Definition 1:

An adaptive system is one which is designed from

an adaptive point of view.
A more precise definition which was suggested early
and which now has been a part of the rules of the

TEEE Group of System Science and Cybernetic [1] is:

Definition 2:

An adaptive system is provided with a mean of con-

tinuously monitoring its own performance in rela-
tion to a given index of performance or optimum
condition and a means of modifying its own para-
meters by closed leocop action so as to approach

this optimum,

The important part of this definition is the facility
for automatic adjustment of the controller in closed
loop. In connection with adaptive systems learning
systems are often mentioned. The difference between
adaptive and learning systems will be pointed out by

giving:

Definition 3 [1]:

A learning system, in addition to having the capa-

bilities of an adaptive system, must be able to
recognize previously occuring control situations
and recall the appropriate control actions, learned

previously by adaptation.

The difference between adaptive and learning systems



is very vague and it is difficult to draw the bounda-

ry between the two classes of systems.

Sometimes the term adaptive is given a different mea-
ning than used in this report [31, [11]. In those ca-
ses the term adaptive control is used when controlling
systems, which are influenced by disturbances, but
where the statistical properties of the noise are un-
known and have to be estimated and updated while cont-
rolling the system. In this report adaptive systems

as defined by Definition 2 will be discussed.

The first system to be called an adaptive system was
suggested by Draper and Li (1951) [19]. They designed
a controller for an internal combustion engine. The
task of the control was automatic adjustment of spark
timing and fuel mixture to minimize manifold pressure

despite changing conditions.

An old and common place adaptive controller is the
automatic gain control in radio receivers, where the
gain is compensating for changes in the input signal

strength.

This report will try to give the background of to
why adaptive control may be necessary and will give
examples of processes which can be suitably regula-
ted with adaptive controllers. This is discussed in
Section 2. Section 3 includes a scheme for classifi-
cation. The basic features of adaptive controllers
is sketched in Section 4. Sections 5 to 7 contain
brief descriptions of different controllers found in
the literature. As the flora of literature on adap-
tive control is very large it is impossible to give
a complete cover of the whole field. The author of
this report surely has missed many good references,
but as a first guide for the reader a commented refe-
rence list is given in Section 8.



2. WHY ADAPTIVE CONTROL?

In order to motivate further studies in the area of
adaptive control we will discuss a couple of proces-
ses, which undergo large variations in their dynamics.
We can find such processes in many different fields.

Aeroglane

The aeroplane is one of the first systems for which
adaptive control was used. Many adaptive controllers
which now can be used for different kinds of proces-
ses were from the beginning specially designed to
solve the regulation problems for high performance

aeroplanes,

As an example we will discuss pitchrate control. The
pitchrate loop transfer function from elevator deflec-
tion to pitchrate can be approximated by:

G(s) = 5 K(s+b)

s + 2Ews + m2

For a modern supersonic aeroplane K and w2 may vary
by a factor 8 in one minute b and 2tw may vary with

a factor 2-3 during the same time [u47].

For the US fighter F-101B the parameters are given
for five different flight conditions in the following
table [42]1:

Flight condition - Parameters .
No.| Altitude ft.|Speed Mach.| K | & | w. | b
1 0 0.2 31{06.,39] 1.,35] 0.36
2 0 1.0 44 1 0,30} 8.59 1,67
3 20000 1.0 261 0,23 6,18 0.9%
b 45000 1.0 0] 0,15 3,67 | 0.39
5 45000 1.8 181 0.09] 5.63 ] 0.38

Table 2.1.
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The purpose with the control is to maintain a desired
dynamic performance despite a changing environment.

It is desirable that the pilot obtains the same res-
ponse from the plane for all velocities and altitudes.

Biomedical investigations have shown that from the pi-
lots point of view the system has a good behavior if

the transfer functiorn from desired pitchrate, ér’ to
pitchrate,8 , has a damping ratio §= 0.7 and a natural
frequency w= 3 rad/sec.

In order to get a good performance for all flight con-
ditions the parameters in the regulator have to be
changed. Some of the flight conditions in Table 2.1
have been simulated using the regulator shown in Fig.
2.1. This regulator has been suggested to the author
after discussions with engineers at the aireraft in-
dustry SAAB AB, Link&ping, Sweden.

4] K(S+b) é

‘Ké ST(1+ST1)
(1+sT) (1+sT,)

-1

" Fig, 2.1 = Pitchrate control system.
§ - pitchrate
ér - desired pitchrate

8 ~ elevator deflection
The parameters in the controller were set to

T=0.5, T,=0.25, T,=0.1, Kz=1.25, K,=2.




The parameters in the controller were tuned to give a
good response for flight condition 2 in Table 2.1.
The step response for the flight conditions 1, 2 and
5 is given in Fig. 2.2. From the figure is seen that
a very good response is obtained for condition No. 2,
but when the altitude and the speed is increased then
the system becomes too sluggish (No. §) and when the
speed is decreased the response becomes too oscilla-
tive. (No. 1).

Nuclear reactor

Among other processes suitable for use of adaptive
controllers is the nuclear reactor. The dynamic cha-
racteristics of the reactor may change, for example
as a result of changes in coolant flow rate, control
rod configuration, power level or pressure. Other
possible causes for changes are isotope build-up,

fuel depletion and fuel loading.

The feedback from the nuclear power is nonlinear in
such variables as fuel and moderator temperature,

coolant flow, void or fission products. In order to

achieve a linear description of the dynamics, the non-
linear partial differential equations must be integra-
ted and linearized over the core for every operational
condition. It may be sufficient to describe the dyna-
mics with some five state variables, e.g.:

o fuel temperature,

o coolant temperature,

o moderator temperature,
o nuclear power,

o pressure in heat exchange system.

The heavy water boiling reactor in Halden, Norway, is
modelled by a fifteen state model. Four of these
states are directly measurable. Three or four states

are introduced as the difference in valve positions




Fig, 2.2 ~ Step response for flight conditions Nos. 5
2 and 1 from Table 2.1 when the regulator
from Fig. 2.1 has been used.

b4

o No5
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between two intervals of time., The rest of the states
are variables which are not directly measurable such
as fuel temperature etc. Identification experiments
show that a model of order five or six may be suffi-
cient for the control. Simulations have been carried
out using different controllers for different working
conditions and to switch between the controllers de-
pending on the actual loading. The change in the dyna-
mics may be very large for different levels of nuclear
power, Controllers which give good behaviour at low
power can give rise to unstable operation if used at
full power. The changes in dynamics may not be conti-
nuous but can change drastically e,g. when the water
starts boiling [32].

Paper machine

A process of a different kind is paper-making. The
final phase in a kraft paper mill is the drying of
the paper sheet. After forming the sheet on the wire
it is dried by pressing between steamheated reels.
The parameters in this process can be drifting. This

can be explained by the condensation of water inside

the drying reels. The condensate will change the heat
transfer constant and thus the grade of drying is al-
tered,

The transferfunction can also change if the speed of the wire

is altered e.g. when the paper quality is changed.

Non-linear process

Another example which illustrates the limitations of
fixed linear controllers is the simple but yet realis-
tic process in Fig. 2.3. The regulator is a motor
which controls a valve with a nonlinear characteris-
tic. For simplicity we assume that the nonlinearity

is quadratic, f(x) = x2.

The gain is tuned to give a good step response when
g- If the
working point is changed but the value of K is the

X is varying around some working point x




same as before then the behaviour of the system will
be changed significantly. In Fig. 2.4 the gain is

5, In
that case K has been chosen to 0.,25. If Xy = 2 this

determined to give a good response when x

i

gain will give a too sluggish system, and if Xg = 20

the step response will be too oscillating.

Motor Valve Process

t ' ;
u( )/\ K X £x) 0.1 __;y_(t)

L s | sz ||

" Fig. 2.3

The example clearly shows that a regulator which is
good at one working point can yield a poor behaviour
if the working conditions are changed. In order to
circumvent this an adaptive controller can be used
which measures the behaviour of the system in some
way and changes the regulator in such a way that the

system has an optimal behaviour all the time.

The above discussion gives a few examples of proces-
ses for which it may be fruitful to use adaptive cont-
rollers. A natural question is the feollowing: Is it
possible to obtain the same result using elaborate
fixed linear controllers as might possibly be obtained

using adaptive control systems?




between two intervals of time. The rest of the states
are variables which are not directly measurable such
as fuel temperature etc, Identification experiments
show that a model of opxder five or six may be suffi-
cient for the control. Simulations have been carried
out using different controllers for different working
conditions and to switch between the controllers de-
pending on the actual loading. The change in the dyna-
mics may be very large for different levels of nuclear
power. Controllers which give good behaviour at low
_power can give rise to unstable operation if used at
full power. The changes in dynamiecs may not be cOnti¥
nuous but can change drastlcally e.g. when the water
starts boiling [32]

Paper machine

A process of a different kind is paper-making. The
final phase in a kraft paper mill is the drying of
the paper sheet. After forming the sheet on the wire
it is dried by pressing between steamheated reels.
The parameters in this process can be drifting. This
can be explained by the condensation of water inside
the dfying reelé;.fhé.condeﬁsate will change the heat -
“transfer constant and thus the grade of drying is al—
tered. o ' o 7

The transferfunction can also change if the speed of the wire
is altered e.g. when the paper quality is changed.

Non-linear process

Another example which illustrates the limitations of
fixed linear controllers is the simple but yet realis-
tic process . in Fig. 2.3, The regulator is a motor

- which controls a valve with a nonlinear characteris-
tic. For simplicity we assume that the nonlinearity '

is quadratic, f{xJ) = xZ.

The gain is tuned to givé a gdbd step response when
X is varying around some working point Xg. If the
| working point is changed but the value of K is the
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AY(t) Xg =2
Ay
0 10 20 30 1 sec
Ay(t) X0=5
Ay A
0 10 20 30 t sec
A
y(t) X0=20
Ay -
0 10 20 30 t sec
Fig, 2.4 - The change in the output Ay = y(t) - 0.1x"

0
from the steady state value is shown for a

linearized model of the system in Tig. 2.3.
The change in the input is a step of magni-
tude Au and the working point X is 2, 5 and
20 respectively.
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There has been some criticism of the arguments for
introducing adaptive controllers. Horowitz [33], [34],
discusses this problem and states that the reasons for
using adaptive contreollers are not warranted in many
cases. The same things can be accomplished using ordi~
nary feedback control. There may be many opinions a-
bout this, but there is no doubt that the angel of at-
tack used in adaptive control has given many fruitful
results. But on the other hand adaptive control is not
yet developed as an easy solution for the control of
systems with changing parameters., For example the in-
stallation and tuning of the adaptive controller can
be difficult. In order to adapt to changes in one pa-
rameter in the process, perhaps three or more parame-
ters in the adaptive controller have to be determined.
It may on the other hand he very comfortable to install
an adaptive controller which can follow parameter varia-
tions and thus making it unnecessary to determine the
controller for all possible working conditions.

An alternative to adaptive control is a good feedback
controller which reduces the influence of parameter
changes. Another alternative is to use measurements

of the environment and to use these measurements, in
open loop, to tune the controller. Examples of such

control are the airdata computers used for aeroplanes.
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3. CLASSIFICATION OF ADAPTIVE CONTROLLERS.

There are many ways to classify adaptive controllers,
We will first refer to two classifications and dis-
cuss their relevance. An early survey paper on adap-~
tive control was written by Aseltine, Mancini and

Sarture [41. They used the following five classes:

© Passive adaptation: Systems which achieve adapta-

tion without system parameter changes, but rather
through design for operatdion over wide variations

in environment.

o Input signal adaptation: Systems which adjust

their parameters in accordance with input signal

characteristics,

o Extremum adaptation: Systems which self-adjust for

the maximum or minimum of some system variables.

o System variable adaptation: Systems which base

self-adjustment on measurements of system vari-

ables,

o '~ System characteristic adaptation: Systems which

make self-adjustment of transfer function charac-

teristics.

Using Definition 2 in the introduction it is seen that
systems of the first class cannot be regarded as adap-
tive systems. This is because there is no modifica-
tion of controller parameters. Further, the last two
classes are very adjacent and can for simplicity be
reduced to one class. With these comments the classi-
fication has been reduced to the one given by Levin
[43], who suggests separation into input sensing,
plant sensing and performance criterion sensing sys-
tems.
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Since these two classifications were made many things
have happened and amore up to date classification is
needed. The number of input sensing methods are small,
One of the few systems using this method is the above
mentioned automatic gain control in radio receivers.
We will thus overlook this class. Most of the early
adaptive methods can be classified as plant sensing
and a few of them as extremum seeking. The main part
of "modern" adaptive methods use optimal and stochas-
tic control theory. This will make it necessary to
introduce a new class which we will call stochastic
adaptive control methods. The following scheme ¢an
thus be used for classification of adaptive control

systems:

o Plant sensing methods,
o Extremum seeking methods,

o Stochastic adaptive methods.

All these three classes can be divided into subclas-
ses, but we will not elaborate our classification
scheme in that direction.

Plant sensing will be classified as methods using

some identification scheme to estimate characteris-
tics of the plant, for example, estimation of gain,
damping ratio, roots or other parameters in the trans-

fer function. The estimated parameters are then used

to tune coefficients in the controller. The task of
this tuning can be to hold the overall gain constant
or to give the transfer function other desirable qua-

lities,

The extremum seeking methods use a performance index’
to evaluate the behaviour of the system. The purpose
of the control is to reach the minimum or maximum

points of the criterion. There are some methods clas-



1,

sified as plant sensing which in fact use extremun
seeking in one part of the controller. But in those
cases the performance index is used only for identi-~
fication of parameters and is not as a measure of

overall behaviour,

The stochastic adaptive methods also use a criterion
function in the same way as the extremum seeking me-
thods, but here the system is given in a statistic

framework. This makes it possible to regard noise as
an integrated part of the system. The use of stochas-
tic optimal control has given new ideas how to treat

the adaptive control problem.
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4, GENERAL PROPERTIES OF ADAPTIVE CONTROLLERS,

Before discussing different adaptive controllers in
detail we will point out some features which are in
common for most adaptive controllers. Three major

functions can be distinguished:

o Identification of unknown process parameters,
o Decision of control strategy,

o Modification of controller parameters,

An illustration of this is Fig. 4.1, which gives a
schematic picture of the philosophy behind adaptive
control. The figure can serve as an illustration for
simple heuristic methods as well as an illustration
for methods based on stochastic optimal control.

ENVIRONMENT

INPUT OUTPUT
> PROCESS
< CONTROLLER <
~ PARAMETER _
i ESTIMATOR h

"Fig. 4.1 - Schematic block diagram for adaptive cont-

rollers,
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Separation of identification and control.

A very important question for the structure of adap-

e e e e L

tive controllers is if there exists a separation theo-

rem. By this is meant that identification can be sepa-
rated from decision and modification. Many adaptive
controllers are constructed from the following heu-
ristic point of view: Make an estimation of one or
several parameters and design the controller as if
the estimates are equal to the true values., Is the
controller thus obtained optimal? The answer is in
most cases: No. The reason is that the parameter es-
timates alone do not form an "information state" or
a "sufficient statistie". By this is meant that a
state vector exists, that contains all the informa-
tion about the past that is needed in future steps.
Separation is discussed in many papers, e.g. [8],
(111, [151,

Identification,

The identification is a problem on two levels., First
to determine the structure of the process. By this
is meant to determine, for example, if the system is
linear or nonlinear, the number of inputs and outputs
or the order of the system. Second to determine the
unknown parameters in the model given by the struc-
ture, The identification used in adaptive control
works on the second level. The structure has to be
obtained either using prior knowledge of the physi-
cal properties of the process or through real-time
identification experiments. The identification expe-
riments have to be done several times until a suit-

able structure of the model is obtained. Real-time

identification algorithms are discussed e.g. in [B7].
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There is a conflict between real time identification
and the control. When identifying it is desirable to
have rather large output and input signals in order
to obtain a good signal to noise ratio, but from the
view point of control the task may be to have as
small variations as possible in the output signal.
This conflict may give rise to a couple of phenomena
when using adaptive controllers, One of these pheno-
mena is "burst" [69]. By this it is meant that the
controller suddenly can start an oscillation in the
system, but after a short whilerthe control returns
to normal conditions again. This can be explained in
the following way: Assume that the parameters in the
process start drifting and that the gain in the adap-
tive loop is small. The estimator may not notice the
parameter drift until the system starts oscillating
after which the estimator can rapidly improve the
parameter estimates and again it is possible to
achieve good control.

Another phenomenon is "turn-off™ [81, [14], [70].
Here the control unintentionally may be turned off
for longer or shorter periods of time. Also this phe-
nomenon can be explained by the fact that the estima-
tor does not receive sufficient information about the

changes in the process parameters.

Performance criterion.

The performance criterion has been mentioned as an
essential part both in identification and decision,
We will now further discuss this concept and give
examples of criteria which can be used. For a more
thorough penetration of different performance crite-

ria we refer to Eveleigh [23].
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There are many expressions used as synonyms to per-
formance criterion (PC). Examples are: performance
index (PI), index of performance (IP), figure of me-

rit (FM), quality measuve, loss function.

As a definition of IP we can use:

A performance criterion is a measure of system

characteristics which can be used to determine

optimal control operations.

A simple IP might be to count the zero crossings in
the impulse response. This number can be used to de-
termine if the gain is too high or too low. A more

complex criterion is to minimize the expectation of

the output variance.

Notice that the control becomes optimal only for the
particular performance index used. This makes it ve-
ry difficult to choose the performance index, because
one cannot be sure that another choice of criterion
would not give the system a more satisfactory beha-
viour. This makes the choice of IP more an art than

a science,

The performance criterion can be classified as odd

or even. By even is at this point meant that the func-
tion is unimedal. The. two types ave sketched in Fig.
4,2 where the perforﬁance index J is shown as func~
tion of a single contfol variable x. The optimal va-

iuvue of x i1s denoted Xg

Using an odd criterion has several advantages. To de-
termine in which direction the control variable shall
be changed it is sufficient to make a single measure-
ment. This makes it possible to use a conventional
control loop to adjust the variable x. 0dd criteria
is difficult to use when two or more parameters shall
be adjusted because the parameters can in most cases

not be adijusted independently.
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I

Odd Even

»N/

Fig. 4.2 - One dimensional odd and even performance
criteria, J, as function of one control

variable, X,

There are essentially two ways to determine the di-
rection of changes in the control variable when using
an even criterion., First using a gradient method. Se-
cond to make two or more measurements and use the
differences for direction determination.

As an example of an odd criterion we can choose the
impulse response area ratio which is used in the Ae-
ronutronic autopilot [31, p. 3439}. The areas A* and
A~ are defined in Fig. 4.3.

T~

N hit)

T
&Wmvﬁ

I3

- N/

" Fig. W.3 - Typical impulse response for the second

order system

2

G(s) = @
82 + 2&tws + w2
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For a second order system it can be shown

where k is a positive constant.

The integral square error
[ e(t)lat
and the integral absolute error

J |e(t)]dt

that

(L}“I)

(4.2}

are examples of even performance criteria. The integ-

ral square error is the most frequently used even

performance index. This because the analysis is much

easier than when using other more complex functions,

When handling processes with noise the minimization

of the mean square error is almost the only criterion

used. It should also be pointed out that the value of

the performance index depends on the initially stored

energy in the system and on the applied command input.

The influence of the command input can be

decreased

by normalizing the performance index with a factor

that depends on the energy exciting the system [56].

For example the performance index can be chosen to:

T

[ e(t)zdt
g

==
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T
N = u (t)zdt
(T
9]

where ur(t) is the command input to the system.

To see the difference between different performance
eriteria we will use the system in Fig. 4.4 and the
criteria (4.1) and (4.2) to compute the optimal step
response by changing the location of the pole ~a.

uft) \/’;\\ elt) 1 y(t)

s{s+a)

" Tig. 4.4

For the integral square error criterion the minimum
is obtained for a = 1 and for the integral absoclute
error criterion for a = 1.4. But the criteria do not
have sharp minima, When using the integral square
error criterion an increase of a from 1.0 to 1.4 will

only increase the value of the integral with 6%.

The step response for the two cases is shown in Fig.
4,5, When using integral square error the response
will be too lightly damped while the integral abso-
lute error will give a "better" response. By better
is meant that it corresponds movre closely to what is
ealled a good step response,
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Ny (t)

0 5 10 15

" Fig., 4.5 - Optimal step response for the system in
Fig. 4.4 when using

a. Integral square error criterion

b. Integral absolute error criterion,

Most adaptive controllers have a disadvantage in com-
mon: It is very hard and almost impossible to analyse
the stability properties of a system regulated by an
adaptive controller. This is because nonlinearities
are involved partly in the identification and partly
in the modification parts of the controller. Thus

most regulator schemata are dervived in a heuristic way
and stability is investigated for systems with cons+
tant parameters. The results then are generalized to

slowly varying parameters.,

Stability can be investigated for simple regulators
when a few parameters are constant but unknown and

t sec
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the input to the process is simple, e.g. step, ramp
or sinusoidal, This type of analysis is sometimes
called "adaptive step analysis™, i.e. there is an
initial offset in the parameters and the path of adap-
tion is investigated. But in most cases simulations
are the only way to test the stability of the system,
This has serious limitations because one cannot be

sure that the worst cases have been treated.

One of the few adaptive systems which can be designed
to be stable is the model reference method [66]. The
stability of this system can be. ensured using Liapu-
nov theory. A brief resumé of the Liapunov theory for
continuous as well as discrete systems is given by
Kalman and Bertram in [37]1, [38]. An analysis of the
model reference method has been given e.g. by Parks
[51]., This will further be discussed in connection
with the model reference method in Section 5.

In recent years there has been much research in the
area of stability. Methods other than Liapunov-like
methods have been developed, see e.g. Popov [58] . These methcds
treat in most cases a linear system with a nonlinear feedback.
Criteria on the nonlinearity are given which ensure stability

of the closed loop system. These results have been used by

Landau [41] to analyze the model reference method, see Section 5.2.
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5. PLANT SENSING METHODS.

In this section some plant sensing methods will be
described in more detail. The plant sensing methods

are here separated into the three classes:
o Indirect methods,
o Model reference methods,

o Learning model methods.

These three classes correspond to three common ways

of designing adaptive controllers.

5.1 Indirect Methods.

One of the first designed and used adaptive control-
ler is the Minneapolis-Honeywell (M-H) adaptive regu-
lator [31, p. 1231. This controller was designed for
high performance aeroplanes and has been proven in
test flights on the US aeroplane F-34C and a more
elaborate version has been used on F-101 and X-15,
This regulator is chosen to examplify the indirect
methods. A simplified block scheme Ffor this type of
controller is given in Fig. 5.1.

u Ym, . ADAPTIVE "
CONTROLLER! PROCESS
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The input u is fed through a model with desired cha-
racteristics. The desired output is thus the signal
Y+ The closed loop part is now designed to give as
quick response as possible to changes in Y+ The
block "adaptive controller" is used to give as high
gain as possible in the forward loop. The objective
is to make the transfer function from Yo to.y as equal
to one as possible. A way to increase the gain and
still ensure stability is to use a relay in the adap-
tive controller, The nonlinearity will introduce a
limit eycle into the system. But the 1imit cycle can
be neglected in the over all behaviour of the system
if the amplitude is small and the frequency is high.
In the M-H system this is ensured by controlling the
amplitude of the limiter. A more detailed drawing of

the M-H adaptive contreoller is given in Tig. 5.2.

S GAIN b
CHANGER

\LC

MODEL

p
=
|

1+as PROCESS

Tig. 5.2 - Bleock diagram of the Minneapolis-Honeywell

adaptive controller
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The signal e + a %% is used to determine the sign of
the output from the relay. The function of the gain
changer is to change the absolute value, b, of the
input to the process. As even a small error can give
a large input signal to the process the forward loop
gain will be high and thus the signal y can be almost

equal to Yim®

As an application of the M-H regulator the following
system will be used [13], [161].

ADAPTIVE K

CONTROLLER s{s +1)?

Fig. 5.3 - Adaptive control of the system

X

— he: . . .
s(s+1)2 where K 1s time varying.

The "adaptive controller is the Minneapolis-

Honeywell regulator, compare fig 5.2.

Without the adaptive controller the closed loop sys-
tem is stable for 0 ¢ K ¢ 2. Let the reference signal
Y be sinusoidal and let the gain, K, vary in the in-
terval (0.5,10). Result from simulation of this sys-
tem is shown in Fig. 5.%. There is a good tracking of
N despite the gain is changing by a factor 20.
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- Fig. 5,4 = Desired, V> and actual, y, outputs for
the system in Fig. 5.3 when the gain, K,
is varying (from [13]).
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The Minneapolis-Honeywell adaptive controller is re-
ported to give good performance of the over all sys-
tem. Application to aeroplane and to roll autopilot
for a missile are discussed in [31, p. 123] and [67]
respectively. The controller is suitable for systems
which will be unstable for high gain and for which
the influence of the limit cycle can be neglected.
The response to changing parameters is quick. Another
advantage is that the mechanization is simple and re-
liable. A disadvantage is the limit cyele which can

cause wedar.

5.2. Model Reference Methods.

The model reference method [221, [u6], [55]1, [661,
is often called the MIT adaptive controller or Whita-

ker model reference system.

y
MO DEL m\/;\/ -1 F

PARAMETER
EVALUATION

r CONTROLLER ——3 PROCESS

-1

“Fig, 5.5 - Block diagram of the model reference method.
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In order to keep the over all characteristics of the
system as near a desired optimum as possible the in-
put signal u is fed into a model as well as into the
system. The model has the desired properties and an
error signal, e(t), is obtained by comparing the out-
put from the model Y with the output from the pro-
cess, y. The error signal is used to regulate the pa-
rameters in the controller in such a way that the be-
haviour of the model and the system will be the same,
The process can as in Fig. 5.5 be in closed loop or
in open loop. There are many ways to use the informa-
tion in the error signal to alter the parameters in
the controller. One way, called the "MIT rule", is

to minimize the integral squared error:
= 2
J = I e(t) dt

As an example consider a second order system with
time varying gain [51]:

Kv(t)

G_{s) =
P 2
g +:':1,]E;-!-a.2

The parameters a, and a, are assumed to be known and KV

1 2
is unknown. Let the purpose be to keep the over all gain

constant equal to K. The model will thus be

K
2

6 _(s) =
m s° + ass + a,

and the controller is simply a gain constant Lo
Minimization of the integral squared error yields
that the gain in the controller, KC, shall be changed
according to

se
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where B is a positive constant which has to be cho-

sen.

The partial derivative of e with respect to K, is

proportional to Yo and we get

- - '
Kc B ey,

The process and regulator will thus be as in Fig, 5.6.

K ym

S2+yS+Qp

u _ Ky y

s+ qys+q;

2

" Fig., 5,6 = The model reference method using the MIT
rule applied to a second order system with

time varying gain.

As for many adaptive regulators it is difficult to
say anything about the stability of the regulated
process when using the MIT rule, For simple proces-
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ses and simple inputs it is possible to decide which
values of the parameter B lead to a stable system., In
order to overcome this Liapunov theory has been used
to derive regulators which will give stable systems
(281, [u9}, [511].

The technique of Parks [51] will be used on the example

above when KV is constant but initially Kch K.

The system is of second order and the Liapunov func-
tion, V¥, is chosen to be quadratic in e, e and x =
K - KCKV:

_ 2 .2
Vv o= a,a,e” + a,e + ax
Then
aV 22 ’ M
—_—_— = = +
R 2a1e + Qalexu 2 axx

The time derivative of the Liapunov function will be

negative if

. a,
i = - KK = - 1 ey

voQ

A
or
L 4 a .
KC = L eu
AK
v

This will give an asymptotically stable system, which
was not guaranteed when using the MIT rule. But the

equation now obtained has some drawbacks. Firgt it




contains the unknown gain Kv which thus has to be es-
timated., Second it contains the derivative of the er-
ror signal. By using a lemma of Kalman conditions can
be given when it is possible to avoid the use of de-
rivatives [571]. The Liapunov technique used by Parks
can be extended to processes with time varying gain
(see paper by Monopoli et al [49]). The convergence
can be improved by using more elaborate Liapunov func-
tions [291.

The model reference method is also possible to use
when more than one parameter is varying, but the in-
teraction between the different loops is a problem
as it slows down the speed of adaptation. Multi~-vari-
able model reference systems are discussed in [591],

where a Liapunov approach similar to Parks' is used.

An alternative way to adjust the parameters than
those discussed above is taken in [20} and [40]. In
these references sensitivity analysis is used to de-
rive the equations for the parameter adjustment. More
general vesults on the stability of model reference
methods are recently given by Landau {41]. These new
results are obtained by using Popov's results in the
field of hyperstable systems [58]. In [41] a theorem
is given which includes Parks' vesults with Liapunov
functions as well as Dressler's results [20] with sen-

sitivity analysis.

5.3. Learning Model Methods.

This section will treat systems using a mathematical
model with adjustable parameters., The model is used
to identify the parameters of the process real time,
The main part of the suggested methods uses a hill-
climbing method to adjust the model. The estimated
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parameters are used o set parameters in a controller.
The purpose of the control is often to give the res-
ponse from the process certain qualities as a given
damping ratio, raise time etc. These methods are clear-
ly based upon the hypothesis of a separation of iden-
tification and control.

The method is examplified by a system, given by Mar-
golis and Leondes [ubi, [45].

o MopeL Pmy

N/
DECISION ADJUSTING 2 e
MECHANISM MECHANISM
u Y
CONTROLLER PROCESS

" Fig, 5.7 - Block diagram of the learning model method,
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By comparing the output from the process, y, with the
output from the model, Vs @n error signal, e, is ob-
tained., The error signal is used to adjust the para-

meters in the model.

Let the process be described by a linear differential

equation with time varying coefficients

n o Ld n i
d7y d u

i=0 at+  i=o ati

and the model

n' . i n' i
I oa;0) &Y = 7 booo) &F
i=0 dtt  i=0 dt
where
u(t) - input to the process and model,

y(t) - output from process
ym(t) ~ output from model

If the model is synthesized in a digital computer
the equations above are substituted by linear diffe-
rence equations.

As always in identification there is a problem: How
to choose the order of the model. We overlock ' this

difficulty and use n = n'.

The error
e(t) = y(t) - ym(t)

is used to determine how the parameters shall be ad-
justed. An appropriate loss function which has a mi-

nimum when a; = a; and b; = by is chosen. An example
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of such a loss function is

Ble,8,...) = (e + cgd + 08 + vuu)?

Using a gradient method to minimize the loss we get

the following equations

~

dai . 3%
— = - ky =
dt a4,
i
db, 34
1. .y
dt 1 3b.
i
This prequires evaluation of quantities like %%

which is conveniently done through the filters for

the sensitivity devivatives [uul, [k5], [711.

There is one degree of freedom in the choice of the
coefficients ki and ki. These constants have a great
influence on the stability and the speed of the para-
meter tracking. Too small values will give a too
sluggish tracking. Too large values will make the

tracking unstable.

To illustrate how to choose the gain parameters in
the tracking algorithm a discrete time system with
constant but unknown parameters will be discussed.
Let the system be

{ x{t+1) = Ax(t} + Bu(t)

Cy(t) = x(t)
where

x(t) - state vector of order nxt
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A - unknown matrix of order nxn
B - unknown vector of order nx1
u{t) - input of order 1x1
y(t) =~ output vector of order nx1

Here it is assumed that the whole A and B matrices
are unknown. In practice it is possible to introduce
same structure of the matrices in order to decrease

the number of unknown parameters,

The model used is

x(t+1) = Ax(t) + Bu(t)

~

where %, A and B are of the same order as x, A and

B respectively.

Use the loss function

T

b aTy 1 JRVLY P
2 = 5 X% = i(x %) (x=x)

The equation for the error, X, will be

%(t+1) = x(t+1) - Ax(t) - Bu(t) =

(& - A x(£) + (B - BCt))ult)

Partial derivation of & with respect to the coeffici-

ents aij and bi give

9L (t+1)" '
_T_j;ijz - §i<t+1>xj(t)
aaij(t)
a2 (t+l)
abi(t)

= - ki(t+1)u(t)
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To update the estimates of A and B the following equa-
tions are used

~

. _ - "\
aij(t+1) = aij(t) + kxi(t+1)xj(t)

: : "
bi(t+1) = bi(t) + kxi(tf1)u(t)

Notice that the same gain k is used for all parame-

ters. The question is how to choose k. The residuals
X(t+1) are due to non-exact.or incorrect estimates,

but if the updated values of A and B are used the new
residuals would be zero by an appropriate choice of

k, i.e.

X1(E+1) = x(t+1) = ACt+1)x(t) - B(t+1)ult)

= x(t+1) - A(H)x(t) - B(tdult) -
- XX+ x ) Tx(e) + FCe+DuCE)?)
z g(t+1)[1 - k(x(0)Tx(t) + u(t)z]]
The updated presiduals X' are made zero choosing

1

k =
x()Tx(t) + u(t)?

It can be shown that this choice of k will give con-
vergence of A and é to the true values A and B. De-
goting the i:th row in the A and A matrices by Ai and
Ai respectively we have

2

)T+ (be41) - b,)7 =

(A Ce+1) - A (A (£41) - A;

= (Ag(t) - A+ KX (erDx()T)
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T
* (A0E) = Ay ¢ kX (E41x(E)T) +

-~ X 2
. N .
+ (b)) - by o# kg (trDU(D)} =

. . T
= (A (t) - A ) (A (1) - A) o+

2 N )
+ (b;t) - by} - kx, ()

The left hand side is always greater than or equal to
zero, The last term on the right hand side is always
nonnegative hence if the system is persistently exci-
ted. :

Using this special choice of k will thus give conver-
gence to the true values in the case with constant
but unknown parameters. This way of choosing k origi-
nated from Kaczmarz who used this type of algorithm
to solve large systems of linear equations. For fur-
ther details we refer to [10 @p. 450 - 15517,

For nonconstant matrices it is very hard to say any-
thing about the stability or convergence. For the
case with specific inputs, e.g. steps, sinusoidal and
few parameters the stability problem is examined in
[us1.

In [52] the learning model identification for conti-

nuous time systems is studied using Liapunov theory.
Through an appropriate choice of Liapunov function
the stability of the parameter identification can be

ensured.

A rule of thumb is given in [44] for the relation bet-
ween process characteristics and the ability to fol-
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low changes in parameters. For the adjustment of one
parameter a period of two time constants of the pro-
cess 1s fequired. For two parameters the time is in-
creased by four to nine time constants. An advantage
with the learning model technique is the relative

easy mechanization of the parameter tracking servo.
Further, the identification does not need aﬁy pertur-
bation signal applied to the system, but in that case
the natural input to the system must excite the sys-
tem all the time, otherwise all parameters cannot be
tracked. A drawback is the difficulty to follow ra-
pid changes and even slow changes if more than one
parameter is adjusted. Concerning the stability of

the closed loop adaptive system very little can be
said., Even if it can be shown that the identification
algorithm converges it is not necessary that the
closed loop system will be stable. This is for example
reported in [60] where a system with time varying gain
is investigated, In that case it was impossible to get
the closed loop system stable, For some special cases
it is possible to prove this instability.
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6. EXTREMUM SEEKING METHODS.

In earlier sections some adaptive controllers have
been discussed which used an even performance index
for the identification part, but the even criterion
has not been used to control the over all behaviour
of the system. Adaptive controllers which use an even
performance index to optimize the over all behaviour
of the system will be called extremum seeking. The
extremum seeking methods will be separated into two
classes. First controllers using an intentional per-
turbation signal to determine how to change the in-
put to the system or the parameters in the controller,
Second controllers using gradient or hilleclimbing me-

thods to drive the system to the optimum.

5.1. Perturbation Methods.

Systems using an intentional perturbation signal are
discussed in many papers. See e.g. [181, [191, [39].
An even performance index is used to change a parame-
ter or a control signal. The control variable is gi-
ven a small periodic perturbation and the performance

index is used to drive the system to its optimum. The

perturbation is for example a sinusoidal or a square wave.

Let the performance index be J(x) with minimal value
for x = Xgs where x is the controlled variable. The
minimum point, Xy may be time varying. The actual
value of the parameter x is x4+ The parameter is now

perturbed around x = X

X = x  + A sin wt

Expand J(x) around x = X,
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J(x)

TANE | \/

U

o T

Fig, 6.1 - Perturbation of x will give different phase
in the output J{(x) depending on if x is

less or greater than Xy

2

J(x) = J(xa) + aJd « A sin wt + iw% - A
3.4 B X _

X=X, X=X,

sinzmt

The output from the performance computer is fed through
a bandpass filter with eenter'frequency:wc = w. The sig-
nal out from the filter will thus have an amplitude
proportional to the derivative of the performance in-
dex at the point x = X, A demodulator will give a
signal proportional to 3J/3x. The sign of this signal
indicates if Xg is greater or smaller than x;. The ab-
solute value gives a measure of how far the actual va-
lue is from the optimum. The parameter x is now changed
until Xy ® Xg. If the optimum point is varying the pa-
rameter will be adjusted in order to follow the moving

optimum point.

v
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A block scheme for adaptive regulation of one parame-

ter is shown in Fig., 6.2.

PERFORMANCE | J(x).| BAND PASS

'xw-A‘s-i‘ nwt

PERTURBATION
'GENERATOR

DEMODULATOR [&—

K
Xa S

Fig. 6.2 - Adaptive controller with intentional per-

turbation signal.

The perturbation signal adaptive method can be used
for a wide range of processes, e.g. internal combus-
tion engine [19], roll autopilot [63]1, chemical re-
actor {397,

The system of Draper and Li [19] is one of the first
reported adaptive systems. This system was designed
for the optimum control of an aeroplane engine., The
controlled variables are fuel-air ratio and ignition
timing. The purpose of the control is to maximize the
break mean effective pressure. This output as func-
tion of fuel-air ratio and spark timing form a two-
dimensional surface with one extreme point. The op-
timum point can move when the environment changes.

In order to follow the moving optimum point the input
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signals are perturbated and the reference values arvre
changed until the extremum point is reached. This
will ensure that the process works under optimal con~

ditions all the time.

If more than one parameter or input signal shall be
adjusted one has to assure that the interaction bet-
ween the different channels can be neglected. Because
of the interaction this type of controller is mostly
discussed for one or two parameters, but a six-chan-
nel adaptive controller is discussed in {17]. In the
sinusoidal case the signals are separated in frequen-
cy. Another way to decouple the different channels

is to use independent noise, E.g. a PRBS signal can
be used [18]. If the period is sufficiently large

and if the PRBS signal is shifted half a period one
gets two signals which can be regarded as uncorrela-

ted and can thus be used to control two parameters.

6.2. Gradient Methods.

A way to find the extremum point of an even perfor-
mance index is to use gradient or steepest descent
methods. In this case an algorithm for finding the

minimum can be:

1. Give an initial value to the parameter vector, Xx.

2. Measure and store the performance index value J(x)

and its gradient %ﬁ.

3. Change the parameters with a vector along the op-

posite direction of the gradient, x + x ~ k %%@

4, Repeat from 2 as long as the performance index is
significantly reduced.
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The difference between the various gradient methods
are in the way of changing the parameter vector. For
example one parameter can be changed at each time or
the whole parameter vector can be changed at the same
time. Other differences can be that the change in the
parameter vector has a fixed step length or the gra-
dient is used to determine the length of the step.
The convergence and stability of the gradient methods
depend critically upon the step length. Too small a
step length will give slow convergence rate and may
give an unsatisfactory behaviour of the system if

the optimum point is time varyiﬁg. On the other hand
too.darge a step length can cause instability.

There are two commercially available controllers
using this type of adaptive optimization. The Opcon
controller [28] is built by Westinghouse Electric
Corporation and the Varitrack controller [2] by Mo-
torola Control Systems Ltd. The algorithms used are
in principle the same: Measure the performance of
the system over an interval of time and alter the set
point values of the control variables. In the Opcon
the stepsize is constant until an optimum is reached,
then the stepsize is reduced. The Varitrack works in
a similar way and adjusts the control variables to
follow the path of steepest descent or ascent with-
in the limits given by constraints on the set point
values, for example. In both controllers the control
variables are changed in a cyclic manner even after
the optimum is reached. This facilitates following

a drifting optimum point.

Several papers discuss gradient method controllers.
Feldbaum [24] and Stakhovskii [61] measure the gra-
dient in discrete times and change the parameters
with a step length which depends on the norm of the
gradient vector. In [50] a self-optimizing system is

discussed which continuously changes the parameters
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in order to minimize a mean square criterion. The pa-
rameters are changed using an error gradient which is

computed by cross correlation methods.,

We will further discuss one gradient method, given in
[53], [56]. The control system is assumed to be repre-

sented by the equations:

{ X Flx,u,y,0,t)

y = Cx

f is a known vector-valued function which depends on
the state of the system, x, the control signal, u,
the adjustable parameters in the controller, y, and

a collection of unknown process parameters, w. Even
if the function f is known the behaviour of the sys-
tem is not known as f depends on the unknown parame-
ters, w. The parameter vector, y, is changed in disc-
rete times in order to minimize an integral perfor-

mance index

T34

P = I G(y(t),t}dt

Now y is changed as
Yier T ¥y T wSilvy)

where Si(yi) is an approximation of the true gradient
of P and y is a positive scalar. With a proper choice
of the adaptive loop gain, p, and the length of
(ti’ti+1) this algorithm can be used for adaptive
control of linear as well as nonlinear systems. The
time intervals (ti’ti+1) should be chosen small enough
to achieve a fast response time for the adaptive loop,
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yet long enough to give a proper detection of the ef-
fect of the last change in the parameters, y. The
problem is here formulated to guarantee that P has
metric properties. By doing this it can be shown that
if‘y1, Yo e+s COnVerges it will converge to the true
optimum independent of the applied command input. In
[56] the method is applied to the adaptive control of
the pitch rate lodop of an aeroplane.
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7. STOCHASTIC ADAPTIVE METHODS.

During the first decade of development of adaptive
controllers the design was in most cases not based on
a statistical description of the noisy environment

in which the processes always work.
The noise can originate from measurement errors,

drift in calibration of instruments, wind gusts,
changes in quality of incoming products ete. This
approach was taken begause one did not have the tools
to handle the noise in the systems. The earlier ana-
lysis was in most cases carried out to achieve a per-
formance of the systems in servomechanism theory
terms. If noise was considered it was mostly approxi-
mated by steps, ramps or other test signals. The sys-
tems then were designed to be as insensitive to these
signals as possible, but around 1960 much work was
done in the area of stochastic optimal control and

to formulate the control problems in a statistical
framework. This and the immense development in the
field of computers have given the control engineers

new and sharper tools to work with.

This section will handle adaptive systems where the
problems have been formulated as stochastic control
problems. The philosophy of stochastic adaptive cont-
rol and ways to attack these problems are discussed
by Bellman [11] and Bellman and Kalaba [12]. Many
stochastic adaptive methods are formulated as opti-
mal Bayesian control problems. Aocki has given a tho-

rough penetration of this kind of problems [3].

In most cases the derivation of optimal control laws
for stochastic systems will lead to a functional
equation which has to be solved using dynamic prog-
ramming. This will limit the class of problems that
can be solved. A stochastic variational problem solved
by Astrdm [6], [7] clearly shows the difficulties that

arise when solving multistep decision problems. It is
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much easier to solve single step decision problems.
Minimizing over several steps of time will give dual
control laws. Minimizing over just one step will give
non~dual control laws. The term dual control was

first introduced by Feldbaum [25]. By dual control is
meant that the control law has a twofold action. First
it minimizes the loss and second, which is very impor-
tant, it makes control actions in order to get better
estimates of the unknown parameters of the process.
The non-dual control laws just minimize the loss at
each step of time. Heuristically it can be said that
non-dual control laws just make the best out of a gi-
ven situation. The dual control laws try to reach a
better situation from which better control can he
achieved. The stochastic adaptive controllers will be

classified as non-dual or dual controllers.

7.1. Non=-Dual Control Methods,

Two ways of obtaining non-dual control laws will be
discussed. First one can use the equations for the
optimization over several steps of time and make app-
roximation or introduce some restrictions. Second one

can from the beginning look at the problem as a single

step decision problem and minimize the loss for just
one step. The first approach is used e.g. in [31, [9],
[211, 1271, [64]. As an example we will follow [9].

Represent the system as

{ x(t+1) = A(tIx(t) + B(tlu(t)

() = C(tIx(t) + e(t)

where e(t) is white noise and the matrices A(t) and
B{(t) have random elements. Further the matrix C(t) is
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assumed known. The purpose of the control is to mini-

mize a loss function over N steps

N-1 T 9
Vy = @ [xCe+1)70Ce+1)x(t+1) + dult)”]
t=0
i.e, find the control sequence u(0), u(1), 1.., u(N-1)

which minimizes the expected value of Ve

Three different types of controllers are discussed,
First optimal open loop controllers where only the

a priori information of initial states and probabi-
1ity distributions are used to determine the control
sequence over the whole interval. Second optimal
closed loop controller which gives a dual control law.
Third a suboptimal closed loop controller. When using
the first type of controller one does not use any
measurements during the control period. In contrast
to the optimal closed loop control law it is possible
in this case to get an analytic solution to the open
loop problem. This can now be used to form a subopti-~
mal control law which at each step uses the last es-
timate of the parameters to compute the open loop
control sequence for the remaining control period.
This control sequence is used only for one step. When
a new measurement is taken this is used to make a new
estimate and a new open loop control sequence is com-
puted, This means that at each instant of time the
control signal is computed on basis of the last mea-
surement and under the assumption that no further
measurements will be taken. This is often called open
loop feedback control [21]. Properties of open loop

feedback controllers are further discussed in [64].

Other ways to derive non-dual control laws are dis-
cussed in i57] and [68]. We will follow the way out-~
lined in [681:
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Assume that the system can be described by the equa-

ticon
= bq(t)u(t—1) + .. * bn(t)u(t-n) + e(t)

where ai(t) and bi(t) are unknown time varying para-
meters and e(t) is white noise. The control problem
is to choose u(t) as function of old outputs and in-
puts in such a way that the expected variance of the
output in the next instant of time is minimized, i.e.
min Ey(t)z. In the general case unknown parameters of
a process can be estimated by augmenting the state
vector with the unknown parameters. In general this
will lead to nonlinear estimation problems that has
to be solved using dynamic programming, but because
of the special structure of the model and the crite-~
rion chosen here the problem is linear in the unknown
parameters and the least squares method can be used
to estimate the parameters. Further the problem for-
mulation will make it possible to separate estima-
tion and control. The parameters are estimated using
a real time identification algorithm based on Kalman
theory.

The system equation can be written as

[a, ()]

* 08k

a (t)

y(t) = [«y(t=1) ... =y(t-nmdult-1) ... u(t-n)1{“n + e(t)

b, (t)

e e =3

b_(t)
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or
y(t) = ¥ (£=-1)8(t) + elt) (7.1)

The vector 6(t) which contains all the unknown para-
meters is assumed to be a stochastic process described
by the equation “

B(t+1) = 8(t) + v(t) (7.2)

where v{(t) is a sequence of independent normal random
vectors. It is further assumed fhat the statistical
properties of the noises e(t) and v(t) are known. The
equations (7.1) and (7.2) can now be regarded as mea-
surement and state equation of a dynamic system. The
state of the system, 8(t), can be estimated using Kal-
man theory. The filter equations do not only give the
parameter estimates but also the variance of the es-
timation error. This variance matrix is a measure of
the quality of the estimates. Due to the formulation
of the problem the optimal solution can be given ana-
lytically. The control signal will be a function of
inputs, outputs, parameter estimates and further of
the accuracy of the parameter estimates. If in the
obtained control law all the variances are put equal
to zero the control law will be reduced to the deter-
ministic minimum variance strategy [5], but with the

true parameter values substituted by estimates.

To illustrate the behaviour of this type of adaptive
controllers we use the system

y(t) - 2.86y(t=1) + 1.2y(t-2) =
= u(t=1) + b(t)u(t-2) + e(t)

where b(t) is varying as
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b(t) = - 0.5 + 0.0005% - t

The control signal at time t is allowed to be a func-
tion of ult-1), u(t-2), ..., y(t=-1), y(t-2), ... Fig.
7.1 shows how b(t) is tracked by the real time esti-
mator. The accumulated loss Zy(t)2 is shown in Fig.
7.2. It is seen that the adaptive controller in this
case only gives a slight increase in the loss com-
pared with the minimal expected loss (see [5]). A mi-
nimal variance regulator is derived for the system
based upon the true parameter values at time t = 0,
The accumulated loss when using this regulator on the
time varying system is also seen in Fig. 7.2. The
used system is evidently sensitive for the changes in
b{t), but with the adaptive controller it is possible
to follow the changes in b(t) and thus achieve good
control all the time.

-0.50-}

T
500

b{t)
~

\B(t)

" Fig. 7.1 - True and estimated valuegof b(t).
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I

.Figa‘ 7.2 - I

IT

III

500

Expected minimal loss if the parame-
ters were known.

Accumulated loss, Ey(t)z, when using
adaptive controller.

2y(t)2 when using optimal controller
based upon the true parameter values
at time t = 0.
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7.2. Dual Control Methods.

The dual control laws are given as solutions to func-
tional equations which have to be solved using dyna-~
mic programming. This has the consequence that it is
only possible, because of computational reasons, to

solve problems of low order.

Problems leading to dual control are formulated in
many papers, but only a few complete soclutions are

reported.

Systems with fixed but unknown gain parameters are
discussed in [30] for continuous systems and in [26]
for discrete time systems. In the first paper diffe-
rent ways are discussed to get approximate solutions
to the dynamic programming equations., In the second
paper a one dimensional problem is discussed. Let

the system be described by the equation
x(t+1) = x(t) + bu(t) + v(t)
where b is fixed but unknown, with a gaussian a prio-

ri distribution. v(t) is white noise with known dist-

ribution. The purpose with the control is to minimize

[x(t=1)% + u(t)?]
1

E

o o2

t

The problem is solved by stepping backwards from the
final time N. After three steps it is reported that

a stationary control law is obtained as a function
of the state variable, x{(t), estimate of b and the
variance of the estimation error. The control policy
is then approximated by an analytic expression which
can be used as control laws, but there is no compari-
son between the behaviour of non-dual control laws

and the obtained dual control law.




55,

We will now discuss three fully solved problems which
give dual control laws. In all three papers only first

order systems are used,

The first problem is given by Jacobs and Langdon [35],
[36], and treats the extremum control problem described
by Fig. 7.3. The observed output c is a quadratic funec-
tion of the variable x: “

c(t) = Ax(t)? (7.3)

A is assumed to be known.,

UGXLM—C

Fig. 7.3 - Simplified extremum control problem,

z(t) is a stochastic process given by the equation
z(t+1) = z(t) + v(t) (7.4)

where r{(t) € N(0,0),

The problem is to minimize the expected time average
of the output c.

_ 4N
c = lim N Yy elt) (7.5)
N+m t=1

Introducing v(t) = ult+1) - u(t) the system can be




56.

written as
x(t+1) = x(t) + v(t) + r(t) (7.6)

The system (7.6) and the criterion (7.5) formulates
a linear quadratic stochastic control problem which
has the solution v(t) = -x(t), but the variable x(t)
is only measurable through the variable c(t) and thus
only the absolute value is known and not the sign.
Introducing the probability for x(t) to be positive
it is possible to derive a functional equation for
choosing the control variable. ﬁsing a digital com-
puter for solving the recursive functional equation
a steady state control table is obtained, i.e. the
control signal is given in discrete points as a func-
tion of the probability for positive x(t) and the ab-
solute value of x.

Bohlin [14] and Wittenmark [69] have discussed a prob-

lem with an unknown time varying gain.

e(t)
_u@) g(t) N\ y(t)
&/ |

" Fig. 7.4 - The system used in [14] and [691].

In [14]the time varying gain is modelled as

g(t) = gq * dlg(t-1) - gg] + v(t)
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and in [69] as
g(t) = ag(t-1) + v(t-1) (7.7)

In both cases the distributions for e(t) and v(t) are
normal with zero mean and known variances AZ and 02
respectively. Also the constants g d and a are as-

sumed to be known.

The loss function in [14] is

B )2
et = E y(t) - g
N roq g

and in [69]
N 2

by = E L (1 0+ gtiule)) (7.8)
+z1

As the two problems and solutions are very much the
same we will only discuss the solution given in [69]

at this point.

Consider the system
y(t) = g(tiult) + e(t) (7.9)

where g(t) is varying according to (7.7) and use the
loss function (7.8). If the gain was known the opti-
mal solution would be

g

w(t) = = e
g(t)

The unknown gain can be estimated using a Kalman fil-
ter.
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gCt+1]t) = agltlt-1) + K (y(t) - ult)glt]t-1))

K(ty = . apC)
! p(t)u(t)2 b 22 (7.10)
22
p(t+1) = Aa pét> 5+ 52
pltiult)® + a

Consider the situation at time t = N, Then it only
remains to find the control signal u(N) as a function

of old inputs and outputs. The optimal u(N) is given

by

g(N|N=1)
g(N|N-1)2 + p(N)

u(N) = -

Define

V(g(t|t-1),p(t),t) =

1 @)’
= min E { 1 + uis)g(s [ N }
ult)...u(n) ls=t qft 1

where

Yooy

is the sequence of old outputs and inputs.

{y(t=1), y(t=-2), ..., ult-1), u(t-2), ...1

]

This will now give the functional equation
Vig(t]t=1),p(t),t} =

. 2
= min [(1 + ult)glt|t=-1)}) + u(t)2P<t> +
ult)

+ E{v[é(t+1]t),p(t+1),t+1]let_1}] (7.11)
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For t = N

V{g(N| N=1) ,p(N) N} = s x
g(N[N-1)% + p(N)

The equations (7.11) and (7.10) define a dynamic prog-
ramming problem which is solved backwards from t = N,
The equations are iterated backwards until the steady
state solution is obtained. The control signal, u(t},
is now given in discrete points as function of the
estimated gain, é(tlt-1), and the estimation error
variance, p(t). To simulate thersystem the control
table is stored and the actual control signal is gi-

ven through interpolation in the control table.

There are two things concerning dual control laws
which are pointed out in all three papers discussed
above. First we will discuss a property of the opti-
mal dual control law and second discuss how to derive
suboptimal control laws which preserve the dual ac-
tion.

The optimal dual control law has a property which at
the first glance may seem strange. When the uncertain-
ty of the parameter estimate is increased the control
signal as function of the uncertainty has a disconti-
nuity. This can be explained by the twofold action of
the optimal control. When the estimates are good
there is no reason to use any control to improve the
estimates and the strategy just minimizes the expec-
ted loss, but when the estimates are poor they have
to be improved. This is necessary in order to be able
to make better control in future steps. The strategy
is thus changed and the control is achieved partly

to minimize the expected loss and partly to get bet=-
ter estimates. The function V(g,p,t) has two local
minima corresponding to these two strategies and de-
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pending on the variance p(t) it is the one or the

other that will give the absolute minimum.

The twofold property of the optimal dual control law
can be used to form suboptimal control laws which

are much easier to derive and thus can be used on
higher order systems. When the accuracy of the esti-
mates are good it is a good strategy to use the non-
dual control law obtained by minimizing over Jjust one
step of time, but when the uncertainty in the parame-
ter estimates is too large the estimates have to be
improved. This can be done by superimposing a pertur-
bation signal on the non-dual control law. The per-
turbation signal can e.g. be a small amplitude square
wave [69] or a random signal [68]. The random signal
can e.,g. be a pseudo random binary sequence (PRBS).
The perturbation signal can be used all the time or
only when the estimates are poor. A way to judge the
gquality of the estimates can be to examine the vari-
ance of the estimates or perhaps better to use the

relative accuracy.

In [69] an example is given comparing the one step

controller and the optimal dual controller:

The system is

{ g(t+1) = 0.9g(t) + v(t)

y(t) = gltiul(t) + e(t)
where

Ev(t) = Ee(t) = 0

Ev(t)2

i
—

13
o
]
joyl

Ee(t)2

Ev(tle(t) = 0
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The loss function is chosen to minimize

N 2
E ; (1. + g(s)ul(t)}

The accunulated loss

t 2
Y (1 + g(slu(s))
1

is shown in Fig., 7.5 for the different control laws.

It is possible to compute the expected loss when using
the optimal dual control law, line e in Fig. 7.5, From
the figure it is seen that the perturbated one step
controller gives a rather large reduction of the loss.
The same result when using suboptimal dual control
laws is reported in [36]. This gives a hint as to how
suboptimal dual controllers can be derived, i.e. use
the one step non-dual controller as long as the accu-
racy of the parameter estimates are good and superim-
pose a perturbation signal when the estimates are too
poor. Since the dimension of the dynamic programming
problem increases with the square of the order of the
system [8] it is not realistic to think that optimal
solutions can be obtained for higher order systems.
Thus the control laws sketched above might be a way

to make suboptimal dual control on higher order sys-

tems.
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accumulated loss

400 -~ a
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= C
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100 200 300 400
" Fig, 7.5 - Accumulated loss
¢ 2
Y(1 + glsiuls))
1
for different cases,
a. Expected value for u(t) = 0
b. Non-dual control
u(t) = - = g(t)
g()? + p)
c. Suboptimal dual control
u(t) s - B 4 e L o0l1s

()% + p(t)

d. Dual control

e. Expected value when using dual control




63.

8. RETERENCES.

The flora of literature on adaptive control is very
large and in this report only a part of all sugges-
ted adaptive controllers has been discussed. Even if
this report is a survey it can be hard to find the
right way through the jungle of given references. The
intention is therefore to point out a few books and
the main references to the different methods. This
smaller subset can be used as a first guide into the

fascinating field of adaptive control,

There is no book which treats all the different clas-
ses of adaptive controllers discussed in this report.
The books

Mishkin, E., Braun, L.Jr. (Eds.): Adaptive Control
Systems [u48]

Eveleigh, V.W,: Adaptive Control and Optimization
Techniques [23]

discuss many of the earlier adaptive controllers. A
review of the state of art up to about 1959 is given

in

Gregory, P.C.: Proceedings of the Self-Adaptive Flight
Control Systems Symposium [31]

An excellent exposition of the philosophy behind

stochastic adaptive methods is given in

Bellman, R.: Adaptive Control Processes - A Guided
Tour [11]

This book does not give the detailed solutions but
mainly discusses the problems arising when formula-

ting the adaptive problems in a statistic framework.
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Extremum seeking methods are discussed and an intro-
duction to stochastic adaptive methods is found in

Westcott, J.H. (Ed.): An Exposition of Adaptive Cont-
rol [65]

Apart from the books referred above the main part of
the literature on adaptive control is found in jour-
nals and conference papers. The main sources of this

kind which have been used for this report are

IEEE Transactions

Automation and Remote Control

International Journal of Control

Preprints from the Joint American Control Conferences
(JACC)

Proceedings from IFAC Conferences and Symposia

In the end of this section an alphabetic reference
list is given, To get a total view of the references
they are below listed in different categories. The
main references of the different classes of control-

lers are denoted by a star (¥),
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Learning model methods:
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