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Summary

The course 1995 consisted of 15 lectures and 8 exercise sessions. We used
the book “Multivariable Feedback Design” by J. Maciejowski (Addison-
Wesley, 1989). Part of “Linear controller design, limits of performance”,
by Boyd and Barrat (Prentice Hall, 1991) was also used together with
notes and articles. The course was followed by 14 PhD-students including
3 students from the department of Industrial Electrical Engineering and
Automation. Lectures 2-3 were given by Karl Johan Astrom, Lecture 4
by the participants, Lecture 6 by Mikael Johansson, Lecture 8 by Tore
Hagglund, Lecture 11 by Bjérn Wittenmark, part of Lecture 12 by An-
ders Rantzer and Lecture 15 by Sven Erik Mattson. There was also one
laboration, in fuzzy control. This was developed by Mikael Johansson
and Johan Eker. Thank you all for your help!

Material that was used:
e Maciejowski “Multivariable Feedback Design”, Ch 1-7
¢ Boyd-Barrat “Linear Controller Design”, Ch 1,4-5.
¢ Green-Limebeer, Ch 9 on Model Reduction
e The p-toolbox manual
e A benchmark example by Landau
e Rolling mill example by Pedersen
o Bristols AC-paper on RGA
e Note on aeroplane dynamics
o Gunther Stein’s Bode lecture noters
¢ Freudenberg-Loozc Trans AC 1985
® Kwakernaak “Symmetries in Control System Design”, ECC 1995
e Doyle, QFT and Robust Control

e TFRT-7454 A collection of Matlab Routines for Control Analysis
and Synthesis, by Kjell Gustafsson, Mats Lilja and Michael Lundh.

o TFRT-5477 A Quantitative Feedback Theory Toolbox for Matlab 4.1,
Michael Lekman.

o “Guaranteed Margins for LQG Regulators”, J Doyle, Trans AC.

Included in this documentation are
¢ Course WWW home page
® Lecture slides 1-15 (however without most figures)
e lab-pm

Lund, Dec 1995

Bo Bernhardsson



Control System Synthesis 1995

This material is collected at http: / /www.control.lth.se/~bob

Schedule

Lectures mondays 13.15. (Exercises thursdays 10.15. ) New time for exercises: Fridays
13.15-15.

Extra lecture : Tisd 14/11 k1 15.15 - 17.00, M:B, SattLine -- Lars Pernebo & Staffan
Andersson, Alfa Laval Automation Presentation av SattLine inkl interaktiv
videokanonsdemonstration

Organization

Lectures will be held by Bo Bernhardsson and guests. The course starts Monday
September 4, 13.15 and ends in December.

Prerequisities:

Regler AK and Computer Controlled Systems.

Literature

® Maciejowski, Multivariable feedback design, Addison-Wesley 1989, ISBN
0-201-18243-2.
® Boyd, Barratt, Linear controller design, limits of performance, Prentice Hall 1991.

More info about Maeciejowski’s book (gohper) for example an errata list (errata.ps)
Additional Reading

® D’Azzo, ., C. Houpis, Linear control system analysis and design, 3rd ed., McGraw
Hill 1988, Ch 21.

® Anderson, Moore, Optimal Control, Linear quadratic methods, 2nd ed, Prentice
Hall 1990, Ch 8.

® Astrom and Hagglund, PID Controllers: Theory, Desing and Tuning, 2nd ed,
Instrument Society of America, 1995



Doyle et al, $\mu$-toolbox

Doyle, Francis, Tannenbaum, Feedback control design, MacMillan 1992.
G F Franklin, J D Powell, A Emami-Naeini, Feedback control of Dynamical

Systems, 2nd ed, Addison-Wesley 1991.
B Friedland, Control system design, McGraw-Hill 1987.
Morari, Zafirou, Robust process control, Prentice Hall 1989.

Project, exam

The project consists of controller design on an interesting process chosen by you. The

projects should be presented in January. There will be a written exam.

Preliminary Contents

@ Course overview, the synthesis problem, the check list, tools, pole placement,

benchmark problems.

@ Control paradigms, feedback/feedforward, mode switches (KJ)
@ AK+-design, root locus, nichols etc (participants)

@ FK+-design, ch10-12, ch15 (participants)

@ QFT, Limits of performance, Ch 1

@ Model-based vs non-model based, fuzzy

@ Multivariable issues (Nyquist, zeros, robustness...), Ch 2-3

@ PID-design, (Tore)

@ MIMO, Nyquist-like techniques, Ch 4

@ The servo problem (Bjorn)

@ LQG-LTR, Ch 5

©® Structured singular values, gain scheduling

@ $H_ \infty$, $\mu $-methods, $L._1$ Ch 6

@ Parametric optimization, Ch 7

@ Control Design example, Wind Power Plant Design (Sven Erik)

Lectures

Lecture 1-Intro
Lecture 2-KJ1
Lecture 3-KJ2
Lecture 4-AK/FK
Lecture 5-QFT
Lecture 6-Fuzzy
Lecture 7-MIMO1



Lecture 8-PID/Tore

Lecture 9-MIMO Nyquist + LQG1

Lecture 10-LQG/LTR

Lecture 11-Tracking problems

Lecture 12-Robust Control 1

Lecture 13-Hinfty-mu

Lecture 14-Design by optimization

Lecture 15-Example: Wind Power Plant Control

Exercises

Exercise 1
Exercise 2
Exercise 3
Exercise 4--Fuzzylab
Exercise 5
Exercise 6
Exercise 7
Exercise 8

Take Home Problems
Cooperation is allowed, unless otherwise stated

Problem 1-Landau
Problem 2-AK/FK
Problem 3-Landau/QFT
Problem 4-AIRC
Problem 5-Labprocess

Presentations

Everybody should do a short presentation on lecture 3 and 4. The presentation should be
prepared to September 25. The goal is to recapture well known material. Work in groups
of 2 or 3. Choose between

® AK, Nichols Plots with lead/lag design

® AK, Root Locus with examples (e.g. some lab-processes)
® AK, "Centrifugalregulatorn"

® FK Ch. 10-12



® FKCh.7+15

Laboration

A laboration on fuzzy control and the fuzzy toolbox in matlab Should be made. A fuzzy
controller is designed in matlab and down-loaded to the Palsjo real time system. More
information is available in the lab-pm. This laboration was developed by Mikael
Johansson and Johan Eker.

Examples (and matlab code)

Lateral Dynamics of Aeroplane

Landau’s Flexible Transmission

Thickness Control of a Rolling Mill

The ACC 1990 Benchmark(two masses and a spring)
Vertical Aeroplane Dynamics, AIRC, Mac. 4.4, 4.8 and 5.8
Aircraft with wind turbulence

Turbo-Generator, Mac. p 406

LQG-examples, Lecture 9

Matlab-code

The department’s Matlab boxes are available via anonymous ftp: gft.tar.Z and
boxes_matlab4.tar.Z You might also want the functions spread.m and circle.m
Matlab-code for L1-design is availabe. Ask akesson or me.



PID Control
The Tuning Problem

de(t)
a ) Specifications:

wt) = K (e(t)+ 7 | e(s)ds+T:

() = yep (6) — 1(?) Load disturbance attenuation

Integral action: zero steady state error
> 1 T;

Derivative actior:: prediction IE = e(t)dt = — = —
0 i

2 2
/\ IAE:/ le(¢)|de
0
— —>

Measurement noise ky

Modified linear behaviour

U(s) = K |[bY,(s) — Y (s) + S—lﬁE(s) + ; —}—Z%/N(—

Y(S))} Sensitivity M,

Set-point following
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The PIP controller

The PID controller:

u(t) =K <e(t) + Ti /e(t)dt—l—Td dzgf)>

2

The PIP controller

1

u(t) = K <e(t) + -jl; / e(t)dt) — / (u(t)—u(t—L)) dt

1

Prediction performed by a low-pass filtering of
u instead of a high-pass filtering of y

Only 3 parameters to set: K,T;,L
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3.9 When can PID control be used? 57

Set point and process output

1 A
05 W
1]
T T 1
0 20 40 60
Control si
i signal
1
0.5
co . . =
20 40 60

Figm-.e 3.41 Response of the closed loop system to set point and
load disturbances. The controller parameters are K = —0.25 7} =
-landd =0 .

58

Chapter 3 PID Control

Set point and process output

I ¥ V‘ Lo
o}
T T 4
0 20 40 60
Control signal
1.5 9
1
0.5
0
T L 1
0 20 40 60

Figure 3.42 Response of the closed loop system to set point and
load disturbances. The controller parameters are X = —0.25 T} =
~landb =1



SELECTORS

" Systems like this are commonly used
but not well understood theoretically

from steam
pressure controller

| 2 Chapter 6 Control Paradigms

— -] ’
I — i )
!_ —\\ . —\ : 1 >t Oil
5 N | O
<
! :

! : MV

; | M b)

| / \ ; I sp N

{); N

Power
i O, correction ‘? } { . demand *
: SP

M
8 PI
._ X MV
e O | Air

Fig. 55.1 Control scheme for oil firing.

Figure 6.19 Air-fuel controller based on selectors. Compare witl

MERGER OF PROGRAMMABLE the ratio controller for the same system in Figure 6.16.
LOGIC CONTROLLERS (PLC) AND
CONTINUOUS CONTROL (DDC) POSE
SIMILAR PROBLEMS .~
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Figure 6.2 Responses to a load disturbance for a system with
(tull line) and without {dashed line) cascade control.

Paradigms for Disturbance Rejection
e Constant disturbances
e Sinusoidal disturbances

e Periodic disturbances

e (E: v
=
1+sT

e (Z: v
L 2Cas

s* +2Las+a®

(@) v
L =




FEEDFORWARD

Fl

PROCESS

---------------

v=MEASURABLE DISTURBANCE

6.4 Model Following

» [Teedlorward
U
Ye b P Y
Modcl F—2— @—w Controller ;——éi-— Process

Figure 6.9 Block diagram of a system which combines model
following and feedforward from the command signal.

Y

A

-1

13



SELECTOR CONTROL
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Figure 6.15 Black diagram of a ratio controller.
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TFigure 6.17 Illustration of the concept of split range control.



Control System Design

The Synthesis Problem

Bad models — Modeling is expensive

No specifications — Don’t know what is
possible or important

Can change/rebuild the process

Design is ITERATIVE

What are the requirements of “a good con-

troller”?

The Checklist

Controller Design

No single method covers all aspects of
controller design

Focus on different goals

PID

Lead/Lag

Pole Placement
Horowitz QFT
Adaptive Control
LQG

He

L ’

Model Predictive Control
Fuzzy Control
Neuron-net based
Optimization Based

etc




Project

Make a good design on an interesting process.

Hard deadline Dec 31

Seminars in January.




Control Paradigms

K. J. Astrom

Department of Automatic Control
Lund Institute of Technology
Lund Sweden

1. Introduction
2. Bottom Up
3. Top Down

4. Conclusions



CHEMICAL PROCESS CONTROL
CPCIV

Proceedings of the Fourth International Conference on
Chemical Process Control

Padre Island, Texas
February 17-22, 1991

PRESENT STATUS AND FUTURE NEEDS: THE VIEW FROM JAPANESE INDUSTRY

Shigehiko Yamamoto Iori Hashimoto ] ) .
Application Engincering Department Department ol'.Chcmxcal Engincering
Yokogawa Electric Corporation Kyoto University

Nishi-Shinjuku, Shinjuku-ku Sakyo-ku

Tokyo, 163 Japan Kyoto, 606 Japan

The View from Japanese Industry 11

1.1-PD & two

dogres of freedom 4. Gain scheduling T. Observer 10. Adaptiva control " E:L:tz:?s'd

X 11, H i
2, Decoupling PID 5. PID Auto-tuning 8. Kalman filtor :'on?rpo‘llmum

3. Dsad timo

. ) 9. Modol prodiclive 12. Optimization 5
compensation 6. Optimum ragulator ’ BaTlovl aetvers

control control control

A:hlready applied

B:Under study/possible application
Cc:Studied but not applied

D:No poessibility of applying

Fig.6 Application of control methods [By courteny of tha JEMTHA!



The View from Japanese Industry

13

Process Control Performance
is Not as Good as You Think

D. Ender Techmation

O More than 30 % of the
installed controllers operate in
manual

O More than 30% of the loops
actually increase variability

O About 25% of the loops
used default settings

O 30% of the loops have
equipment problems



Introduction

O Paradigm, pattern
Gr: To show side by side

O If the only tool you have got
is a hammer, everything looks
like a nail.

O If you have many tools you
need a tollbox and skills to use
them.

. Introduction

. Bottom Up

Feedback
PID
Windup
Smith predictor
Oscillatory systems
Disturbance rejection
Cascade
Feedforward
Nonlinear schemes
Ratio
Split range
Selectors

. Top Down

. Conclusions



Control System

Design

Specifications
| oad disturbances
Measurement noise
Model uncertainty
Command signals

Methods
Structures

Tools

Bottom Up

PID
Introduction
Tuning
Extensions
Time delays
Oscillatory modes

Cascade
Feedforward
Ratio

Split Range
Selectors
Conclusions



HIGH GAIN
FEEDBACK CONTROL

Model Regulator Process

c | ¢ Pm G, | ©

WARNING!

G. K. McMillan InTech Jan 1986: Advanced
Control Algorithms: Beware of False
Prophesies ‘

1. Did the algorithm add an appreciable amount
of dead time to the control loop? If so, forget it.

2. Did the algorithm perform well for
unmeasured load disturbances? If not, forget it.

3. Was derivative action used in the

conventional algorithm it was compared

against? If not, your comparison was unfair; add
the derivative mode and try again,

4. Was the PID controller tuned with a
reputable method such as the Ziegler Nichols
closed loop approach? If not, the comparison

was unfair; tune the PID controller and try
again.



1. Introduction
2. Bottom Up

3. Top Down

State feedback
Observers
Disturbance modeling
A complete system

Internal model control
Cancellation of poles
Relations to SFB

Predictive control
Minimum variance
Model predictive control

Adaptation
Tuning
Gain scheduling
MRAS STR

Feedback linearization

4. Conclusions

‘vTob Down

State Feedback
Observers
Explicit disturbance models
Controller structure
Windup

Model predictive Control
Internal Model Control

Pole cancellation
MPC MVC GPC

Sociology!
Tuning and Adaptation

Nonlinear Techniques



‘ .

Aot

State space design

O Model all disturbances
and command signals

O Controller structure

Ym
=| /nverse

Uc
—=1 Model process
model
X YUm
Observer X -L Y_| Process _|,

Disturbance models appear in the observer

O Minimal realization

Disfﬂrbénce Modeling

O The classics

step pv =0
ramp p2v =0
sinusoid (p2+c02)v=0

O Piece wise deterministic

Av =0 a.e.
H—L T

v Mttt
Q

U)Q
AO Time

O Stochastlc

Singular or purely deterministic

Av = white



----------------------------------------------------

} PROCESS MODEL :
' Y S REGULATOR STRUCTURE
—{ B I 1 ¢ 61 i

A | BRI e
------------------------------------------------ : =y
""""""""""""""""""""""""""""""""""" _+ "| : : Process

) = " o F ) P
K fz s F |
> B - J x C i ' ______________________________________
A

________________________________________________________

¥ MATH MODEL + MEASUREMENTS
m INDIRECT MEASUREMENT

g SENSOR FUSION



INTERNAL MODEL
PRINCIPLE

’ Observer State feedback  Actuator .,
A
_— ] =X UP /g d
~(£‘ L |
- f Process
—5G)— ¢ =G> ¢ f =
Figure 15.4 Regulator baszd on an observer and state feedback with antiwindup Model

4+
compensation. G ———:CEb

Y




Internal Model Control (IMC) Questions

Controller

|

Process
- y
{0 O

O IMC is so beatifully

simple
Key idea: :
v idea O s it a general structure?

> |deally e = d irrespectively of w.
> Choosing G, = G:1,G; = 1 gives perfect O  Are there some snags”

cancellation of d.
> G-! not realizable. 32 A5,
» Controller transfer function

_ GGl (f_\f . 'S
" 1-GiGhGn Vo | < %/\L@Mﬁ\\
Notice cancellation of process poles. ,\.’ﬁ\ | ﬁ‘;@
L i ; ﬂ i,?:\_f \'115 /<

.
\
d



Example Pl Control

Process dynamics

— KP ~sL
Go(s) = 1+sT ¢
Approximate inverse
1+ sT
] _

Controller transfer function

Filter

Gp(s) =

e—S

/N

s+1

Ge

. Set point and process output

I

L0 pe e

Tg*l)o

0 10

Control signal

20

]
30

T
40

"
50

L]
0 10

L}
20

T
30

40

50



Example

. e _ 2(10s +1)
Gp = 10s + 1 Ge = 3s

5. Set point and process output

N K
—fN

0 T

! L T 1
0 10 20 30 40 50
10, Control signal
5 }\-&
0
—5
. L T T 1
0 10 20 30 40 50

Remark

O Beware of cancellations

O Never cancel slow
process poles



Relation between SFB & IMC
dxm B B
—r Ax, + Bu, vy, = Cxy
dx R .
77 = Az + Bu + K(y — Cx)

Introduce z = x — x,,,

dz

o7 =Az+ K(y — Cz - Cxp,)

= (A—KC)z+ K(y — ym)

u =-Lx =—-Lx,, — Lz

— ABO Process
~L Model
Ym
Th
missing link —— f Xm

Relation between SFB & IMC

Control law

u = —Lx
dx
dt

= Az + Bu+ K(y — CX)
= (A-—KC)x+ Bu+ Ky
Introduce

C;—i = (A-—KC) + Bu
ilé (A-KC) + Ky

dt
w=—L%=—LE— L

— Process
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p—

MINIMUM VARIANCE COMTROL

G te+dn|L)
—@—
LT K
i gl o -3
“KNPL‘"
I e
{+dh

FIND ult) S$6 THAT THE
PRED|CTED VALUE 4 l4+dhlt)

EQUALS THE DESIRED VALUE 5:

$ SIMPLE ALGLRITHM

b PROPERTIES DEPEND
sTRonGLe o0 d & hT

d-h>To ,
SMALL dlh LARGE GAIM

MODEL PREDICTIVE CONTROL

Richalet et al 1979 (Idcom)

* Mehra and Rouhani 1980
(Model Algorithmic Control)

Cutler and Rademacher 1979
Prett and Gillette 1979
(Dynamic Matrix Control)

Garcia 1984
(Quadratic Dynamic Matrix Control)

Mosca 1982 (Musmar)
de Keyser 1985
Peterka 1984
Ydstie 1982
Clarke 1985



PREDICTIVE CONTROL

ﬁ REFSRENLE TRATECTORY

P

N

Y i
/- 1 PREDICTED OViPL]

A__ 48 1
LI

£

_>

DETERMINE {uls); t£s f_-Jcn-}
TO MINIMIZE THE CRITERION

++T

J = %F(ﬂs))glsm,uzs))ds |

POSSIBLY W ITH CONSTRAINTS
APPLY ukt). REPRAT THE

PROCEDURE FOR EAWH .

i

Relay Auto-tuning

Generate an oscillation by

relay feedback

~  PID

Relay

\

7]. u

Process
T

-1

_—
-

Determine ultimate gain and

ultimate period

nY

A

\/

A

\/

N

\/

1
10

15



The Self-Tuning Regulzltor STR

Process parameters

Design = Estimation |-
Regulator
parameters
u A
_ch...
Regulator » Process y
e u

Estimation Methods
Gradient methods
Least squares

Design Methods
PID
Pole placement
LQG

Special methods

Y

Model

Y'm

Model Reference Adaptive System
MRAS

Y

Regulator parameters
Adjustment
- mechanism
u Y
c
= u
Regulator = Plant
The MIT rule

Oe

== ._f)/e._

dt 00




Gain Scheduling

Regulator Operating
parameters Gain condition
schedule
Command h
sianal Control
Sgna signal Output
_ | Regulator U = Process y —

Example of scheduling variables

Production level
Machine speed
Mach number

Dynamic pressure

Adaptive Techniques

Process parameters

.

Design Estimation

Regulators
parameters

Ragulalor Process

Many possible choices of controller
structure, and methods for parameter

estimation and control design.

Different functions:
auto-tuning
gain scheduling
continuous adaptation (FB & FF)



What kind of regulator?

Depends on process dynamics and specifica-

tions

Process dynamics

/

tHme varying

/

Use a controller with
time-varying parameters

Non-predictable variations

Use an adaptive controller

\

constant

\

Use a constant controller

T

Predictable variations

S

Use Gain scheduling

25



Paradigms

1. Introduction o Feedback

e Cascade

2. BOttom Up e Disturbance rejection

e Feedforward

3. Top Down e State feedback
- e Observers
4. ConCIUSionS 1 e Internal model control

e Predictive control
I\_ e Tuning
| e Gainscheduling

e Adaptation

e Ratio

e Split range

e Selectors

e Feedback linearization



Paradigms for Disturbance Rejection
e Constant disturbances
e Sinusoidal disturbances

e Periodic disturbances

e 5 v
2{as /l

s% +28as+a?

®
L=

The Primary System Transfer
Functions

System

Three inputs 7 [ and n and three interesting
signals », « and y.

Nine transfer functions!

CF PCF
Gur - 1 PC" Gzr == 14 PC GUT - Gﬁ"
PC P
Gu=-11pg %*=13pg 1 =C
P
i el B G = o
14 PC 14 PC 1+ PC

Only 6 are different!

Several different versions!

Plant Uncertainty

PCF

G:1+PC

Small variations in P
CFdP PCFCdP

4G =17PC @+ PO

dG dP Cdp 1 dP
G~ P 14PC 1+PCP
dlog G
dlogP
Stability robustness: How much can P be
perturbed without violating stability?

ICAP| < |1+ PC|

Interpretation

R
P pc ' 'T
FGol
P
aP| <[22

The Sensitivity Functions

!
14 PC
pPC
1+ PC

S

T=1-85=

Interpretations

__Y(s) __ Yuls)
5= 3=

__ BlogT
o 5= Blog P

e min, |S(iw)| = 3=

Im G, (iw}

=

4L
i,

hir Re G (iw)

e Bodes integral

. Astrom




How to lllustrate Design

What should we show?
A suggestion:

o Unit stepinr (PCF/(1 + PC) &
CF/(1 + PQ)) followed by unit step
inl (P/(1+ PC) & 1/(1+ PC))

e Unit negative step in n ( PC/(1 + PC)
& C/(1+ PC))

1.5 , Process output and set point

e

——— s~

0.5

0 10 20 30 40
5, Control signal

Design of Feedforward
e System inverses
e Approximate (pseudo) inverses
e Wiener Theory
e Linear systems Blue Book page 241!
G(s) = G* ()G~ (5)
G' = (GH(s)G (=)
Many extensions!
e Nonminimum phase and delays

o Feedforward design and feedforward
compensation

e Nonlinear systems

e Computed torque

Problem 1 - Pl Control
Consider a process with the transfer function

b2
(s + a)(s? + b?)

G(s) =
where @ > 0 Let the system be controlled with
a controller having the transfer function

s+c

S

C(s)=k

Show that both k and ¢ must be negative in
order to have a stable closed loop system. Also
demonstrate that the two-degree-of freedom
controller
ck

U(s) — —k¥(s) + } (Yals)  Y(5))
i.e. a Pl controller with set-point weighting,
gives a better set point response than a
controller with error feedback.

Problem 2 - Disturbance Rejection

Consider a system with transfer function

1
)= v

with a proportional controller. Assume that the
disturbance [ = sinwt acts on the process
input. Investigate the error obtained with
proportional control with & = 1.22 and Pl
control with & = 1.22 and T; = 1.78.
Construct a controller so that the error due

to the sinusiodal disturbance is less than

0.001! In the problem you can set w = 27/T
with T = 30. If you have time you can

also investigate how small T' can be. You

can also compare with the performance of

a PI controller. It is useful to plot frequency
responses and to do a few simulations to check
your thinking.

© K.J. Astrom




Problem 3 - IMC

Consider the system with IMC control shown

below
+

+

Determine the loop transfer functions when the
loop is cut at A and B. Investigate the limits
of these transfer functions when P, — P and

Q— P

D
ety
Y
"o

Problem 4 - Disturbance Rejection

Can you obtain the classical disturbance
rejection schemes through a state space
approach?

Solution to Pl Problem

The characteristic equation of the closed loop

-
1S b* ( tt e )

Pt

Routh Hurwitz criterion gives

I3+k>0
ke >0
k<0

k(1+k—z";—'2c—,i)>0

These inequalities imply that & < 0 and ¢ < 0
and moreover that

ale| < ¥?

and

ac
—1—32—<k<0

There is also a nice root locus argument

Project Proposal

Classic disturbance rejection. Little written
background material exist. There are many
possibilities. A good start is to investigation
some specific schemes to obtaind design
guidlines. Extended project: Paradigms for
disturbance rejection.

Feedforward design. Develop design schemes.
Read Wieners and Newton-Gould-Kaiser. |
have good examples. Can be extended.

The Oscillation Predictor. This is my own
idea. Make an extension analogous to the
Smith Predictor that works for Pl control.
This is my own idea. | have some background
material.

PIP for systems with integration. The
Smith predictor does not work for processes
with integration. | have an extension that
works IEEE-AC-94. Specialize this result to
PIP. Extended project: The Smith Predictor
Revisited. Tore will be involved too.

© K.J. Astrém
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Fundamental Limitations of Control
System Performance

K. J. Astrom

Introduction
Bode's relations
Minimum phase systems

Dynamics limitations

SIE N S

Conclusion

Introduction

e Why look at this?

e Control systems design
e Autonomous control

e lLoop assessment

e Bode and Shannon

e Information theory emphasized limits
control theory has not

e The Bode Lecture - Bode's integral

e This Lecture - Bode's relations

A Classic Compensation Problem

! n
Y u x
P £ Controller b2} Process cl
e
L]
Key issues
e Noise

e Actuator saturation

e Dynamics limitations
o RHP zeros
o RHP poles
o Time delays

How to capture some of this in a simple way?

Bode’s Relations

Consider a transfer function G(s) with no
RHP poles and zeros which satisfies some
regularity conditions, then

2w,

arg Gliwe) = —* / log |G(iw)| — log|G(iwe)| ,
0

2 2
w we

If the amplitude curve in the Bode diagram is
a straight line the formula reduces to

T
= 1n—
p="n3

A a minimum phase system can always be
compensated so that this relation holds with
an arbitrary accuracy.

e Implications of the inequalities.
e Bode's ldeal Cut-off characteristics
e Robust designs

e Can we do better by nonlinear compensa-
tion?

The Clegg integrator




Minimum Phase Systems

Lead Compensation

s+a

G(s) = s/N +a

-1
maxarg G(w) = arctan
1ax arg G(iw) Wi

max|G(iw)| = N

N, = (1+2tan2 £+2tan£ 1+ tan? _(P_)n
n nV n

What happens for large N7
Ny, = e%¥

Gain required to obtain given lead

n= 2 4 6 8 00
90 34 25 24 24 23
180 — 1150 730 630 540
225 — 14000 4800 3300 2600

The Design Inequality
Factor transfer function as
G(s) = Gmp(s)GnmP(s)

Assume that the minimum phase part is
perfectly compensated so that

T
Pmp = Ngey
P 92

The phase margin condition
¢pm—ngcg+arg AG(iwgc)+arg Gamp(iwge) > —T+¢m

gives an inequality for the crossover fre-
quency

System with one RHP Zero

a— S

Grmp(s) = LI

The condition
arg Gliugs) > ~7 + om

gives

Wyc

ngcg —2a tan > =T+ @m

Hence

T T
wge < arctan(—z- — %"l + ngcz)

Example Specifications
om =74, nge=-1/2

give
Wgyc <a

System with Dead Time

Grmp(s) = el

The condition

arg G(iwge) > — + Pm

gives
Ky
ngc—z- — 2wgeL > —7 + o
Hence S— =

Example The specifications

give




System with one RHP Pole

One encirclement of the critical point is
required

The condition
arg G(iwge) > —7 + ¢m

gives

ngcg — 2arctan > -7+ om

Wee
Hence

b
c >
9= tan(7/2 — Om/2 + ngem/4)

w

Example The specifications

T 1
Pm = ’4—: Nge = _E

give
wge 2> b

A RHP Pole-Zero Pair

_(a—s)(s+ b)
Grma(8) = (e o) (s — 1)
We have
arg Gpmp(w) = —2 arctan ¥ _ 9arctan —
a w
_ w/a+bjw
= —2arctan [—b/a

The condition arg G(twg.) > —T + ©m gives

Wge b b T  ¢m 7]
Yooy 7 < (1-")tan(z - = L
a +wgc_( a,) a.n(2 2 +ngc4)

Minimizing LHS with respect to wy. gives

b L ®
22 < tanG = B )

A phase margin of @, = m/4 requires

a > 5.83b
Example X-29
— 26
Grmp(s) = ——

With a = 4.33b, we cannot achieve ¢,, > 45°

Impact on Current Projects

e Automatic Tuning
e Autonomous Control

e Control loop assessment

A Im G(iw)

\I

Re G(io)
)]

Conclusions

e Do not forget history

e Important to stress fundamental limita-
tions

e The start of all design work
e Process design and controller design

e Even more important with increasing use
of CACE. The X-29 [esson!!

e This version is teachable in a basic course
e Autotuning and autonomous control

e A key reason for introducing Bode
diagrams

e Nonlinear systems — An interesting
research problem
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Leciure b

e Quantitative Feedback Theory (QFT)

o Limits of Performance
o Bode's relations

o Bode's integral formulae for S and T

o Zames-Francis

Literature

Maciejowski Ch 1 + 203-207
Kwakernaak ECC 95

QFT Toolbox, TFRT-5477
Bode Lecture

Doyle, QFT etc, AC 1986

Barzo - HQ’"?L&

L]

QFT-Paradigms

Focus: Plant uncertainty
2 degree of freedom structure
Translate specs to sepcs on L = PC

Design C(iw) so L(iw) is put where plant
uncertainty is not dangerous

Tradition: Use Nichols chart

Check other specs afterwards (or during)

"Use common sense”

2 Degree of Freedom

Often: first design C, then F'

()-(z =) (1)

With L = PC (loop gain)

S = 1 _*1_ I sensitivity, BTT = Sa?P
T= L complementary sensitivity, m — y
1+ L !
U= I _(; 7 m—u
_ P
T1+1L

Note: U, R not given by L alone

Robustness — Small gain theorem

P = Py(1 + A) stable if A stable and

. . 1 |Gyyl
A < |Tt o , Vi
l (w)l I O(W)I |Gm| iGﬂ—'! w

Explanation in figure:

Additive: P = Py + A? (Answer: U)




Robustness — Circle Criteria Typical S and T curves

L avoids circle, then robust against static
nonlinearities before plant

Bode's "ideal loop transfer”

S and T in Nichols Nyquist Criterium in Nichols

Bode: [log |S(iw)|dw = ¢ > 0 if roll off > 1. Carl Bildt-rule: Go left to right




Example G(s) = (s — 1)/s

First Order Systems, Lead/Lag Neis

Sometimes necessary to use nonminphase or
unstable controller

Second Order Systems

Bode: Can not twist amplitude and phase
independently

Example, PID with complex zeros

Use PID-structure that allows complex zeros




QFT

Several toolboxes in Matlab.

Example P(s) = -£2-, K € [1,10],a € [1,10]

a2 +as'

Specification

a(iw) < |Ga(w)] < b(iw)
O|T(iw)| < [b(iw)| — |a(iw)]

(Only looks on gain!)

frqdspec; specmatrix=getspec

Templates G(iw, 6)

t£2tmpl (nummatrix,denmatrix,omegavect )

Generate Bounds

Can be based on

0T (iw) suff. small each w
S small for w up to bandwidth

e S and T no excessive peaks for any w
o Common sense

Stability

bnd=tmpl2bnd(tmpl, specmatrix) ;
bndpl (bnd)




Design Compensator

compensator; [cnum,dnum]=getcompensator
prefilter(cnum,cden,..., specmatrix)
[foum,fden] =getprefilter

Kidron’s Design on Landau

Bounds on S(iw).
Implicit bound on bandwidth. wg > 10rad/s

Stability, common sense

Bounds

First Design, Pl




Pl+2nd order net

Pl44th order net

Time domain specifications

How translate time domain specifications to
bounds in Nichols chart?

Questionable, but works sometimes

Varying number of unstable poles

What if number of unstable poles to G(s,6)
varies?

Example P(s) = =%+, a € [-1,1],k € [10,20]

s(a—a)’

Templates:

Template split!




Hankel Transforms

f analytic in RHPL.

Cauchy gives

_ 1 [ fl) g1
2T Jo 5 — W 27

o W — We 2

° flw) . flwe)
[,
Hence, if f(s) — F on Cg then

u(iw) + w(w) dw— F

W — Wwe

wwg+aw%):%[:

Hankel transforms, if F' = 0:

iy = L [ 2,

Bode’s Relations, 2nd form

If f(5) = F(s) and f(s)/s — 0 on Cr then

one also has (check)
2w, /'°°
T Jo

—1 —dw = 0 this can be written

w? —w?

u(ww)

dw

v(iwc) =

2 _ 2
w we

Since fy°

5 2w, [ u(iw) — uliw.)
I e " “/ﬂ w? — w? o
1 [ du(iw) W+ W,
= — 1
T j,_, dw °8 W — we s

=[:f%%9uqm&s

W(z) = %log(coth(%l)), total weight 7
@ = log(w/w,), logarithmic frequency

Rolloff n gives phase —n - 90°

Bode’s Relations

(Dispersion relations in physics)

Put f(s) = log(G(s)), where

G(s) analytic in RHPL
G(s) # 0 in RHPL

|G(s)| < (1 +|s)Y in RHPL
largG(s)|/s — 0 on Cr

Allowed G(s): —1,(1 + s)", ele-1)/(s41) o=V?T
Not allowed: e~*T, (1 —s)/(1 + s)

* dlog|G(i@)|

arg G(iw.) — arg G(0) = / i

-~ 00

W(@)da

The weighting function

Peak at w.. Zero at low and high frequencies.

92 % weight in w/w, € [0.1,10]




Nonminimum phase
If G(s) has zeros and poles in RHPL
and arg G(s)/s — T on Cg then

arg G(w.) —arg G(0) = ‘/;00 WW(GMG

+T + ®zeros + Ppoles
where @ZGYOS(wc) S 0: @poles(wc) Z Ov
we > 0.

Proof: ;
G(s) = Bp(s)B,(s)e"TG(s)

where |B,(iw)| = |B,(iw)| = 1.

Ex. Bp(s) = (s +a)/(s — a).

Bode’s Integral Fermula

14 L(s) no RHPL zeros, sL(s) — k

/ log
0

Proof

1 T
ﬁL—(w_)‘dw :wZRe D; — -2—512‘{.10311(8)

0= /D log(1 + L(s))ds

(any logarithm to 1+ L(s) in D)

/A log(1+L(s—ic))~log(L+E(s+ie))ds — 2rimiRe ng

(Use log(f(s2)) — log(f(s1)) = [ f'/f ds)
0= 2¢/0°°10g(1+L(M))w+

27ri2 Re p; — 71 aleigln slog(1 + L(s))

Bode’s Integral Formula for T'(1/jw)

But 1/L(s) no roll-off so use

1
L+ am

T(1/s) =

Hence if L(s) has at least one integrator

1 = 5

/0 log |T'(1/iw)| dw = 'II'Z Re — — 51

2
where e;= ramp error = lim,_,o sL(s)

Contour lines of Re (1/2z) = const

What if G(0) = 0?




Zames-Francis Formula

oo . 1 _
|| 1ogIS(w)lam. ) = 5 101(2)] +log | B;(2)
where

(o) = 1 ($(z,0) + 6(5,0)

(Bode I.F. follows by Re z — o)

A nasty example

Poleina >0, zero b > 0

(i) oo > ]:i :
s—5
GiGh= GG—2)(s+1)

1=

Proof of Zames-Francis

Poisson’s integral formula

ue) = 22 [~ M a
Proof
2mif(z) = iw_l — —'ﬂE-)—dw

w—z w4z
_ /(f(w)(Hf) o

w— z)(w + 2)

Use on log || where S(s) = By(s)5(s) and

| Bp(iw)| = 1. Gives Zames-Francis

Cyber-Nichols

10




Fuzzy Systems,
Nonlinear Maps
and Control Outline

Introduction

“Bringing it all back home” Fuzzy Logic

Fuzzy Systems
Nonlinear Maps

Fuzzy Models

Mikael Johansson

Department of Automatic Control
Lund Institute of Technology
Lund, Sweden

Fuzzy Systems for Control

N o o~ w N

Conclusions

Rule Based Systems — The Basics

Terminology:

Motivation — Why Fuzzy Control ?

proposition

Incorporate heuristics into control strategy. IF m THEN y is By
~ Example: Model operator's actions. = comsequent
Define nonlinearities in an intuitive way. Propositions are characterized by sets.
— Rules and interpolation. Sets are specified by charecteristic functions

= {1 e

0, otherwise




What’s New with Fuzzy Sets ?

From true/false logic to “grades of truth”
a2 — [01 1]

pa(z) expresses to what degree “z is A"

Example: “The water is hot”

pa membership function

Probabilities 7

Typical Membership Functions

Gaussian:

Singleton:

Pl y 03

Logic and Fuzzy Logic
Fuzzy Logic

AND HA NA, (2!) e Inin(/J'Al(z))y'Az(m))
OR KA LA, (z) = max (,u'Al (:c)’ #Az(z))
NOT pg(z) =1— pa(z)

- Generalization of logic.

AND, OR and NOT connects simple
propositions into compound propositions:

z1 is A AND z; is AP OR...

Fuzzy Rules

Mamdani-type:

IF < FuzzyProposition > THEN y is B®)

“Everything is fuzzy"”

Sugeno-type:

IF < FuzzyProposition > THEN y = f(‘)(z)

only rule-premises fuzzy logic expressions.




Approximate Reasoning

Modus ponens:

Observation : zis 4

Knowledge: IF zis ATHEN yisB

Conclusion : yis B
Generalized modus ponens:

Observation : zis A/

Knowledge: IF =zis A THEN yis B,

Conclusion : y is B’

“The more B the B’, the more A the A"

In terms of membership functions:

pp(y) = sup [par(z) Npalz) N ps(y)]
z€X

Reasoning with Several Rules

Individual-rule inference .

IF xis AVTHEN yIs B = /= |
xis A’
i IF xIs ACTHEN 5B [ |

X

l—-}?xisaﬂ"ﬁneu yls B M0 L Je |

===\

yis B’

... followed by aggregation.

In terms of membership functions:

pp (¥) = pprey (¥) U+ U pgron(y)

Connecting to Physical Systems

Problem: Inputs and outputs numeric values.

Solution: Add interfaces.
— Fuzzifier : Numbers — fuzzy sets.

- Defuzzifier: Fuzzy sets — numbers.

Fuzzy System:
e Knowledge Base
e Logic and Inference

e Interfaces

Architecture
fuzzy System
Knowledge
Base
x
P Fuzlfier Defuzzifier >

A 4

Inference

Englne

— Fuzzifier : Numbers — fuzzy sets.

— Defuzzifier: Fuzzy sets — numbers.




Fuzzifiers and Defuzzifiers
Fuzzifier : Number &’ — fuzzy set A'.

— Common choice: Singleton fuzzifier

#A'(fﬂ)={1’ o

0, otherwise

Defuzzifier: Fuzzy set B’ — number 3.

— Common choice: Center of Gravity

Inference in Mamdani-Type Systems

Simplified inference for singleton fuzzifier:
Aule 1 IF e is Zero and 2e is Zero THEN uis ZERO

| bt 4
\ 075 p
A A A
1 W — ey
u

e | ael
Aule 2 IF e is Positive and ae is Posilive THEN u is Posillve

‘/ﬁ\ ““““““ ]Vm. =N 1N

T
| ea032 ! o008

b
-1
c

1. Evaluate rule-premises
2. Infer rule consequents
3. Aggregate individual rules’ outputs

4. Defuzzify

Inference in Sugeno-Type Systems

Sugeno-type rules

IF z is A®) THEN y = f9(z)

Simple Inference:

wis 1
xis Ay i| -

U = yx) —=

o

c

Waelghled |tue
average

.|u=l,.(x)= -

1. Evaluate rule-premises
2. Evaluate output functions

3. Output is a weighted average:

7= Yin s pac (2) (=)
il kao ()

An External View

Externally: A nonlinear map

[IE 15 B ANDY ¥ 1§ ML THEN v 1S NL
Fuzzy System

<

Fuzzy systems and nonlinear maps:
e Rule « Value

e Linear function RZ — R: 2 rules.




A Fuzzy PD Rule Base

Rules:

IF e is PL AND ¢ is NL THEN uis NL

Illustrated in a rule table:

€

NL ZE PL
PL |ZE PL PL

¢ ZE|NL ZE PL
NL|NL NL ZE

Typical membership functions:

}\\ /‘\\/.
NL {ZEX _PL_
FAVIA
[N\

-0.5 ] 0.5 1
Error, Errer rale

2
o

Membership grade
5

o

o
B

A Table Look-up Analogy

e Rule premises partition controller
state space into a set of intervals

control

A Table Look-up Analogy

e Rule consequents specify nonlinearity at
interval endpoints

A Table Look-up Analogy

¢ Reasoning process performs interpolation
(also influenced by fuzzifier/defuzzifier)




Why Overlapping Fuzzy Sets ?
Insight:

e Several active rules: interpolation.

e One valid rule: constant output.

e No valid rule : zero output.

Example:

ada
&8 o
o =

o
'Y

Mombatship g

o
£

1

1

o

S
ol =il
;

=

n

Nonlinear Maps
e Very Common
e Difficult to represent

R™ - R

- Homogenous discretization N

= N™ parameters.

e Several approaches:

Table Look-up
Splines

Fuzzy Systems
— Neural Nets
— Wavelets

Function Approximation in Control

Compensation of static nonlinearities:

¢
P La"-' ° _— l o IN——
r u

Function Approximator Nonlinear Valve

Nonlinear system identification:

zry1 = f(zk, ur) + g(zk, ur) + ek

Rule based controller design:

fisey Cramte
"IF Error 15 Negative THEN Conlrol 1S Negative 5
—~— RONCE /'
= IF Exor 1S Zero THEN Control 1S Zero o
D L L B /1
IF Exto¢ IS Pastive THEN Contrl IS Posiive il 8

Fuzzy Systems and Nonlinear Maps

e Two representations

— Nonlinear Function

— Fuzzy system

e Closed forms sometimes possible

M IF-part
y= Zg.-(a:) wy

2=1 THEN-part

e One-to-One

e Simple implementation gives restrictions
(Inference parameters, Interfaces, Rule
format, etc.)




Fuzzy System Nonlinearities |

Gaussian Membership Functions:

Formula

M

f("’) = Z Mwi = Z gi(-‘ﬂ)wi

M
i=1 Ei:l p“(wig) i=1

M

Remarks:

o Global formula.
e Continuously differentiable.
f(:c) € @(w,)

Radial Basis Functions.

Fuzzy System Nonlinearities Il

Triangular Membership Functions:

oo N——t— A ——— P S—— —

B3 as - a3

Formula:

. M M
f(z) = Z#i(m)wi = Zgi(z)wi

i=1
Remarks:
e "Linear B-Splines”
o Piecewise multilinear

e Can be made exactly linear

Fuzzy System Nonlinearities I11

Sugeno-Type Models, Linear Consequents:

1.5

P Ay e Az & o -

.u - ""
LY ~0.5 o
/ % =) fi
1

.

"._ 4 1 1
'l g
o5 s -
5 ...;-""'_.' o

1

] -5 [ 05 = 05 [] (13

Formula:

M

f(z) = Z —&i)' (L(i))T z = igi(Z) (L(i))T z

i (=0
Remarks:
e Gain-scheduling: f(z) = LT (z)z

e Can be made exactly linear

o f=) e To ((19) <)

Fuzzy Systems are Universal
Approximators

AN APPROXIMATION THEOREM

Let
FUCR® - R

be a continuous function defined on a compact
set U. Then, for each € > 0 there is a fuzzy
system fc(z) such that

sup |f(a) — fe(2)l < €
zelU

Valid for Mamdani and Sugeno fuzzy systems.




Relation to Neural Nets

Evaluation of a fuzzy system mapping

M
f) = Y ai(a)ws

can be recast as a "feedforward” net

Basis for “neuro-fuzzy” systems.

Multi-layers, basis functions.

System Modeling using Fuzzy
Systems

Modeling = A Rough Outline

1. Determine relevant process variables
2. Formulate heuristic knowledge as rules
3. Transform rules into nonlinear formula
4. Adjust parameters to fit data

(5.) Transform back to rules

Many important issues left out.

Parameter Identification

Fit fuzzy model to N measurements (Zx, Y& )-

Fix gi(z;8), adjust w; (w; & consequents).

Writing
) M
flz) = Z gi(z; O)w; = ¢7 (z)w
=1 )
we have
I ¢T($1)
Y2 ¢T(”2)
Y = i = - w= ®w
YN ¢T($N)

Optimal parameters in LS sense:

w* = &TY

Stability of Fuzzy Models
Let
= Ai)z
denote a family of linear systems where
A(G) €Co(4D), i=1,2,...,M

Then, the system is stable if there exists a
common Lyapunov function P, i.e.

. T
PA® 4+ (A<')) P < —el
Searching for a P matrix is an LMI-problem.

Feels conservative ...




Fuzzy Controller Structure

Fuzzy Controller
_—

.| Pre- Post- N

1 Fites ¥ Fuzzy System ¥ Fiter »>

“A fuzzy controller is a con-
troller that contains a nonlinear
mapping that can be interpreted
as a set of fuzzy logic based rules.”

Pre- and post-filtering
e Signal conditioning
e Dynamic filtering

e Coordinate transforms

Example: Fuzzy PID

Linear PID on velocity form:

du de(t) 1 d%e
P (_dt + et +Tig

Linear mapping replaced by fuzzy rules

I[Féis NLANDeis . THEN wis NL
Structure:
Fuzzy PID Controller
ref S
Unear COF‘ITL(_}I

)4 ::n‘:? Fuzzy System nne.

Nomnallzation Denommalization
Galns Gain

Linear filters also important.

Fuzzy Control — Qualitative Analysis

A time response ...

Emor

... gives hints for operating regimes.

Fuzzy Control — Qualitative Design

Consider the system
1] f1($1,$z)] [0]
[532] B [fz(lu,:cz) T

“Crafting” a nonlinear compensator

Phase Plane

Design by simulation ?

10



Fuzzy Gain Scheduling
Operating condition p schedules parameters:

IF p, is AP AND ... THEN y=IL{z

Gain »

Schedule [™
Controller Operating
Parameters Conditions

-
Relerence
Confroll p{ Process
| onfroller 3 » Oulput

In many cases,
dim(p) < dim(z)

and parameter reduction is probable.

A Nonlinear Pole Placement
Consider the system

Ty =22

Tz =3

zn, = f(z) + g(z)u

The control

u——}——:z:——T:n T
= ooy (Hf(@) = L2t br)

gives the linear closed loop system

a 0 In-1 0 0
= r
—IT I,

What if f(z) and g(z) # 0 are poorly known ?

Model Based Fuzzy Control

Approximate f(z) and g(z) by fuzzy systems:

fo) = f(z) + s (2)
9(z) = §(2) + (o)

use approximate control

4=

g—(lm—)- (—f(a:) + L7z + l,.r)

What about approximation errors €z and ¢,7

Adaptive Fuzzy Control

On-line adjustments of model parameters.

~

Assume g(z) known, re-write f(x)
f(z) = wTg(z)
Use control
=L (7 T
u= @) (—f(:z:)+L z+l,r)
Parameter update law from Lyapunov function

1
V(e;w) =z Pz + y (w— w*)T (w—w*)

and w* dentoes “optimal”’ parameters.

Not fully satisfactory.
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Summingup ...

Fuzzy Logic, Systems and Control Laboratory Exercise

~ Incorporate heuristics into control Design a fuzzy servo controller for a DC motor.

— Extension of logic and reasoning Tools:

— Function synthezis using rules e Fuzzy Logic Toolbox (Matlab)

— Related to Feed-forward Neural Nets e Automatic Code Generation

— Externally: a Nonlinear Map . ¢ P3lsjo — Real Time Implemetation
— Function Approximation Next Thursday.

Approximation-based control schemes

12




Lecture 7

¢ MIMO Control
e Distillation column example

e MIMO tools
Poles, zeros

Nyquist criterium
MFED

o
o
o
o Norms, singular values

Literature

e Maciejowski Ch 2-3.9, pp. 37-102

MIMO issues

Several sensors
Several actuators
Communication between different parts

Greater requirements on safety-net, startup,
integrity to errros etc

Typical control problems

Suggest control structure

Add sensors, add actuators, change process
structure?

Disturbance rejection
Robustness

Tracking

Decoupling
Reliability

MIMO Synthesis

What models should one use?
How should one formulate specifications?

How should one do design?

Theory and tools for

o linear models, linear control
e continuous variables

e (small examples)
Challenge:

e nonlinear systems, control
e hybrid control

e more complex systems




Synthesis SISO-MIMO

Loop gain L = PC

y=T(yc—n)+Sd+...

where T = L(I+ L) and S = (I + L)

For frequencies where loop gain L is large,
(hence I + L large) we have S small. Nice.

What does L “large” mean in MIMO?

Stability and the point —1

Multivariable Nyquist
det (P(iw)C(iw)) should encircle —1 the

correct number of times:

Sum of encirclements of A;(P(iw)C(iw))
should equal number of unstable poles

Characteristic loci : A;(P(iw)C(iw))

Gain-phase relationship, MIMO

Zarg M(G(id Z/ log |\«(G(i6))|W (&) di

Mixes the char. loci (?)

Inherent problem with Nyquist techniques

Why?

Use singular values or other norms

A high purity distillation column

Ref: Morari Robust Process Control

P(s) = i [0.878 —0.864]
8= 75s+1 | 1.082 —1.000

Y = T(s)Y, = PC(I + PC)7'Y;

Desired : T = I, good robustness, etc




A Simple Design
Dynamic decoupling

o(s) = 2L (p(s)
L(s) = P(s)C(s) = "0

This gives closed loop

_ 1
T =L(I+L) 1=;/_07+_11

Decoupled first order systems

Time constants 1.4s

Evaluation, simulation

Step responses

Nice step responses, decoupled

Nyquist Curves

Good robustness (?)

Evaluation on real plant

Enormous interactions, 500% overshoot

Why?




Distillation column, explanation

Assume some actuator imperfections

12 0 1 (1.054 —0.691
Py(s)=P Tl
o(s) (s)[ 0 o.s] 755 + 1 [1.298 —0.877
Gives
0.7 (14.83 —11.06
Po(s)C(s) = —~ [17.29 _12 83]

Change by more than 1000%

)

Directional gains

One large gain input direction and one small.

Physical explanation:

Problem with Nyquist techniques

L(iw) = P(w)C(iw) CAN give totally
irrelevant indications of sensitivity and
robustness

Distillation column

Ex 2

sy1 = uy + buz

3yz = €uy + uz
Char. eq. with v = —y: (s +1)% —be
Unstable if eb > 1, very sensitive if b large

Not seen in char. loci

Nyquist plot for e = 0.

Use singular values instead of A;(iw)

MIMO tools — Ch 2

Theorem (Smith-Mc Millan Form)
P(s) rational matrix. Can find row and
column operations U(s), V(s) so

— U(s\diag { £2(8) €2(s) €r(3) s
po) = otn { 505 20 00} ¢ ’!

det U(s) and det V(s)unimodular
{ei(s),¥(s)} monic, coprime for each i
€i(s) | €i41(s)
Yiy1(s) | hils)

Poles: 1;(s) =0
Transmissions zeros: €;(s) =0

Mec-Millan degree= Y ;deg 9;(s)




Example 3

1

1 2 0
(2 7)o [T L] ve
s+1

Hence: three poles, one (non-min phase) zero,
third order system

Example 4
GE GiDT ) _ w0
TL ey | FUG) 2 | V6)
(.u-l-l]5 is-!-l}’ 541

Hence: three poles, one zero, third order
system

Matrix Fraction Descriptions(MFD)

G(s) = A~(s)B(s) = B(s)A™'(s)

left-fraction right-fraction

A(s), B(s) not unique:
B(s)A(s)™" = (B(s)X(s))(A(s)X(s)) ™

Common factors

A(s), B(s) “right coprime” iff

[28] _ [228] U(s) = U(s) unimodular

A(s), B(s) “left coprime” similarly

Polynomial design
Right-fraction plant:

Y =BA™U
¢

Left-fraction controller

RU = -SY +TY,

RA¢{ = RU = —SB¢ + TY,
Y = B(RA + SB)"'TY,

Not easy to choose R, S, T




Internal Stability

Definition The feedback system is inter-
nally stable iff the transfer functions from
e1(s), ea(s) to uyi(s),uz(s) are all asymptoti-
cally stable

Remark : Enough to look on u;(s) — ey(s) if

C(s) stable.

Multivariable Nyquist

Assumption: No “right-half plane cancella-
tions” in forming L(s) = P(s)C(s)

Feedback loop is stable iff
det (I + P(s)C(s)) = 0
has no roots in the RHPL. But
det (I + P(s)C(s)) = JJ(1 + 2:(P(s)C(s))

Therefore count the number of anti-clockwise
encirclements of

i (P(s)C(s))

around —1. Should equal the number of
unstable poles of P(s)C(s).

Why no contradiction with diagonal structure?

Example 5

Mac. page 61

CR el Py

Stable if k € [—1.89,1.25) or k € (2.5, 00]

Inverse Nyquist criterium

Count the number of anti-clockwise encir-

clements of
A7 H(P(s)C(s))

around —1. Should equal the number of
RHPL transmission zeros of P(s)C(s).

(Do not forget the large and small semi-
circles)

Sometimes easier to apply




Tuning maps

K=15 T;=10 K=15 T, =5 K=15 T;=3
0 0 0 p Specifications
-1 -1 -1
1 0 -1 0 -1 0 e Load disturbance attenuation
K=10 T; =10 K=10 T, =5 K=10 T,=3 N Set'pOint fo"owing
0 0 0 .
o Measurement noise (Kjf)
- -1 -1 I
e Sensitivity, Robustness
4 0 = 0 - 0
K=05 T,=10 K=05 T,=5 K=05 T, =3
0 0 d Desirable to have a design variable
-1 -1 -1
-1 0 -1 0 -1 0

Ziegler-Nichols’ step response

method Example: ZN step response
method
K Process: )
Ao G(s) = G+1)p
"1 ﬂ Controller:
L K =550
T; = 1.61
Design criterion: Decay ratio 0.25 T, = 0.403
Two parameters: a and L
l'/\ysp =
Controller K T, Ty o 3 % » pr
P 1/a N\ u
PI 0.9/a 3L ?
PID 12/a 2L 0.5L E: 0 2 % w0




Ziegler-Nichols’ frequency
response method

Im G(iw)

Ultimate point

__ll \_ EeG(im)

Two parameters: K, and T,

Design criterion: Decay ratio 0.25

Controller K T; T,

P 0.5K,
PI 04K, 08T,
PID 06K, 0.5T, 0.125T,

Example: ZN frequency response

method
Process: i
G(s) = ———
(s) (s+1)3
Controller:
K =48
T, =181
T; = 0.44
y
1 N\/ e
1>
1] 1'0 2I0 3I0 4b
Y}\,_W
2
_2 T T T T
0 10 20 30 40

Interpretation - Nyquist diagram

Im G(iw)

Re G(io)
o

Interpretation - Nyquist diagram

G.(iw,) = K,0.5
PI:

G, (iw,) = K,(0.4 — 0.08i)

Phase decreases 11.2°

PID:

Go(iw,) = K (1 +i(0.Ts - a)lT-))
~ K, (0.6 + 0.28i)

Phase advance 25°




Modified Ziegler-Nichols method

Move the point

A = Gy(iay) = ree'™+#)
to the new point

B = Gy(iwo) = rpe'™+9)
using a controller with

G, (iwg) = r.e'%

Solution:
Ty

e =

Ta
¢c = ¢b - ¢a

Modified Ziegler-Nichols method

PI:
K = Ty cos (¢b e ¢B}
T'q
;e 1
" wotan (@, — ¢p)
PID:

With a fixed relation between T; and T}
Td = C(T,'
we get

K = Tbcos (0s — $a)

Tg

. ; (tan (96 — ¢a) + \/4a + tan? (9 — ¢a))

2w
Td = (XT,'

Problems with determining only
one point

0 20 40 60 80 100

T T T T
0 100 200 300 400

-1 0 0 20 40 60 80 100

Loop shaping

Use the third parameter to adjust the slope
of the Nuquist curve:
A Im G, (i)

-1 =,

Re G,(iw)
1+ G,

G, (iw)




Example: Loop shaping

Process: )
Gy = Grip
1 o
=5 ¢y = 45
Controller:
K =
T, =19
T, = 0.75
y
1 /-"4-__ o,

Analytical tuning methods

Specify the closed loop transfer function

G G-

Gy =
T 1+G,G,

Solving this equation for G. we get

Go

1
G=G 1-6

Example: IMC

Warning: Pole-zero cancellation!

Modulus and Symmetrical
Optimum

Idea:

Make the transfer function between r
and y as close to one as possible for low
frequencies.

Ensure that G(0) = 1 and make

d"|G(iw)|/do™ = 0 at @ = 0 for as many n
as possible.

Modulus optimum

Consider -
G = —
(s) s+ ais + as
2
|G(io)|? = -2

ai + w?(a? - 2as) + w?
Choosing a; = v/2a2 gives

2
as
aZ + wt

G io)[? =

The first three derivatives of |G (iw)| will
vanish at the origin.

wy
5% + V2wgs + W}

GG(s) =

Gl
G3) = 726G = 55+ vomo)

Modulus Optimum design: Try to obtain G,




Symmetrical optimum

Consider
ag

G(s) = 83 + a1 + azs + ag
If a2 = 2a; and a} = 2a;as, five derivatives
of |G(iw)| will vanish at @ = 0.

3
@y

Gls) = (s + wo)(s% + wos + @?)

With error feedback:

3

- @y
Gyle) = s(s% + 2wos + 20F)
With b = 0:
G, = (03(284— wo)

s2(s + 2wp)

Symmetrical Optimum design: Try to obtain
Ge

Pole Placement

Pl control of first-order process:

Process:
KP

Gols) = 136

Desired characteristic polynomial:

% + 20 wos + Wi = 0

Solution: -
K = Cwo -1

KP
2§'on -1
T, = 22—

' 02T

Pole Placement

PID control of second-order process:

Process:

G, = :
? = @+ sTh)(1+sT3)

Desired characteristic polynomial:

(s + axao)(s% + 2L wos + @3) = 0

Solution:
Tszw?)(l + 26‘({) -1
K = =
Kp
T. = Tsza)g(l + 20:{,‘) -1
" T T20wmd
T Tnga)o(a + 2;) - T1 b T2
d 9

TWTowi(1+2al) -1

Model reduction

Poles and zeros that are much slower than
wo are approximated with integrators.

Poles and zeros close to wg are retained.

Poles and zeros that are much faster than
@, are neglected or approximated by a fast
pole or zero.




Approximation of fast and slow

modes
Approximation of fast modes
Consider
Eensider a0 = K(1+sTy)(1+sTy) g
Gls) = K(1+sTy)(1+ sTb) ool T (1 + sT3)(1+ sTs) (1 + sT5)(1 + sTs)
(s) = (1 + sT5)(1+ sTy) (1 + sTs) (1 + sTs)
where
where Ty > Ty > Ts > Ts
Ts > max (T1, Ty, L)
T=T3+T4+T5+T5—T1—T2—L>O Assumption:
It is assumed that L < T'. 1 1
) F < a)o < F
The transfer function G can be approxi- 4 5
mated by K Approximations:
G(s) = 1557 11
1+ ST3 = -S—T;;
T=Ts-T -T;—L
Dominant Pole Design
If T is positive: Place the dominant poles.
% Ensure that they are dominant.

G(s) =

sT(1 + sTy)(L+ sTs)(1+sT)
If T is negative:

K(1+sT)

Gls) = sTs(1 + sTy) (1 + sTb)

Alm s
Plx
X py
¥ O B
X s Ps3 24 Res
peX




Dominant Pole Design

e Load disturbance attenuation
1E = /Oooe(t)dt= %

e Set-point following

1 dy
u =K<bysp—y+ ﬁ/edt—Td-‘E)

e Sensitivity M;

Im G, (iw)

:bl"

e Ro G, (i)

=
=]

Ziegler-Nichols’ methods

The Step Response Method
A /
Ag

117

1
L,

A |

Two parameters: a and L

Ziegler-Nichols’ methods

The Frequency Response Method

A Im GGiw)

Ultimate point

..|1 ] EeG(ia))

Two parameters: K, and T,

KT-Tuning

The Step Response Method

| /

Y

Three parameters: a, L, and K,

» - » . _ L _ a
Normalized dead-time: 7 = T = &%




KT-Tuning

The Frequency Response Method

4 Im G(iw)

Ultimate point

_|1 U f{eG(im)

Three parameters: K, T,,, and K,

Gain ratio: k' = I%‘%H = 2
p iy

KT-Tuning

The Test batch

Gi(s) = (1+sT)2
1
Ga(s) = 5+ 1"
o B 1
3(5) = T a) (T + as)(1+ o5) (1 + %)
l1-as
Ga(s) = (s+1)3

Not included: G(s) = <

1+s

Also integrating processes

Pl — Stable Processes

aK vs. 7 bvs. T

0.1

0 0.5 1

e Compare with Ziegler-Nichols
e We need three parameters

Pl — Integrating Processes

aK vs. T bvs. T

01 0.1

Q 0.5 1 0 0.5 1

10 |




KT-Tuning

f(T) . aoealr+ag12

M, =14 Ms =20
ao ay az Qo ax az

eK 029 -2.7 3.7 0.78 -41 5.7
T;/L 89 -66 3.0 89 -6.6 3.0
b 0.81 0.73 1.9 0.44 0.78 -0.45

PID — Stable Processes

aK vs. 7 bvs. T

10,

0.5 1 0 0.5 1

T./L vs. T

Pl — Stable Processes

K/K, vs. x b vs. k

10

0.1 ’M"—‘T'—ﬁ\ 1
A B ‘ iy

0.01 0.1

PID - Stable Processes

K/K, vs. ©
10

1% ...... . ‘/

_'__'___'.'_'.—-—.—.-v—'_"“-_’—

0 0.5 1 0 0.5 1

Ty/T, vs. x

bvs. x

10




Example 1 Example 2
1 -LH. . /Q{M‘ - M, =20 % =i;: =14
i 1 |
M, =20
A | | | AT _
0 10 20 30 40 0 50 100 150
: ﬂ\f\ i g
0 10 20 30 40 0 50 100 150
3 ; _ 8_58
)= vy = Grp
Conclusions
Example 3
Dominant Pole Design
M, =20 M, =14
1+ ﬁ:‘—‘f‘h e Gives good control
s = 2.0
NV AR . . . * Requires G(s)
0 50 100 150
0-2‘5 With two parameters
A
028 p3 e - e We have to compromise
e We can do better than Ziegler-Nichols
G(s) = I With three parameters

e KT-tuning is almost as good as
Dominant Pole Design
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Before you start tuning ...

investigate the process!

e Are there any scaling factors?
e Are they constant?

0.4
0.2

Friktionskontroll

0.7

0.5

0.7

0.5

e Are there any filters? 150
e Cascade control — watch out for ;’: _rLI—J 1
windup! . ' ‘ l——*l
e Controller series or parallel? 8 . 100 150
e Friction or hysteresis?
Stick-slip motion Hystereskontroll

Y

M\/\

T T T L) L]
0 10 20 30 40 50

A VAVAVAN

T ) L] T T
0 10 20 30 40 50

0.4
0.2
0

0.4
0.2
0

| A e

L) T T
0 50 100 150

F
T T T -—
0 50 100 150

12




Reglering med hysteres

y
0.5 £
04 i : :
0 50 100 150
9
05 W
1
04 d 4 '
0 50 100 150
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Nyquist-array methods

1970s methods
DNA (direct Nyquist array):

Make G(s)Ko(3) column dominant for
interesting frequencies

Design diagonal K; so GKyK; has nice
Geshgorin bands

INA (inverse Nyquist array):
Make K '(s)G™!(s) row dominant

Design diagonal K; so K;'K;'G™! has nice
“Ostrowski bands”

Claim: Easier to predict influence of interac-
tion on closed loop with INA (?)

lllustrative example, INA

3 slides showing a succesful (?) INA design

4.8 AIRC example revisited

Fig 4.23: Not column dominant
Fig 4.25 G(s)Ky(s) column dominant

Fig 4.26-4.31 Design diagonal Pl-controllers
K.(s), 3 SISO designs

Fig 4.32 Nice char. loci X;(G(iw) K (iw))

Fig 4.33 Nice closed loop singular values

Fig 4.34 Nice step response

Fig 4.36-37 Problems with input disturbance

Controller cancels badly damped process poles

Several plots are missing (control signal, ...)

4.10 Relative Gain Array (RGA)

Measure of ineraction, Bristol 1966
gij open loop transfer function

hi; transfer function when y, =0, k #4

%ii(8) = %J,((%

Easy to prove that (exercise)
I = G(s) x (G~Y)T

(x stands for elementvise mult.)

Used to choose pairings of inputs and outputs

for diagonal control

Normally used only at s = 0.




RGA

Niceif ' =1

Several problems if ' has large or negative
elements

Large RGA = large condition number

K(G) 2 2||Tfleo — 1

If 7;;(G) < 0 then for any diagonal K(s)
either a) closed loop is unstable, b) loop j is
unstable if all other loops open or ¢) closed
loop is unstable if loop j is removed

See Robust Process Control, Morari for more
details

Linear Quadratic Control, LQG

See LQG course for details

Introduction
e The Hy; norm
Formula for the optimal LQG controller

e Software

Example

Ch. 5
Iqgbox in Matlab

History

Computers

50-60s: Use optimization to find “optimal
controller”

Newton, Gould, Kaiser (1957):

In place of a relatively simple statement of the
allowable error, the analytical design procedure employs
a more or less elaborate performance index. The
objective of the performance index is to encompass in
a single number a quality measure for the performance

of the system.

Optimization based approach

“QOptimal” controller

Absolute scale of merit
Limits of performance
“Euphoria” in late 60s

Classical article: “Good, Bad, Optimal”




LQG Theory

Wiener-Kolmogorov
Kalman—Bucy

Wonham, Willems, Anderson, Astrom,
Kucera, and MANY others

Still many research papers each year

Why so Popular?

The first “automized” design method
Space program, Aircraft design

Good models

Stabilizing

LQ-control u = — Lz gives

e [1/2,00]-gain margin
e 60deg phase margin

Robustness

LQ-control robust

Z Kalman filter robust (dual)

Output feedback (v = —LZ) NOT necessarily

robust.

Attention turned to “robust” control

Use frequency weights

Check robustness

Norms of Systems

Y =G(s)U
y=g*u
&= Az + Bu
y=Cz + Du

The Ly-norm (LQG-norm):
lelE=3% [ latras=
i § Y~
=35 [ (Gt 2 =
i § Y-

[o o]

- / trace G*(jw)G(jw)dw/2 =

— 00

H,: As Ly but with G(s) stable also.




Interpretation of the Hj-norm

u y

——

u: stationary white noise, mean zero
E(u(ri)u(m)T) = 6(r — )1

then E(y"y) = ||G|}3

y=£g : i(t)

u.= Si(t)_ . |78

G153 = llGéll;
i=1

“Energy in impulse response”

Proof

B(yTy) = E(tr yy") =
= tr / . g(t — m)u(m)dn / 'u,('rz)TgT(t — T2)dTy

—0Q

o /_ Z /_ °:° gt — 7 )u(r ) (12)g% (¢ — r2)dradry

oo
= tr/ gt — Tl)gT(t —11)d7my

— 00

= |61z

Alternative
E(tr yyT) =tr /Sy(w)dw/21r =

=/tr G*(jw)Su (w)G(jw)dw /27

“Variance of output with white noise in”

How to compute the H; norm

1) Residue calculus

1
IGIE =Y 5z § Gu(=)" Gis(o)ds
i3

2) Recursive formulas ala Astrom-Jury-Schur
3) f G(s) = C(sI — A)™' B then

G| = trace (CPCT) = trace BTSB

where P is the unique solution to the Lya-
punov equation

AP+ PAT + BBT =0
and S solves

SA+ATS+CcTC =0

The Standard Problem

Unified framework, became popular in 80s
w ¥4

G
. y

u = Control Inputs
y = Measured Outputs

Fixed commands
Unknown commands
Disturbances

w = Exogenous Inputs = 4
Noise

Tracking Errors
Control Inputs
Measured Outputs

z = Regulated Outputs =
States




The H, Problem

Closed Loop
u= K(s)y
z = G11 + G12K(I - GzzK)_lel’w = me

The H, problem:

Find K(s) such that the closed loop is stable

K(")

is obtained.

Example, Optimal Feedforward

Output

y= Gau— sz

d is a measurable signal d = Gyw

Feedforward regulator

'u.:KFFd

Minimize a mean square of filtered outputs
and filtered control signals:

min E(z7 2 4 27 23)

(5%) (%)

Gy 0

G=

The Optimal Controller

Let the system be given by

z = Az + Byw + Bau
z=Ciz+ Disu
y = Caz + Dayw + Daau

under some technical conditions the optimal
controller is of order n and is given by

u=—L2

3 = AZ + Byu+ K(y — CZ — Dyu)
L = (D, D12)"(D{,C1 + B3 S)

K =(B,Dj, + PC7)(D21D7;)™}

where P > 0 and S > 0 satisfy

0=SA+ATS+CTC, - LT DT, Dy, L
0= AP+ PAT + B,BY — KDy, DT, K7
A—B;L A— KC; stable

“Technical Conditions”

1) [A, B,] stabilizable
2) [Cs, A] detectable

3) “No zeros on imaginary axis” u — 2

[ij —-A —-B;
rank

=n+m Yw
Cy Dy2 ]

and D, have full column rank.

4) "No zeros on imaginary axis” w — y

[ij —-A -B
rank

=n+ Yw
C: Dy ] &

and Dj; have full row rank.




Software

Read about the LQGBOX in TFRT-7575

[X,P]

lqec(4,C,R1,R2,R12)

(L,s] 1qI‘C(A,B,Q1,Q2,Q12)

1r = refc(4,B,C,D,L)

(Ac,By,Byr,Cc,Dy,Dyr] = 1qgc(4,B,C,D,L,1r K)

Iqed, lqrd, refd, Iqgd in discrete time

Works reasonably well

Q1 Qr2 CcT
[ fz Q22]= [D%z] (Cl Dlz]

Ry Ry [ B, ]
= BT DT
[ RT, Ra ] Dy [ i N ]

Closed Loop

Loop Gain: L(sI — A)™'B
Return Difference: I + L(sI — A)"IB

Return Difference Formula

From Riccati equation:

MT(—s)M(s) =
(I+L(—sI—AT)'B)Y'DTD(I + L(sI — A)"'B)

where M(s) =D + C(sI — A)™'B

If no crossterms:
If CTC =@y, C*D =0 and DD = Q,

Q2+ BT (—sI — AT)™'Qy(sI — A)'B=
(I+ L(—sI — AT) 1B Q2(I + L(sI — A)~'B)

(I4 L(—sI — AT)1B)TQo(I + L(sI — A)"'B) > Q2

Scalar Case

q2 > 2|1 + L(sI — A)"'BJ?
therefore

1+ L(sI - A)™'B|>1

Gain Margin [1/2, 00]
Phase Margin 60 degrees.

Not simultaneously. No cross-terms. All states
measurable.




Gain Margin, MIMO

With
S=(+L(sI - A)~'B)!
5(Q;/%5Q; %) <1

If Q. diagonal this gives nice MIMO
gain/phase margins, see LQG course.

Robustness against nonlinearities

Circle Criterion

Stability with any nonlinear time-varying input
gain with slopes in (1/2, c0).

Scalar Case, no cross terms

Introduce

Q2= pl
G(s) = C(sI — A)~'B = B(s)/A(s)
I+ H(s) =1+ L(sI — A)"'B = P(s)/A(s)

Closed loop characteristic equation P(s) = 0

Qz+ GF(=5)G(s) = (I + BT (~9))@s(I + H(5))

pA(=3)A(s) + B(—3)B(s) = pP(~s)P(s)

Symmetric Root Locus

symlocc, symlocd in matlab

Cheap control p — 0

Eigenvalues of closed loop tend to stable
zeros of B(—s)B(s) and the rest tend to co
as stable roots of

g2d =const -p 4




Expensive Control p — o

Eigenvalues of closed loop tend to stable zeros

of A(—s)A(s)

Example

minu?,

A(s) = s+ 1 unstable.

z=z+u

u = —2z gives
T=—z

P(s)=A(-s)=—-s+1

High Frequency Behaviour

L(jwI — A)™'B = LB/w = Q;'BTSB/w

LQ-controller gives loop gain with “roll-off" 1

Same conclusion for

L(jwl — A+ BL)™'B = LB/w = Q;'BT §B/w

Rules of Thumb

Q1 = diag(ay,...,an)
Q2 = diag(f1,...,Bm)

Let oy ~ (z;)7% and B; ~ (w;)~2 where z;
and u; denote allowable sizes on state 7 and
input 2

More ideas

Punishing

(3 + az:)?

“should” give z; = —az;.

10




Moving Eigenvalues
Can move one eigenvalue at a time by using
Q1=gq"

where g is orthogonal to the A-invariant
subspace of the rest of the modes

Example
1
G = ——M——
O = e+
Increase damping without moving pole in
s = -1
n=
0.7071 0.7071 0.4082
0 4 0.70T1i 0-0.7071i -0.4082
0 0 0.8165
d =
0 + 1.0000i 0 0
0 0 - 1.0000i 0
0 0 -1.0000

1
Q=ag, a=|1], @=
0
T r—

Example 1, p. 222, Anderson-Moore

6 state model of aircraft subject to wind gust
turbulence

Two outputs y; and y, forward and aft
accelerations

Open loop resonances at 1.5 and 21 rad/s

LQG1
min B[y} + 2 + 0.2u7]

LQG2

min E[y; + 92 + 423 4 422 4 ¥

Plot control signal also !

Results, Examplel

Would not recommend the LQG2-design

/home/fulqg/lqg94/matlab/£fig822.m

(Very ugly code)

11




Example 2, p.232 Anderson-Moore

()= ) (2)+ G) =+ (3

y= (1 0) [ml]+\/5w

T2
min Efz? + 22 + pu?)

What happens as p — 0 and o — 07?

Plots of p = 0 =1,1072,107*.

Result, Example 2

Terrible gain and phase margins

/home/fulqg/lqg94/matlab/doyle.m

Exercises

Mac. 4.7, 4.9

Check the first example on p. 11 where
two closed loop eigenvalues are changed
without changing the third. What does
the closed loop eigenvalues converge to as
the control is getting cheaper? Hint: See
/home/fulqg/lqg94/matlab/ex .m.

Check the turbulence example from Anderson-
Moore p. 222. Compute the eigenvalues of
the controller. Is it stable? Code available via

Www

Verify the formula for the H; norm given in
the lecture

Home Problem

Evaluate the two designs done on the AIRC
example in Mac 4.4 and 4.8. Plot for instance
singular values for S(iw), T(iw), K(iw), step
responses including control signals. Study also
the influence of a initial state error in 5. You
can find some code via the home page (AIRC
example).

Then use LQG to find a better controller. Try
to achieve

e Rise time to 90% in 1s with less than
10% interactions (compare Fig 4.14)

e Smaller control actions than the design in
Sec 4.4

e Better response on state error in z;

Cooperation is allowed

12




Lecture 10

e More LQG, Ch 5
o Example, mutools H;-box
o Observer design
o LQG/LTR

Example, Doyle/Stein

o Example, AIRC

e Modeling of uncertainty

[e]

Readings: Maciejowski Ch 5 4+ Ch 3.10

An example

Use mutools H2-box

[k,g,norms,kfi,gfi,hamx,hamy] =
h2syn(plant ,nmeas,ncon) ;

WWW: 1qg2.m

Violates “technical conditions”, why?

Answer

Non-stabilizable, non-detectable modes

Solution: Change 1/s and 1/(s? + 1) weights

[ij —A —B, ]
Cy Dy,

looses rank in s = 0.

No input noise will lead to Kalman filter with
K.+ = 0, which gives marginally unstable
Kalman filter.

Add input noise w3 to process.

D15 not full rank

New punished signal: z; = pu

New system




Short on stochastic differential

equations
z=Az +v
y=Cz+e

Ev(t)vT(t — 7) = R16(7)
Ee(t)eT(t — 1) = Ry6(7)

v white noise,

e white noise,

State covariance

Ez(t)z¥(t) = R(t)) = R= AR+ RAT + R,

Kalman filter
&=z -z, EZ(t)zT(t) = P(t)
P=AP+ PAT + R, — PCTR;'CP
"Equivalent” representation of v

&= (A—KC)i+ Ke
y=C& +e¢

Reduced order observer

If no measurement noise, Ry = 0
K — oo,

Can use y directly for some states
Loss of degree of filter, direct term
cf. Linear system course

Example

21 =zy+ vy
Ty =u+ v

y=2z1+e

vy, V3, and e white noise

Incremental variance p2, 1, and o2

Optimal filter as 0 — 0 is
1=Y

__P u+ d
_ps-i-l ps-l—ly

B B

2

u if p large

(2!2%

Zy = sy if p small

Influence of an observer

Loop gain at (1):
Gy = L(sI — A)~'B
but at (2) (if Dy, = 0)

Gy =L(sI — A+ B:L+ KC;) 'KCa(sI — A)"'B,

Doyle: You may loose all robustness

-Hmm, note what happens if K — oo

LQG/LTR 1
Loop Transfer Recovery
Want to make (G, as robust as G4
References:

e Doyle and Stein, AC79, p. 607-611
e Doyle and Stein, AC81, p. 4-16

First LTR-method: Use fast (in a special way)
observer

Sacrifice “noise optimality”
Almost like using an inverse for reconstruction

Not applicable if RHPL Zeros




LQG/LTR 1
First LTR-method: Add fictious input noise :
Ry := Ry + ¢B;B;
For square, minimum phase systems this gives
K — o0 and

lim Grge(s)G(s) = L(sI — A)™'B;
g—00

Easy to try this idea, doesn’t always lead to
good designs

Dont let q go all the way to oo

Same problem as with all designs with fast
observers

LQG/LTR 2

Second LTR-method: Punish more in output

direction
Q1:= Q1+ qC7 Cs,

(ie use “cheap control")

Makes loop gain approach

lim GLqe(s)G(s) = C(sI — A)~'K
gq— oo

ie the Kalman filter loop gain.

Same problem as with all “cheap control”
designs

Doyle-Stein, AC-79

WWW: lqg3.m
2
Eo
=] 2 -1 [ 1 2 ]

LTR polynomial interpretation, SISO

System
_\-lp B(s)
C(sI-A)"'B= A(s)
Disturbance influence
_ayv-tp = Bu(s)
C(sI—A)"'B, = A(s)
and R1:BuB31, R2:1

Kalman filter identity

1+ C(sI — A)"*Ry(—sI — AT)"1CT
= [1+C(sI — A)7 K] [1+ C(—sI — 4)~1K]"

or

A(s)A(~s) + By (s)B, (~s)
= [A(s) + K(s)] [A(=s) + K(—5)]
= A,(s)A,(—3)




LTR polynomial interpration
LTR-modification: R = R, + ¢? BBT gives

C(sI — A)"'R7T%(—sI — AT)" 107
_ By(s)By(=s) + B(s)g’ B(~s)
A(s)A(-3)

and

A(s)A(~s) + By(s)By(—s) + B(s)q" B(~s)
= [A(s) + K™%(s)] [A(=s) + K™% (=s)]

= AT*3(5)A7*%(~s)

Looptransfer in LQ

L(s)

L(sI- A 'B= A0)

Looptransfer in LQG

B(s)

i

C(sI— A)"'BL(sI— A+ BL+KC)"'K (¢)

= A(s) R(s)’

LTR polynomial interpration

Now for very large g

AN () AT (—s) ~ (=5°)" + B(s)¢’ B(—s)
gives
A7U(s) m B(s)Ak(s), Ax(s)Ar(—s) = b7 ((—s*)*+¢*)l|
where k = degA(s) — degB(s).
Furthermore, the closed loop denominator is

Ac(s) AT (s) = A(s)R(s) + B(s)S(s)

and after considerable thought (for fixed s as
g — 00)

R(s) ~ B(s)4x(s), S(s) ~ q[Ac(s) — A(s)] = qL(s)
so the loop transfer is now

B(s) 5(s) ~ L(s) q B(s) ~ L(s)
A(s) R(s)  A(s) Ax(s) B(s) ~ A(s)

and we have the nice robustness over most
frequencies

Integrator 1

CCS 271-273

Extend system with integrators

min/:z:TQl:c+uTQ2u+z':TQ35

gives [L L ] . Kalman filter as before.
Z noise-free so nonstandard LQG

(D21 not full rank).

Integrator 1
Use controller

u=—~Li— LZ + 14,
(is this the limit as o3 — 07?)

Increased order model (4,, in CCS)

Observer order (A, in CCS) not increased




Integrator, 2

Extend system with fictious bias signals

Non-stabilizable states so nonstandard LQG

Integrator, 2

Use controller (for D = 0)

a3 %)+ (2] e (e )

w=— [L Lny1) 8

where L, ., is chosen to cancel bias at
outputs

C(A—BL) *(By — BLa41) =0 (for D =0)

Integrator 2
Controller has integrating action
Proof Controller has A matrix (for D = 0)

[A—BL—KlC B,,—BL,,+1]
—-K,;C 0

which is singular. Hence pole at s = 0, i.e.

integrator in controller.

Increased observer order (A,)

Not increased model order (A4,,)

Pre-specified factors in R(s)

These approaches can be generalized to other
pre-specified modes in the controller

Change 1/s to a 1/ Ry(s).




Prespecified factors in S(s) LQG, AIRC example

Want pre-specified transmission zero of LQG- Wanted: bandwidth of 10 rad/s, integral
controller action, well-damped responses
Exercise

e Start to design Kalman filter, Guess:
Ri=B,Bf, R, =1

Introduce integrators w = i‘l/

e v colored noise: W3 = I 4 9zzT
Increase bandwidth, W3 := 100W5
Fix S(iw) at 5.5 rad/s, see (5.119)

e LTR, cheap control, p = 1078, fig 5.15

Fig 5.18 shows step responses (where is the
control signal?). Compare with Fig 4.14 and
4.34

Matlab code available via WWW

Results, AIRC LQG Results, AIRC Sec 4.4

conlroller gain, LQG AIRC, conlrollerin sec d.4

Bl TN, VTR (I S v sl

10*
Froquoncy (radisec)




Results, AIRC Sec 4.8

AIRC, controller in sec 4 8

Singular Values &8

10"
Frequency (red/sec)

Modeling of uncertainty

More info about “uncertainty”, more accurate
analysis, better control

Use structural information
But how?

Linear/nonlinear
Dynamic-static
High-frequency/low-frequency
Time-varying?, slow/fast?
Complex/Real

Much research going on. Much more left to
do

Robust control — Adaptive control

Structure
Additive: G = Gy + A
Multiplicative: G = Go(1 + A)
Fractional: G = (N + Ay)/(D + A,)

etc

Note:
Physical parameters are real

The same parameter can occur at several
different places in the model

Standard representation

Fig 3.8

A(s) = diag{A1(s),...,An(s)}

After scaling: ||A;lc <1
A; can be
e Full complex matrix

e Diagonal real matrix, diag{8:,...,8:}

o (diagonal complex matrix) complex
matrix '

See examples in Fig 3.10, fig 3.12




~ How Yo dul wilh
Ay am s '
@h\@&mésevg

— How to dwal with
refevenca g&c&v\a\bz-

~ Umifiging approads



xClenty = x )+ T ale) + (&)
% \61\0 = Cx )

Slode. S )00k $-TL

ObgvOWS ¢ ~ke
vils) k)
W NI S ke
A |
-

M""'ﬁ‘ﬁm”’ﬁ\&

AR +@S AOTI\M



f\ M\AQVQ_\M\ _ppro AU\
vik) = (t’:-xv § (W)
§lux) = @, TLb)

xlk-?)\ ¢ d,.|[xW ), Tl
[Z[\*\)] i [o ¢v}{§(h) (o} .
Gomodiinad feedbade

M = ~Lx (W) ~L, §b)

Cloned- \gop &/\OTZM

Xlaxt) = @ ~TL)x () v (0 TL, S
{glkﬂ) =, '§LM

c() -TL as »\SM\L

Problom



S q-1 :
Uy
T cLMxy+ 25 Ry - 29
= “év\)»e%-eéw Wy X\U\
Convel\o)y- Y

P How o nderprel iy
Covtrolley <



PoLynomy AL BES\W
2
R < Bﬁ H‘“ - fw\ A"’
AQO ’T@SQ = AOA\MB* 7 A:.

wlly - - %\gth% %o n (Y

How o %& Wy Om “\v\k&mxov 2
(2nd Ao\%p\&o&(ﬂ’\/\\vﬁk p 12_2) _
R =X+ Vb
S = X8 = YA
I AR~ BS = X A .
) o % \md»\o\_, /.\,_0\ (AOUV“&)

- R=RA) = é?f +'\;fs



e
hxktm\ra\\ O\()h’
= oYy
= %"’Xo
o CWotsR X
(qﬂ ' |
R = (044-)(‘) R« P B

4s) =
D

- - ( y
%o 14%) R (1)
B

R =
h (q'-*xo)kcf * Yo B
Lo.rfxo)sé ) \:A = (i" QRI

==



NVPOWL vt W
osYo Gord W ard  wQuswy

Glovp - yrp = “gwp —y bwp -
R -

®IH 5
w&\=2\ & W (mﬂ = YY

My = G

59 31¥aN39 oL not



Assme. s waodil w Conr. Lame

= My = P(Mc_-v ngxxv.> |

Ce ={a-ar .. 0\“»0\,‘,“]

\’1«3 Yomsarw to oty myKS%)cujﬂ“o\«&



REFERENCE SIGNALS  SS

o dwner
X Un*ﬂ = Cb m X (L) » Y. ’AL(LB

Asstime. © Comn p«%ﬁb\sf shaten

M) = L (X Ll) = KUY aagg (B)
ol il Red Savaandy

~ Hg
X

’P\r_ecu,b

A _——
- Tbbavve T

Twe - b&gm,—-oQ %‘YQ&(}&M Ch’bw\lw

va?\:mm G.Q ;&m ok W\o&w -




Tle botell comireller

mle) = L (5l - XY - L, § +

| P [ e (6 +C g XlW))
). (0 4ol (e[ doret
Xw; UL‘\'D': &MXN(Q\ + T, Mc,(\'..)

— Whak \r\a\ﬂ}bvﬁ 0 heve are
naw WOS? Q 8»»4‘%)

P NO‘l:' (ow\?a\-\ \\o\i S)t&\tt_ls ? :



ANOTHER WA} OF |NTRODDCING
AN INTEGRATOR
CCS 2N -4

X)) = ¢ x (W) + ¥ anll)

V\ﬁ\(\v”) = Xy () + "ﬁm('ﬂ C——X&h
lﬁ(h} = C A’(h)

va.\stml \a.w
) == L) =L, ¥ (O M ee (k)

() = g (4 =)

X(r1) = (@ - vL)x(k) ~ t”‘"’(by.. Y)+T by

-) | 1“* R
Xy = (C%I - (b,-)'\"L) B ( Mj;g - ;‘:']!((ﬁm.,-'j))
W= Cx(k)



) W)
3“13 - C(ii" ¢ +TL) r'{ M“ Q“ (\QM )§
—_—
B
«‘Tr Ei\..,“c

(A r(3-1) - ‘B&\Mb 4= B (G DM - Lass ﬁ"“)

Choose. A,
Mg = HeYm T 7 Um

A\-(Q“D "'\v\nB ‘ %2

= I
% AP(C{") - ’\w\)& Aw, €

Ay(ﬂ"’) ~\M,B =0 |
Cow be Ofiam o\v\eui-mhg (OokS
L 'B(D#O (3 e (c_rt) y;oJc
o Yactey v R) -



EX AMPLE

A0 = @ k) +yulk)
W = %)

Gy = Xn o (gD -yl

— u L)
7 —(QW‘ (OX "?"’X()la- ) 'xlwq
|~
L- 5 e
Q““\\ - —-\/& ' ,PU\U) ha (‘Q
e = In)
% -
1 Mg I
N
-1 ' w0 E
L |
1 of ——
r() d | N B
-2F v

o 100
O | | .




I

LN

- S

REFERENCE SIGNALS Vo

1 AR v

3
oA

AR + RS = AOAY‘ B’

SQ?G\WAQO\A & SU0D m&

W\B\\ﬂv m\o\w




Lecture 12

e Robustness, Introduction
o Stability Robustness
o Performance Robustness

e Robustness Optimization (Rantzer)

Readings:

e Maciejowski ,Ch 3.11-12, skip 115, skim
118-123.

e Packard A., “Gain Scheduling via LFT",

System and Control Letters, 1994, 79-92.

e Helmersson A., PhD-thesis “Methods for
Robust Gain Scheduling” 1995.

The standard problem

A

« G(s)

A A A

Y

K(s)

Given knowledge of possible A construct
controller K(s) which minimizes closed loop
norm.

Small-gain theorem

The closed loop system is stable for all stable
A with
lalllieli <1

There is a destabilizing complex matrix A
with
lAG| = 1

Structured Uncertainty

Let B.D&(m]_,mz, ceey My, kl, kz, vy kn)
denote the set of block diagonal A with
m = Y. m; blocks, each block being repeated
m; times and having dimension k; X k;.

Example: BD(1,5,1,1,1,7)

6
A = 62I5 ]
As

The first block has m; = 1,k; = 1, the second
block(s) has my = 5, k; = 1 the last block has
iy — 1, k3 = 7

Make sure you understand how to formulate
robustness problems this way. See Example 3.2.




Structured singular values, u
The system is destabilized iff
det(I — Q22(jw)A(jw)) =0

for some w and A € BD;.

Definition:
w(M) = {Aér}gilr)lw [01(A) : det(I — MA) = 0]}—

((M) is defined as 0 if det(I — MA) # 0 for
all A € BD,,)

More about

Large M means that a small A can destabilize
the system.

p(M) = o1(M) if there is only one full

complex block.
Generally p(M) < o (M)

/£ is not a norm

How to compute p

Hard to compute exactly

Even harder to find the optimal controller that
minimizes p.

Note that u only concerns stability

Lower and upper bounds on p

mrja.xp(UM) =p(M) < i%fa'l(DMD—l)

where U is any unitary matrix and D is any
matrix which commutes with all A € BD (ie
AD = DA)

The left hand side is a convex optimization
problem.

Numerical solution, g-box in matlab

(Mac. unnecessarily restricts D to (3.141)7)

Performance Robustness

Previous discussion only concerned stability

Trick: introduce extra Ag-block

See Fig 3.18

Theorem 3.7: ||Qlc < 1forall A € BD,
same as ||@Q||, < 1 for all (Ao, A) € BDy




The p-box in Matlab
See example 3.5 p. 127

A=[0 0 ; 0 0];

B=[10 9 ; 9 8];
C=eye(2);

D=zeros(2);
process=pck(4,B,C,D);

alfa=1;
Wi=nd2sys([1 1], [alfa 0],1);
Wi=daug(Wi,Wi); :

T=0.001;
Ww2=nd2sys([1 1], [alfa*T alfal,1);
W2=daug(W2,W2);

KA=[]1;KB=[];KCc=0;KD=[0.118 1 ; 1 -0.118];
controller = pck(XA,KB,KC,KD);

systemnames = ’process W1 W2 controller’;
inputvar = ’[pert0(2);perti(2)]1’;
outputvar = ’[Wi; W2]?;

input_to_process=’ [perti-controller]’;
input_to_Wi=’[process]’;
input_to_W2=’[-controller]’;
input_to_controller=’[pertO+process]’;
sysoutname = ’ex35’;

cleanupsysic = ’yes’;

echo off;

sysic;

omega=logspace(0,2,40);
%define uncertainty and performance blocks
blk=[2 2;2 2];

clp_ex35=frsp(ex35,omega);
[bnds1,dvecl,sensl,rpi]l=mu(clp_ex35,blk);
vplot(’1liv,m’,bnds1);

¥

Warntng * %”1-31” contain

fan Lorvs”

Results 7%

Exercises

Do the second part of Exercise 3.11 with the
help of the p-toolbox in matlab.

Prove the lower and upper bounds on p given
in the lecture.




Robustness Optimization

Example: Inverted Pendulum
H-optimization

Robust Performance

Gain Scheduling

Pendulum Revisited

Example — Inverted Pendulum

6
—

2

P =sinf + ucos@

Rotating pendulum

29 .
== sin (1 + cQ? cos 8) + ucosé

Global Linearization

a]=00 o] (] [ ereso
9=z,

ginf

w= (7—1)0+(cos0—1)u

e = process noise

Karl’s Nonlinear Pendulum Observer

Pendulum equations

Solog)~ |gam e
dt [z,|  |[sinzy +ucosz,

Observer equations

£ 3] L P 2]
dt |#,] |sin@y +ucos®, ko (21— 21+ n)




General Synthesis Setup

F 3
2
[+
SN’
A& A A

Y

=
~~

&
~—

Pendulum Diagram

cosf —1 ﬂg—o -1
U 0 0 1 W
9 1 1 1
6 82 -1 82—1 82 -1 e
-] ————————————
1 1 1
g a2-1  s2-1 s%2-1 N
1 1 1 h
22—-1 421 821

Optimization of Stability Robustness
—Unstructured Uncertainty

'+ TQTs (<

II311||T1 + Q75|00

H,-optimization!

Robust Pendulum Stability

cosf—1 S‘;‘o -1
u
0 1 | w
0 1
82-1 82—-1
1 1
4 821 s2-1 < 1

Minimize gain from w to (6, u)!




Optimization of Robust Performance

01

Ol

Ty + 1,QT3

D, 0
D: [ .‘. J
0 Dy,

111)1}‘51”1)(:1‘1 + T2QT3) DY |oo

»

Non-convex!
Hard in general.

Gain Bound on Perturbation

|cosf —1] < 1
sin @
—9—_1131

Plot % — 1 versus cos 8 — 1:

e

.1

=018

-0z

&3

a3

~0.28)

08 -a8 04 -02

Gain Scheduling Setup

Qo
oW
F 3

A

A

Ag

Y

Redrawn Scheduling Setup

Y
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r
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Optimization of Gain Schedule

o o+l d s oy

min
D.K

Convex (LMI) optimization if Agx = Al

Ak larger than A does not improve!

Performance block not needed in Ag!

o([5 o+ [0 2= [T D)2,

Theorem

The robust performance criterion is achievable
iff there exist block structured X > 0, Y > 0,
compatible with A, such that

2 (a[% O[5 oo

0 I 0 I
Y 0 Y 0
cu(AT[O I]A—[O IDCI<0
X b
[I Y}ZO

Main Lemma

Consider Q,U,V,U,, V. such that [U U, ]
|4

and [ are invertible, U*U; = 0 and
Vi

Vv =0.

Then

Q+UKV +(UKV)* <0
is solvable for K if and only if

UIQUL <0
VIQV! <0

Pendulum Model Revisited

A
w l cosf—1 ené_ 1 y 1™
g | = 0 0 st 1,)2
z
.3} 0 0 0 1 .1
T2
oy ]
0 1 0 0 0 w
v
.2 0 0 0 0 1 T,
zZil [ 0 0 wo O 0
sz - Wwo Wo 0 0 wo T2
2 0 1 0 -1/(0 r
0 1 0 0 0 U
| y J (% ~ "




& e

<>
~

Pendulum Controller

cosf—1 #2¢_1 0 o
= 0 0 s? 2
0 0 0o s | T

&>
N

Conclusions

H..-optimization for stability

e Gain scheduling mathematically tractable

Copy nonlinearities in controller

Several open problems:

Observer interpretation

Copy saturations, hysteresis, etc.
Other performance measures




Lecture 13

e Robust Control 2
o Hy
o p, D(G)K-iteration

e Model Reduction

Readings: Maciejowski, Ch 6
Green,Limebeer copies

The Hy, norm

|Gull2

Glleo = sup L2412 _ e
“ “ su% Hullz sup ” u‘llz

Lemma

u [lu]lz=1

1Gleo = sup (01(G(jw))

How to compute the H,, norm

First method: Grid w.

Second, more theoretical, method: Given
G(s) = C(sI — A)™'B with A stable and
v > 0. Compute

[ A 7’1BBT]

G, =
ki —’)’_1CTC —AT

l|Gllee <7 4> Gy has no imaginary eigenvalues
ATX +XA+CTC XB
& 3X >0: 0.
g [ BTX —721] <
Linear Matrix Inequality

mu-box: hinfnorm(sys,ttol)

H, control

A&

A

Open loop

z = Gy1(s)w + Gr2(s)u
y = Gai(s)w + G2z(s)u

¢ = Az + Biw + Bau
z = Ciz + Dyiw + Disu
Y= Chz + Dyyw + Dagu.




H_, control
Closed loop u = K(s)y

2= Tpu(s)w = (G11 + G12K(I — G22K) 'Gay)w

Find K(s) that minimizes:

min || Tzw||co-
K

Suboptimal problem: Find K(s) (if possible)
so that
ITzwlleo <77

Easier

Can then iterate on v

Small-gain theorem

J A

f 3

G(s)

Y

K(s)

Closed loop is stable for all stable A with

AlleollGlleo < 1

A full complex matrix

“Technical Conditions”

Same as for LQG
1) [4, B,] stabilizable
2) [C., A] detectable

3) “No zeros on imaginary axis”" v — 2

[ jwl — A —Bg
ran

=n+m Vw
Gy D2 ]

and Dy, have full column rank.

4) “No zeros on imaginary axis” w — ¥

[ij —-A —-B;
rank

=n-+ Yw
Cs Ds1 ] &

and Dj; have full row rank.

Solution to H, suboptimal control

Theorem There is a controller K(s) such
that ”Tzw”w < « if and only if the Riccati
equations

0=XA+ATX +CTC1— X (B:B] —v *B1BT) X
0=AY + YAT -+ BlB:f -Y (C;PCZ = ')’_20%'01) Y

have positive definite solutions X and ¥’

such that Y~ — X > 0 and such that
A — (ByBf —47%B;BT)X and AT — (CIC, -
4~2CTCL)Y are stable.




Central Controller

One such controller (“the central”) is then
given by

3= A3+ Buty 2YCFCi13+YCF (y — Cad)
*=_BfXZ3
Z=I—-v"%YX)"%

Equivalent form

5= A% + Byu+y 2 B1BY X3 + ZY C; (y — Cai)
u* = —Bg‘X:i':.

The forms are connected through & = Z&. If
w = w*,u = u*,%(0) = =(0) then &(t) = =(t)
so # has the interpretation of a state estimate
in that case.

Remark: The LQG controller is obtained by
letting v — oo.

Software

Robust control toolbox:

[SS_CP,SS_CL,HINFO,TSS K]=
HINF(TSS-P,SS_U,VERBOSE)

Mu-box:

function [k,g,gfin,ax,ay,hamx, hamy] =
hinfsyn(p,mneas,ncon,gmin,gma.x,tol,
ricmethd,epr,epp) ,

[kl,gl,gﬂ]=hinf!yn(himat'icﬂﬂ,0.8,6,0.05,2);
Test bounds: 0.8000 ; gamma = 6.0000

gamma hamx’eig xinf'eig hamy'eig yinfeig nrho’xy p/f
6.000 2.3e-02 1.2¢-07 2.3e-02 0.0e+00 0.0626 p
3.400 2.3e-02 1.3e-07 2.3e-02 0.0e400 0,2020 p
2,100 2.3e-02 1.3¢-07 2.3e-02 0.0¢+00 0.5798 P
1.450 2.3e-02 1.4e-07 2.3e-02 0.0e+00 1.4678% o
1.750 2.3e-02 1.4e-07 2.3e-02 0.0¢+00 0.8961 P
1.683 2.3¢-02 1.4e-07 2.3e-02 0.0e-00 0.9885 p
1.636 2.3e-02 1.4¢-07 2.3e-02 -3.0e-14 1.06194% 1
1.674 2.3e-02 1.4¢-07  2.3e-02 0.0e400 1.0025%# o

Warning

When v — 9opt bad things can happen.
Numerical problems, high-gain regulators,
controller order reduction.

This can be an indication of a bad problem
formulation.

For instance, minimizing ||S]|c usually leads
to infinite-gain controllers

Important to have a good Riccati solver

Example, AIRC

Ch 6.8, p 306
Minimize || [Wls] lloo
w,T
 (s+6)? (s + 10)(s + 50)
Wale) = 55 50.6) Wale) = 500
See figure 6.17
w, -WiG
p. P
[ P11 P12 ] “ o we
21 22 e

Make W, proper, see (6.218)
Conditions 1 and 2 ok
Make D;, full rank, see (6.220)

Cond. 4 not ok. Change poles in zero in G
and W; (6.222-3)




Results

Yopt = 3.5, Yoo = 0

See Figure 6.19

Punish S more, change W; := 4W;
See Figure 6.20

See Fig 6.21 for step responses

Better control signals than LQG design
Controller of degree 17

Notch design

p-design

>

A

Y
b

_—
[

S

Lower and upper bounds on p:

m(?.xp(UM) =pu(M) < igfal(DMD‘l)

DK-iteration

Method: Minimize the upper bound on p.
Dont know if this gives good g, but it might

One of the exercises gives an example with
arbitrarily bad upper bound.

: -1
11;1’111{10'1(DMD )

1. Fix D and find K using He
2. Fix K and optimize D(jw) for each w

3. Approximate all these D(jw) by a dynami-
cal system

4. Include D(s) and D7*(s) into G
Iterate from 1 until convergence

High complexity controller? Do model reduc-
tion

Real Parameters

Exists version for real parameters, called DGK
or YZK-iteration

Pete Young, Anders Helmersson
Idea: LMI-formulation
IN"(X 0 I
[A] [0 "X] [A] >
Can be extended to
IN'(X Y I
(2) (> =) [a) >
if YA+ AY* =0.
Example A = §I real and Y* = -Y




Explanation in figure

lic — 6% < Jic— 1)

can be Written

This shows the correspondence with previous
discussion

New Mu-box manual has more discussion

Example, y-design

mudems in Matlab

Model reduction

Make |G — G|| small
Respect stability, G(0), etc.

balreal Balanced realization
hankmr Optimal Hankel norm approximation of a
system
sfrwtbal Frequency weighted balanced realization of
a system matrix
sfrwtbld Stable frequency weighted realization of a
system matrix
sncfbal Balanced realization of coprime factors of a
system matrix
srelbal Stochastic balanced realization of a system
matrix
sysbal Balanced realization of a system matrix

Error bounds

Assume stable system G(s).

Balanced realization “twice the tail”

1G(s) = G(s)loo < 20141 + -+ Tm)

Balanced singular perturbation é’(O) = G(0)

Stochastic Balanced: Relative Error Bound,
preserves min-phase

Hankel Model Reduction:

18(s) = G(3)lloo < T141 + -+ 0Om




>>[kk4
>> sig
sig =

MR D NN WERE R, NDNMNNORNDEENDNDE

Example, model reduction

,sigl=sysbal(k4);

.6999e+01
.5399e+01
.2202e+00
.0066e+00
.9289e-01
.1384e-01
.7140e-01
.4974e-02
.7353e-02
.5791e-02
.1279e-02
.0651e-02
.6374e-03
.8297e-03
.5818e-03
.1740e-03
.1439e-05
.6069e-06
.2060e-10

>>kkk4=hankmr (kk4,sig,10);

See copies from Green-Limebeer

Result

Phase (degrees)

Frogancy (radanst )

Log Magnitude

| Phase (degrenn)

Truncate systems with “small” nonlinearities

Open Problems

or time-varying parts.

Rantzer-Andersson

Exercises

Ex. 1 Run the demos in

Mubox: mudems

Robust: mudemo,

mudemol, mrdemo,rctdemo

Ex. 2 Check the AIRC H,-design done in

Ch. 6.8 using the mubox in matlab. Compare
the controller amplitude with previous designs.
Dont forget to plot the control signals and

responses to load disturbances.

Mac 6.5
Mac 6.7

Ex. 3 Show that g = 0 for the system

0 0 0 0 1
0 01 0 O
0 00 0 1
100 0 0
0610 -1 0

where A = diag[§1]3, 8213, 83). It can be shown
(LMIs) that the upper bound is v(M) = 2.




Lecture 14

e Design by optimization
Q-parametrization
Ly design

Mixed Hy — Hy,
Multi-objective LQG
Minimal risk

o

Decentralized control

FRLS design

O 0 O 0O O O

Readings: Maciejowski, Ch 7.1, 7.3-5

Hand-outs on Ly, @Q-parametrization and
Lilja's thesis

Design by numerical optimization

Newton-Gould-Kaiser (1957) “Analytic Design
of Linear Feedback Control Systems”

Mayne-Polak
Boyd

Many others

Matlab-toolbox. NAG. Several others

Design by numerical optimization

Choose criterium/criteria
Choose controller structure
Choose optimization method

Optimize controller parameters

Well formulated problem?
Analytical solution?
Avoid local minima

Infinitely many constraints

Idea: run on real system-evaluate response-try
better parameters

More information

Optimal control course
Optimization course - math dept.
Mayne-Polaks articles

Boyd-Barrat's bgok




Controller parametrization

P, Pi, PID, PIP, PI?

RST

Q-parameterization combined with e.g.
10

bi
Q) = Z (s+a)

i=1

or (impulse response)

Q(s)=go+qs  +...+qns™V

Q-parametrization

T A—-B;L B, L B3 By ]
&| 0 A~-KC; Bi—KDy; 0 &
z Cp— D2 DL Dy D2 w
e 0 C2 Day 0 r

Q-parametrization

K (s) stabilize P(s) iff if it can be written
on the form above with » = Q(s)e with
I — Dj,Q(00) invertible. We then get

Giuw (8) = Tzw(s) + T"(s)Q(s)Tw (‘9)

where the stable transfer functions T3, T%.

and T.,, are defined indirectly by (1) and (1).

Polynomial version (SISO)

§ /Ao — AJA, - gl
R~ R/Ao+B/Ac 755

See handout

Another parametrization trick

Can rewrite optimization over dynamic
controllers of fixed order

u=—K(s)y
into optimization over static controller
u=—Ky

where K constant matrix




L, optimization
Same set-up as always, w,u, 2,y
Find controller that minimizes (induced L)

G(s = max ||z||c
G (e)ley = maxlll

where

[[wllco = sup sup [wi(2)|
t>0

“Minimize the peak-value of the output when
disturbance has peak-value less than 1".

S50 163z, = [ la(9las
MIMO  ||G(s)l|z, = /Ooo mnglgaj(t)ldt

L,-design

The optimal L;-controller can be nonlinear.
(MIMO example by Stoorvogel 1995)

Suboptimal linear controller can be found
via linear programming

See book by M. Dahleh

Matlab-code available (no manual)

An L, design

See hand-out

Mixed H,/H,, design
Many different designs with this name

H,-norm good to measure stochastic perfor-
mance

H,-norm good to guarantee robustness

Combination? How?

Bernstein-Haddad
Doyle, Bernhardsson-Hagander
Khargonekaar, Rigby et al




Mixed H»/H,, design
Rotea et al

under the restriction

n}én”Gzoawollz ”GHNJ:”OO <%

Bernstein-Haddad, replace || - ||; with upper
bound

Jauz(G,7v) = Trace [Q,C’Té']

Other setups
Ji =min max E|z|]?
K Al <1 wo

J2 = min max FE ||z||2
K |lwifi€1 wo

Js = minmax E |z|> — v?||w1|)® (min-mix)
K w; wg

- 2 _ .2 2
Js = min max max ||z||" —||w

Min-mix Hy/Hy

Often results in several coupled Riccati
equations

Optimizes upper bounds

Sufficient/necessary ?

Min-mix H,/H,, design, solution
Conditions:

o There exists X ‘such that

AX + XAT v+ cfc, + X(v2B1Bf - B;BT)x =0
X >0 and Ac := A+ (v"2B; BT — B,BI)X is stable

e There exist L, Y and P which satisfy

Y(LD3oDZ, + BoDZ, + PCT +
+v~2PXB,DE)+~2PY(By + LD3;)DE, =0
T D T
YAm +ASY +YRY + FTF =0
Y >0 and 4 + RY is stable
(A + BY)P + P(Ap, + RY)T + (Bo + LD20)(Bo + LD2)T =0

where

B =~"%B;y 4+ LDy )(B1 + LD2)T
A= A+~y72B1Bf X + L(C2 + v *D BT X)
F=-BTXx

When these conditions hold, one such controller is

K(s) = [ Atk BoF | -k

Multi-objective H,

Not all LQG-problems can be written in
standard form

”Tlowo”g + ”Tll‘wx ”g

Back to LQG if 25 = 2

= (o 70 2]

Similarly if wg = wy
SP
KS

Can be solved e.g. with Q-parametrization
and completion of squares.

Example: ming [

Minimal order of controller unknown (2n?)




Minimal risk criterion

z scalar, critical signal

min Prob{ sup |z(¢)| > ¢
K(s) <0<tET| @) )

Nonlinear controllers optimal

Can find suboptimal linear controller by one-
dimensional search and Riccati equations

E(2%) + pE(2?)
Optimal controller close to minimal variance if

E(z®) <<c

See Anders Hansson's thesis

Decentralized control

Example: Control of power systems
kn(s) 0 k13(s)

u = 0 kzz(s) 0 y
0 kaz(s) kaa(s)

K1 Ki KN

System

Communication

Choose control structure? Combinatorial
problem?

For analysis one can always assume diagonal
structure u; = K;(8)y; (think)

Decentralized stochastic control

Assume fixed structure

Decentralized LQG : Optimal controller not
linear

Witenshausen: Can use control signal for
communication

If w =0 is optimal, send instead
U= 0.0002}13233 .o
where z1z, is a message to other controllers

Hard to find analytical solutions to interesting
problems

Can find suboptimal controllers

Strong results upcoming (Johansson 1996)

Decentralized stabilization

Wang-Davison

Ui = K.’(s)y;
S = {diag(S1,...,Sn) | Si € R™>Pi}

Theorem System is stabilizable by decentral-
ized dynamic output feedback iff

[} e(A+BSC)cC,
Ses

“If one can move eigenvalues (by decentral-
ized static control) then it can be moved any-
where (by dynamic controllers)”




Lilja design
Find reduced order controllers

Frequency domain least squares

y = G(s)u
R(s)u = —S(s)y + toAo(s)r
Ym = Gm(s)r
R Iy YOL RS OE

Linear in S/t; and R/t,!

FRLS design

Choose order of S(s) and R(s)

5,Rto

N
min E | E(2:)|?
i=1

where z; are some interesting frequencies

Lilja's thesis, help frlsbox

LSRSTC Pits a continnous {ime controller to a specified closed
loop model given a frequency response of the process.

[R,5,T,THE’ERROR]=LSRSTC(FR,BM,AM,AO,NR,NS,R1,51,WGT)

The frequency response FR on the form [w G(iw)]

is used for least squares fitting of controller parameters

in a controller siructure given by Ru = Tr. Sy.

The closed loop system (r —; y) is specified

by the transfer function BM(s)/AM(n). For convenience, the
polynomial BM is multiplied by a constant factor in order to
get a closed loop stationary gain of 1 (i.e. BM(0)/AM(0)=1).
Factors to be inclnded in R are specified by the polynomial R1.
Similarly, S1 pre-specifies factors of S,

Deg R = NR and deg S = NS, The observer polynomial is given by
AO (T = const.,*AO). Defaunlt WGT is unity weighiing

while R1 and S1 both defaults to 1.

The magnitude of the (weighted) closed loop transfer

function error is given by THE'ERROR.

Example

See handout, appendix in Lilja’s thesis

What we haven’t talked about

High-level control
Adaptive control

Nonlinear control theory
Numerical algorithms
Discrete-event systems
Hybrid control

Expert systems

Neural networks
Implementation (real-time)
Diagnosis

Manual control




Bladvinkelreglering av stora
horisontalaxlade vindkraftverk

Sven Erik Mattsson

Institutionen for Reglerteknik
Lunds Tekniska Hogskola

Innehall

WTS-3 i Maglarp
Reglerkrav

Modell

Reglerbarhet
Observerare, matbrus
Olika vader och driftfall
Simuleringar

N o a2

Mal med bladvinkelreglering

T [%]
24 22 20 18 Ug Imis]

200 ~/

100 -~

16

14

12

10

-15 -10 -5 0

5
B3Il. [01
Under markeffekt
e Extrahera maximal effekt

¢ Flackt maximum
o Skatta U, statiskt fran Pg och B.

Over markeffekt

¢ Undvika hdga mekaniska laster
e Urkoppling vid 4.2 MW
o Halla konstant effekt, SMW

[ ]

WTS-3 i Maglarp

3 Ulxl »®

1 ¢

<7

!

ol

//////{_;’{.__//73 e rsia
Drift vid vind 7.2-27.2 m/s
Mérkeffekt 3 MW, nas vid 14.2 m/s
2 st 39 m langa glasfiberblad
Roterar 25 varv/minut
Hydraulisk bladvinkelreglering
Flerstegs planetvaxellada, 1:60
Synkrongenerator, 1500 varv/min
80 m stéltorn, diam 3.8 m, 4 cm gods

Overgripande reglermal

Optimal effektproduktion.

maximal energikonvertering
inte reglera natet

jamn drift
— laster i blad

— utmattning
— mekniska resonanser

konstant spanning

Reglermajligheter

rotororientering
bladvinklar
generatorns magnetisering



Fran aerodynamiskt moment
till elektriskt moment

~ W=z ~0y2P deg

10°:2] S\ W =25 =95P
- -100

- 200

T T T T T T T T T T T
01 1 10 100 rad/s

Elgure 2.1: Bode plot of tha transfer functlon (216} from 4t to At k: the
WTS-3.

Je=do33pu b= G650 J? 0003?’};14

: k=23
—— S —jfm_\—E :
J RO‘EDr . }_— Gen. Na,‘é

Vilken bandbredd behover
bladvinkelregleringen?

Hur mycket stdrningar orsakar vinden dver
en viss frekvens?

30

20 —

o}

T T T T T T T T T T T
0.01 0.1 1.0 10.0 rad/s

Flgure 5.: dard devlatl

o{APLwim ) [% of PB] The bold line s for the
open loop system., The lhin line Is for ai nopenlpsyslmwllh:rlnddrlv
traln,

Modell

Ay

AT >—| Je —[jsgj:[AE

Rotor: JtA(é L +D A‘é” + KAy = AT

Effekt: APg = wo(D; Ad7 + K;Ay)

dt
dy dy
Varvtal: A—%- = A—-
arvta Adt 7
ap

Bladservo: = (Br—B)/Tes

Aerodynamiskt moment:

AT = T3AB + TyAUq + T A‘fi‘”

Designmodell |

A%DE_AAx+BAﬁ,+B w

T
Ax=(AB  AU/100 A?, A7)

Vindmodell: Gaussiskt vitt brus filtrerat med
tidskonstant 20s.

Fér Uy = 18m/s:

—2.5 0 0 0
0 —0.05 0 0
A =
2.0 47 =074 -1.5
0 0 1 0

B=(25 0 0 0)F
B, = (0 0.0057 0 0)°

ow = 1.8m/s



LQ-kriterium

Straffa

1. effektvariationer
2. servordrelser, men ej position

2
J=E {IimT_,oo % i ?APY + 2 ap dt]

dt
g
E . (IBr _;B)/Tbs
g =1(MwW)™
AB, = —LAx

Matningar och observerare

dy

Kan méta effekt, Pg och varvtal, I

Svart att méata medelvind

o Vindkraftverket stor en lokal matare.

e Koherenslangd och turbindiameter av
samma storlek.

o Korrelationen mellan medelvind U,
over turbinen och vinden i centrum ar
ofta under 0.8.

Vi maste rekonstruera vinden fran andra
matningar pa vindkraftverket.

11

Resultat vid tillstdndsaterkoppling

qs = 8: L= ( 146 585 3.85 4.83)

gp= 5. Ly=( 094 460 239 254)

gp =10: Ly = ( 038 326 121 0.95)

gs =15 Ly=( 011 262 -0.79 0.49)
(

gp = 80: Ls = (-0.26 173 0.34 0.10)

Servot far tidskonstant: Tps/(1 + 11)

Storhet L1 Lz L3 L4 L5

o(Pz)[%] | 065097 1.7 |24 |42

o*(gii) c/s1|1.7 |15 |12 |11 |085

o(?’;) (%] |0.06|0.08|0.13|0.16 | 0.25

w, [rad/s] |32 |27 |21 (18 | 1.3

w. = bandbredd i loopsnitt efter servot.

10

Modell for design av Kalmanfilter

A% = Ale + BlA,B,- + Bw
Ay = (APgm/10%  Ayr,)T
_ dy e
dx = (AU6/100 AL Ay) = Ciax e
e ar Gaussiskt vitt brus, okorrelerat med w



1 10 100 rad/s

Flgure 4.2: Power spectrum for the electrical power Py (MW] from serles 1.
&

1075 _f'_/

1 10 100 rad/s

Figure 43: Power specirum for the lurbine speed ¥ [rad/s] from series 1.

13

Brusmodeller

Vitt brus betyder R,[1,1] = 27®pg,.

Anvand spektra fran méatningar.
R, = diag(2-10* 1.10°)
R, = diag(2-10* 3-10°)
R,z = diag (2-10* o0)
Filterférstarkningar:

~ (0.21 0.24 O.O6>T

! 475 4.94 0.46
% 029 0.38 0.08\7T
27\ 217 254 026

K3 = (040 055 0.11)7

14

Regulatorstruktur
II Wind I ‘wo

"
Al /100
-ty 13 ) 2
Aapdy

Flgurs 5.7: Control Configuration.

Observer

15

L3 L3 L3 L3
K]_ K2 K3
o (Pg,w) [%] 17134 |38 |4.2
a(i;ﬁ w) [°/s] 12113 (1.3 |13
a((; Pg.) [°/s] | - 0.48 |0.75| 1.1
G(élﬁ’%) [°/s] | - 0.74 | 0.67 | -
cr( é ,+) [°/s] 12|16 (16 |17
@, [rad/s] 21128 |27 |26
A, 36 |33 |29
Om [°] 37 |3 |34
Cop 1.68 | 1.66 | 1.59
gop [°/s/(m/s)] 53 4.7 | 4.1

18



Hur dampas effektvariationerna?

0 " — :
0.01 0.1 1.0 100  rad/s

Flgure 5.3: Standard deviations a(PE,w;u,au) {% ot PB]. The bold line is,for the
closed loop system when L3 and K1 are used. The thin llne Is for the open loop

system.

17

2P stdrningar

Stora storningar vid 2P (5.2 rad/s)

e roterande sampling av vindvirvlar
e tornet blockerar vinden

Antag sinusformad stérning vid 2P

o fOr Py ar amplituden 1-3% av Pp
e motsvarar vindamplitud pa 0.3-1.1 m/s

IS
<<( 2
@
hs]
2 1
=
E
<t 0
— 100
=L
<d
@ 50
g
=]
a.

0 60 120 180 s

Flgure 4.15: Estimates for measurement serles 1. The forgelting faclor A was 0.09
and the sampling period h was 0.1 s, °

Hur paverkar matbruset servot?

deg
1074 ~=-100
102
=200
1073+
T T T 1 T T T 1 T
0.01 0.1 1.0 10.0 rad/s

Figurs 5.4: Bode plot of the transfer function from PEu [% of PB] to Af [*/s] for
the closed loop system when L3 and K1 are used. £

10 ~ deg
--100
1 =4
0.1+ 200
L] T l T T l T T ! T T
0.01 0.1 1.0 10.0 rad/s

Figure 5.5: Bode plot of the transfer function from be {% of va] to AR [*/s] for

the closed loop syslern when L3 and K1 are used.

2P-variationerna maste beaktas

Var design

forstarker Pg med agp = 1.7
e ger onddiga servordrelser

dp

o forstarkningen fran AU till A_cE’
gop = 5.3°/s/(m/s).

e servot svanger 0.3-1°
med hastighet 1.5-6°/s

~-100
deg
1~
--200
0.1 +
—~300
I
T T T T T 'l' T Ll 1 T T
0.01 0.1 1.0 10.0 rad/s
Etgure 5.6: Bode plot of the transfer funclion from AU, [m/s] to op [*/s] for the

closed loop system when L3 and K1 are used,



T T I T T I 1 L] I T T
0.01 0.1 1.0 10.0 rad/s
deg P
50 :
0 -
-50 ~
-100 —
l_l 1] - 8 i I L l ¥ LI
0.01 0.1 1.0 100 rad/s

Flgure 5.2: Bode plots of the transfer function from AU, [m/s] to AP [% of Pgl.
The bold lines are for the closed loop system when L3 and K1 are used. Tha thin

lines are for the open loop system,
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1. Notchfilter

+ o9p minskar till 1.07

+ gop minskar fran 5 till 0.5
— o(Pg) 6kar med 1%

— A,, minskar till 2-2.5

- ¢, minskar till 27°

2. Frekvensberoende straff pa %
e ger nagot battre resultat
e kan lagga till fiktivt brus pa

insignalen for robusthet

3. Se 2P-stdrningarna som matbrus;
fargat och korrelerat méatbrus

4. LS-skattning ar sdmre

Vad goéra med 2P?

Analys av méatdata visade att stérningen
inte ar en ren sinus.

1. Satta in notchfilter

e spektrum ar 100 ggr storre vid 2P

* tag ({n/¢p)* = 0.01
* {n = 0.08 och {p = 0.3 ger bra bredd

v T T T T T T T T
0.01 0.1 1.0 100 rad/s

Tornsvangningar

1. Tornets bdjmod har grunfrekensen
0.85P

2. Perfekt effektreglering ger instabilitet.

e konstant varvtal, konstant moment
» men trycket pa rotorn varierar
e tornet svanger
e regulatorn tolkar det som vind-
variationer
3. Aterkoppla fran tornrorelsen.

dZT

dt -

5. Orealistiskt att rekonstruera torn-
rorelsen fran varvtals och effektméat-
ningar.

4. Lagg straff pa
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Figure 5.17: Simulated response to turbulent wind around 18 m/s when the

controller based on LC and K7T is used.
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Figure 5.18: Simulated response to a large gust when the controller based on LC
and K7T is used.
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Figure 5.19: Simulated response to turbulent wind around 14 m/s when the
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Fuzzy Control of a DC Servo

— A Laboratory Exercise in Control System Synthesis

Mikael Johansson and Johan Eker

Introduction. The purpose of this lab is to get some practical experience

of fuzzy control design. The task is to design a position control system for a
simple DC-motor.
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1. Laboratory Setup

1.1. Laboratory Equipment

The process is a DC-servo with a flywheel that will be controlled to follow a
desired angular position. Ideally, the controller should be designed to give a
fast set-point response while having low sensitivity to noise in steady state.
All signals are limited to the interval £10V.

The fuzzy controller will be designed and evaluated in Matlab /Simulink.
The fuzzy system mapping is crafted using Mathwork’s Fuzzy Logic Toolbox,
and the controller is tested in Simulink. When the simulations indicate a
satisfactory design, real-time code is generated automatically.

The code is compiled in the P3lsjé environment, which runs on Sun Work-
stations connected to VME boards. This enables us to evaluate the fuzzy
controllers on the real process.

1.2. A Simulink Model

A Simple Motor Model

From a torque balance for the motor axis, the following model is derived in

Lab2, CCS:

(o) = (o 5) (50) + (o) worron 0

where z;(t) is the angular position and z,(t) is the angular velocity. The
corresponding input-output description is

U(s) := P(s)U(s) (1.2)

T L T L |

| Fils. Edit Oplicins, Simulation Siyls Coda [ RS S

K

§+T
1]

- Salzgaliun uzve VelzFos

out_1

S (3T U S S S e e

Figure 1.1 Simulink model of the DC-motor.
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Control System Simulation

The motor model along with controllers is implemented in the Simulink system

>> servosim

3 LT IR N S S S T S, AL T T P S, T W L AT T B T ]
|[®lsenvasin T A )|

Flle; Edit Cpions Simulalion Syla Coda _ R e |

PD

D == Trear =]
1 |
Reference Confraltar Scl h d ‘E
Input Swilch DC Serve Modal ngyar

h A J

> Paositlon
Fuzzy 4=
» R ’
F"“?’ Phase plang
Controlier Analysis
Conlral
M R R L T Tl g T A e Sk

Figure 1.2 The control system simulation model.

Along with the motor model, the Simulink system implements the following
features:

o Controllers (linear and fuzzy PD in parallell)
e Signal Generators (reference and disturbance)
e Plotting Tools (process output, control and controller phase plane)

The linear PD controller is included for comparison. What controller
should be active is selected using the ”select” constant:

1 Activates the linear PD controller
-1 Activates the fuzzy PD controller

Thus, in Figure 1.2 the linear PD controller is currently active.
In the remains of this chapter, the implementation of the linear and fuzzy
PD controllers are explained in further detail.

A Linear PD Controller

The linear PD controller is implemented on the form
C(s) =k + kys (1.3)

The proportional gain k and derivative gain kq can be set by double-clicking
on the “Linear PD” block.

The reference signal is not used when forming the error derivative, and
in the discrete time implementation, the derivative is approximated by for-
ward differences. The discrete time implementation of the PD controller is
illustrated in Figure 1.3.
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|File Edit Cpian Simulation Syle Code  ©

Sum Propodional
Galn

Derivative
grence Galn
Approximation
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Figure 1.3 Discrete time version of linear PD controller.

A Fuzzy PD Controller

The main purpose of this lab is to design a fuzzy PD controller for the DC-
motor. Similarly to the linear PD controller, the fuzzy PD controller can be

written in the form
utt) = £ (0, 22)

where f(-,-) denotes a mapping defined by fuzzy logic rules.

Examining the Simulink implementation of the fuzzy controller shown in
Figure 1.4, we notice that two new components have been added, the normal-
ization and denormalization blocks.

i i Gphors Smulaton Sy Cose

M- o
Furzy  Denomaiization
Systam

Figure 1.4 Discrete time version of fuzzy PD controller.

Recall that we use the fuzzy rules to “craft” a nonlinear controller mapping,.
We can only define this mapping on a limited domain of the fuzzy system input
space. It is often convenient to define the fuzzy mapping on a normalized
domain (often taken to be [—1,1]"), and map the physical domain of the
inputs onto this domain.

Defining the fuzzy system mapping on the normalized domain [—1,1]"
means that the fuzzy sets of each input variable should cover the interval
(-1,1].
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Mapping an actual inputs onto the interval [-1,1] is accomplished by the
introduction of a normalization gain. Normalization gains are implemented as
saturated gains. This assures that signals which after scaling fall outside the
normalized domain are mapped onto the appropriate end point.

In terms of the fuzzy system mapping, the normalization gains scale the
nonlinearity in the input directions:

u(t) = f <kee(t), kddz(tt))

The role of the normalization gains is illustrated in Figure 1.5.

Physical sat(kn*e(t), 1
/,/ Domain kn°e(t) 1)
y” A
3 =] | Normalized |
M — i |
! g’i‘g . Domain ; I e(t)
3 b | , l I
4 B\ —/—
e N T
/ )'f \\\ | |
ALy L —1/kn 1/kn
i ] \\J %
] ] 1 eft)

—-1/kn 0 1/kn

Figure 1.5 Tlustration of the input scaling performed by the normalization gains.

The normalization gains define a “window” in the controller input space
for which the active part of the nonlinearity is used. For a PD controller, it
is a good exercise to think of how this “window” can be illustrated in a step
response.

The denormalization gain is a linear gain which scales the fuzzy system
mapping globally:

u(t) = k£(-,")
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2

Exercises

The purpose of the lab is to design a controller giving both

o Fast set-point response

o Low noise sensitivity in steady state.

Linear PD

Design a linear PD controller for the servo.

Fuzzy PD

Design a fuzzy PD controller for the servo. Design a fuzzy PD controller using
the Fuzzy Logic Toolbox in Matlab. The toolbox is described briefly in the
next chapter.

“Stream-lined” design procedure:

1.

N ok W

Start the Fuzzy Logic Toolbox (>> fuzzy Fuzzy.PD in Matlab). This
automatically loads the pre-defined file Fuzzy_PD.

Alter fuzzy set definitions and rules.

When satisfied, save your system to a file.

Try the fuzzy controller in a simulation (FuzzySim in Matlab)
Iterate steps 3-5 until you feel satisfied

Apply fis2pal to your fuzzy system.

Try the controller on the real process.

The following “Karnaugh-like” map can be useful for representing the rules:

1995-10-18 17:40

e(t)
NL | NS |ZE |PS | PL
PL
PS
é(t) ZE
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3. A Sample Session

3.1. The Main Window — FIS Editor

The Fuzzy Locic TooLBOX is started by typing
>> fuzzy
at the MATLAB prompt. This command starts up the FIS-editor (The won-

derfully selected acronym FIS is short for Fuzzy Inference System).

[File  Edt View

s 5" 0 7 oA 1T ) P
A e e 7 Y
Lo e e B Y (AR S T ey

————rs
25’ ES ™
-
5 =1 untinen
(mamdani)
SO b
"
dw
['i'.'._..._.___.‘-._ o R e —— - —— —r:
IEFISN_amE_: i Upitled & FiSType: . ma
' And method prod
rfO: method MEY,
ii Imphication prod
fi;&gqmgaumn sunm |
| f Defuzzication cefitrold
|| laady
Figure 3.1 The Fuzzy System Editor.

Using the menus at the lower left part of the window, it is possible to
specify the inference engine parameters. We recommend you to use

And method Product

Or method Max
Implication Product
Aggregation Summation
Defuzzification Centroid

In the upper part of the window, the fuzzy system knowledge base is illus-
trated. The knowledge base parameters are divided into three classes;

Block

Contains

Input Variable Block

Rulebase Block
Output Variable Block

1995-10-18 17:40

Input variable names,

associated membership functions,
and their names.

Linguistic descriptions of the rules
Output variable names,
associated membership functions,

and their names.
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The names of the input and output variables can be altered by activating
the block and enter the name in the edit box located in the middle right of
the window. A block is activated by clicking once on the block illustration.

A double click on any of the blocks calls an associated editor; double click-
ing on the variable boxes calls an membership function editor while clicking
on the rule base box calls the rule base editor.

3.2. The Membership Function Editor

Double clicking on a variable box calls the membership function editor:

File Edit- View

S e e S et -_..,..,I

FI5 Varlablas

(AR Idl ' - 2 ‘ : d
confro

! d" | 05|

IR R T
Input var}atiuo"é'

|{ Cutrent Variable | Current Membership Fundion
|| Name: € { Name

Anl

o i ]
1[-0500.5) E——

(S

i | Type : ; npul | Type 3
| ; | Params

lr:' Range’ flon 3
'}Pispiw'ﬁ_anne [o1) SO HenE e

Figure 3.2 The Membership Function Editor

For our purposes, it is convenient to work with membership functions on
the normalized domain [-1,1]. This can be accomplished by changing the
“Range” and “Display Range” from the default [0,1] to [—1,1]. These edit
boxes are located in the lower left corner of the window.

By clicking on the boxes in the upper left corner, it is possible to change
edit-variable. Initially, membership functions are created by selecting “Add
MFs...” from the Edit Menu. You can now enter the number of membership
functions needed and their shape:

[ﬁm"~.'.v.".'.'.x".‘.-.*a\‘.\'t-.‘f

it - -
I[Md membership lundions.
H A B

Figure 3.3 Adding membership functions.

Clicking on a membership function activates the attribute editor located
in the lower right corner. It is possible to change the name, function class and
shape parameters. For triangular membership functions, the parameter vector
is on the form

[left base, center, right base]
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3.3. The Rule Editor

The fuzzy-logic based rules are entered in linguistic form, as illustrated in
Figure 3.3. The rules can be parsed by pressing Ctrl+Enter. The Fuzzy

(File Edil View Options) 0

(e LANGUAGE:

Il (e s NLyand {de s MLT]

I (e & NS) and (de is NL)E- 2202000 (1)
{e i ZE) and (de is NL) L. F1ancas) (1)

€5 PS) and (de s NL) then (uis NS) (1)

1.
2
af
Il {e |5 PLY and (de is NL) then {u i ZE) (1)
' ée is NL) and (de is NS} then {u is NL) mj
Il (= is ZE) and (de is NS) then (u is NS) { f
1 =15 PS) and {de s NS} then {u ks ZE} {
10, Hf (e s PL) and (de is NS) then (u & P5) Ii\ i
1
; .

4
5
6
7.
8 1
] 1
(

11. Il {e ks NL) and (de is ZE) then (u is NL)
(

(

e & NS) and (de is NS} then (u s NL) (1

12. i (= 15 NS) and (de Is ZE) then {u is NS) {1
1113, Il (e is ZE) and (de is ZE) then {u & ZE) {1)
14. fi (e is PS) and (de is ZE) then (u is PS) (1) !
15. f (e is PL) and {de is ZE) then (u is PL) (1) {
16. Hf {e &5 NL) and (de is PS) then (u ls NS) (1 i
17. Il (e s NS} and (de is PS) then {u EZE}}I ]
18. Wi {e &5 ZE) and {de iz PS) then {u s PS) (1
19. 1 {e is PS) and {de is PS) then (u s PL) (1

)
)
)
)

{_ﬂtﬂe Formal  verbos

[_T:anslallnq 1o vetbose foi_'m'ai P

Logic Toolbox allows for three rule formats; verbose, symbolic and indexed:

I Rule Format | Example

Verbose If (e is PL) and (de is PL) THEN (u is PL) (1)
Symbolic (e==PL) & (de==PL) => (u=PL) (1)
Indexed 55, 56 (1):1

The (1) in the rules are weighting factors. They are included for some ob-
scure histrorical purposes, and altering a rule weight is functionally equivalent
to altering the rule’s consequent.

Please observe the useful features of the “Options”-menu.

3.4. The Surface Editor

Since we try to design nonlinearities, it is useful to now and then take a look
at the fuzzy system mapping. The Fuzzy Logic Toolbox supports this through
the Surface Editor:
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Figure 3.4 The Surface Viewer.
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