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FREQUENCY DOMAIN PROPERTIES OF OTTO SMITH REGULATORS

K.J. Astrém

ABSTRACT

Frequency domain characteristics of Otto Smith regulators
are investigated. It is shown that the regulator can be re-

garded as an ordinary regulator in cascade with a lead net-
work with considerable lead.
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1. INTRODUCTION

The idea of dead-time compensation introduced by Otto Smith
(1957) had little use in analog systems because of the dif-
ficulty of implementing the system. Since the regulator can
easily be implemented digitally it is now finding increasing
use in practical control system. This note presents a simple
analysis of the frequency domain properties of the regulator.
The note was inspired by a discussion of digital control sys-=
tems given in a seminar to an industrial audience. Specifi-
cally it answers the question: "This is all fine but where
does the phase-lead come from?" which was asked by one of

the participants.



2. OTTO SMITH'S REGULATOR

Consider the system whose block diagram is shown in Fig. 1.

Fig. 1

Assume that the compensator Gy is chosen in such a way that
a suitable performance of the closed loop system is obtained.
The closed loop transfer function is then

GRGP

G(s) = ==———== (s) (1)
1+ GRGP

If the system has an extra time delay this transfer function

is changed to

sT
R

G(s) = (2)
-sT
1+ GrGpe

G GPe

If T is sufficiently large the system will always be unstable.
To avoid this difficulty Otto Smith (1958) proposed the regu-
lator shown in Fig. 2.



Fig. 2.

If the block diagram of Fig. 2 is redrawn as shown in Fig.

3 it is easily seen that the signals -y and Y& will cancel

and the closed loop transfer function becomes

GpGpe >"

G(s) = ———— (3)
1+ GRGP

Fig. 3.



The closed loop system whose transfer function is given by
equation (3) is clearly stable for any value of T. Apart
from the factor e ST in the numerator of (3) the transfer
function (3) is in fact identical to (1). This means that
the regulator shown in the dashed block in Fig. 2 must give

a significant phase lead. This will be explored further in
the next section.



3. THE REGULATOR TRANSFER FUNCTION

The regulator in the dashed block in Fig. 2 has the trans-

fer function

: GR 1

G = — = — G (4)
B 146,05 1+ (1-e7%g, R

where

Go(s) = GR(s)GP(s) (5)

The Otto Smith regulator can thus be considered as being a
cascade connection of the ordinary regulator (GR) with a
compensator having the transfer function

_ il (6)
G,(s) =

1+ (l—e_ST)GO(s)

The properties of the transfer function Gc will now be ex-—

plored.

For typical control loops the open loop gain will be small
for high frequencies and high for low frequencies. Assuming
that

(i) lSGo(s)l >> 1 for |s| << w1

(ii) |G0(s)‘ << 1 for |s| >> Wy

It then follows from (5) that

1
Gc(s) N — Is| << w1

sTGO(s)

GC(S) ~ 1 Isl >> w,



If

_l_ n =1
1 + k7T
G (s) =~ J
c
Sn—l
n>1
kT

\

for small s. If GO contains one or more integrators the com-
pensator Gc will thus have a low gain at low frequencies.
The gain will decrease with increasing time delay T. At high
frequencies the gain of Go will be equal to one. The ampli-
tude curve thus indicates that the general characteristics
of G, is that of a lead network. For frequencies such that
Go(s) ~ -1 it follows from (6) that

Gc(s) ~ eST (for G

o~ -1) (6)
This indicates clearly that the network will give a consi-

derable phase advance.

The approximative analysis thus indicates that the transfer
function Gc corresponds to a lead network. The total phase
advance will increase with increasing T. If n = 1 the total
phase lead will be a multiple of 2.



4. AN EXAMPLE

A specific example will now be investigated. Let the open

loop transfer function be

K
s (s+1) (s+2)

A reasonable value of the gain is K = 1. See e.g. Astrdm
(1967 p. 163). The transfer function G, defined by (6) then
has the properties

lim Gc(s) =1
S-0 1 + kT/2
lim G _(s) =1

c
S oo

The shapes of the Nygquist diagram of the transfer func-

tion Gc are indicated in Fig. 4.

Since both Gc(O) and Gc(im) are real the total phase advance
is a multiple of 2n. The frequency characteristics of Gc will
now be explored further. The frequencies where the Nygquist

curve intersects the negative real axis are given by

arg(l-—e_le)GO(iw) =7

Hence

X _ Rler] _m arctg w - arctg /2 = w
2 2

or

- Rlom] _ Y
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where

3w

2 - w2

Y = arctg

and R[a] denotes the residue of a modulo 2n. The frequencies
where the Nyquist curve intersects the negative real axis

are thus given by

tg wT/2 = >
w - 2
The magnitudes of the transfer function Gc at these frequen-

cies wy are given by

(l—e_lmoT)Go(iwo) = 2 sin ¥ I; =
mOV(l+wO)(4+w0)

See Fig. 5.

Fig. 5.



10.

But
- 3m0 _ 3m0
sin y = % = e =
4 2 2 2
Qwo + Swo + 4 “(w0+l)(4+w0)
Hence
'(l-e_lon)Go(iwo)’ _ 6K

(1+07) (4+07)

The intersection will be to the left of the point -1 if

2

2
6K > (l+m0)(4+w0)

For K = 1 this gives

wy < d(/§§;5)/2 = 0.6102

Furthermore,it follows from Fig. 5 that
wOT = 2mn - 2y

Hence

Y = nn - wOT/2

Introducing wg = 0.6102 and using (8) the following numeri-
cal values are obtained

T =10.3n - 2.77

The time delay corresponding to integer values of n are lis-
ted below.



11.

T

7.53
17.82
28.12
38.42
48.72
59.01
69.31
79.61
89.90

100.2

W 0O ~ 6 B W N B

=
o

This table gives the limits of the time delay for the Ny-
quist curve to make 1, 2, 3, ... revolutions around the ori-
gin. Notice that for the values of T given in the table
above the function 1 + (l-e_ST)GO(s) will vanish for cer-
tain frequencies which means that the transfer function G,
becomes infinite. In Fig. 6, Fig. 7 and Fig. 8 are shown

the Bode diagrams for T = 5, 12 and 22 corresponding to

n =20, 1 and 2.



% 2R

Fig. 6 - Bode diagram for the transfer function

1
G.(s) = =
e 1+ (l-e ST)GO(S)

]

for Go(s) = .1 and T = 5,

}Si/(s+l) (s+2)
yiars

12.



Fig. 7 - Bode diagram for the transfer function

1
G.(s) = =
¢ 1+ (l-e ST)GO(S)

for Go(s) = 1 ‘and T = 12.

/é(sﬂ) (s+2)

6ﬂvmxmw
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Fig. 8 - Bode diagram for the transfer function

1
G (s) = =
c 1+ (1-e"%T)g, (s)
for Go(s) = — 1 and T = 22,
B (s+1) (s+2)

gbwufv

P N
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APPENDIX

16.

The following FORTRAN program was used to evaluate the

transfer function.

FREQUENCY

WRITE (9,100)
FORMAT (' WRITE GAIN T
IC=1
AK=RTTFFCIC)
T=RTTFF(IC)
WO=RTTFFCIC)
W1=RTTFF(IC)
NP=RTTFFCIC)
WRITE(S,101)
FORMAT
Wl TE (6,102)
FORMAT ('Q0OMEGA
-1ARGG RAD'")
PH123,14259265
‘D3 10 J=1,NP
WeW0+W1#FLOAT ()

OO0

T,AK
1901

102

R1i=W
A1=PPI/2.
RZ=SART (1., +HW=NW)
A2=ATANZ2(A,1,)
RI=SORT(4, +W#in)
A:):ATANZ(Nn?.o)
Si1=1, - COS(wW=T)
S2=SIN(wsT) )
R4=SURT(S1#S1+S2#82)
Ad=ATAMN2(S2,S1)
R5=AK#r4/(R1#R2#RJ)
AS=Ad=A1~-A2-A3
S1=1.+K5*C0OS(AB)
SZ2=R5#SIN(AS)
R=1./SURT(SL#51+S2#52)
=-ATAN2(S52,81)
RLCG=ALOGLN(R)
ADEG=Aa#180,/PH]
WRITE (6,103) W,R,ADEG,
FORMAT
GO TO 1
END

('17IME DELAY =?

ABSG

ANALYSIS OF OTTO-SM|TH COMPENSATOR
KJA 743805 REVISEU 750616

ME DELAY W0 W1 AND NP1')

+F7.,3,'SEC!,! GAIN =

ARGG DEG LOGABSG

RLOG, A

(F10.,4,F10.5,F10.2,2(1PEL13,5))

'!F603)



