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Adaptive Stabilization of General, Multivariable,
Continuous- or Discrete-Time Linear Systems

Bengt Martensson

Department of Automatic Control
Lund Institute of Technology
Box 118
S-221 00 LUND, SWEDEN

Abstract. Let an unknown continuous- or discrete-time, multivariable linear system,
possibly non-minimum phase, and of high relative degree, be given. Suppose that we
have the a priori information that for a known, nonnegative integer I, there is a (non-
adaptive) regulator of order [ which stabilizes the system. It is shown that this suffices
as a priori information for an adaptive stabilizing controller. An example of such an
algorithm is given. The continuous- and the discrete-time versions are given by exactly
analogous formulas. This yields a continuous regulator, which does not utilize probing
signals. It is based on a dense search through parameter space, and does not utilize
high gain properties, as opposed to the “universal regulators” proposed before. In the
absence of information of such an [, it is shown how to modify the algorithm to search
over the regulator structures, i.e. the controller’s dimension.

1. Introduction

During the last year there has been a considerable interest in “universal regulators”, see
[3] - [4], [6] - [7]. In [7] it was shown for the first time that knowledge about the sign of
the “instantaneous gain” was not needed for stabilizing adaptive control of a first order
single-input single-output system. In [3] this was generalized to a minimum phase, relative
degree one system of arbitrary (finite) order, and in [4] to a square multivariable minimum
phase system with C'B invertible. The algorithm in [4] is however discontinuous and not
given explicitly. Another direction of generalization is [6], which describes a regulator that
will stabilize any single-input, single-output, minimum phase system of relative degree not
exceeding two.

The main contribution of the papers discussed above is that it has been demonstrated
that among the four “classical” assumptions on necessary a priori information for adaptive
control of continuous-time, single-input, single-output plants, namely

1) The degree of the plant, n, is known

2) The plant is minimum phase

3) The relative degree 7 is known

4) The sign of the “instantaneous gain” ¢A™ b is known

points 1) and 4) are not needed. The present work shows that 2) and 3) can be replaced
by a weaker condition.



A “Universal Regulator” is presented which only depends on a nonnegative integer I, with
the property that there exists a constant, nonadaptive, linear controller of dimension [,
which yields internal stability to the controlled system. It is shown in [2] that for contin-
uous time systems, this is necessary a priori information as well (for a regulator of fixed
structure). Necessary and sufficient a priori information needed for adaptive stabilization
of an unknown multi-input, multi-output linear system has thus been characterized. Obvi-
ously, this is not completely independent of 2) and 3): e.g. if 2) and 3) are both true, then
in general the least ! is @ — 1 as is well known.

The regulator presented is based on a dense search through the parameter space. It differs
from the previous “universal regulators” in [3] - [4], [6] - [7], in the sense that it is not
based on high gain stabilization. Both the continuous- and discrete-time versions are given
by exactly analogous formulas.

In Section 2, it is shown that the static feedback problem contains the dynamic feedback
problem for a fixed order of the controller dynamics. Section 3 presents the “Universal
Regulator”, depending only on I. Convergence is proved. In the next section it is shown
how the regulator can be modified to search over the structure of the (linear part of
the) regulator, still with guaranteed convergence. Some of its properties are discussed in
Section 5.

2. A Viewpoint on Dynamic Feedback

In this section we show that, from a certain point of view, dynamic feedback can concep-
tually be replaced by static feedback. The idea is very simple: we augment the plant by
attaching to it a box of integrators, each with its own input and output. Then we apply
static feedback from the augmented plant, i.e. the plant together with the integrators. For
the continuous time case, the situation is depicted in Figure 1.

More formally: Consider the following dynamic feedback problem: Given the plant
i = Az + Bu, zeR", u€R™ (10)

y = Cz, yc R?

and the controller
z=Fz+ Gy, ze R (20)

u=Hz+ Ky

It is easy to see that this is equivalent to the static feedback problem
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Figure 1. Dynamic feedback considered as static feedback.
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For the discrete time case: Let the plant be
z(t + 1) = Az(t) + Bu(t), z € R", u € R™ (1D)

y(t) =Cz(t), yeR’

and the controller
2(t+1) = Fz(t) + Gy(t), z€R (2D)
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u(t) = Hz(t) + Ky(t)
This is equivalent to the static feedback problem

Z(t + 1) = AZ(t) + Bi(t)
§(t) = Cz(1) (3D)
u(t) = Ky(t)
where %,§, A, B,C, and K are as before and @(t) = (u(t)T2(t + l)T)T.
3. The Universal Regulator

As shown in the preceding section, it suffices to consider adaptive control based on static
feedback. A (fixed) regulator is then nothing but a matrix € RM*P_ Since a (fixed)
regulator achieving internal stability to the controlled system places all the eigenvalues
in the open left-half plane, (or the open unit disc) and these depend continuously on the

parameters of the controller, there is an open set in parameter space yielding a stable
system. Equip RM*® with the norm

417 = (4%

RMXP RMP

Thus we identify , as a normed space, with , equipped with the Euclidean
norm. For the sequel, we let || }J| denote the this vector norm, or the corresponding induced
matrix norm. Partition RM¥*F = Rt x SMP-1 jp a natural way. Let the regulator be

i = g(h(K) N (h(k))7 (4)
k= |91* + |3 (5C)
or
k(¢ + 1) = k(¢) + 11317 + l|2)® (5D)
where
N(h) is “almost periodic” and dense on SMP-1! (6)

and h and g are continuous, scalar functions satisfying

h(k) / oo, k— o (7

There exists a § such that |dg/dh| < § (8)
g({oev + (B, ML) =R* for n€Z,a#0,7>p (9)
kg(h(k)):—: 50, koo (10)

We can now formulate our main theorem.



Theorem. Consider the minimal plant (1). Assume that | is chosen so that there exists
a (fixed) stabilizing controller of the form (2), and that the augmentation to the form (3)

has beed done. The controller (4) - (5) subject to (6) - (10) will then stabilize the system
in the sense that

(z(t), 2(t), k() — (0,0,k) 38 t— 00

where ko, < 00.

Remark. One set of functions satisfying (7) - (10) is
h(k) = \/logk, k>1
g(h) = Vh (sin vVh+ 1)

A curve N{h) on SMP-1  satisfying (6) can e.g. be realized by the following procedure:
First we introduce coordinates on SM¥F~!  with a variety of lower dimension removed. We
use the “spherical coordinates” on SM¥P—1;

T, =sinfpp_1---8infysinb,

ZTo =sinfpp_1---8infycosb;

ITmMp—1 =sinfpyp_jcosfmp_2

Iyp = cosbyp_1

where
(61,...,0mp_1) €(0,27) x (0, 7)MFP~2 = pMP-1

This is a bijection from D™F~! to a open, dense subset of SMP~1 In order to satisfy (6)
put

0; = ash 1=1,.... MP -1

where {aj,...,apmp_1} are linearly independent over the rational numbers. The curve
N(h) is now analogous to a skew line on a torus, hence it is dense and almost periodic [1].

We will prove the theorem only for the discrete time case. The proof for the continuous
time case is similar, and can be found in [5].

For the proof we need the following lemma, which is proven in the appendix.

Lemma. Assume that the linear system (1D) is observable. Then:
(i) For all x(0), there are constants co and ¢, such that

z()II7 < co + 1 (Z (I + IIU(T)II2) (11)
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for all z(0), u(.), and t > 0. Here co does not depend on ¢t or u; and ¢; does not depend on
t, u(.) or z(0).

(ii) For T > v, the observability index of the system, ¢, can be taken so

lz(OI* < e ( > @I+ IIU(T)II"’)

r=t—T r=t—-T
for all t, u(.), and z(t — T).

(iii) co and ¢, can be taken so that (11) holds, with the same cq and c,, for all augmentations
of the form (1) — (3), i.e. for all l.

Proof of the Theorem. We claim that it is enough to show that k increases to a finite limit
k- By (4) - (5D), y and @ € £2. Part (ii) of the lemma applied to the plant (3D) yields
that z(t) and 2(¢) — 0, as ¢ — oo. This proves the claim. For the proof we may thus
assume that & 7 oo.

First we find an estimation of the norm of z before the system stabilizes: By (5D) and the
lemma applied to the system (3D) there exists constants co and ¢; such that

IZl1> < co+ 1k (12)

Next we analyse the properties of the regulator matrix curve g(k)N(h): It follows from (6)
- (9) that {g(R)N(h),h = h(k),k € R*} is a dense subset of the space of M x P matrices.
By (6) and (8), this curve is traversed with a bounded velocity in the parameter h. By
assumption, there is a goNo such that the control law & = goNoy stabilizes the system.
There is also 2 @ = QT > 0 such that (A + goBN,C)TQ(A + go BN,C ) Q@ = -1 By
continuity, the left hand side will be < ——I for gN in some neighborhood of go Np.

From this we deduce that there exists infinitely many disjoint open intervals I, = (a,, 8.),
v = 1,2,...; a constant § > 0 such that f, —a, > 6 for v = 1,2,...; and (4 +
g(h)BN(h)C)TQ(A + g(R)BN(R)C) — @ < — I for h in any of these intervals.

We now analyze what happens when h € I, for some v. Suppose that h € I, when
t = t,. By above, z7 Q% will then be a discrete-time Lyapunov function, and ||Z(t)|| <
coe~1(t=0)||Z(40)|| for some co,c; > O and ¢ > to. This, together with (4), means that
there exist constants d¢ and d; such that

3 [t + 2 laf2d < (1 il a5 g) S lolPd < (1 +do sup g) 15 (t0)

to el

provided that h stays within I,,, for some v, for all £ > #,. In particular, the left hand side
exists finite, and the theorem will be proved.
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Finally we prove that h will get stuck in some I,,: The increase of h per unit of time is less
than or equal to

dh dh -
sup (dk) (1911 + l1al)?) < sup (dk) 1+do sup g}yl <
ke[k(t).k(t+1)] [k(t),k(t+1)]

dh -
sup () da (1-+ dosup ) 317

for some d;. By (10) and (12) this tends to 0, so we will intersect the lower half of I, for
v large. While h € I, h will increase by at most

dh dh N
sup (%) 57 (15 +1517) < s sup (%) (14 sup ) ()P

hel, hel,

Combining this with the estimate (12), and considering (10) we conclude that for h suffi-
ciently large, the left hand side is less than §/2. Thus there is a v such that ~ will never
leave I,,. This proves the theorem.

4. Searching over the Dimension of the Controller

If no ! is known, the algorithm can be modified in the following way: Let the regulator
order be I(h), where [ : Rt — Z+ is piecewise constant over lengths I; / oo, and I({h >
ho}) = Z* for all hy. Also put z = 0 every time the regulator order changes.

By (iii) of the lemma, it is a straightforward verification to check that the proof will still
be valid. The details are omitted.

5. Properties of the Universal Regulator

The most obvious property of the regulator described in the previous sections is that it is
absolutely useless for every practical purpose, and its value is only on the level of existence
proofs, to show that adaptive control with a certain amount of a priori information is
possible.

From a certain point of view, the search may involve a vast overkill. For the “dynamic
feedback” case we are e.g. also searching through the coordinates of the controller’s state
space. With more a priori information considerable refinements can be done.

Appendix.

Proof of the lemma. We first prove (i). By adding inequalities over ¢ we see that it is enough
to show

217 = Nzt =P < e Y (I + llu(n)|?) dt (13)

r=t—v
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for some ¢; and all ¢ > v. Further, by using time invariance, it is enough to show (13) for
t = v. In an obvious operator notation

z(t) = A*z(0) + ) _ A' " Bu(r) = L 2(0) + Lu(.)

r=0

where L¢ and L% are bounded linear operators. We have
- v
Iz — [12(O)II* < 2)|Z52(0)|I? + 2| L5 e ()II® < 2 L5 =(0)|1” + 2| Z5 1 D llu(r)I* (14)
r=0
Write y(t) as

y(t) = CL{z(0) + CLSu(.) = 41 (t) + va(t)
Clearly,

174 124 [ 74 v v
2
S lwaliZdr <2 Nyl +2 > llwal? < 2 vl +2(ICZEIN? Y llull?
0 0 0 0 0

But observability implies that

aup 1472 _ o z(0)T A¥” A z(0)
1(0)1;0 Do llusll?  zo)zo  z(0)T Mz(0)

where M = M7 > 0. So,

=dy < 00

v v v
ILL2(O)|” < do > llynll® < da D llyll® +d2 Y llulf?
0 0 0

for some d; and dj. This, inserted into (14) proves (i).

Because of the estimations in (14), we see that (ii) is already proved for the case t =T = ».
The proof for general t and T is similar.

To show (iii), note that ¢; can be expressed as a function of ||L4|| and dy, so it is enough
to show that these are bounded under all augmentations (1) — (3). But this follows
straightforwardly from the form of the augmentation. We leave the details for the reader.
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