
LUND UNIVERSITY

PO Box 117
221 00 Lund
+46 46-222 00 00

Remarks and Suggestions Concerning G2 Version 1.1

Årzén, Karl-Erik

1988

Document Version:
Publisher's PDF, also known as Version of record

Link to publication

Citation for published version (APA):
Årzén, K.-E. (1988). Remarks and Suggestions Concerning G2 Version 1.1. (Technical Reports TFRT-7409).
Department of Automatic Control, Lund Institute of Technology (LTH).

Total number of authors:
1

General rights
Unless other specific re-use rights are stated the following general rights apply:
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors
and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the
legal requirements associated with these rights.
 • Users may download and print one copy of any publication from the public portal for the purpose of private study
or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal

Read more about Creative commons licenses: https://creativecommons.org/licenses/
Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove
access to the work immediately and investigate your claim.

https://portal.research.lu.se/en/publications/dca11efc-08f8-4193-b590-eb0411859b6c


CoDEN: LUTFD2/(TFm-?40e) I L-oT I (leBB)

Remarks and suggestions
concerning G2 version 1.1

Karl-Erik ,Ä..r zén

Department of Automatic Control
Lund Institute of Technology

December 1988



Language

English
Numbc¡ of paget

7
Sccurity clas sifr.cat ío n

Author(s)
K-E. Ärzén

Department of Automatic Control
Lund Institute of Technology
P.O. Box 118

5-221 00 Lund Sweden

ISSN ¿nd key title ISBN

D¿te of Íeeue

December 1988

Document azøc
Technical report

Titlc a¡d
Remarks and suggestions concerning G2 version 1.1,

STU, The Swedish Board for Technical Development
under contract DUP 85-3084P.

S po aæ riag o tgaais¿t ioa

Supcrvisor

CODEN: LUTFD2/(TFRÎ-?409)/1-zl(1e8 d
Docuøcat Numbc¡

Rccípícnt's notes

Supplc-catary b iblío graphíc al iaforrn¡ t jore

Classification system. ìndcx terms (íî

Key wotdls

Abstîact

A summary of the experience that we have had of using G2 from Gensym Corp. as a tool for modelling and
simulation and as an expert system tool for monitoring.

The rcpott may bc o¡dc¡ed fiom the Dcpartmeat of Autoøatíc Coni¡rl or bo¡rovcd tårougå thc tlaivcníty Libra-y 2, Boz 7oro,
5-221 OS Lund, Swcdea, Teler: SS24B [ubbìs tund.



Remarks and _suggestions concerning
G2 version 1.1

Karl-Erik .A.rzén
Department of Automatic Control

Lund Institute of Technology, Box 118, 221 00 Lund, S\ryEDEN

Tlús paper is a summa,ry of the experiences we have had of using version l..t of
G2 from Gensym corp. our overall irnpression of G2 is very good. The way
real-time issues are integrated with the G2 inference engine is very powerful.
Other tlúngs which we specially like are the object orientation, the graphical
development environment, and the structr:¡al editor.

The experience we have of G2 is restricted to the off-line case. We have used
G2 in two types of applications: as a modelling and simulation tool and as an
expert system tool for monitoring. 'We have no experiences of the data server
interface or real-time performance.

The paper is a mixture of minor teclurical issues and more fundarnental arclú-
tectural issues. The work has been supported by STU, the Natiorral Swedish
Board fo¡ Technical Developrnent, under contract no. 85-J084p.

flierarchical models

An important motivation for using knowledge-based systems in operator assis-
tance applications such as monitoring and diagnosis is to reduce the cognitive
overload that operators are exposed to iu modern control rooms. One impor-
tant rneans for structuring large amounts of information is to use hierarchical
abstraction. This is not possible in the current version of G2. Some of the
building blocks for aclúeving it, e.g., subworkspaces, are available but several
tlúngs are rnissing.

A very simple example will illustrate what u¡e mean. Consider two cascaded
PID controllers. Tlús can be seen as a cascade controller that has an internal
structure according to Fig 1-. At a quick glance this nray seem easy to imple-
ment by simply placing the internal PID controllers on the subworkspace of
the cascade controller. This is however not the case.

Objects within objects

In a hierarchical model it is natural to store the internal parts of an object as
attributes. The possibility in version 1.1 to have general objects as attriþute
values seems to make this possible. Indeed it is possible to refer to the internal
objects of an object in the following way, the gain of the outer-loop of
cascade-2. However, a large problem remains.

In a hierarchical model it is necessary for an internal object to also have a¡r
icon representation. That is, the internal object has more than one reference.
In G2 all objects are distinct, even if they have the same name and. are of the
same class. This makes it impossible to have an internal object represented.

I



Figure 1. Hierarchical model of a cascade controller

both as an attribute value in the "super object" and as an icon on the ,,super-

objects" subworkspace.

Hierarchical models is probably not the only case where rnultiple represen-
tations of an object would be desirable. Situations where a single object is
represented with multiple icons on different workspaces (either with the same
icon or with different icons) can be easily thought of.

To aclúeve tlús, G2 must treat all references to objects with the sa¡ne lame
and of the sanre class as references to a single object. Tlús does not easily
coincide with the current possibility to haye more than one narne for an object.
There will also be problems concerning object deletion, object connectio¡.s,
subworkspaces etc.

Another related issue is the treatment of objects with the same name but of
different classes. In G2 these objects are seelì as distinct objects which is
natural. G2 has, however, no means for ¡eferencing the individual objects.
Consider the case with the classes class-l and class-2 which both have an
attribute with the narne foo. Assurne that class-l has an instance named
bar and that class-2 has an instance also named bar. G2 has no way to refer
to the attribute foo in the different instances. The expression the foo of bar
is ambiguous. An straightforwa,rd extension to the G2 grammar would be to
allow the following attribute references.

the <attribute) of [<class>] <object>

Junctions between workspaces

Another issue that must be solved is junctions between differerit workspaces.
In the hierarclúcal cascade controller example both the cascade controller
object and the intemal PID objects must be connected to the surround-
ing objects. What is needed are junctions that allow connections between
workspaces. In Fig. 1, these junctions are indicated as crossed squares.
They behave as ordinary junction blocks with the exception that they allow
conuections between different workspaces.

2



Interworkspace junctions would be very useful also for general structuring
purposes. It is often desirable to split a model betweeu diferent workspaces.

Hierarchical rnodel classes

The filal prerequisite for G2 to have hierarclúcal models is the possibility to
define hierarchical classes. It should be possible to define the cascad.e controller
with its irrternal PID controllers as a class. To do tlús it must be possible to
specify the layout and connections among the internal objects i¡ the class
definition.

Inheritance

G2 only have single inheritance. rn many cases, the class decomposition and
structuring of a problem would be much more natural if nrultiple inheritance
was allowed. The possibility to use "mix-in" classes that only adds a certain
behavior or a certain set of attributes to a class is often useful. I cannot see
any problerns with this. The class precedeuce rules of CLOS or Flavors could
be used to calculate class precedence lists that determine how attributes are
inherited and shadow each other in case of ambiguities.

Simulation

The G2 simulator is based on simulation of individuat va¡iables. The step
length in the integration routine can be set individually for different variables.
Tlús gives a system which is very flexible. It is however also very easy to
get incorrect simulatiou results due to, e.g., bad choices of step length. An
alternative to variable based simulation is to base the simulation on thã system
concept. The diference is most sigrúfica¡rt in the case of systerns of dìfferelce
equations.

Consider the following example. Assume that a discrete PID controller should
be simulated. The controller needs three discrete states: the old value of
the process va,riable, the old value of the integration pa,rt, and the old value
of the derivative part. It is desirable to write the sirnulation equations as
generic equations. The problem with variable based simulation arises when
one consider the sampling tirue of the controller. The sampling tirne is used
in the simulation equations and can have different values for differe¡t PID
controllers in the simulation. Therefore, the sampling time is stored as an
attribute, dt, in the PID objects. However, for the simulation to work the
value of the sampling tirne must be stored in three additiolal places in a
PID object. These places are the Time incrernent for update attribute
.in the simulation subframes of the three discrete state variables. The value
of this attribute is restricted to rlone or (nurnber> second(s). Hence, if
the sampling tirne is changetl the change must be performed il,four differe¡t
places.

A partial solution would be to allow the Time incrernent for update at-
tribute to take a general expression as a value, i.e., the dt of pid-f. An even
better solution would be to view a simulated discrete PID controller object as
a discrete system that has a time increment attribute that is default for all
sinrulated discrete variables inside the system.

3



Connections as abstract relationships

The connection concept of G2 is mostly used to represent physical connections
antong objects. As indicated in the manual, corurections may also represelt
abstract relationships among objects.

According to our opinion the latter is not sufficiently supported in current G2.
One example is the explicit use of the wo¡d connected in the G2 grammar for
referriug to objects that are connected. When using abstract relations tlús
sounds strange and differs frorn the usual uatural english style.

Suppose that an object, x is is related to five other objects through five dif-
ferent relationships. The relationships are represented as different connection
classes with different intersection patterns. Suppose now that that one would
like to refer to the otrject which is related to x with the specific relation
relation-a. The G2 reference to tlús object is as follows.

the object connected to the relation-a connected to x

If stubs were used, things would be simpler. Due to our opinion, stubs are not
natr¡ral for abstract relationships.

Multiple layers

Realistic process models contains various types of connections. Examples are
flow of different materials, flow of energy, etc. .4. single schematic with all ob-
jects and corurections soon gets very complex. A possible way to deal with the
complexity would be to have different layers of corurections. Each corurection
class on the workspace constitutes a layer. A layer can be visil¡le or hidden.
Connections and stubs of a hidden layer are invisible. Objects whose stubs
and connections are lúdden a¡e also invisible. The workspace menu has means
for hiding and showing the diferent layers. \{ith all layers visible, the total
process schernatic is shown. The user can concentrate on different functions
of the process by lúding irrelevant connection layers.

Procedures

Eagerly awaited.

Dynamic objects

The possibility to create and delete objects from the inference e¡gi¡e would
be very useful.

Demonstration knowledge bases

It is very useful that G2 is followed by a set of demonstration knowledge l¡ases.
There seems' however, to l¡e a certain time lag before the new features of G2
are used in the demonstratiorrs. It would be useful to have new dernonstrations
that, e.g., give examples on how to use the new operator controls.

4



ff!$!!!@E¡ lhe opærû'prærsælä¡tic

cc-?

V¡¿',,8.:

TAtl(-2

F.[t-r
F.SOLFCE.T

F-StN¡:!

S{-1

s{c-3
t T

1

S+r

SVAVE.T

s-Prr¡P-r

TI

A úü¡¡li¡ of ü€ pLú

Figure 2. G2 simulation organization.

'What is most disturbing with the demonstrations, however, is their orgarú-
zation. A good exanple of this is the va¡lve-and-tank knowledge base. Here,
quantitative sirnulation arrd rule-based monitoring are mixed in very confus-
ing way. Sensors with simulation formulas are used to provide values for the
nunrerical simulation of flows and levels. In the same tirne, ruLes are used to
compute qualitative values for the same variables a¡rd to inforrn the operator
when the qualitative value are not uormal. \ilhat causes confusion is that ¡u-
merical, simulated process variables and qualitative values, calculated by the
monitoring rules, are stored in the same objects. The underlying problem is
what the process equipment icons on the process schematic really represent.
In this demonstration, the icons both represent the operators and monitoring
systems view of the process component and the actual, physical components
(in terms of their simulated behavior). In our opinion it is better to sepa-
rate the numerical simulation and the monitoring into different objects. The
organization is shown in Fig. 2.

A separate workspace is used for the nurnerical sirnulation. The objects con-
tain the process variables and has associated generic simulation equations.
The objects on the process schematic contains the numerical process variables
that are measured through sensors and the qualitative abstractions of these
values derived through monitoring rules. The sensors are used to connect the
simulation workspace and the process schematic. With this organization the
difference between runrúng against a simulation and against a real, physical
process through data servers is very small.

History expressions '
The history expressions in G2 are airned. only at quantitative variables. lhe
only history expression that is relevant for symbolical and logical variables are
the value of (variable) as of <tinre variable> ago. It is easy to think
ofother types ofhistory expression for non-quantitative variables that would
be very useful. Some examples a¡e: "the nunrber of times the status va¡iable
has been high during the last 30 minutes", "the percentage of time the status

5



variable has been high during the last 30 minutes", ,,the time when status
variable received its cu¡rent value', etc.

Graphs

The restriction that the Expression to display attribute must be the name
of a variable and not a general expression is distubing. As long as the ref-
erenced variable has a stored history it should not make any difference. The
requirement that a displayed variable should have a stored variable should
also be possible to relax. Consider the case when a displayed variable gets
its values f¡om another varial¡le which has a stored history. In the current
system, the displayed variable is required to also store a history.

Another issue is the way graphs a¡e drawn. In the current system the graphs
are drawn in exclusive-or mode. If two variables with the san:.e values are
shown in the same graph the two variables overwrite each other and. nole of
thern a¡e shown. The situation is cornmon. One exarnple is the when both
the infow and the outflow of a process component are shown during steady
state operation. Another example is the set-point and the process variable of
a PI controller during steady state operation.

The meaning of the Show sirnulated values attribute is not exactly the
sarle as in the other types of displays. If a simulated variable is shown in a
graph it may well be that the Show sirnulated values attribute should have
the value no as long as the lústory is stored in the variable frame arrd ¡ot i1
the simulation subframe.

Operator controls

Action buttons

It would be rúce if action buttons were treated as general objects in the sense
that the user may specialize them. One inrmediate need is to be able to define
the action button icon in the same îyay as other icons are defined. In many
caÍ¡es we have found it useful to place several smaller action buttons on top
of an ordina'ry object icon. This is difñcult to do with fixed, one-size butto¡
icons.

Multiple action buttons where the choice between different actions is done
with a pop-up meny would also be nice. In som^e cases it may also be useful
to be able to enter text input from the keyboard.

Sliders

It is difficult to use sliders to chánge values in a simulation. One example
could be to change regulator parameters in a sirnulated contrciller. A¡otirer
could be to change set points and operating points in the sirnulation. In order
to change a numerical parameter in a simulation, the parameter nrust be a
qttantitative variable. Since the G2 sinrulator expects sinrulation forlnlas to
depend only on other simulated values or time states, the data server of the
parameter must be G2 simulator. The only way the infereuce engine can
cha,nge the value of a simulated va¡iable is through an explicit set action.

6



Due to this, the only way we have found to solve the problem is to let the
slider affect a quantitative dummy va¡iable whic-h has the inference engine as
data server. A whenever rule is associated with the dummy variable. This
rule executes an explicit set action on the simulated parameter whenever the
dummy variable receives a new value. In order for this to work the simulation
formula of the pa,rameter looks like state r¡ariable: d/dt - o, with initial
value ttthe default numbertt. Even though it works, it is not a converúent
solution.

7


