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ABSTRACT.

In this report a production planning problem for a paper
factory is discussed. The main difficulty is due to an
integer valued criterion, namely the number of produc-
tion rate changes, that should be minimized. Some pos-
sible ways of solving the problem are considered. A me-
thod based on non-~linear function optimization has been
developed and successfully used on a couple of test
examples. Finally, a reduced problem is presented, which

contains the main difficulties.
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1. INTRODUCTION.

In this report a problem of production planning for a
paper factory is discussed. B. Pettersson [1] has pre-
viously treated the same problem, and it is assumed that

the reader of this report has also access to [11].

A paper mill consists of a network of processing units.
An example of this is the Gruvén mill, a model of which

is shown in Fig. 2.1 on page 4 in [11].

If the rate of producing paper is determined in advance,
then the production rate of the processing units must be
set so that the storage tanks are not overfilled or emp-
tied. Some processes consume steam, others produce it,

and also some extra steam can be produced. Total produc-

tion and consumption of steam must be equal.

The problem now is to determine the production rates

over a specified planning period so that all restrictions
are fulfilled and certain criterias are optimized. The
main difficulty is one of the criterias, namely that the
number of production rate changes should be as small as

possible.

Sometimes it is known in advance that during a certain
time some process must be shut down for some reason.
Then if this process is steam-producing we would like
to store steam before the stop to use during the inter-
rupt, but this is impossible. However, we can do it in-
directly for instance by specifying suitably chosen

tank levels at the end of the preceding planning period.

In [1] this problem is studied for a paper mill with 3
paper machines, 9 processing units and 10 storage tanks.

The model used in [1] has been taken as a starting point




in this report, and a method to get a (frequently non-

optimal) solution is presented.

The purpose of this report is to discuss alternative so-

lutions.

In Ch. 2 the problem is stated and in Ch. 3 an immediate
result on the solutions is proved. Some different ideas
for solving the problem are discussed in Ch. 4, and in
Ch. 5 a method is described, followed by a couple of
test examples in Ch. 6. During the work some new inte-
resting questions have arisen and are discussed in Ch. 7.
The problem is finally reduced in Ch. 8, but still it is
difficult.




2. STATEMENT O THE PROBLEM.

Notations:

x(t) vector of storage tank levels

u(t) vector of production rates for processing units
v(t) vector of paper production rates

S(t) extra steam production

T length of the planning period

With these notations the model for a paper mill as taken

from [1] 1is

dx(t)

= Bu(t) + Cv(t) x(0) given

dt

S(t) = Du(t) + Ev(t)

min max .
U3 Suj(t)suj J =1, «vch n
min ma .
X < xi(t) € Xy . i=1, ..., n
sMin o gpy ¢ gMex

v(t) given for 0 < t ¢ T

B,C,D and E are matrices of appropriate dimensions, and

n is the number of tanks.

Problem: Find a stepwise constant u(t), 0 ¢ t ¢ T ful-

<

filling the above restrictions such that

a) there are as few changes in production rate as

possible (where two components of u changing si-

(%)




multaneocusly are counted as two changes),

b) it is possible to store steam indirectly,

c) final tank levels x(T) are acceptable.

Remarks:

0 In this report the functions v(t) are step-wise

constant just as in [1]. Of course, this restric-
tion is not necessary for the problem to be rele-
vant, but makes it easier to solve (and is true

in the paper machine application).

0 There is no dependance of x in the right member
of (#*). According to [1] this is correct enough
for a paper mill. Inclusion of a term Ax in the
right member would make the problem more diffi-
cult but still sensible.

0 The model in [1] is not controllable because
there are 10 tanks but only 9 processes. However,
for a real mill it should be possible to cut
down the number of equations (= number of tanks)
so that it is, since this only means that the con-
tents of the extra tanks are determined by the

contents of the other tanks.

0 Both in [1] and here the objectives b) and c¢) are
taken care of by specifying the final state x(T).
This may be difficult to do, as the value of x(T)
might influence the minimum number of changes in

u (see further Ch. 7).




3. AN IMMEDIATLE CONCLUSION.

I+ is easy to get an upper bound on the number of changes.
To see this assume that v(t) is constant in the interval

(0,T) and x(T) is reached by applying u'(t) that changes

at times Tys eens T 4o Put ty = 0, t, = T and u'(t) = uy
for tj__1 <t < tj, 3 =1, ..., n. x(T) is then also reached
by

n
WO = TG -t us

and this constant u is an allowed one because

i) x(t) will stay within its bounds since x(0) and
x(T) are allowed and x(t) for 0 < t ¢ T is in bet-

ween as we apply a constant u.

ii) u"(t) is within the boundaries since it is by
construction smaller than the biggest uj and big-
ger than the smallest one, and these two are al-

lowed.

iii) Let S" = Du" + Ev and Sj = Duj + Ev. Then we have

sz 1 Ii (t: = t. .)S.
T 52 3 3-177]

and analogously to ii) S" is allowed.

This shows that a constant u is sufficient as long as

v(t) is constant. Now suppose that v(t) changes at times
t1, ey tk’ and x(T) is reached by some u. Then this u
will give certain X(tq), x(tz), cees x(tk) that all are

allowed. But we have already shown that a constant u




suffices in each of these intervals and hence the mini-
mal number of changes is less than N x (number of changes

in v(t)) where N is the number of u:s.

Remark: If we want to minimize the number of changes in
u it is generally not enough to change u when v changes

(see Ch. 8).




4., SOME POSSIBLE METHODS.

We can classify the problem as an optimization problem
with a number of restrictions of which some are nonli-
near. The major difficulty is that we want to minimize
the number of changes in u. The restriction on the steam
production, S, is also rather difficult to handle, since
it acts as a time-varying restriction on u, that changes
when v(t) does. Moreover, this restriction seems to be
active in many cases (see e.g. the planning examples on

page 65 in [1]).

Sometimes a feasible way of solving optimization prob-
lems is to look for candidates, satisfying some neces-
sary conditions for optimum. But such conditions are ve-
ry hard to find in this case. Also the solutions are
mostly not unique (see e.g. Fig. 7.7 on page 50 in [1]1),
but there is a whole set of u:s giving the same number
of production rate changes. It is easily realized, that
the set of feasible u:s making steps at the same time

is always convex.

4.1. Simulation.

Simulation is a useful tool to get insight into the be-
haviour of the model, but will not solve the problem

for an arbitrary initial state since it is very time-
consuming and there is no way of knowing when a solution

is optimal.




4.2, Linear Programming.

The problem seems linear, but how choose the objective
function? In [1] two different objective functions have

been tested:

a the sum of magnitudes of changes in u,
b) deviation from the desired final state.

As expected, in the first case many of the tanks were
left completely empty or filled up and in the second
case there were a lot of changes in u. A natural thing
to do would be to minimize the sum of magnitudes under
the restriction that x(T) should be as desired, but

this has not been tried because

i) The method does not minimize the number of changes
in u, and there is a big risk that the resulting

u will have a lot of small changes.

ii) In [1] only a few fixed times t have been allowed
for changes in u. It would be nice to be able to
regard these times as variables. This introduces,
however, a nonlinearity of the form u x t when cal-

culating the x:s.

iii) The number of variables and restrictions is rather

big, which makes the execution time long.




4.3, Minimizing a Performance Functional.

This method is used in [1]1, where some different possible
loss functionals are considered. Unfortunately no one is

really minimizing the number of changes in u.

A way out could be to find a connected problem, possible

to solve, whose solution would alsoc be the solution to

the original problem. The number of changes in u could

for instance be approximated by some real number. It seems,

however, difficult to find such a connected problem.

4.4. Dynamic Programming.

As a first attempt we put

N(x,t) = the minimal number of changes in u to drive the
system from state x at time t to the desired fi-
nal state at time T.

Then we have

N(x,t) = min|number of u~changes in the interval (t,t+at) +
u

+ N(x(t+at),t+at)
Problem: Are changes at time t included in N(x,t) or not?
i) If they are we must know u(t=) to see if there
is a change at time t, so N(x,t) should actually

be N(x,u,t).

I1) If they are not we must remember the u:s belong-

ing to (X(t+At),t+At). Very often there are a lot
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of u:s that are equally good, and all these u:s
must be remembered as we go backwards in time.

This does not seem to be a possible method.

There 1is also the storage problem. 9 tanks, with only 3
levels, give 39 >~ 20,000 combinations, each with a lot of

good 9-dimensional u:s.
Another problem is the choosing of times t and At for

the Dynamic Programming. At this point Dynamic Program-

ming was abandoned.

4.5. Splines.

The problem can also be regarded as a problem of function
approximation. To see this it is instructive to split up
the x into two parts, xy and x,. For a one-dimensional

case we have

ax = bu + cv

dt

where we put x = Xy = %, with
dx1 dx2

—— = bu and —_—z = CV
dt dt

Since v is known in advance xz(t) can be drawn in a diag-
ram versus time, where for simplicity XZ(O) is set to ze-
ro. Now x,(0) is determined by x(0) and the problem can

be written:

Find a stepwise constant admissible u with as

few changes as possible so that X, approximates

Xo well enough,




1.

A u is admissible if both S and u are within their res-
pective boundaries at all times. Since x is the diffe-

rence between X, and Xo the approximation is good enough

if X, never differs from Xo by more than a certain amount,
equal to the boundary on x. This means that Xy must stay
in the tunnel formed by the dotted lines of Fig. 1.

Fig. 1.

Here the boundaries on x have been set to |x| g K, and
no restrictions have been made on u or S. Now the prob-
lem could be formulated as approximating a given spline
of degree 1 well enough by another spline of degree 1

with as few knots as possible. (Note that the endpoints

of x, are fixed.)

Unfortunately, the theory for this is not quite developed.
Moreover, the situation is complicated by the restric-

tions on u and S, i.e. restrictions on the slopes of the
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splines. Also, when x is ten-dimensional there will be
ten curves to approximate, and the different X =curves
will be linked together by the matrix B.

This way of looking at the problem does not solve it,

but gives the idea to the method proposed in Ch. 5.

It might be good to split up the problem and first calcu-
late the minimal number of changes, then which u:s should
change and finally the times for change and the resulting
u-values. But no way has been found to do this except

trying, which is utilized in the method described in the

next chapter.
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5. A FUNCTION MINIMIZATION METHOD.

The minimization of the number of changes in u is done
by sequentially searching solutions with 0,1,2,... chan-
ges. Each search is done by minimizing a function f(u19

Ugs »v»5 U t1, tz, e tz) that punishes every limit

Q/’
exceeded. When this function becomes zero we have found

an admissible solution.

The arguments in f are tq, ey tz, the times for chan-
ges in u and Uqs oovs ug, the new values of the compo-
nents changed. In f is also included a quadratic punish-

ment on the t:s falling outside the interval (0,T).

Since there is no dependance on x in the right member
of (%) we know that if x, u and S are within the limits
at the times where u or v makes a step, then they will
always be. For these times we just calculate the x and
if some component of x or u are out of limits a punish-
ment 1s added to f(uq, cees U Tys oves tz), proportio-
nal to the square of the exceeding amount. For S the pu-
nishment is also multiplied by the square of the dura-
tion of the excession (in order to make f smoother near

the minimum point).

The great advantage with this loss function is that it
is zeroc for an admissible solution, which means that
these are easily recognized. There are, however, some
problems. First of all, for every minimization of f we
have to decide in advance which components of u that are
going to change. Since this is generally not known the
best thing would be to try all combinations of changes.
But distributing for instance 4 changes to 9 u:s gives
495 possibilities, so it is necessary to reduce the num-
ber of minimizations. Here this is done in the following
way. If there is no admissible solution with zero or one

change, then one change is fixed to the u=-component gi=-




Th.

ving the smallest loss function. (Time and magnitude of
the change is still free.) A second change is now tried
on one u-component after the other, and if still no ad-
missible solution is found we fix the second change on
the same grounds as the first one and go on. This method
will probably not give the minimum number of changes in
general, but has given a solution to some test examples.
It is possible that another loss function, e.g. the maxi-
mal time before some limit is exceeded, is better, but
this has not been tested. It would, of course, be nice,
but seems difficult, to prove either that the method

does give the minimum number of changes or the contrary.

Another problem is the possible existence of more than
one local minimum point for f. In such a case the nume-
rical minimization could arrive at a local minimum point
instead of the global one, and this might destroy the
method. If f is such, again another f could possibly be
better.

For further details about the loss function see the Ap-

pendix, where the FORTRAN programs needed are also given.
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6. TEST EXAMPLES.

Example 1: The first example is a two-dimensional one.

Using the notations of (*) we have with T = &
1 § -1
B = C = D= [1 -21 E = [2]
1 -1 0
0.5 0.5
x(0) = x(5) =
0.5 0.5
0.5 ¢ Uy g 1 0.2 < u, < 1
0 ¢« S g 2
0 < Xq € 1 0 < Xy € 1
0.9 0 <t < 2
V(it) = 0 2 ¢t < 3
0.9 3¢t <5

This problem has also been solved in [1] (page 37), but

since Xg = 1 - X, there, Xq has not been included here.

The first change was fixed to u, since the loss function
was 0.0595 for Uy and 0.0172 for Uy - A second change on

U, then solved the problem just as in [1], where it is

also shown that 2 is the minimum number of changes.

The solutions obtained with the final method of [1] (Fig.
7.4) and with the method of Ch. 5 in this report are
shown in Fig. 2 and Fig. 3. The difference is that in
the latter case u, does not change the second time until
t = 3,13, which makes X, 80 further to the limit. However,

this change can be moved to t = 3,




16.

Example 2: The second problem is nearly identical to

"planning example 1" in [1]. We have

T = 48, xi(O) = xi(48) = 50% for i=1, ..., 9

In [1] there are 10 tanks x, but only 9 processes u, SO

it is not possible to control all final tank levels.

(48) is not reached in [1}]1, and therefore X, is not

*10 0

at all taken into account here.

To this problem was found a solution with only one change,
placed on U, at time 23.36 (can be moved to 24.00), while

in [1] there are two changes on Uy at times 24 and 32.

These two solutions are shown in Fig. 4 and Fig. 5. To
get only one change we have to utilize especially the ca-
pacity of X harder. X S and, of course, u, are also

changed.

The two other planning examples in [1] have not been
solved since they are not solvable with the given spe-

cifications on x(48).
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Fig. 2 - Solution to Example 1 as given on page 47 in [1].
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V A
1_
PLANNED
PAPER
PRODUCTION
0 I >
0 5 h
U1 A U2 A
H—-——— — — - I — — ==
PRODUCTION
OF PROCESS | __ _
UNITS
0 — 0 —
0 5 h 0 5 h
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o —
STEAM 1
PRODUCTION
0 —>
0 5 h
X1 ? X2 A
-4 - — H———— — — —
TANK LEVELS ________d////h\\\\\\\\
O T 4’ 0 T 4’
0 5 h 0 5 h

Fig. 3 - Solution to Example 1 using the method of Ch. 5§

in this report.



A. PLANNED PAPCR PRODUCTION
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B. PRODUCTION OF PROCESS UNITS

1/h Yy COMNT. DIGESTER  tih uy, SCREENS mYn ug CausT PLANT
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N
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0 'i""""" o Em e el
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7 "« BLEACH TANKS

...~ °,
‘l.
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Fig. 4 - The solution obtained in [1] to Example 2. This

Geal/lh S BARK BURM BOILER
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figure is identical to Fig. 9.1 on page 67 in [1].
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A. PLANNED PAPER PRODUCTION
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B. PRODUCTION OF PROCESS UNITS
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Uh Uy BATCH DIGESTER

t/h . r'y

3 NSSC DIGESTER S
0 r —>
C. LEVELS OF BUFFER TANKS
L %, BLEACH TANKS

*h
. %8s WHITE UO. TANKS

100

"2 NSSC TOWER "8 CcoOK. LiQ TANK

100

Fig. 5 - A solution to Example 2 obtained by the method of Ch. 5.
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7. SOME FURTHER PRACTICAL ASPECTS.

If it is necessary to get some solution to a problem
which is unsolvable because of the specifications on
x(T), then we must have a systematic method for changing
x(T). Otherwise there is no guarantee at all that the
new x(T) will lead to a solvable problem. In fact, an
interesting question is: What x(T) can be reached? A
partial answer is that the reachable x(T):s form a con-
vex set. This can be seen in the following way. Assume
that x' and x" are both reachable and the corresponding
u:s are u' and u". Then Ax' + (1-1)x" is reached by
applying xu' + (1-2)u". That this u and all intermediate

x:s are allowed is easily checked.

Also it seems very probable that in many cases the mini-
mum number of changes in u is very strongly dependant on
the x(T) specified. If then the exact value of x(T) is

not so important it would be better not to specify it as

a fixed vector of numbers.

In practice T is about 48 hours for the paper mill at
Billerud. Then the planning has to be re-done every se-
cond day. This means that every second day, when a new
planning period starts, all the u:s are changed. An in-
teresting problem would be to try minimizing some total

number of u-changes.

Sometimes the paper machine stops by e.g. a paper break.
It is desirable to include also these unplanned stops in

the model, for instance by some statistical method.
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8. A SIMPLE PROBLEM.
The essential difficulty in counting the number of u-

changes is still left if the problem is reduced into a

one-dimensional one. Consider the following

Problem formulation.

dx
dt

A
>

N
S
~
~

= u + v -

x(0), x(1) and v(t) for 0 < t ¢ 1 given, where v is step-

N

wise constant.

Determine a u(t) for 0 ¢ t < 1, stepwise constant with

BN

as few steps as possible, that satisfies (x#).

As there are no limitations on u all x(1) that are al-

lowed will also be possible to reach.

Two difficulties from the multi-dimensional case have
disappeared here. First of all, there is no question now
of which u~-component that should change. Secondly the
restriction on S has been taken away. (Since S contains

the v:s it acts as a time-varying restriction on u.)
There are at least two ways of looking at this problem

geometrically, the first one being the separation of x

into two parts described in Section 4.5 about splines.

Example: Let

T =7, x(0) = x(7)

1
(an)
-
t
—
IN
ke
~
ot
~
N
N
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A

= w O w O
(@3]

(@3] F N = O
N

+ & F o+
A

~1 O EN

v(t) = «

A

A

The resulting curves for x, and x, are shown in Fig. 6.
The x,-=curve shown is the only possible one with one

change in u, so in this example u should not change

when v does and not when x hits a limit.

The second way to look at the problem geometrically is
to calculate the constant u needed to bring x from x(0)
to x(T), then apply this u and look at the curve for
x(t). A change at time t, then means a change of the
slope, so that x(0) and x(T) are not changed, x(tq) gets
the biggest change and x(t) will change proportionally
to ti:s distance from0 (T) if t < t, (t > tj). The x-
curve for no changes is shown in Fig. 7 for the previous

example.
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1217

417 l 8/7

The dotted lines are the limits for x. One change should
be applied at the arrow and should decrease that point
by 12/7. Then the corners will decrease by the amounts

written above, and they will all touch the limits.

In Ch. 3 was shown that the minimal number of changes 1is
less than the number of changes in v (when we have only
one u). We can also get a lower bound. Start from + = 0.
When Xx(t) crosses the boundary for the first time it
means that we must have at least one change in u. Each
time x(t) then goes through all of the allowed area and
crosses the other boundary the least number of changes
will be increased by one. For the example in this chap-

ter we have
1 ¢ min. number of changes < 4
It is probably necessary to find a good method for solving

the reduced problem described in this chapter before the

real problem can be solved.
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APPENDIX

To carry out the minimizations of Ch. 5 we use a set of
FORTRAN programs described below. In the head program,
JANS, the subroutine INLAS is called first. INLAS reads
all data needed about the system into two common areas,
and prints it again. Then a subroutine DECOM is called
(see below) and some necessary parameters for the subrou-
tine POWEL are set. POWEL performs the minimization and
then the result is reorganized and put into the subrou-
tine BIINT, that integrates the system and presents all

interesting data about the solution.

POWEL uses the subroutine FUNC to calculate function
values during the minimization. First FUNC takes the
vector NOD from the common area. This vector describes
what components of u should change. By calling the sub-
routine SRT the changes are sorted in time-order (to
simplify the other programs). Then the subroutine SUBI
is called, and calculates the initial u:s needed to

drive the system from the given x(0) to x(T).

Now the system is integrated by the function F. F is re-
turned containing quadratic punishments on all Xx:s ex-
ceeding the limits. The function BIVIL calculates the
punishments on S and u, and the loss function is set to
F+CSTR*¥BIVIL. In the test examples of this report CSTR
has been set equal to one. Finally a very heavy punish-
ment is added on the t:s falling outside the interval
(107 7=7,T).

In order to calculate the initial u:s in SUB1 an equation
system has to be solved. To do this we use the subrou-
tines DECOM and SOLVB. In DECOM a decomposition of the
coefficient matrix is performed. This has to be done on-
ly once, so DECOM is called from the head program in or-

der to save computing time.

.




All the programs are listed below starting with the head
program except DECOM, SOLVB and POWEL which belong to

the program library of the Division of Automatic Control.




[ I S GO I O I b B I G I I B G B B I G

sl e

[

2

25

3

4.0

00

0

00

10

20

THIS PROGRAM READS EVERYTHING IN COMMON (SEE SUB1) AND COMMON/BIVI/Z (SEE
BIVIL) ANp STARTING VALUES OF X (U AND CORRESPONDING T) o IT MINIMIZES
FUNCIMReX¢F) WITH POWEL AND PRINTS OUT MINIMUM F=VALUE, THE RESULTING U:S
AND WHEN THEY CHANGE.

REMARKS NOM AND NY MUST NOT BE ZFRO

NTV MUXT NOT BE ZERO OR ONE
NNU MUST BE SET TO THE DECLARED DIMENSION OF B8

SUBROUTINES REQUIRED GECOM
: POWEL
SRT
SUB1
FUNC
INLAS
BIINT
{soLvel
{F3

(BIVIL)

COMMON NgMe TSLUTPB(L0,10)oCl10,20) eV (10010} o TVCI0) P NVINTVeNsXT(10)
BoX0(10) o XpaXe CSTReNOD (101 o XTBEG(10) ¢ XBEG(LO) o NUU
COMMON /BIVI/ DOX0)sE(LO) pUMINCLO) »UMAX (10) ¢ SMAX s SMIN
DIMENSION (2030 X(20)U(20)eNO{LO) e T(10)

EXTERNAL FUNC-

NNU=10

EPS=21.E=07

cal.l INLAG

MR=Z2%NOM/

READ 200, (A(1)eI=1sMR)

FORMAT(BE16.8)

Cabl DECOM(BeUUsNNUPEPSe ISING)

IF (ISING)Y Helse6

PRINT 250, 15ING

FORMAT(LOY e "DECOM GIVES ISINGz=®eI2)
co To ad

Do 5 I=SLewR

G(I{) = l.,g=-04

ESCALE = 500000,

TINOMA1L ) 2Ts5LUT

IPRINT = 3

MAXIT = 100

ICON = 1

Cabl. POWEL(XoGeMRoFIESCALE e IPRINTsICON s MAXITeFUNC)

PRINT 300,
FORMAT(/L0Xe YFUNCTION VALUE'eE1l6.8)
00 10 I1=1.40M
UId=x(I)
TOIY =X CE4u0M)
NOCLY=NOD (1)

Cabh SRT(UNOe T NOM)
00 20 I=1,N0M
KeNOM=1+41

U{KENUU) UKD

Cabl SUBL(UsNOT)
Cabh BIIRNT(UeNOT)
CONTINUE

STOF

EMD




C G (‘)("‘a(‘(".>(“.r(-r-ﬁﬂ(@(’.‘(‘rﬁﬁ(":(‘ﬁr

300

10

20

40

THIS PROGRAM READS EVER

YTHING IN COMMON (SEE SUB1) AN

BIVIL) AND STARTING VALUES OF X (U AND CORRESPONDING
FUNC (MR?X¢F) WITH POWEL AND PRINTS OUT MINIMUM F=VALU

AND WHEN THEY CHANGE e

REMARKS NOM AND NV

MUST NOT BE ZERO

NTV MUXT NOT BE ZERO OR ONE
NNU MUST BE SET TO THE DECLARED DIMENSION

SURROUTINES REQUIRED

COMMON NG TSLUTPB (1001
BvXO(lO)'XMAXrCSTRvNOD(l
COMMON /BIVI/ D(10)rE(L

pECOM
POWEL
SRT
SuBl
FUNC
INLAS
BIINT
(soLvae)
(F)

(BIVIL)

O)vC(lOvIO)vV(lo'lo)aTV(lO)rNV
0)vXTBEG(IO)vXBEG(lO)vNUU
0)oUMIH(lﬂ)'UMAX(lO)vSMAX;SMIN

DIMENSION u(20).X(zo).utzo)vNo(lo)oT(lo)

EXTERNAL FUNC

NNU=10

EPS=1.E=07

call INLAS

MR=2%NOM

READ 200 (X(I) ¢ I=1sMR)
FORMAT(5£10.8)

cakl DECOM(BvNUUvNNUoEPSpISING)

IF (ISING) Heleo
PRINT 250, 1SING

FORMAT (1uX» *DECOM GIVES ISING=*¢I2)

6o To 40

Do 5 I=L.MR
G6(I1) = lop=04
ESCALE = 5000000
T(NOM+1)=T5LUT

IPRINT = 3
MAXIT = 100
ICON = 1

call POWEL(XonMRvaESCALE'IPRINT'ICONOMAXIT'FUNC)

PRINT 300,F

FORMAT (/10K *FUNCTION VALUE'¢rEL16.8)

DO 10 I=1.,nNOM
puerl=xeIn)
T(1)=X(I+NOM)
NO(I)=NOD (1)

calk SRY (UeNO o ToNOM)
Do 20 I=1,nNOM
K=NOM=I+i

U (KAENUU) =U(K)

CALL SUBL(UsNO»T)
CaLL BIINT(UeNOeT)
CONTINUE

STOP

END

D COMMON/BIVI/ (SEE
T) o IT MINIMIZES
e THE RESULTING U:S

OF B

sNTVeNeXT(10)



1% SUBROUTINE INLAS

2% C

S L

e < THIS ROUTINE READS ALL VARIABLES IN BLANK COMMON AND IN COMMON

5% C J5IVI/Z AND PRINTS THEM (SEE 5UB1 AnD BIVIL )

B ¢

7% C NGO SUBOUTINES REQUIRED

g% .

G COMMON NQ?&?S@UT?H(lG@l@)9C(lﬁﬁlﬂ)@V(1891@)0TV(19)ﬁNVeNTU@N?XT(lG)
LU* ﬁwxoiia)exﬁaxeigfﬁewanelﬁ)QXTaﬁaéins@%ﬁgéila)wwuu
LL¥ COMMON ZBTvI/ DC(L0)oE(L0) pUMINCLOY dUMAX (10D » SHAX,SMIN
2% READ !

15% READ

1% READ 1LC

1h% READ 1 B

ie#* READ 1000 OM

17% po 1 I=len

18% i READ 2000 (3(IeJ)rdzleNUL)
19% Do 2 I=1en

2% 2 READ QDOE{giied)ﬁgzieNV)
i READ 200 (1) I=1oNUU)
A READ BGUe(g(I)aixlvNV)

2 5% READ 200 (AO(I) e I=1eN)
gk READ 2009 (AT(I)eI=lolN)
Lo READ 2069(§V€1)ﬁ1ﬂieMTV)
b 00 3 1T1.nNV

2T * 3 READ a@ﬂ?(q(ivg)@Q:leMTV)
eb% READ LGBeQNGD(ibeixleO%)
2ox rReAD 200, T5LUT

S0% READ 200 ¥iAX

SL% READ 2008 aMAX

Sew READ 200egMlIN

B5% READ 2009c5TR

Bl READ 200 (UMIN(I) e I=1eNUU)
50% READ 2009 (UMAX (L) 121 NUU)
Ak REAL 200, (KREG(IY e I=1eN)
ST* READ 2006 (ATREG(I) o I=1,N)
GE* 100 FORMAT(LUIS)

9% 200 FORMAT(SEiceB)

G po 20 I=1sN

4i% SL=XBEG{LY

ek Do 10 J=i,nUU

i 5% 10 B(lvd)z§§19Q)/§L*lQQe

Ll no 20 JELeny

5% 20 ClIoJ)=C(Ted)/75L%100.

ek no 25 I=1eNUY

7 g zbUMax (L)

LG &% Do 30 JElen

4G 30 B(JrI)=B(Je 1) #SL/L00,

SIES DUIY=D(T) +5L/SMAX

Sl% 25 uml%ii)ﬁwﬁiﬂ(l)/gp*lﬂﬁg
52% Do 35 121NV

3% 35 E(IVSELL) /7oMAX®100.



1%
2%
3%
L
H%
o¥X
7%
Bk
g%

10%

11%

lex

15%

lyx*

10%

lo%

17%

18%*

19%

20%

£1%

caw

5%

2h%

25H%
co¥*

27%

2B*

29%

SU*

31 %

Sex

S3%

Bk

Sox

So*

37 %

3%

39%

4 0%
W1k
box
4 3%
e
4 5%
H6*
47%
4 8%
49%
50%
5%
52%
H3%

oo

100
200

10

0

30
25

35

SUBROUTINE INLAS

THIS

/BIVI/ AND PRINTS THEM

ROUTINE READS ALL VARIABLES IN BLANK COMMON AND IN COMMON

NO SUBOUTINES REQUIRED

COMMON NOMy TSLUTB(
BoXO(lO)'XMAXvCSTRvN
COMMON /pIvl/ p(10)

READ
READ
READ
READ
READ
po 1
READ
po 2
READ
READ
READ
READ
READ
READ
DO

READ
READ
READ
READ
READ
READ
READ
READ
READ
READ
READ

1000
1096 pUU
100 MV
100eMTV
100e UM
I=lenn
ZUUv(B(IoJ)Pd=1'NUU)
I=1,N
200, (C(Tsd)rJd=1sNV)
200, (ulI)9sI=1,NUU)
200, (E(I) e IZ1oNV)
2000 (K0(I) e I=1eN)
2000 (XT(I)eI=1eN)
ZOOD(TV(I)'IZIvNTV)

3 I=leiNV

200v(J(IVd)'J:1'NTV)
100, (WOD(I) » I=19NOM)
200, TSLUT

2009 XMAX

200, SMAX

200p5MIN

200e¢c5TR
ZOOP(UMIN(I)IIZIrNUU)
ZUOV(UMAX(I)rlzlvNUU)
200 (XBEG(I) 2 I=1sN)
200, (XKTREG(I) o I=1oN)

FORMAT(l015)
FORMAT(5E16.8)

DO 20 I=1,N
SL=XBEG(I)

D0 10 J=1,nUU
B(Ivd)=B(I'd)/SL*100.
DO 20 J=1,nV
C(I?J)=C(TsJ)/SL*1000

DO 25

I=1 s NUU

sL=UMAX (1)

DO 30 J=1,0
B(J?I)=B(JrI)%SL/100.
D(I)=D(I)%SL/SMAX
UMIN(I)=UMIN(I)/SL*100.
DO 35 I=1NV

E(I)=E(I) /5MAX*100.

(SEE SUB1 ANnD BIVIL )

10:10)0C(10v10)vV(lO'lO)nTV(lO)vNVrNTVoNvXT(
OD(lO)vXTBEG(lO)'XBEG(lﬂ)vNUU
oE(lO)oUMIN(lo)vUMAX(lo)vSMAXoSMIN

10)




Stk SMIN=SMIN/SMAX#100.

55% PRINT 500, i NUUeNVeNTV yNOM

BH¥k 500 FORMAT(IR1¢36Xe "SYSTEM PARAMETERS®///1%Xe "NUMBER OF X:5%eBXe?UL5%e
57 BEYr 'ViSTp2Ae PCHANGES IN V CHANGES IN Ue/3%r5111)
58% PRINT 501

5% 501 FORMAT(//36Xe 'B=MATRIX/)

6EO* DO 51 ISl

61¥ 51 PRINT 200, (B(IedJ)ed=1sNUU)

Gk PRINT 502

6©5% 502 FORMAT(// 36X *C=MATRIX®/)

L DO 92 I=Llei

6E* 52 PRINT 200, (C(Ied)pJ=leNV)

66% PRINT 503

6T* 503  FORMAT(//36Xe tD=MATRIX®/)

GiF PRINT 200, (D(I}eI=loNUU)

H9* PRINT 504

70 Lol FORMAT (//%6Xe PE-MATRIXY/)

Ti* PRINT 200, (E(I)eI=1sNV)

e PRINT 506

7 5% 506 FORMAT(//36Xs tSTART VALUEY/)

Tk PRIMT 200, (X0(I)eI=1oN)

T5% PRINT 507

Tex 507 FORMAT(//730Xe tFINAL VaLUEY /)

L PRINT 200, (XT(I)eI=leN)

78 PRINT 508

79% 508 FORMAT(//Z0Xe SCHANGING TIMES FOR v/}
GO* PRINT 200, (TV(I)eI=leNTV)

B1* PRINT 505

8ex 505  FORMAT(//36Xs WV=MATRIX*/)

5o* DO 53 I=1,NTV

Bl 53 PRINT 200, (V(JrI)eJ=1sNY)

B5* PRINT 509

Ge* 509  FORMAT(//36Xs tNOD=VECTOR /)

87% PRINT 100, (NOD(I)eI=1sNOM)

Bax PRINT 510, TSLUT» XMAX e SMAX e SMIN CSTR
BG* 510 FORMAT(///36Xe v LIMITATLIONS /O 9 TSLUT e 10X e PXUAX(PREC) ool '5)
Y(* GAX? P 12Xr tSuINY ;12X TCSTRY /1A 5EL6.8)
91 PRINT 520

Gp* 520  FORMAT(//z6Xe YUMIN®/)

93% PRINT 200, (UMIN(I) e I=1,NUY)

Ol # PRINT 521

95% 6521 FORMAT(//36Xe tUMAX®/)

EILs PRINT 200, (UMAX (I I=1 o NUU)

Q7 PRINT 522

ga* 522 FORMAT(//36%e $XBEG(=ACTUAL TANK VOLUME) * /)
9g9* PRINT 200, (XBEG(I)eI=1eN)
Loo= PRINT 523
10i%* 523 EORMAT(/ /30X e ¢ XTBEG(PROC) */)
Loz* PRINT 200, (XTBEG(I)eI=1sN)

LOS%* RETURN

LO&#* MDD

™



D%
55H%
56 %
S57%*
58%
S9%
bux
H1*
be¥
OA*
Bk
boH¥*
66 *
6 7%
oy*
09 %
TO*
71%
Te*
7 5%
T4 %
TH%
Tk
T7*
78%
7%
80*
B1x%
8e*
B3%
Bu*
Bo*
BE*
87 %
BE*

BG*

90
91 *
Ye*
93%
94 %
95%
96 *
97 %
98*
99%
10U*
lolx*
10z%*
103%
Lo4*

5006

522

523

SMIN=SMIN/SMAX%100.
PRINT 500,nNeNUUPNVeNTV»NOM
FORMAT(1H1+,36Xe YSYSTEM PARAMETERS®///1Xe *NUMBER OF X:S'e8Xp?UIS
BEX» 'VeSTe2Xe "CHANGES IN V CHANGES IN Ur/3x%e5111)

PRINT 501

FORMAT(//26X» 'B=MATRIX?/)

DO 51 I=1,i

PRINT 200, (B(IsJ)eJ=1sNUU)

PRINT 502

FORMAT(//30Xe "C=MATRIX®/)

DO 92 I=1l,iy

PRINT 200, (C(IesJ)pJ=1sNV)

PRINT 503

FORMAT(//30Xe *D=MATRIX?/)

PRINT 200, (D(I)eI=1oNUU)

PRINT 504

FORMAT(/ /36X 'E=MATRIX?/)

PRINT 200, (E(I)eI=1leNV)

PRINT 500

FORMAT(//36X» *START VALUE'/)

PRINT 200, (X0(I)eI=1eN)

PRINT 507

FORMAT(//206Xe *FINAL VALUE®/)

PRINT 200, (XT(I)eI=1eN)

PRINT 508

FORMAT(//36Xe YCHANGING TIMES FOR V'/)

PRINT 200, (TV(I)eI=1eNTV)

PRINT 505 ' . o
FORMAT(//30Xe 'V=MATRIX®/)

DO 53 I=1,nNTV

PRINT 200, (V(JesI)pJ=1,NV)

PRINT 509

FORMAT (//26X» *NOD=VECTOR /)

PRINT 100, (NOD(I)sI=1pNOM)

PRINT 510, TSLUT?»XMAX»SMAX s SMIN¢CSTR

FORMAT(///36Xe " LIMITATIONS *//9%pTSLUT210X» *XsAX(PRO6C) ' #6Xr 'SM
VAX9?12Xe e 5uINY»12Xe *CSTRY/1X»5EL16,8) \
PRINT 520 \
FORMAT(//36Xe YUMIN®/)

PRINT 200, (UMIN(I)I=1oNUUY)

PRINT 521

FORMAT(//36Xe *UMAX"/)

PRINT 200, (UMAX(I)»I=1,NUY)

PRINT 522

FORMAT(//36Xe " XBEG(=ACTUAL TANK VOLUME)'/)

PRINT 200, (XBEG(I)I=1oN)

PRINT 523

FORMAT (//306Xe *XTBEG(PROC.) */)

PRINT 200, (XTBEG(I)sI=1¢N)

RETURN

END
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e
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10
ie

15

T

&80

9u
100
10
104
106
108
110

200

AT A T B W%, G R RFR T VAT P AT RS

THIS %QBRQQTIME CA@SULATESvX’A&D S AT aLL INTERESTING TIMES AND PRINTS 0OUT
ALL USS ¢ £25 AND S3Se THE SYSTEM PARAMETERS ARE SUPPLIED BY THE TWO COM=

MON AREAS  ( BLANK  AND /BIVI/)

NDTQTIQN%Z gEE 5UE1

NG SUBROUTINE REQUIRED

REMARK T(NOM+L) = TSLUT IN THE CALLING PROGRAM

BexG(LO) e K

COMMON /BIVI/Z DCI0)eE(LO)Y yUMINCLIO) pUMAXY (10) s SMAX,SM
e, Pa Y ) E SR A ¥ —MA}\ EL)MEN
DIMENSION X(10) e UNCLO) o VNCLIO)sUCL) e NOCLYoT(1) 9

PRINT 500
FORMAT (L1 10Xy "PRINTOUT FROM

DO 5 I=1s10
K(I)=0.
UN(I)=0-.

1c=0

o 10 I=Lle.n
¥{1¥=%0li)

po 12 I=i.nul
gMeIi=uth

00 15 I=31 RV
VTGO ARG SN

TﬁﬁG@

izi

K=l
TVI=TV (L)

SUBROUTINE BIINT®)

CALCULATE THE NEXT TeIND TELLS iF U OR V CHANGES THERE

IND=2

IE(TVI=T(1)}35,45955

y TT=TVI

IND=0

Go To 70

IND=1

TT=T(K)
TTZAMAXL(TT» 1, E=07#TSLUT)

CALCULATE THE NEW X AND CHECK

no 100 JzieN

SLi=0e

SLe=0e

0o A0 NIzieNUU
SLIZSLITE (JeNTYEUNINT)
0o 20 NIzgeNV
SLe=GL2+C (Je NI #VNINTD)
X(d3$X(d}%&SL1+SL2)*€TT“TO)
To=TT
IF(IND=1)10201040102
IFAKT=1

g0 To 106

TEAKT=2

TezICHIFaKT

=0

no 108 JzipNUU

=G40 (JRuN ()

0o 110 JzieNV
SeSHE (Jr xRy ()

PRINT EBUa?DwiNDeéx(i)aizi@lD)s(UN(i}aﬁﬁlaiU}eS

FORMAT(//20Xe S TIME® ¢G16000 7

INDz e, 12/10Xe " XS ¢ BGLlE.E/1

vGX??U§°95QL8@%/i2X95§l@@@/lGX9ggﬁeegigﬁai

COMMON NOMeTSLUT B(L0103,ClL0, 10V (10010),TVILG) N T
‘ LU . , GYeNVoNTYsNeXT(10
MAX e CSTRaNOD (10 o ATREGTLLO) e XREG(L0) o NUU ﬁ T o

2%95616@6/1



(s e SN eNaN R QN o o

500

10
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15

o O

35

45
55

e ol ¢

TU

80

9u
100

106
110

200

SUBROUTINE BIINT(UsNO»T) ‘ ‘

THIS SUBROUTINE CALCULATES X AND S AT aLL INTERESTING TIM / ‘

) ES AND PRINTS ouT
ALL UsS » XS AND S:3S5e THE SYSTEM PARAMETERS ARE SUPPLI T -
MON AREAS ( BLANK AND /BIVI/) PLIED BY THE TWO COM
NOTATIONS: SEE Ssusil

NO SUBROUTINE REQUIRED
REMARK T(NOM+1) = TSLUT IN THE CALLING PROGRAM

COMMON NOMe TSLUTeB(10,10),C(10+s10) eV (10010)»TV(Lig) e
BvXO(lo)PXMAXvCSTRvNOD(IO)rXTBEG(lO)nXBEG(lo)vNUUO) NVeNTV Ry XT(LOY
COMMON /BIVI/ D(10)eE(10),UMIN(10) »UMAX(10) » SMAX, SMIN

DIMENSION X(10)UN(LIO0O)»VN(L0)oU(1)sNO(1)rT(1)

PRINT 500

FORMAT (1141010Xe *PRINTOUT FROM SUBRUUTINE BIINT')

DO S5 1=1.10
X(I1)=0.
UN(I)=0o

Ic=0

DO 10 I=1,N
X(I)=X0(I)

po 12 1=1,iUU
un(Id=u(l)

DO 15 I=i,nV
yM(I)=vi(l.,1)

TDZO.

=1

K=1
TVI=Tv (1)

CALCULATE THE NEXT TeIND TELLS IF U OR V CHANGES THERE

IND=2
IF(TVI=T{K))35,45¢55
TT=TVI

IND=0

Go To 70

IND=1

TT=T(K)
TT=AMAXI(TTe1l.E=07%TSLUT)

CALCULATL 1HE NEW X AND CHECK \

po 100 J=i1isN

SL1=0.

SLe=0.

DO 80 NIz1e.NUU

SL1IZSLI+E (ueNI)*UN(NI)

Do 90 NIz=1.NV

SL2=SL2+C (JeNI) *VN(NT)

X (J)=X(J)+(SLLI+SL2)*(TT=TO0) ‘
T0=TT

IF(IND=1)102s104,102

IFAKT=1

6o Y0 106

IFAKT=2

IC=IC+IFAKT

S=0-.

Do 108 J=1,NUU

S=S+D (J) xyin (J)

DO 110 JzisNV

S=SHE(J) =yN(J)

PRINT 200, TO0sINDe (X(T)eI=1010)» (UN(I)sI=1,10)¢5
FORMAT(//30Xe*TIME'1G16e¢0s IND=»12/10Xe ' X=995618.8/12X925618.8/1
UNYe U= 95018.8/12X05G18e8/10Xe*S=9,618.8)




AR L

T1% C TAKE IN 4 NEwW V OR U OR BOTH DEPENDING ON IND
7% w

7 &% IFCIC=NTy=10OM) 1206150, 150
7% 120 IF(IND=1)13001300135

To* 130 =i+l

TE* IF(I=1=NTy)132,131+131
TT* I31 TVISLE+07%TSLUT

76% 6o TO 134

T9* 132 Do 133 Jz1eNv

&% 135 yn(dyzvilu, 1)

1% TVI=TV(I)

Bk 134 IFCIND.EQ,.U) 60 TO 20

Ba% 135 NOCKE=NO(K)

Gk UN INOCKE ) =U (NUU4K)

B5% Kzk+1

0¥ “

BT % Go To 20

88% C

B9* 150 RETURN

EAES END




TU*
71%
72%
7.5%
i
75%
76%
77%
78%
79%
80
Bix
g2%

3%
Sk
85%
86*
87
88*
BO*
90%*

120
130

131

132
139

134
135

150

TAKE IN 4 NEWw V OR U OR BOTH DEPENDING ON IND

IF(IC=NTy=-iOM) 120,150,150
IF(IND=1)130,1300135
I=i+1
IF(I=1=NTy)132,131,131
TVIS1.E+07%TSLUT

Go TO 134

DO 133 Jzi,NV

VNI =V, D)

TVISTV(1)

IF(IND.EQ,0) GO TO 20
NOCKE=NO(K)

UN (NOCKE ) =U (NUU+K)
K=K+1

6o To 20

RETURN
END




[

C OGO YOy Oy

1y

oy

U
ug

SUBROUTINE FUNC{MRe XeFU)

FUNC 15 CalbED BY POWEL To CALCULATE THE FUNCTION TO gE MINIMIZED.
GIVE VALUES ACCORDING TO F + CSTR#RIVIL.(SEE F AND BIVIL)
PUMISHMENT ON T I5 ADDED

MR= DIMENSION OF X
X = THE FrizE VARIABLES
Fu= FUNCTION VALUE
COMMON ARra: SEE sUB1L

REMARK NOM MUST NOT BE ZERO

UBROUTINES REQUIRED SRT
SUpl
F
BIVIL

DIMENSION X(L)eNO(LO)YULl20)eT(11)
COMMON NOw e TSLUTeB(10,10),ClL0p10) eV {100 10) e TVLIDI P NVeNTVeNs XT(10)
BeX0(L0) e XMAX e CSTReNOD(L10) o XTREG(LO) e XREG(10) e NUU

DO 10 I=1,00M

NOCI)=NOD (D)

U(il=x(1)

TCE) = X (14NOM)

CAaL.L SRT(U«NCe TeNOM)
T(NOM+1) =TSLUT

DO 20 I=1,HN0OM

K=NOM=I+1

VR FNUUY = (K)

CALL SUBL(UsNOST)

FU = F(UsnOeT)

FU = FU + CSTR¥BIVIL(UsNOT)
DO 50 I=1,NOM

FUSFU + L0Ue*CSTR%(DIM(T(I) s TSLUTI#%2 4+ DIM(LoE=07%#TSLUT T(I))#%2)
RETURN

END

WILL



c oo oo oo oo

10

20
4o

50

SUBROUTINE FUNC(MRsXsFU)

FUNC IS CaLLED BY POwEL To CALCULATE THE FUNCTION TO BE MINIMIZED.
GIVE VALUES ACCORDING TO F + CSTR*BIVIL.(SEE F AND BIVIL)
PUNISHMENT ON T IS ADDED

MR= DIMENSION OF X
X = THE FrREE VARIABLES
FU= FUNCTION VALUE
COMMON AREAS: SEE SUBL

KREMARK NOM MUST NOT BE ZERO
SUBROUTINES REQUIRED SRT

Supl

F

BIviL

DIMENSION X(1)eNO(10),U(20)eT(11)
COMMON NOMe TSLUTB(10,10),C(10010)eV(10°10)»TV(10) +NV,NTVeNsXT(10)

BeX0(10) e XMAXe CSTReNOD(10) » XTBEG(10) v XBEG(10) »NUU

DO 10 I=1,NO0M

NOCI)=NOL (1)

UL =x(Iy)

T(I) = X (1+NOoM)

CALL SRT(UsNO»TeNOM)

T(NOM+1) =TSLUT

DO A0 I=1,NOM

K=NOM=1+1

U K+NUU) = (K)

CALL SUBL(UPNOT)

FU = FLUsNDOPT)

FU = FU + CSTR*BIVIL(UsNO,T)

DO 50 I=1,NOM

FUSFU + 100¢*CSTR*(DIM(T(I) #TSLUT)*%2 + DIM(1.E=07*TSLUTeT(I))*%2)
RETURN ‘ j
END

WILL
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SUBROUTINE SRT(UeNGe ToeNI

SORTS T 1a AN INCREASING ORDERe. U aND NO ARE CHANGEL

WAY AS T

U =VECTOR S0RTED AFTER T

NO=VECTOR SORTED AFTER T

T =VECTOR S0RTED IN AN INCREASING ORpER
N =DIMENSTONS OF UeNO AND T

REMARK N MUST BEAT LEAST ONp

SUBROUTLINES REQUIRED NONE

DIMENSION UENY e NOINY e TINY

TE(NLYB0 o507
DO 20 I=i,ivl
Nd=I+1

DO 20 J=NJeN
IF(TCI)=T(J))20e20510
SL=T(1)

T =71¢J)
T(JI=5L
TSL=ENOCT)
No(TY=NO ()
NO(J)=I50
SL=U1)
Utilt=uods
U(Jl=sL
CONTINUE
CONTINUE
RETURN

END

I

THE SAME
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SUBROUTINE SRT(UrNO»TeN)

SORTS T 1n AN INCREASING ORDERe. U AND NO ARE CHANGED IN THE SAME
WAY AS To ’

U =VECTOR SORTED AFTER T
NO=VECTOR SORTED AFTER T
T =VECTOR SORTED IN AN INCREASING ORDER
N =DIMENSIONS OF UeNO AND T :

REMARK N MUST BEAT LEAST ONE
SUBROUTIMES REQUIRED NONE

DIMENSION U(N) #NO(N) »T(N)

Ni=N=1
IF(NL)30 307
DO 20 I=l,inl
NJ=I+1

DO 20 J=iJeN
IF(T(I)=T(J))20020010
SL=T(I)
T(I)=T(J)
T(J)=SL
ISLENO(T)
NO(I)=NO(Y)
NO(J) =150
sL=U(I)
u(rl=u(d)
U(Jl)=sL
CONTINUE
CONTINUE
RETURN

END
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SUBROUTINE SURBL(UNOeT)

CALCULATES THE INITIAL U:zS FROM THE REST OF THE U5 AND X/ AND ¥XT FOR
THE SYSTEM DXDT = BxU + C*y

U =U(1)ooe.0eU{N) ARE RETURNED CONTAINING THE CALCULATED UiSe UlN+1)eeoeo
U(N+NGM) ARE LOADED WITH TEH GIVEN U:S

NO=NO(I) TebLLS WHICH U SHOULD CHANGE TO ULI+N) AT TIME T(I)

T =TIMES oF CHANGE IN U IN TIME=ORUER

Ir COMMON (MUST BE ASSIGNED BEFORE CALLING THE SUBROUTINE):
NOM  =NUMBER OF GHANGES IN U
TELUT=FINAL TIME
B =B=MATRIX OF DXDT = B%U + C*V
C =THE C=MATRIX
v =V(Isd) 15 THE VALUE OF THE L:TH V IN THE INTERVAL
(Ty(d=1) ¢ TV )
TV = THE TIMES OF CHANGE IN ANY OF THE V35 In TIME=ORDER
NOTE:TV(NTV) MUST 8E GIVEN THE VALUE TSLUT IN DATA=CARD=FORM
NV =NUMBER OF V=SIGNALS
NTV  =THE DIMENSION OF TV
N =THE DIMENSIONM OF ¥ AND U
KT =FINAL VALUE OF X
X0 ~STARTING VALUE OF X(I.E. THE TANK LEVELS)
XMAX =MaXs ALLOWED DEVIATION OF X FROM ZERO
CSTR =COEFFICIENT OF PUNISHMENT ON RESTRICTIONES
NOD  =THE SAME AS No ¢ BUT NOD MUST NOT BE CHANGED
XTBEG=MAX e ALLOWED DEVIATION OF X(T) FROM XT(COMPONENTWISE)
XBEG ~MAX.VOLUMES OF TaANKS
NUU  =THE DIMENSION GF U

REMARKS sl SHOULD BE SET TO THE DECLARED DIMENSION OF 85 AND S5k

BEFORE CaLLING SUBL DECOM(BeNsNNReEPS, ISING)  MUST BE CALLED. WHERE NNB
SHOULD BE THE DECLARED DIMENSION OF 8e EPSZLleE~07 AND ISING
1S RETURNED ZERO IF EVERYTHING WAS 0.K.eOTHERWISE NOT

NOM AND NY MUST NOY BE ZERO AND NTV MUST NOT BE ZERO OR  ONE
SUBROUTINE REQUIRED NONE

DIMENSION UC1)YoNO(1) e T(1)oBS(10)SLL10)
COMMON NQM@TSLUT?S(iO@lG)sC(lﬁelD)@V(1091Q)9TV(1O)?NV@NTV@Weﬁrilﬂ)
Be¥0(10) e XMAXs CSTReNOD(L0Y o XTBEG(10) ¢ XBEG(10) o NUU

NNU?NNB AND EPS ARE PARAMETERS FOR DECOM AND SOLVE.NNU SHOULD BE
EQUAL TO THE DECLARED DIMENSION OF X AND U.

NMUZLO0

NNB=1

PUT THE INTEGRALS OF THE ViS5 INTO SL

DO L0 I=i.nV
SLAITV(Ie Iy &TV (1)
0o 15 J=g,ntTv

15 SLASSLIHV (1o )% (TV(J)=TV(J=1))
10 sp(ly=skl
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SUBROUTINE SUBL(UeNO»T)

CALCULATES THE INITIAL UsS FROM THE REST OF THE U:S AND X/ AND XT FOR
THE SYSTEM DXDT = B*U + C*V

U =U(1)eo,eoU(N) ARE RETURNED CONTAINING THE CALGULATED U:S. U(N+1)essse
U(N+NOM) ARE LOADED WITH TEH GIVEN U:S

NO=MO(I) TelLLS WHICH U SHOULD CHANGE TO UCI+N) AT TIME T(1)

T =TIMES oF CHANGE IN U IN TIME=ORDER

IN COMMON (MUST BE ASSIGNED BEFORE CALLING THE SUBROUTINE):
NOM =NUMBER OF GHANGES IN U
TSLUT=FINAL TIME
B =B=MATRIX OF DXDT = B*U + C*V
o =THE C=MATRIX
Vv =V(IsJ) IS THE VALUE OF THE I$TH V IN THE INTERVAL
(TV(dJ=1) » TV(D) )
TV = THE TIMES OF CHANGE IN ANY OF THE V:S IN TIME=ORDER
NOTE:TV(NTV) MUST BE GIVEN THE VALUE TSLUT IN DATA=CARD=FORM
NV =NUMBER OF V=SIGNALS
NTV =THE DIMENSION COF TV
N =THE DIMENSION OF X AND U
XT =FINAL VALUE OF X
X0 =STARTING VALUE OF X(I.E. THE TANK LEVELS)
XMAX =MAXe ALLOWED DEVIATION OF X FROM ZERO
CSTR =COEFFICIENT OF PUNISHMENT ON RESTRICTIONES
NOD =THE SAME AS NO » BUT NOD MUST NOT BE CHANGED
XTBEG=MAX « ALLOWED DEVIATION OF X(T) FROM XT(COMPONENTWISE)
XBEG =MAX.VOLUMES OF TANKS
NUU =THE DIMENSION OF U

REMARKS NNU SHOULD BE SET TO THE DECLARED DIMENSION OF BS AND SL_

BEFORE CALLING SURL DECOM(BeNeNNR,EPS,ISING) MUST BE CALLED. WHERE NNB
SHOULD BE THE DECLARED DIMENSION OF Be EPS=1E=07 AND ISING
IS RETURNED ZERO IF EVERYTHING WAS 0.K.sOTHERWISE NOT

NOM AND NV MUST NOT BE ZERO AND NTV MUST NOT BE ZERO OR ONE
SUBROUTInE REQUIRED NONE

DIMENSION U(C1)eNO(1)T(1),BS(10),SL(10)

COMMON NQMOTSLUT?B(lOle)9C(lOle)!V(10'10)'TV(10)'NV'NTV'N'XT(IO)
BeX0(10) » XMAX 2 CSTRYNOD(10) ¢ XTBEG(10) ¢ XBEG(10) #NUU

NNU?NNB ANU EPS ARE PARAMETERS FOR DECOM AND SOLVB«NNU SHOULD BE
EQUAL TO THE DECLARED DIMENSION OF X AND U.

NNU=10

NNB=1

PUT THE INTEGRALS OF THE V:iS INTO sL
DO 10 I=1,nV

SLIZV(Ir1)*TV(1)
DO 15 J=g,nTV

15 SL1ZSLITV (Le ) *(TV(J) =TV (U=1))
1u sL(I)y=sLi
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CALCULATE THE INTEGRALS OF THE Uts By SOLVING THE EQUATION SYSTEM

DO 30 I=1l,i

SLAS=0.

DO 20 J=1.nV
SLADZSLAS+C (I, J)%SL (D)
Be(I)=XT(1)=X0(1)=5LAS

CaLl SOLVE(BS,SLeNUUNNENNU)

CALCULATE INITIAL U:S BY SUBTRACTING THE INFLUENCE FRoM LATER U:S

Do 75 121,800

TT=TSLUT

S5L2=0,

IF(MOM) 35,70, 35

DO 60 K=1,10M

J=NOM=K+1
IF(NO(J)=7160,40060

TJd = AMAAIIT(J) e LeE=07%TSLUT)
IF(TJeGETSLUTY 60 TO 60
SLESSL2YU(JHNUUY R (TT=TJ)
T1=TJ

CONTINUE
UCI)=(sL(1)=SL2)Y/TT
CONTINUE

RETURN

END
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CALCULATE THE INTEGRALS OF THE U:S BY SOLVING THE EQUATION SYSTEM

DO 30 I=1,nN

SLAS=0.

DO 20 J=1,nV
SLASESLAS+C (I, J)%SL ()
BS(I)=XT(1)=X0(I)=SLAS

caLl SOLVB(BS»SLeNUU» NNB»NNU)

CALCULATE INITIAL U:S BY SUBTRACTING THE INFLUENCE FROM LATER U:S

DO 75 I=1,nNUU

TT=TSLUT

SL2=0,

IF (NOM) 35,70, 35

DO 60 K=1,nNO0M

J=NOM=K+1
IF(NO(J)=1)60,s40060

TJ = AMAX1(T(J)rleE=C7%TSLUT)
IF(TJeGE.TaLUT) GO TO 60
SL23S5L24U (J+NUU) % (TT=TJ)
TT=TJ

CONTINUE
UCI)=(SL(1)=SL2)/TT
CONTINUE

RETURN

END
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15

70

102

104
100
110

CALCULATES THE SUM OF ALL NORM( ABS(X) = XMAX )#%2 FOR DIFFERENT TIMES
THAT 15 wrEN U OR V CHANGES AND ABG(X) > XMAX  (NORM IN SUM OF SQUARES).

ALL NOTATIONS: SEE sul
REMARK Ny MUST NOT BE ZERO ¢ TINOM+1)=TSLy,T MUST BE SET BEFORE CALL

NO SUBROUTINE REQUIRED

COMMON MchTSLUng(lGela)eC(lﬁelQ)@V(iﬂ?lﬁ)aTvilD)emvéNTV@N@X?(lﬂi

ﬁ@%ﬂ(lﬂ)ﬁﬂf1X965TR@N0D(13)@XYBE@(ED)9%%56(16)?NUU
DIMENSION UU1)Y e NO(LY» TCLY o UNC20) o X(L0) »YN(LD)
Tc=0

STORZO0,

po 10 I=ien

X(1I=X00D)

STORZSTOR + DIMOABS(X (L))o XMAX ) %2
0o L2 1=1 it

o 1% I<1enV
YN(D)=v i, 1)

CALCULATE THE NEXT T.IND TELLS IF U OR V CHANGES THERE

inND=2
IF(TVI=T(K})I35: 4555
TT=TVi

IND=0

go TO 70

TMD=1

TT=T(K)
TT=AMAXL (TTe L. E=07%TSLUT)

CALCULATE THE NEW X AND CHECK

0o 100 JzieN

5L.1=0.

SLe=0e

Do 80 NIzie.NUU
SLAITSLATE (Ue NL) #UNINI)
DO 90 NIzieNV

) SLEZSL2+C (Je NI )YAVNINT)
LAY 2X () + (SLI+SL2y=(TT=T0}
T0=TY
IFLIND=1)102,1040102
IFAKT=L
g TO 106
IFAKT=2

po 110 JzieN
STOR = 5S5Tor + FLGAT(I?AKT}%EEM(A%Q(%{Q)}wXMAX)%*E
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10
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70

80
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100
10
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FUNLTLUN LU PNUY ]

CALCULATES THE SUM OF ALL NORM( WBS(X) = XMAX )*%2 FOR DIFFERENT TIMES
THAT IS WHEN U OR V CHANGES AND ABS(X) > XMAX  (NORM IN SUM OF SQUARES).

ALL NOTATIONS: SEE SuBl

REMARK NV MUST NOT BE ZERO 3 T(NOM+1)=TSL4T MUST BE SET BEFORE CALL

NO SUBROUTINE REQUIRED

COMMON NOM;TSLUTPB(lovIO)rC(10010)vV(10'10)vTV(lO)rNVoNTV'NvXT(IO)

BvXO(lD)'XMAXvCSTRvNOD(lO)vXTBEG(lﬂ)OXBEG(lﬂ)'NUU

DIMENSION w(1)eNO(1)T(1)»UN(20)¢X(10),VYN(10)

1c=0

STOR=0.

DO 10 I=L,N

X(1)=xX0(1)

STOR=STOK + DIMCABS(X(I)) s XMAX)*%2
DO 12 I=1,nUU

uN(I)=ulh)

DO 15 I=1,nV

(I =v(i, 1)

T0=0.

I=1

K=l

TVI=TV (1) : B

CALCULATE THE NEXY T.IND TELLS IF U OR V CHANGES THERE

InD=2 ’
IF(TVI=T(K))35, 45,55
TT=TVI

IND=0

Go TO 70

IND=1

TT=T(K)
TT=AMAXL(TTe1l.E=07%TSLUT)

CALCULATE THE NEW X AND CHECK

Do 100 J=geN

5i.1=0,

SL2=0.

DO 80 NIzg,NUU

SLISSLI+B (JeNI)*UN(NI)

DO 90 NIzieNV
SL2ZSL2+0 (Je NI Y RVNINI)

X{J) =X (I +(SLL+SL2) X (TT=TO)
To=TT

IF(IND=1)1uU2,1040102
IFAKT=1

G0 To 106

IFAKT=2

DO 110 J=1N

STOR = STOR + FLOAT(IFAKT)*DIM(ABS(X(J)) rXMAX)¥%2
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112
113
114
1ie

12u
130

131

Ie=IC+IF AT

IF(I=-NTV) 116e1120116

IFCIND=L) 11351139116

Do 114 Jz1eN
STORESTOR+LIMIABS (X {J)=XT(J) ) s XTREG(J) ) *%x2
CONTINUE

TAKE IN 4 NEW V OR U OR BOTH DEPENDING ON IND

IF(IC=NTy=NOM) 12001509150
IFCIND=L1)15001309135
{=1+1
IF(I=1=NTY)132,1316131
TVIS1leE+G7xTSLUT

o TO 134

Do 133 Jz=i,NV
Vr(di=vlu, 1)

TVI=TY(I)

IF(INDEG,U) GO TO 20
NOCKE=NO (1)
UN(NOCKE ) = (NUU+K)
Kek+1

co To 20
F = STOR/r/ (NOM+NTV)

RETURN
END
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112
113
114
116

120
130

131

132
1395

134
135

150

1C=IC+IFAKT

IF(I=NTV)116+112,116

IF(IND=1)113,113r116

DO 114 Jz1,N
STORZSTOR+UIMIABS (X (J)=XT(J)) s XTREG (J) ) *%2
CONTINUE

TAKE IN A NEW V OR U OR BOTH DEPENDING ON IND

IF(IC-NTVv=nOM) 120,150,150
IF(IND=1)1300130,135
Izl+1 ‘
IF(I=1=NTy)132,131,131
TVI=1E+U7%TSLUT

60 TO 134

DO 133 J=ieNV
VN(J)=v Iy, )

TVI=TV(I)

IF(IND.EQ,0) GO TO 20
NOCKE=NO(K)
UN(NOCKE) =uU (NUU#K)
KzK+1

Go To 20
F = STOR/p/ (NOM+NTV)

RETURN
END




FUNCTION gIVIL(UeNOeT)

caLCULATES THE DEVIATION EROM THE aLLOWED AREA Iy U AND S = DxU * Exy AT
ALL TIMES AND 15 GIVEM A NUMBER RELATED TO THE DEVIATION
( (SUM OF ALL DEVIATIONS)®%2 )

Ue HMO» T = SEE 5UBL
COMMON= 5EE SUBL

In COMMON /BIVI/ (MUST BE ASSIGNED VALUES BEFORE CALLING BIVIL) =
D - D=MATRIX IN 5§ = DxU + E*V
E - F=MATRIX
UMIN=AT UMIN(I) WE START PUNISH uli)
UMAX=CORRESPONDING TO UMIN
SMAX AND SMIN=SAME AS UMIN AND UMAX BUT FOR 5

REMARK NV MUST NOT BE ZERO § TINOMHFLISTSLUT MUST BE SET BEFORE CALL

MO SUBROUTINE REGUIRED

CoOC OO O O Y ey O O

DIMENSION UN(20) e VN(L0)PU(L) e NOCLY T (1)

COMMON NQHeTSLUT?E(lOwLO)&C(i@el@)@V€10918)eTQ(lG)9NVQNTVﬁM¢XT(103
5ex0(10) 0 X1AXeCSTRPNOD(10) » XTBEG(10) ¢ XBEG (10} ¢ NUU

COMMON ZBTVI/Z D(10)rE(10) sUMINCLO) eUMAX 10D 9 SMAX e SMIN

5TOR=0.

ic=0

C CHECK IF THE UsS ARE WITHIN THE LIMITS

NUZMNUUANOHM

Do 20 I=l.nu

IF(I=NUUIL sl &
& NOCKEZL

B0 T0 20
6 NOCKE = RNo(I=NUU)
20 STOR = SToR + DIMAUCT) e 1006 ) #%2+ DIM{UMIN(NOCKEY ¢

FULT) ) ek 4

cALCULATE AND CHECK & AT ALL TIMES

TAKE IN STARTING VALUES OF U AND V

[

Do 50 I=1,nUU
50 UN(D)=UlL)
no 60 I=LnV
60 Ve li=viis i)

TVISTV (L)

To=0,

i=1

Kl
C
C CALCULATE (HE NEXT INTERESTING T
¢

70 IND=2

TE(TVI=T())90,100110
90 TT=TVI

IND=0
6o TO 120

100 INDEL

110 TT=T(K)
TT=AMAXL(TTo1lE=07%TSLUT}



FUNCTION gIVIL(UeNOsT)

CALCULATES THE DEVIATION FROM THE aLLOWED AREA Iy U AND S = D¥U + ExV AT
ALL TIMES AND 1S GIVEN A NUMBER RELATED TO THE DEVIATION
( (SUM OF ALL DEVIATIONS) %2 )
Ue NO¢ T - SEE SUBL
COMMON= SFE SUBL
IN COMMON /BIVI/ (MUST BE ASSIGNED VALUES BEFORE CALLING BIVIL) =
D - D=MATRIX IN S = D%xU + ExV
E - F=MATRIX

UMIN=AT UMIN(I) WE START PUNISH u(l)
UMAX=CORRESPONDING TO UMIN
SMAX AND SMIN=SAME AS UMIN AND UMAX BUT FOR 5
REMARK NV MUST NOT BE ZERO 5 T(NOM+1)=TSLUT MUST BE SET BEFORE CALL

NO SUBROUTINE REQUIRED

cCoCcC oo C oo o oo

DIMENSION UN(20) ¢ VN(L0) P U(L) PNO(1) T (1)
COMMON NOMs TSLUT¢B(10,10),C(10s10) oV (10010),TV(10) ¢ NV,NTVeNsXT(10)

BeX0(10) e X1AXeCSTReNOD(10) o XTBEG(10) »XBEG(10) »NUU
COMMON /78BIVI/ D(10)»E(10) pUMINCL10) UMAX{10) ¢ SMAX,SMIN
STOR=00
1c=0

CHECK IF THE U$S ARE WITHIN THE LIMITS

C

NU=KUU+NOM
DO 20 I=l,nU
IF(I=NUU)yoHo6
4 NOCKE=I
6o To 20
3 NOCKE = NO(I=NUU)
20 STOR = SToRr + DIMIUCI) v 100, ) %x2+ DIM(UMIN(NOCKE) ¢
U(L) ) k%2

CALCULATE AND CHECK S AT ALL TIMES

TAKE IN STARTING VALUES OF U AND V

oo

DO 50 I=1,iUU
50 UN(I)=u(ll)
DO 60 I=1,iV \\
60 vy =v{g,1) |
TVI=TV(1)
TO:OO
I=i
K=1

C CALCULATE THE NEXT INTERESTING T

70 IND=2

IF(TVI=T(K))90+,100,110
90 TT1=TVI

IND=0
6o TO 120

100 IND=1

110 TT=T(K)
TT=AMAXL(TTe1.,E=07%TSLUT)
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CHECK OF THE LAST 5

S=0s

Do 130 JzieNuy

S=SHn (Jeun G

Do tag JzieNV
SeSHE (JY ey i)
IF(IND=1) 1425 1000 1042
IFAKT=1 '
c0 To 146

IFAKT =z2

SYORZSTOR +{(TT~TOi=(DIMISs 1001 +DIMISMINGS) ) ) ®REp
Ic=iC+IFAKT

To=TT

NEW ViS5 ORr Uss ARE TAKEN IN

IF(TIC=NTy=NOM) 160,230,230
IFCIND=1)170e1700220
Iz1+l
TE(I=1=NTy1200,180.180
TVIZ1E+07xTSLUT

gn 16 219

D0 210 JzieNV
yru(dy=vid, 1)

TVI=STV (L)

IF(INDeEG,0) 60 TO 70
HOCKE=NO (1)
UN(NOCKE) zu (NUU+K)
Kok+1

o TOo 70

#BIVIL = STOR/ (NUENOMENTY)
RETURN
END
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120

130

140
142

lug
ldo

160
170

18u

200
210

215
220

230

CHECK OF THE LAST S

Sz=0-.

DO 130 J=1sNUU
S=S+D(J) *Un(J)

DO 140 Jz1,NV
S=SHE(J) xyin(J)
IF(IND=1)142s 10440142
IFAKT=1

GO TO lle

IFAKT =2

STOR=STOK +((TT=TO)%(DIM(S¢100.)+DIM(SMINSS)) ) *%xp
1C=IC+IFAKT

T0=TT

NEW ViS5 Or UiS ARE TAKEN IN

IF(IC=NTy=NOM) 160,230,230
IF(IND=1)170,170¢220
I=zi+1
IF(I=1=NTy)200,180,180
TVIS1.E+07%TSLUT

Go TO 215

DO 210 J=1eNV
VN(J) =V (Jp 1)

TVISTV(I)

IF(IND.EQ,0) GO TO 70
NOCKE=ZNO (K )

UN (NOCKE ) =u (NUU+K)
KzK+1

Go To 70
BIVIL = STOR/ (NU+NOM+NTV)

RETURN
END




