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A NEW PROCE' AND AN ADJOINT FILTER INTERPRETATION FOR LINEAR DISCRETE TIME SMOCTHING

“per Hagander

Linear discrete time systems usually formulated using difference equations,can
also be described by operators, vhich is more general. The covariances for a
stochastic systen are expressed as operators, and the solution of the fixed
interval smoothing problem is obtained by use of the projection theorem:

1

¥ =R _R°
= Ry ¥

The computation of ;c is conveniently done if Ry can be factored into two
Volterra (triangular) operators. It is shown how this factorization ean be
carried cut using the Riccati eguation, so that the estimate can be expressed
as two adjoint coupled filters, the Bryson-Frazier formulation.

From the operator identity used for factorization it is seen that the one step
ahead predictor is fundamental. Both the forward backward difference equations
and the welghting function representation are presented, and the weighting func-
tion is shown to be the exror covariance of the one step ahead predictor.



1. Imtroduction

I3

The two approaches to linear estimation problems, the Wiener filter using covariance
functions and the Kalman filter directly using difference or differential equations
can be unified by use of the Riccati equation. [7,12]. In {7] the continocus time

linear control and estimation problems were analysed using operators in function
spaces. The same technique is applicable in the discrete time casa. This is
demonstrated here on the smoothing problem. The projection theorem gives an
equation in covariance operators from which the difference equations are ob-
tained by operator factorization using the discrete Riccati equation,

The re-
solvent identity searched for by Kailath and Frost {9) is thus presented.

2., Notations

Consider a discrete time system for te[to,t1]

x{t+1) = ¢+t Edx(E) + vit), x(t ) = X ‘ ‘ (2.1)

The state of (2.1) x(t), at all times t during the discrete time interval [t ,t 1s
can be formed as a long vector with n{t =t +1) elements, but it can also be regarded

as a time function on [t ;t,]. The dlffevence equation (2.1) can be formilated using |
linear operators in a space ¥ of such functions:

= BX, + Lv

with Lt X* X and g: R+ X . 'The operator formulation is more general than
(2.1 and (2.1) thus introduces special structure on the operators.

Using the long vector 1nterpretat10n these o*erators are xn fact larée matrices.
Since L is causal it corresponds to a lower block triangular matrix.

Define in X the scalar product
XX, = XX, ()
172 1 2

giving the adjoint of L:

. . TR t-1
Les X X3 2z =Lx, z(t) = » ¢ (s,604Dx(s) ,  $(t,8)' = T ¢(i+d,i)
b g=t +1 i=s

Define also the functions from X +o R

T X = x(to), T,x = x(t,)




near JStochastic, Time Discrete Systems

pace X can be extended to contain stochastic processes generated by linear systems
by white noise. Suth .a Hilbert space is often used in the theory of stochastic
esses cf [L]., let v and e of
1) = ¢x(t) + v(t), x(t ) = _
| © (3.1
ex(t) + e(t) )

ero nmean, independent white noise with covariances R,f and R, (R,>0), and let x

e zero mean value, covariance RO and be indeperdent of v and e. The pperators L
| g are directly generalized. A new scalar product

Y

=E I x (t)x t)
‘t‘t

es the same adjoints. Notice that the deterministic funetions constitute a subspace.

covaridnce operator of x is easily obtained from the reformulation of (3.1,

v + £x

ing the matrix point of view:

ny = RXB and R BR ol + R2 8 ig a ﬁiagonal pperator with 6 (t) in the

If the operator F is such that the error variance in each component x, (1) 18 mini-
i_zed then x is the smoothing estimate of x,

US1ng the projection theorem [4], T nust satisfy

= IR
xy y
 *jIn the esontinuous time case it has been shown that the Riccati eguation decomposes

© operators like Ry into a preduct of a causal and an anti-causal part [7,8,121. The

_  a1gebra of the dlscrete time case is more involved and a comresponding identity has
_not been obtained previously, cof[9].

In its most simplified form the discrete time adentity can be formulated as




2292E§5££~ Iet P(t) be the solution of

(1) = 4P(E)8” + T ~ 4P (e) (142(£)) ' (1)o”

L -1 T*
+ LL = (T+PH14P) (I4P) ~(T+P4P$ L ) -
ere P is a blockdiagonal operator with P(t) in the diagonal.

oof: With the forward and,backward shift Daeratars gand q defined by
: (t)"X(tﬂ), q:c(tl)—o, a x{t)*x(irl), q x(t )=0, it is easy to prove that

(g~¢) = T - gT_ (4.1)
“’1~¢TJL* =1~ (gr)* (4.2)
so that the proposition

I+ ILY = TR #104P + PeL* + 1P (paT) Ipg Tt
could be written
~1 T %

L™= TLG-$)P(G =4 )L P (7 e ) L 4L (-0 ) Po 1. 4160 (1) Lo T s

L O+ LRI + 1P (gtvg* + oF, Pe L*

ﬁhen.ﬁb?v= 0 this requires

L (I~ qpg 4+ ¢py” ~ op(14p) o7y L =

which is true for P(t) from the Riccati equatien, o

The problem of decomposing Ry is solved by a generalization of Thecrem 1.
Corcllary 1: Let P be defined by

- 226”4 R = avelcapeTir y-lon,T
PCE+1) = ¢P(E)¢ + R, - ¢Pp~ (6P *R,) 6Py (4.3)

£ - v
= I4P + P + P¢TL + mPeT(ePeT-;-RQ) 16P¢PL*
* ) - *
= P(I+¢TL )sT + L@PGT(BPBT+R2) 1(6P9T+R2+BP¢TL eT)

- *
z {6P8T+R2+6L¢PBT](5P8T+R2) 1{6P6T;R2+GP¢TL eT}

and use TP=RT . o
O G O
The smoothing formila can now be obtained using inversion of operators.,

Theorem 2: The smoothing estimate for the system (3,1} is given by

o

tle,) = XCE[EE1) + POEIA(£-1) Lt s ts

ere QCt[tﬂT) = ip(t) is the one step ahead predictor.



;;é(t+1) = L, DX (1) + KDY, %p(toy = D (4,2)
(e, T) = R, t) = K(£)6(E) (4.5)
K = quaT(ePeT+R2)“i ' ‘ (%.6)

and A the solution to an adjoint equation

T

1) = 6L (t41 L) + 0 (0Po +R2)"1(y(t)—‘e§p(t)), ME,) = 0 TR

P(t) is defined by (b,3),

ProcE: Since the oparator i(aP6T+R2} + an_sPeT ] represents an invertible
‘dynamical system (61, R, is also invertible and using corollary 1 and (4.2):

Y
g o= {P (1+¢TL*) 6T (aPeT+R2+aP¢TL* eT) -1 {6P6T+R2) +L¢P8T} { 8P6T+R2+61¢P6T) "ly

~Introduce ah operator M analogously to L:

t-1 - t-1
k) (8) = @ owlestlx(s)  , wit,s) = .5 y(iHl)i) (4.8)
S=f i=g :
[

JWith p from (4.5). Using the same technique as in [6] it is possible to prove the
following pperator identities:

_{ePeT+R2+eL¢PaT)"1 = (ePeT+R2)"l - (ePaT+R2)"1az«m

.mPeT(ePeTa-RfemPeT)f’l = MK

T

:..L*BT(BP6T+R?+6P¢TL*GT)EI = M* 7T (oPo 4R

~1
5)

}\:ith K from (4.6), so that _
X = MRy + P(z-aTKTM*wTM*)eT-éePeT+R2)“1 (I-6MK)y = MKy + P{I+¢TM*)eT(aPeTmz)”l(x«emqy

ote that ;{p and A defined by (4.,4) and (4.7) can be written as

. M$eT(apeT+R2)“1 (y»e::{p) | (4,10)

which proves the theoesm, o

‘5. Adjoint Filter Inflerpresation

TIntroduce

; L) = x() - k()

-';Sfp(t) =yt - e (8 _

and the covardance function P(t,s) of SXP, of [21,

. p(t,s)P(s) t > 8

P(t,s) =4 P(1) t =8 (5.1)
P(t)p (5,1) t<s

and define



- I 'r.wll
T T =~
. 5.3
v_ =87 (8PP0 +R2) yp (5.3}

The adjoint filter form of the smoothing estimate was derived in [9] for the continucus

:'time case. A corresponding formula for discrete time can be Formulated:

 Corollary 2: The smoothing estinate for the system (3,1) is given by

~ ~ ‘t-‘! t1

x(t) = x(tlt1) = & P(t s)y (s) + : £ P(x, sl (s) (554)
s:t s=t

with P(t,s}, Yy and vm defined by (5.1), (5.2) and (5.3).

Proof: First notice that

K = ope’ (opo 4R,)" = (¢-¢Po" (oPe™+R ) Toype R, - (¢-K8)PO'R, " (5.5)
Hence from (#.9)
- t-1 T -1
x (t) = P{t,s)P(s)B R2 y(s) = £ P(t s)y (s)
P ozt ! s=t_
o
and from (4.10) ti : £,
PCOME=1)=B(E) 5 3! (5,136 (0P0 4R )™ y () = % P(t,8)y_ (&)
szt g=t
which proves the Corollary. o
Remark: The fixed point smoothing problem is directly solved from eq (5.4),
xCt[EH) = x(t]s) + Blst1)y (5+1) 5 > t-1 -
(5.6)

B(t) = P(t)
B{s+1) = B(s)¢ (s+1,8) = B(s)E¢ (s+i,8) - 8~ (s) K (s}]

Eq (5.6) could algc be used to evaluate the fixed interval estimate x(t[t ). This <
recursion is on the stablllty boundary but i#: has computational advantageq since it

can he performed In parallel with the one step ahead predictor and the Ricecati eqguation.
Variants of Theorem 2 and (5.5) have been predented earlier, see [3,4]. Some other
formulations contain an unstable redursion or ihversions to be performed in each time
step {1,5,16,11].

8. Conclusions

- This note presents a new proof of the discrete time smoothing problem by means of an
- Operator identity searched for by Kailath and Frost [9]. It also gives the adjeoint
formula in the sense of [9, p 656]. The main difference between earlier derivations

and this one is that the estimation is done once for all directly in the function



pace giving an analogue of the Wiener Hopf equation, and not performed recursively
in time.

ne role of the Riccati equation in the factorization of the critical operator Ry

s made clear, and the importance of the one step ahead predictor is more obvious.
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