LUND UNIVERSITY

DISCO - A Microcomputer Controller for Single-Input-Single-Output Systems

Andersson, Leif

1976
Document Version:
Publisher's PDF, also known as Version of record

Link to publication

Citation for published version (APA):

Andersson, L. (1976). DISCO - A Microcomputer Controller for Single-Input-Single-Output Systems. (Research

Reports TFRT-3097). Department of Automatic Control, Lund Institute of Technology (LTH).

Total number of authors:
1

General rights

Unless other specific re-use rights are stated the following general rights apply:

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors
and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the
legal requirements associated with these rights.

» Users may download and print one copy of any publication from the public portal for the purpose of private study
or research.

* You may not further distribute the material or use it for any profit-making activity or commercial gain

* You may freely distribute the URL identifying the publication in the public portal

Read more about Creative commons licenses: https://creativecommons.org/licenses/

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove
access to the work immediately and investigate your claim.

LUND UNIVERSITY

PO Box 117
221 00 Lund
+46 46-222 00 00

https://portal.research.lu.se/en/publications/27adce4f-5647-46df-8a69-37547c8488eb

SINGLE —INPUT —SINGLE ~OUTPUT SYSTEMS

L. ANDERSSON

Report 7601 July 1976
Department of Automatic Control .
Lund Institute of Technology

DISCO - A MICROCOMPUTER CONTROLLER FOR

SINGLE - INPUT - SINGLE ~ OUTPUT SYSTEMS

Leif Andersson

Department of Automatic Control
Lund Institute of Technology

Lund, Sweden

Abstract

The controller described in this report is mainly
intended for education in control engineering. It is
implemented on an Intel 8008 microcomputer, and admits
the demonstration of various types of controllers such
as PI, PID, minimum variance etc. The report contains
a derivation of a suitable structure and a thorough
description of the programs including full program

lists.

Table of contents

Introduction

.The hardware
2.1 The CPU
2.2 The process interface

2.3 The operator's console

Controller structure

Program implementation

4.1 Data representation

4.2 Program flow

4.3 DISCO expressed in PASCAL

4.4 Memory requirements, execution times etc

Experiments with DISCO

5.1 Test examples

5.2 Criteria for the pole placement
5.3 Test results

References

Appendices

DISCO program lists
OPCOM program lists

A summary of the theory for reduced order oservers

W b W W

12
12
13
14
18

19
19
22
23

31

1. INTRODUCTION

The importance of digital computers in control engineering
is steadily increasing due to the decrease in hardware
prices. The advent of the microprocessors has further
enhanced this trend. In order to give students of control
engineering some practical experience with both sampled data
control system and microcomputer implementations the program
DISCO, DIScrete time COntroller, and its associated hardware
has been developed. DISCO is a controller for single input
single output systems implemented on an Intel 8008 micro-
processor. The controller parameters are set using a simple
operator's panel with thumbwheel switches and a numerical
display.

The system admits controllers that are dynamical systems

up to order six. It is thus possible to demonstrate PI, PID,
minimum variance, dead-beat controllers etc. In the labora-
tory experiments the plant dynamics is simulated on analog
computer, DISCO is then connected to its input and output

and the closed loop performance ig investigated.

The report contains a short description of the hardware and
a derivation of a suitable controller structure. In order
to give an overview of the programs, their actions are
described in PASCAL, a high level programming language. The
performance of DISCO in terms of memory requirement and
execution times are described together with some test

examples.

The appendices contain full program listings and, for

reference purposes, a summary of state observer theory.

2, THE HARDWARE

DISCO is implemented on an Intel 8008 microprocessor., The
CPU, associated circuitry and memory is a commercially
available unit. A process interface containing one D/A and
one A/D converter and a real time clock was designed, as
well as a simple operatcer's console used for entering
control parameters. Fig 1 gives an overall picture of the
equipment.

2.1 The CPU

A brief description of the Intel 8008 is given here for

reference purposes.

The Intel 8008 is an eight bit CPU containing one accumu-
lator and seven 8-bit data registers, All arithmetics is
perfofmed between the accumulator and the data registers
or the memory. The instruction time ranges between 20 us
for simple register to register operation, and 44 us for
jump instructions. It has one interrupt level, but on this
level eight different interrupt sources may be directly
recognized. The address space is 16 K memory, which may be

mixed RAM and ROM in any combination.

2.2 The Process Interface

The A/D converter is a ZELTEX ZD460 8-bit convertex. The
input voltage is in the range -10 V - +10 V, the conversion
time is 50 ps and the output is a two's complement straight

binary number.

The D/A converter is an 8-bit ZELTEX 2ZD430 accepting a

straight binary two's complement number and giving -10 V -

+10 V. The conversion time is 25 us.

:The real time clock is based on an astable multivibrator
;with a period of 0.125 sec. This freguency is divided by
‘a front panel selectable factor of 1, 2, 4, 8 or 16, and
then applied to the interrupt line. The front panel of
the interface also contains a manual interrupt pushbutton,
a clock on/off switch, external interrupt input, external

clock on/off input and clock output. See fig 2.

2.3 The Operators Console

Fig 3 shows the console front panel. It contains two sets
of thumbwheel switches, one for address input (1} and the
other for entering data (2). The contents of the selected
memory call is showed on a 3% digit LED (3). Three switches
(4) determine the interpretation of the cell contents
before display. The position OCTAL-UNSIGNED gives the
content as an octal number in the range 0-377. OCTAL-SIGNED
gives an octal number -200 to +177, DECIMAL-INTEGER gives

a decimal number -128 to +127 and DECIMAL-FRACTION gives

a fractional number -1,000 to +0.992,

The number on the data switches (2) is entered into memory
when the IN-button (5) is pressed. The interpretation of

the number is the same as for the display.

The program necessary to drive this operators console
occupies approximately 0.5 K of memory. It is listed in

appendix B.

s Console.

%
O
o
o]
-
()]
N
o
e}
o
e}
Q
@]
]
L
1S]
0]
+
o
H

Fig 1. CPU,

Fig. 3. Operator's Console.

3, CONTROLLER STRUCTURE

The structure chosen for DISCO is that of state estimation
plus state feedback. In this section a suitable implemen-

tation for this structure will be derived.

The system to be controlled is described by

y(©) = 2 uw (3.1)

where g is the forward shift operator, gqy(t) = y(t+l), and
A and B are polynomials

q*+ad L ta

A(qQ)
(3.2)

B(q)

]
o
p—
fis]
+
o2

The polynomials A and B are assumed to be relatively prime.

Introduce a suitable state space representation:

x{t+l) = ¢ x(t) + T u(t)
{3.3)
y(t) =[1 0 ...01 x(t)

and partition the state vector into %y of length 1 and X,
of length n-1:

%, (£) y(t)
X(t) = =
x,.(t) x..(t)

The theory for reduced order state estimators [1] states
that it is possible to find a dynamical system of order

n-1:

- Z(t+l) = ¢ 2(t) + Iy ult) + I, y(t)
) X (3.4)
X, (t) = 2(t) + K y(t)

where the eigenvalues of ¢, may be arbitrarily specified,

“and such that X is a reconstruction of x_ with the

: r
.reconstruction error ir = x. - X, obeying
xr(t+l) = ¢r xr(t) {3.5)

A summary of the theory will be found in appendix C.

Introduce a reference input (t) and a state feedback
Yy

y(t)

ult) =y, () ~Ix(t) =y, (t) - [2; L] & (1) ¥~y (® -L%_(£)
(3.6)

‘'such that the matrix ¢ -~ TL gets its eigenvalues in desired
positions. The controller is then a dynamical system of
order n-1:

S::r (D) =4, - T'm Lr} ﬁr(t) * [Frz - I‘rlje‘l} yle)+ fr1 yr(t)

u(t) = yrj-err(t)-ﬂly(t) (3.7)

The closed loop system becomes

x(t+1) $p~TL I’Lr x(t) T
. = _ + y. (8]
%, (£+1) 0 ¢, % t) 0|
vit) = [1 0 0...0] x(t) (3.8)

This system is of order n+n-1 and the n-1 poles belonging

to the estimation error are uncontrollable.

The controller (3.7) may be rewritten in pulse transfer

function form:

ait) = [__y_ql f_m] y(t) (3.9)
S{a) S{q) ’
yr(t)

where P, R and S are polynomials of order n-1:

-1 -2
P(Q) =py, 4 = * Py ol S

n-1
qu +-IQI'l....ll+r

o
2
n

n-1 + Sq qn"2 oo + 8

"
2
|

Wwith the controliler (3.9) the closed loop system is

= B{g)}P(q)
y(t) A{g)s{qg) +B(qg)R{q) | (3.10)

The coefficients of P, R and § may be determined directly
as follows:

Let the deisred characteristic polynomial be

_ 2n-1 2n-2
D(q) = g + 4, g toeee Hdy g
Multiplying A and §, B and R gives the following equation
system

(1 b Y(s,) (@& -a]
- 3—
o. 0 -la. O . | -l l
al .- . I- L] -
.. 1 . by S.-1 _ d, —a, (3.11)
®n & by ' o 91
0 -.l 0 -‘. L] *
®n Py il -1) | Y1)

This eguation has a unigue solution if and only if A and B

are relatively prime [2].

Equation (3.8) states that the closed loop system should
have n-1 uncontrollable poles. This gives a condition on
the polynomial P(g): it should be chosen so that it cancels
n~1 of the closed loop poles.

The steady state gain of the closed loop system is given
by

10

n n-1
b *
y (=) 1 i 0 Py
(<) = "n n-1 n n-1 (3.12)
yr z ai = L s, + % bi * rl
0 0 1 0
where ag = 85 = 1.

This gives a final condition for P, The coefficients
should be chosen so that the steady state gain has a
desired value.

If it is desirable to have an integrating controller, 1i.e.
if S(g) should contain a factor g-1, then the design

problem is solved as follows:

Introduce the polynomials S(g) and A(qg) such that

I

S(q) = s{g) (g-1)

(3.13)

A{g) = Alg) (g-1)

In order to cdompletely determine the closed loop poles in
this case R{g) must be of order n. The coefficients of

S and R are then given by an equation system like (3.11)
but with n-1 columns containing the coefficients of A and
n+l columns containing bi. Note that in this case the

B-polynomial must not have a zero in g = 1.

If either the process or the controller contains an inte-
grator, the expression (3.12) for the steady state gain is
reduced to

Ipy

yi=) _
v, (=) Ir, (3.14)

1

The controller (3.9) is expressed in the forward shift

operator . In order to implement it, it must naturally

be expressed in the backward shift operator q_l:

11

s*(q7h) u(e) = P*(gTh) y (8) - R¥ (@D y(t) (3.15)

-1 -1 n
* =
‘where P*{qg ™) PoptPid " * .- FtP, 19 etc.
In explicit form we get
u(t) = Poyr(t)-+plyr(t—l)-+...-¥pn_lyr(t—n+l) -
- roy(t)-rly(t-l)-...-rrn_ly(t-n+l) - (3.16)

= sju{t-l) - s ult-2) -...- s _qult-n+l)

which may be implemented as a sum of scalar products of
vectors containing the coefficients of P, R, S and old

values of Yyr ¥ and u. See also fig 4.

PRO-
CESS -

oy

Fig 4. Regulator structure.

12

4. PROGRAM IMPLEMENTATION

The programming of DISCO was done in three levels. First
the data base and the main program was described in the
programming language PASCAL [3]. Naturally no compiler
exists which can translate PASCAL into Intel 8008 machine
code, but in the author's opinion writing in a high level
language is a good alternative to flow diagrams. An addi-
tional advantage is that the data base may be formally
described in PASCAL.

The PASCAL code was then hand-translated into MLP, a
medium level language for the 8008, which was originally
developed by C.E.R.L in England [4], and which has been
modified [5] to include address variables and some
features of PASCAL.

The output from the MLP compiler is assembly language
which was then passed to the assembler and loader [6].

4.1 Data Representation

Vectors are represented in a special floating point form,
with one exponent for the entire vector. The exponent is a
two's complement eight-bit number, and the elements are
two's complement, eight-bit fractional numbers. This method
of representing vectors simplifies scalar products, compared
to one exponent pér element, without excessive loss in

accuracy.

The test of whether overflow has occﬁrredcn:not as a result
of an addition is a rather complex operation on the 8008.

To avoid this problem the result of a multiplication is
always given as three eight-bit words. The two least signi-
ficant words are of course the product itself, while the
extra most significant word contains the sign of the result,

13

All three words then take part in the additions, and no
overflow testing is necessary until the last step when the

result is converted to a fixed point number.

The result of a scalar product is then a floating point
number with a three word two's complement mantissa, where
the decimal point is immediately to the right of the MSB of
the second word. The exponent is an eight bit two's

complement integer.

4.2 Program Flow

It is important that the time interval between the reading
of the process values and the writing of the controller
output is as short as possible. With the structure chosen

it is possible to perform a large part of the computations
in advance, i.e, during the previous sampling interval.

As can be seen from the controller expression (3.16) it is
only the terms yr(t)'p0 and y(t)'rO which cannot be computed

in advance. The program flow is thus as follows:

When DISCO 1s triggered by the clock the term yr(t)-p0 is
computed and added to the previously computed and added

to the previously computed value, Then the A/D converter is
read and the term y(t)-rO is computed and added. The
controller output is now complete and it is written on the
D/A converter. The vectors Ypr ¥ and u are then moved one
step upwards and the computations in preparation for the
next sampling instant are performed. Control is then trans-
fered to the operator's communication program OPCOM, which
runs as a background program when DISCO is idle., Since OPCOM
runs in an infinite loop reading the address switches and
displaying the contents, it is not necessary to saVve the
processor status on interrupt. OPCOM is simply restarted
when DISCO is finished.

14

4.3 DISCO Expressed in PASCAL

Since the PASCAL source program will never be passed to a
compiler, a few liberties has been taken with the seman-
tics. The deviations from the rules. of standard PASCAL

are:
1. A function may have a value of record type.

2. A variable of record type may be assigned a value
through a single assignment statement, in which case
all the fields get that value.

3. The character used as comment delimiter seems to vary
from implementation to implementation., Here the double

quote (") 1is used.

4, The data type WORD is considered predeclared. It
consists of one eight-bit number. It may represent

different things as shown below.

Some basic routines such as fixed point multiplication and
others are not suitable to express in PASCAL. In these

cases the program body contains just a comment describing

the action of the routine.

15

DISECOo

UN{SCRETE TIME CONTROLLER FOR SINGLE INPUT ~ SINGLE O0UTPUT
SYSTEMS"

SINGLE=WORD
"THE TYPE SINGLE REPRESENTS A FIXED POINT,TWO'S COMPLEMENT
FRACTIONAL NUMBER WITH THF DEC|IMAL POINT IMMEDIATELY TO
THE RIGHT OF THE SIGN BIT"
TRIPLE=RECORD #1,M2,M31WORD
"TR|PLE REPRESENTS A FIXED POINT, TWO'S COMPLEMENT REAL
NUMBER WITH THE DECIMAL POINT (MMEDIAYELY TO THF RIGHT
OF THRE MS88 OF M2"
END;
FLOAT= RECORD EXP3INTEGERS
MANTITRIPLE
END}
VECTOR=RECORD EXP INTEGER)
VIARRAYIO,.7) DF SINGLE

END G

YREF3$SINGLE: "REFERENCE VALUE, ADDRESS O"
PNUMe INTEGER? "LENGTH OF P, ADDRESS 1*
RNUMI INTEGERS "_ENGTH DF R, ADDRESS 2"
SNUMIINTEGER? "LENGTH OF S, ADDRESHS 3" :

SWITCH! INTEGERS "IF SWITCH=s0 THEN RUN THE REGULATOR ELSE
ZERD THE VECTORS YR,U,Y, THE TEMPORARIES
TP, TR, TS AND THE ANALOG OUTPUT,"

PIVECTOR; "FEEDFORWARD POLYNDOMIAL, ADDRESS 18"
RIVECTOR; "FEEDBACK PDLYNOM|AL, ADDRESS 20"
SIVECTOR: "REGULATOR DENOMINATOR, ADDRESS 30"
YRIVECTOR; "REFERENCE VALUES, ADDRESS 40"
YiVECTOR; "MEASURED VALUES, ADDRESS 50"
UIVECTOR "CONTROL VALUES, ADDRESS 60"

TP, TR, TSIFLOATE "TEMPORARY STORAGE™

NCTION SCAPR(A,B3IVECTOR: LENGTH: |INTEGER)! FLOAT:
: "COMPUTES SCALAR PRODUCT, IF LENGTH=0 THEN SCAPRI=0"
R Tt FLOAT: 1t INTEGERS "TEMPRARY STORAGEY
GIN =0
: {F LENGTH /=0 THEN BEGIN
T.EXPi=AEXP*+B,EXP}
FOR 1:=20 JO LENGTH=-1 DO
T MANT!=ADDS(MULTCA VI, B, VIE)) T MANTY
END ’
SCAPRI=

DCEDURE VMOVE(REF A: VECTOR) LENUTH! INTEGERY;

: UMOYES A VECTOR ONE STEP UPWARDS N MEMORY AND ZERPES
THE BOTTOM ELEMENT®

it INTEGER}S

I N IF LENGTH>0 THEN BEGIN
FOR 1:=LENGTH=-1 DOWNTO 1 DO
AJVM{I A V=113
Fub;
AJV{D]i=0

16

CTION ADD3(T1,T2% TRIPLEY! TRIPLE;
GIN “FIXED POIMT ADDITION® END;

CTION SUBF(F1,F21 FLOAT): FLOATY
GIN "FLOATING POINT SURTRACTION" ENDj

NCTION MULT(51,82: SINGLE)}! TRIPLES
GIN "FIXED POINT MULTIPLICATION" END;

INCTION ADIN: SINGLE;
GIN "READS THE A/D CONVERTER" ENDJ

DCEDURE DAOUT(SE SINGLE)S
IN MWRITES THE VALUE 0OF § ON THE D/A COMVERTER " END;

JNCTION FIX(Ft FLOAT)! SINGLES

GIN "CONVERTS A FLOATING POINT NUMBER TO A FIXED POINT
" NUMBER, IF THE CONVERSION GIVES OVERFLOMW

THE RESULT 1S SET PLUS OR MINUS FULL SCALE"®

:BCEDURE OPCOM;
‘GIN "OPCOM 1S THE OPERATOR'S COMMUNICATION ROUTINE

THROUGH WHICH MOST OF THE VARIARLES GET
THEIR VALUES"
b

CEDURFE INITS
; HIMITIALISATION PROCEDURE"
GIMN SWITCH:=
' YRi=

t=03

Ji=0}
TR, MANTI=0}
TR MANT =0}
TS MANT =0}
TP, EXP =P, EXP}
TR,EXP:=R,EXP}
TS.EXPt=5,EXP}
DAOYUT (D)

-

17

GIN "HMAIN PROGRANY |
1 iF SWITCH/=0 THEM INIT ELSE
REGIN

wOOMPUTE THE LAST TERMS OF YR#P, SUBTRACT THE PREVIQUSLY
COMPUTED U=S"

YR.VID1i=YREF}
TP MANT I 2ADRDI(MULT(YR, VID1,P,VI01), TP, MANT)
TP:=SUBF(TP,TS);

WREAD PROCESS VALUE,COMPUTE THE LAST TERM OF Y#R,
SUBTRACT AND WRITE THE CONTROL SIGNAL,"

Y, V{0):i=ADING

TR, MANT t=ADDICMULTCY, VIO, RWVI0]), TRy MANT)
TPt=SUBF(TP,TR)}

U, V03P IX(TP}}

DAOUT(U, VD))

"START GOMPUTING FOR NEXT SAMPLE"

VMOVE(YR,PNUM}
VMOVE (Y, RNUM) ;
TS1=5CAPR(U,S,SNUM)S
TPI=SCAPR(YR,P,PNUM)}
TR1=SCAPR(Y,R,RNUMI}
VMOVE (U, SNUM)
- END;
DPCOM

4.4 Memorv Requirements, Execution Times etc.

The total memory requirement for DISCO is 536 words. Of
these the main program occupies 150 words, the scalar
product 131 and the fixed point multiplication 96 words.
The driver program for the operators console takes 480
words. The total amount of program memory is thus approxi-

mately 1 k words,

The data requires some 60 words of RAM memory.

The execution time may be approximated by the linear

formula
t =10 +4p

where t is the execution time in ms and p is the number

of parameters.

The time between clock pulse and A/D conversion is 4.4 ms
and between A/D and D/A 5.3 ms. The fixed point multipli-

cation takes 2.4 ms.

18

5., EXPERIMENTS WITH DISCO

5.1 Test Examples

Two second order time-continuous systems has been chosen

as test examples.

System 1 (minimum phase):

1.213 + 0.0171 s
s(s+0.693)

G(s) =

A state space representation is

. ~0.693 0 1
X = X +

1.2901 t] 0.0171
v=1(0 1) %

which gives the following diagram for analog computer

simulation:
__J/’\\ 1[::>>—————
_/
M)
/

0

U o

o

0.6

20

A sampled-data representation of this system with sampling

period 1 sec. is

1 2

+ 0.375 g
1yo.5 g

B*(q 1) _ 0.5 g
A¥(g Yy 1 - 1.5 g

1

H* (g 7) 5

with the following pole-zero configuration:
& m

/ |)
ki:i\“‘ 0.5 Re

System 2 (non-minimum phase) :

G(s) = L2213 - 1.889 s

s{s +0.693)
State space representation:
. -0.693 0 1
X = X +
2.522 0 -1.889
y = (0 1) x

N\
A/
0.945 :
1 , /\ 1
10
1 U/
0.252

20

21

Sampled data representation:

_ -1 -2
H* (g l) _ =0.875 g + 1.75 ¢
1-1.5qgL+0.5 g2
Péle—zero configuration:
&im
- & »
0.5 2 Re

The equation system for the pole placement problem for
system 1 is

1 0.5 0 S, dl-+l.5
~-1.5 0.375 0.5 g | -= dz-O.S
0.5 0 0.375 ry d3

where di are the coefficients of the desired closed loop
characteristic polynomial.

For system 2 the equation system is

1 -0.875 0 Sy dl-+l.5
-1.5 1.75 -0.875 g = dz-O.S
0.5 0 1.75 ry d3

An integrating regulator for system 1 is obtained as
follows:

A(q) = (g-1)A(q) = (q®~1.5q+0.5) (g=1) = q° - 2.5q% + 2q - 0.5

The eguation system is then

1 0.5 0 0 EN) (d; +2.5)
-2.5 0,375 0.5 0 ro | | dy-2

2 0 0.375 0.5 r)) d; +0.5
-0.5 0 0 0.375){ r, | L4,)

and the S-polynomial becomes

s(a) = (g + 53) (q-1)

5.2 Criteria for the Pole Placement

For continuous time system the criteria for the pole
placement are well known: the real part of the rightmost
poles determine the resolution time, and the angle
between the negative real axis and the line from the
origin to the dominant poles determine the damping. It

is less well known that similar criteria exist for
discrete time systems. In this case the critical curves
are obtained by mapping two sets of straight lines by the
map e—STO where Ty is the sampling period. The first set
is the line of constant real parts, which is mapped as
circles. The second set is the locus of equal damping,
i.e. straight lines from the origin. The image of this set
consists of logarithmical spirals. See fig 5.

The parametrization of the spirals is damping values and

of the circles the corresponding real part.

With this set of curves available it is guite simple to

decide suitable positions for the closed loop poles.
1. Fix the damping for the dominant pole pair.

2. Determine the desired resolution time. This involves

a compromise since the shorter the resolution time is,

22

23

the larger control signals are necessary. These two

points give the position of the dominant poles.

3. Place the remaining poles on the real axis closer
to the origin than the dominant poles. Again the
closer to the origin the poles are placed, the larger

the control signal becomes.

5.3 Test results

The following pages show the step responses for the test
systems with various positions for the closed loop poles.
In all the examples the observer pole has been placed in

the origin.

Fig 5. Images of constant damping and constant real part.

Regulator:

P*(q_l)
R*(q-l)

s* @™ h

0.388

0.633 - 0.245q

1~ 0.183q

1

1

'y
y.u
0.5+
O_..
4
L 1 { T T] T T I |
0 5 10
System 1. Damping 0.7. Circle -0.5.
Poles in 0, 0.5 % i0.3
Characteristic polynomial gq- - g2 + 0.34g

24

25

yuas
0.5 y
0 u
-0.2¢ 1 1 1 f »
3] } ' é T ' ! 1'!:) l 1

=

System 1. Damping 0.7. Circle -1.
Poles in 0, 0.2 ¥ i0.3
Characteristic polynomial q3 ~'0.4q2 + 0.13¢g

Regulator: B*(q_l) = 0.835

R*¥(q" 1) =1.381 - 0.546g L

s*igh) =1 + 0.410q" "

26

y.u
Y
0.5
u
-0.5] T T T T T T T 1 »
0 0.5 10 t
System 1. Damping 0.7. Circle -2.
Poles in 0, -0.05 + io0.15

Characterigtic polynomial q3 + 0.lq2 + 0.025g
-1

P (q)
* —

R (g 1y

S*(q—l)

1.286

Regulator:
1

2.051 - 0.766q
1

1+ 0.574q

27

> 5 4
| O
=
) —
» 1
o
.M
R
. ~
-
o
0
: - s
<+ W o
: <+
LD s~ 0 A+
[TR T
-
o
- -~ il 1] 1l
- Ml o~ e~ e~
O —H e
= N
c o v ¢
P(ll\ll\
C I .
- ~ N M oWm
l
L
| oo
. l.m
A B A A s e o g
=2 .y o L0 33
> O =) Cwm
I o Q :
n m

28

&
N L.
O
-
rd
= [
oy
(o}
W
- >
O
o ™M
o
. [e
T S
=< o
B e —~A o +
[on R T |
nl?_l
—i0 ol I 1
M o~ o~ o~
| G ~ e~ -
L T
o o o o
. pf!\(l..\
| S T
- 4 M own
—
fay
. N
™~ 0
[il
E o
Qe
h B
. 1 o tn
> A
% n o

System 1. Dead beat, i.e. poles in -0.75, 0, 0.

Regulator: P*(q_l) = 2.0
R*(q_l) = 3.0 - l.Oq_l
s¥ (gl = 1.0 + 0.75q *

Notice that in this case the step is only 0.25.

29

y.u4
0.5 '
i Y
0 U
-0.5 T 1 T T] ; T T T] —®
0 5 10 t

System 1 with one step time delay. All poles in 0.

Regulator: P*(q"1) = 1.143
R (! = 2.06 - 0.943g7%
* _1 - -
S (q7Y) =1+ 1.5q"1 + 0.707¢ 2

30

31

6. REFERENCES

[1] D Luenberger: An Introduction to Observers. IEEE Trans
Automatic Control AC-16 (1971) No,6

[2] B van der Waerden: Algebra. Springer Verlag 1971

[3] K Jensen, N Wirth: PASCAL. User Manual and Report.
Springer Verlag 1975

[4] Bishop, Parish, White: A Medium Level Programming
Language for Microprocessors. Report RD/L/R 1882,
Central Electricity Research Laboratories

[5] J E Aspeniis: Medium Level Programming Languages for
Microprocessors. Report RE-177, May 1976, Dept of

Automatic Control, Lund Institute of Technology

[6] I Andersson: Cross Assembly and Relocation of Programs
for the Intel Microprocessors Using a PDP-15 as a

Host Computer. Report 7602 Dept of Automatic

Control, Lund Institute of Technology.

- APPENDIX A

- DISCO PROGRAM LISTS

gome of the programs are written in the programming
language MLP. This language contains some of the normal
high level statements like assignments, loops, if-state-
ments etc, which need no explanation. However, the
language also contains statements at a lower level, which
may be more difficult to understand at a first glance.

Some examples with explanations are given here.

REG B = 4+L-1 First decrement reg L, then use the
contents of a L as an address and locad B with the

contents of this cell.

CALL SUB<...> Tn this case the statements within
brackets are performed as a preparation before the

subroutine call.

REG D+ TEMP Register D is loaded with the address of
the variable TEMP.

%= means "not equal to"
REG 4C =D Use C as address and store the contents of D

in this address.

A2
Disco oo1 PAGE 1

PROGRAM DI(SCO
GENERAL SINGLE [NPUT-SINGLE OUTPUT REGULATOR
AUTHOR LEIF ANDERSSON 1976-04-27

THE FOLLOWING COMMENTS DESCRIBE THE DATA BASE N THE

NOTAT|ON OF THE PROGRAMMING { ANGUAGE PASCAL, THE YYPE "WORHK" S
CONS|DERED PREDECLARED, 1T CONS|STS OF ONE EI{GHT BIT WORD,

AND |7 MAY REPRESENT DIFFERENT QUANTITIES AS DESCRIRFD wFLNW,
THE DOUBLE QUOTE, " , IS USED AS A COMMENT DELIMITFR

WETHIN THE PASCAL NOTATION,

SINGLE=WORD
"THE TYPE SINGLE REPRESENTS A FIXED POINT,TW0!'S COMPLEMENT
FRACTIONAL NUMBER WiTH THE DECIMAL POINT |MMEDIATELY TO
THE RIGHY OF THE SIG6N BITY
TRIPLE=REQORD Mi,M2,M3ItWORD
"TRIPLE REPRESENTS A FIXED POINT, TWO'S COMPLEMENT REAL
NUMBER W{TH THE DECIMAL POINT IMMEDIATELY TO THF RIGHT
OF THE MSR OF Mpn
END;
FLOAT= RECORD EXP!INTEGER;
MANTSTRIPLE
END; ‘
VECTOR=RECORD EXP3 INTEGER
VIARRAYI[O,,7) OF SINGLE

END;

YREF!SINGLF} "REFERENCE VALUE, ADDRESS av
PNUM! |NTEGER} "LENGTH 0OF P, ADDRESS 1n
RNUMt INTEGER WLENGTH OF R, ADDRESS 20
SNUMI INTEGER? " ENGTH 0OF §, ADDRESS 3¢

SWITCH INTEGERS MIF SWITCH=0 THEN RUN THE REGULATOR ELSE
ZFRO THE VEGTORS YR,U,Y, THE TEMPORARIES
TP, TR, T8 AND THE ANALCG QUTPUT,"

PIVECTOR; "FEEDFORWARD POLYNOMIAL, ADDRESS 10v
RiVECTOR: "FEEDBACK POLYNOMIAL, ADDRESS 20"
SIVECTOR; "REGULATOR DENOMINATOR, AUDRESS 30
YRIVECTOR} "REFERFNCE VALUES, ADDRESS 40"
YIVECTOR: "MEASURED VALUES, ADDRESS 5S0Y
UIVECTOR; "CONTROL VALUES, ADDRESS 60"

TP, TR, TSI{FLOAT “TEMPORARY STORAGE™
PASCAL NOTATION

SURROUTINES REQUIRED? SCapPR, FIiX, VMOVE,FLOAT,ADSUB,
SHIFT,LBST, MULT

BANK 036

WORDS YREF,PNUM,RNUM,SNUM,SW|TCH

HORDS P*010,PVI{7),R,RY({7),8,3V(7]

HORDS YR,L,YRVIZ71,Y,YVI7),U,Uv17]

WORDS TP[41,TR{4),T7S5{4)

GLOBAL MULT,ADD3,8UBF,STNORE4,RSUBF,F IX,YMOVE,SCAPR
GLOBAL OPCOM,INIT

SAME BANK

BANK S 036

DISCO 001 PAGE 2

IF 0%=8W|TCH THEN
CALL INIT
ELSE

COMPUTE THE LAST TERMS OF YR#P, SUBTRACT THE PREVIOUSLY
COMPUTED U«%S,

REG DsYREF
YRV{O)I=REG D

CALL MULTLKE=PYI[Q)>
CALL ADD3<LtTPI31>
REG R=aetl+~1

CALL SUBFCL+TS>
CALL STORE4<L*TP>

READ PROCESS VALUE AND COMPUTE THE LAST TERM QF Y#*R

QUTPUT(22)=A3 START A/D CONVERS|ON
REG ND=RV{O0}

REG LtyYVIO]

E=iNPUT(2)} GET A/D VALUE

REG tL=E

CALL MULT

CALL ADD3CL*TRIS)>

REG H=tL -1

CALL RSUBF<CLtTP>

CALL FIX

QUTPUTI(23)=D WRITE ON D/A
UytDI=REG D

START COMPUTING FOR NEXT SAMPLE

GALL VMOVEZEtYRVIQ},LtPNUMD
CALL VMOVECE®tYV{O],L*tHRNUMD>
CALL SCAPRCC*SNUM,D*S,EeUD>
OALL STORE4<L*TS>
CALL SCAPRLCHPNUM,DtP,E+YR>
CALL STORE4CLtTPD>
CALL SCAPRCCHRNUM,DtR,ErY>
“GALL STORE4<L*TR>
CALL VMOVELEtUVIO],LrSNUMD
END
GOTQ OPCOM
FiN|SH

e e e e e b

A4
INFT 001 PAGE 1

PROC INIT
IiNITIALIZATION ROUTINE FOR DISCOQ

AUTHOR LEIF ANDERSSON 1976-04~26

THE ROQUTINE WilL ZERQ THE DATA BANK FROM YR AND UP (SEE
DISCO FOR A DESCRIPTION OF THE DATA BASE), THE EXPONENTS
OF THE TEMPORARIES TP, TR AND TS WILL THEN BE SET FQUAL TO
THE EXPONENTS OF P,R,S,

WORDS SWITCHt04,Pt010,R+020,5¢030,YR*+040
WORDS TP*070,TR*074,TS+0100

GLOBAL INIT

SAME BANK

REG LtYR

REG A=0

WHILE Axs[, DO
REG tL=A
REG L=bL+1

ENDWHILE

QUTPUT(23)=0

SWETCH=D

TR=P

TR=R

TS=S

ENDPROC

FINISH

A5

SCAPR 003 PAGE 1

PROC SCAPR
SCALAR PRODUCT OF TWO VECTORS IN THE SAME RANK
AUTHOR LEIF ANDERSSON 1975-11-20

ENTRYt C+ VECTOR LENGTH

pt FIRST VECTOR

E+ SECOND VECTOR
EXIT?3 R=EXPONENT OF RESULT

CDE=MANT|S5A OF RESULT
REGISTERS AFFECTED
HIGHEST FREE CELL? 367
SUBROUTINES REQUIRDED

MULT

ADD3

LOAD4

STORES

STOREA4

WORDS COUNT([4])%0370,TEMPI4)

GLOBAL LOAD4,STORE3,STORE4,ADDI,MULT
GLOBAL SCAPR

SAME BANK

ZERD THE TEMPORARY STORAGE

REG B=n
REG L *tTEMP
PUSH *{+1=RB,B,R,8

TEST FOR ZERC LENGTH

REG C=tC
IF 0%=C THEN

COMPUTE AND STORE EXPONENT

REG A=t])
RES | =t
TEMP=A+M

REPEAT
INCREMENT AND SAVE COUNT AND POINTERS

REG B=H+l

REG D=D+1

REG E=E+1 _

CALL STORE4<L*tCOUNTD

CALL MULTLD=+D,E=tED
CALL ADD3ILKLtTEMPES)D>
CALL STORES3
CALL LOADECL+COUNT>
UNTHL B=sC
END
CALL LOADACL*TEMPD
ENDPROC
FINISH

FixX oo2

+TITLE Fix 002
- SUBROUTINE FIX

CONVERTS A FLOATING POINT NUMBER TO A FIXED POINT
FRACTIONAL ONE WORD NUMBER. |F THE PROCESS GIVES

AUTHOR LEIF ANDERSSON 1974~11-20
REV|SED LEIF ANDERSSON 1975-01=-02

FNTRY! B = EXPONENT
CDE = MANT|SSA

EXIT A = S|IGN OF NUMBER (0 DR ~-1)
D = RESULT

L = SIGN OF NUMBER
REGISTERS AFFECTED! AR,C,D,E,L
H{GHEST FREE CELL: 377
SURROUTINES REQUIRED

SHIFT

+EJECT
GLOBL FIX
+GLOBL RSHIFT,LSHIFT

SET L=0 DR -1 DEPENDING ON THE S$1GN OF THE MANT{SSA

1X LAC
RAL
SBA
LLA

CHECK IF RIGHY OR LEFT SHIFT

XRA
CPR
JTZ ROUND
JFS RLOOQP

LEFT SHIFT. CHECK FOR OVERFLOW |N EACH STEP,
IF C <>L OVERFLOW HAS OCCURED,

LAC
LOOP CPL /ASC ON RETURN FROM LSHIFT
JFZ 0FLO
CAL LSHIFTY
JFZ LLDOP /THE FLLAGS ARE SET BY DCR N LSHIFT

RIGHT SHIFT

LooP CFZ RSHIFT
' JFZ RLOOP /THE FLAGS ARE SET BY INB IN RBHIFT

ROUND OFF C AND D

QUND LAE
RAL
LAB /B CONTAINS ©
ACD
LDA
LAB
ACC
LCA

PAGE 1

OVERFLOW THE RESULT IS SET PLUS OR MINUS FULL SCALE,

A6

A7

FiX 02 PAGF ?

JCHECK FOR OVERFLOW. |F BOTH G20 AND D=0 THE RESULT 1S
ZER0 REGARDLESS OF THE VALUE OF L

LAC
ORD
RTZ

/IF € <> L, OVERFLOW HAS OCCURED
LAC

CPL
JFZ OFLO

LATD
XRL
: RFS
/
/OVERFLOW
/
pFLO LAl 177
SUL
L.BA
RET

+END

A8
VMOVE 003 PAGE 1

PROC VMOVE
MOVES A VECTOR ONE STEP UPWARDS IN MEMORY, THE TOP ELEMENT
IS LOST AND THE BOTTOM CELL IS ZEROED, -

AUTHOR LEIF ANDERSSON 1975-12~05

ENTRY: E*+ BOTTOM ELEMENT
L+ VECTOR LENGTH
EXIT: Lt BOTTTOM ELEMENT
REG|STERS AFFECTED: AE,L
SUBROUTINES REQU|RED
NONE

GLOBAL VMOVE

REG A=M
RETURN I[F A=s0O
REG L=E
REG E=A
LzA+L
REG L=L-1
LOOP
REG E=zE-1
EXIT IF ZERO TRUE
REG A=t -1
REG tL+1mA
REG L=L-1
ENDLOOP
REG M=0
ENDPROC
FINISH

A9

FLOAT 001 PAGE 1

SUBRROUT INE ADDF

SUBROUTINE SUBF

SURROUT INE RSUBF

FLOATING POINT ADD,SUBTRACT AND REVERSE SUBTRACT
AUTHOR LEIF ANDERSSON 1975-11-27

ENTRY!: BCDEFFIRST TERM

L.t SECOND TERHM
EXIT? BCDE=RESULT
REGISTERS AFFECTEDt ALB,C,0,E,L
HIGHEST FREE CELL?Y 373
SUBROUTINES REQUIRED

LOADA4

STORE4

RSHIFT

ADD3

SUB3

RSUB3

e we ey we me we Wwa lee lem

e tee we ek WA WS Wa MR we we

WORDS TEMP([41t0374

SAME BANK

GLOBAL LOAD4,STORE4,RSHIFT,ADD3,8UB3,RSURB3
GLOBAL ADDF,SUBF,RSUBF

PROC ADDF
CALL ASSET
CALL ADD3
ENDPRGC
PROC SUBRF
CALL ASSET
CALL RSUBS
ENDPROC
PROC RSUBF
CALL ASSET
CALL SUB3
ENDPRQC

-

PROC ASSET

{ OCAL PROCEDURE TO PERFORM THE NECESSARY SHI|FTS,

ASSET WILL PUT THE SHIFTED FIRST TERM IN TEMP AND LEAVE
THE SHIFTED SECOND TERM IN THE REGISTERS

[

WHILE B<M DO

CALL RSHIFT
ENNWHILE
REG A=l

CALL STOREACL*TEMP>
CALL LOAD4LL=A>
REG L*tTEMP
WHILE BA=M DO

CALL RSHIFT
ENDWHILE
REG LtTEMP[3]
ENRPRQC
FINISH -

AlQ
ADSUB BQ2 PAGE 1

SUBROUT INES ADD3, SUB3
ADDS OR SUBTRACTS THREE~WOKRD NUMRERS
AUTHOR LEIF ANDERSSON 1974-02-06

ENTRY! FIRST TERM IN C,D,E
ADDRESS OF SECOND TERM IN H,|
EXIT! RESULT IN C,D.E
ADDRESS OF LASYT WORD OF SECOND TERM IN H,L
REGISTERS AFFECTED: A,C,D,E,L
SUBROUTINES REQUIRED
NONE

GLOBL ADD3,SUB3,RSUB3
pn3 LAE
ADM
LEA
DEL
LAD
CACH
LA
DecL
LAC
ACM
LCA
RET
UB3 LAE
SUM
LEA
DCL
LAD
SBM
LDA
BpeL
LAC
SBH
LCA
RET
SUB3 LAM
SUE
LEA
DCL
LAM
SBD
LDA
peL
LAM
Sg6
LCA
RET
END

All
SHIFT 001 PAGE 1

SUBROUTINES RSHI|FT, LSH{FT

SHIFTS A THREE-WORD MANTISSA OME STEP RIGHT OR LEFT AND
CHANGES THE EXPONENT ACCORDINGLY,

AUTHOR LEIF ANDERSSON 1974~03-04

ENTRY: EXPONENT N B,
MANTISSA IN C,D,E,
EXIT! EXPONENT N B,
MANTISSA IN C,D,E
REGISTERS AFFECTED: A,B,C,0D,E
SURROUTINES REQUIRED
NONE

»GLOBL RSHIFT,LSHIFT
SHIFT LAC
RAL /SIGN BIT INTQ CARRY
LAC
RAR
LLCA
LAD JSHIFY D
RAR
LDA
LAE /SHIFT E
RAR
LEA
| MR /INCREMENT EXPONENT
RET
SHIFT XRA /Z2ERO CARRY
LAE /SHIFT E
RAL
LEA
LAD /SHIFT D
RAL
L.DA '
LAC /SHIFT C
RAL
LCA
nei /DECREMENT EXPONENT
RET
+END

Al2
LDST 001 PAGE 1

SUBROUTINES LOAD4, LOADI, STORE4, STORES
.LOADS OR STORES B,C,D,E OR C,D,E
AUTHOR LEIF ANDERSSON 1974=-02-06

ENTRYt ADDRESS OF FIRST WORD IN H,L
SURROUTINES REQUIRED :
NONE

LGLOBL LOAD4,L0ADI,STORE4,STORES
.BM :
INL

LCHM

I NL

LDM

INL

LEM

REY

LMB

INL

LMC

INL

LMD

INL

LME

RET

+END

Al3
MULT 001 PAGE 1

+TITLE MULT 001

SUBROUTINE MULT

MULTIPLIES EIGHT=B1T, TWO!'S COMPLEMENT FRACTIONAL MUMBERS
AUTHOR LEI|F ANDERSSON 1974-03-19

ENTRY: NUMBERS [N D AND E
EXIT RESULT IN N AND E, C IS 0 IF RESULT 15
POSITIVE AND -1 F RESULT |S NEGATIVE.
REGISTFRS AFFECTED: A,&,C,D
SUBROUTINES REQUIRED
NONE

+EJECT
yGLOBL MULT
SETUP PHASE
/CHECK |F RESULT IS ZERO, IF S0 SET RESULT AND RETURN
MULT XRA
crD
JTZ 7ERO /1F D JEG, 0 GO TO ZEROC
CPE
- JFZ NOZER IF E +NE, 0 G0 T0 NOZER
S ZERO LCA /C=D
LDA /D=0
LEA /E={
RET
/COMPUTE SIGN 0OF RESULT, STORE N B,
NGZER LRA
LCA
LAD
¥RE
RAL
LAB
SBB
: L BA
- /REPLACE NUMBERS WITH MAGN|TUDES,
: LLAC /A=
SUD Jhe=D
JTS DOK /Z4{F D 2>=0 GO TO DOK
LDA /D==D
DK LAC
SUE
JTS STEPS
. LEA
L /SHIFT AND ADD USING SUBROUTINE STcP
- STEPS XRA /Ahe0
: LAl STEP
CAlL STEP
CAL STEP
CAL STEP
CALL STEP
CAL STEP
CAL STEP
CAL STEP
/AAGNITUDE OF RESULT 1S IN A AND U, MOVE TO D AND E
LED
LDA
/CHANGE Si1GN IF NECESSARY, RETURN
LCR
XRA
LBA
CPC

Al4
MULT 001 PAGE 2

RTZ
SUE
LEA
LAR
S8D
LDA
_ RET /RETURN
/
/SUBROUTINE STEP
-
/SHIFT A AND D ONE STEP RIGHT
STEP RAR
LCA
LAD
RAR
LDA
/1F CARRY =1 THEN ADD, ELSE RETURN
LAC
RF
ADE
RET
+END

APPENDIX B

OPCOM Program Lists

Bl

OPCOM SRC PAGE 1
/ ROUT INE OPCOM
/
/ DRIVE ROUTINE FOR THE OPERATORS CONSOL
/ USED W!TH THE MICRO COMPUTER [NTEL 8008,
/ .
/ AUTHOR HILDING ELMQVIST 1973=10-16
/
/ SUBROUTINE REQUIRED
/ 0B
/ INTDR
/ FRACHB
/ RO
/ INTBD
/- FRACBD
/
,GLOBL 08,B0,INTBD, INTDR,FRACDB,FRACBD
/
RHADR=117
RLADR=115
RSW=113
ROAT1=111
RDATZ22107
/
WDiS1=163
WD1S2=161
/
SAVE=200
RAMBNK=37
/
/
OPLOM LHI RAMBNK
RSH
RRC / CARRY = [IN=BUTTON
JTEC DISP
/
/
/:."-'::==:::===’-"===.'.'==:::::::::::::::::::::::===========:=:===:‘:::::::::
/
/
/ INPUT SECTION
RDATYH
LL1 SAVE
LMA / SAVE SIaN
ND | 017 / MASK DUT 1:8T DIGIT
LEA ' / B = 1187 DIGIT
RDATZ
LDA
ND1 360 / MASK QUT 2:ND DIGIY
RRC
RRC
RRC
RRC
LCA / 0 = 2!ND DIGIT
LAD
NI 017 / MASK QUT 3:tRD DIGIT
LDA / Doz JIRD DIGIT
/
RSKW
RRC

RRC / CARRY = oCT - DEC SWITCH

B2

OPCOM SRC PAGE 2
JEC 0CTL
/
/ DECiMAL
RRC 7 / CARRY = |NT = FRAC SWITCH
JFC INTZ
JMP FRAC1
/
0CT1 Cal. 0B
JMP SET
INT1 CAL INTDB
JMP SET
FRAC1 CaL FRACDB
/
/
SET LEA / E = BINARY VALUE
LHI RAMBNK
Li| SAVE
XRA /A= 0
ADM / GET SIGN
JES ADR
XRA
SYE / CHANGE SIGN
LEA
/
ADR RHADR / GET ADDRESS
LHA
RLC / ERROR 7
JEC OPCOH
RLADR
LLA
LME / ASSIGN
LHI RAMBNK / RESET HIGH ADDRESS
JMP OPCOM
/
/
/:::::::::::::::::::==:::=::===::::::::::::::::::::::::::::::::::::::
/
/
/ DISPLAY SECTION
DISP RHADR / GET ADDRESSS
LHA
RLC
JFC ERROR
RLADR
LLA
/
LEY 000
RSU
RRC
RRG / CARRY = NCT - DEC SW{TCH
JFC 0CcTZ2
/
/ DEC IMAL
RRC / CARRY = [NT = FRAC SWI|TCH
JFC iNT2
JMP FRAC?
/
/
0CcT2 RRC / CARRY = INT - FRAC SWITCH
JFC 01

nRE / LIGHT

B3

OPCOM SRC PAGE 3
01 RRC / CARRY = SIGNED « UNSIGNED SW!TCH
LAM
cTcC SIGN
LLE / SAVE E N [
CAL BO
LAL
JHP PACK
/
/
INT2 Cal. S{GN
CaL INTBD
LAE
JMP PACK
/
/
FRAC? LAM / TEST |f BINARY VALUE = 200 (-1,000)
CPI 200
JFZ Fi
LB 160 / LIGHT -1,
LCI R
JMP DISPL
/
Fi1 CAlL SIGN
LLE
CAL FRACBD
LHA RAMBNK / RESET HIGH ADDRESS
LAL
OR | 0260 / LIGHT |
JHMP PACK
/
/
PACK ORB
LBA / B s FR
LAC
RLC
RILC
T RLE
RLC
ORN
LCA /0 =D
JMP DISPL
/
/
ERROR LB 017
LC | 377
y .
/
DISPL LAR
WDiS1
LAC
WD1S2
JMP QPCOM
/
/
/ __
/
/

SIGN XRA / GET RINARY VALUE

POSITIVE

LAE
ORI
LEA
LAM
RET

300

NEGATIVE

LAE
ORI
LEA
XRA
SUM
RET

JEND

100

/ LIGHT +

/ LIGHY =~

/ A=
/ CHANGE SIGN

OPCOM SRC

B4
PAGE 4

B5

BO SRC PAGE 1
/ SUBRDUTINE B0
/ :
/ CONVERTS BINARY VALUE TO OCTAL DIGITS,
/
/ AUTHOR HILDING ELMQVIST 1973~108-16
/
/ A ~ BINARY VALUE (INPUT)
/ B - RETURNED 1:ST DIGIT
/ C - RETURNED 2IND DIGIT
/ D - RETURNED 3iRD DIGIT
/ E ~ INTERNAL USE
/
/
.GLOBL BO
BO LEA / E = A
ND) 300 / GET 11ST DIGIT
RLC / SHIFT
RLC
LBA / B = 11ST DIGIT
/
LAE
ND | 070 / GET 2:ND DIGIT
RRC / SHIFT
RRC
RRC
LCA / C = 2¢ND DIGHT
/
LAE
ND | 007 GET 3:RD DIGIT

N

LDA

D = 3iRD DIGIT

e e L T T Y

D~

0B SRC

SUBROUTINE 0B
CONVERTS OCTAL DIGITS TO RINARY VALUF

AUTHOR HILDING ELMQVIST 4973~10-16

A - RETURNED BINARY VALUF
A - 11ST DIGIT C(INPUT)
C - 24ND DIGIT C(INPUT)Y
n = 3IRD DIGIT C(INPUT)
E - INTERNAL USE
+GLOBL OB
LAB / A = 18T DIGIT
RRC
RRC
NDH 300 / A7,A6 = 1:18T DIGIT
LEA
LAC /A s 2iND DIGIT
RLC
RLC
RLC
ND} 070 / A5,A4,A3 = 2iND DIGIT
ORE
LEA
lLAD / A = 3IRD DIGIT
ND | 007 / A2,A1,A0 = 3iRD DIGIT
ORE
RET

END

Bé6
PAGE 1

FBD SRC PAGE 1

SURROUT [NE FRACHD

COMVERTS BINARY VALUE CONS{DERED AS FRACTIONAL NUMBER
TO DECIMAL DIGITS

AUTHOR LENMART NILSSON 36,05,73
REVISED HILDING ELMUVIST 1973-10-17

FNTER MITH X iN REG A

EXIT WiTH DECIMAL NIGITS |IN REG AS FOLLOWS
X = ,8CD

REGISTERS AFFECTED A,B,C,D.E,H

R T T e Y

(GLORBL FRACRD
FRACBD LBI 0
.CH
DR
LEB
RLC
RLC / CHECK SECOMD BIN, DIGIT
JFC NULZ
LB nos5 / 1F.EQ,1 Hz=R2B
NUL2 RLC / CHECK DIGIT &
JFC NUL3 ’
LG 805 / IF.ER,1 H=8+2, C=C+5
| NR .
INB
NUL3 RLC / GCHECK NiGIT 4
JFC NUL 4
LD 8os / IF.E01 B=RB+i, C=C+2, D=D+5
| NB
INC
INC
NUL. 4 RLC / OHECK DiBIT 5
JFC NULS R P
LE] 005 / IF.EN,L C=C+6, D=D+2, E=E+5
LHA
LAt 006
ABC
LCA
IND
i ND
LAH _
NULS RLC / CHECK DIGIT &
JFC NUL &
INC / IF,EQ,1 C=C+3, D=D+1, E=zFE+3
ENC
ING
IND
INE
INE
INE
NUL6 RLC / CHECK DiGIT 7
JFC NUL7
INC / IF,EQ,1 C=C+1, D=D+5, CzF+bh
LHA
LAY Dos
ADD
Lba

B8
F80D SRC PAGE 2

LAl 004
ADE
LEA
LAH
NUL7 RLC / CHECK DIGIT 8
JFC NUL 8
LHA !/ IF.EQ,1 H=z=D+7, E=E+R
LAl 007
ADD
LEA
LAI 010
ARE
LEA
NULSE LAE
ADI 0Dgs
REGE CPI 012
JTS REGD
Syt 612
IND
JMP REGE / DO IT AGAIN
REGO LEA
LAD
{L.OOPD CPI niz / CHECK iF D.GT.10
JTS REGC ..
Sul 012 / {F.GT,10 D=D=-10, C=C+1
ING
JMP LOORD /Z N IT AGAIN
REGGC LDA
LAC
CrI 012 / CHECK IF C,GT,10
JT8 READY
S piz2 / I1F.GT,10 C=C~-10, B=B+1
INR
LCA :
READY XRA / REG A=D
RETURN RET
+END

REG E=F+5 FQR CORRECT LAST
RECIMAL DIGIT
CHECK IF E,GT.10

NN

~

IF,GT,10 E=E~10, D=D+1

B9

FDR 8RC PAGE %
/ SURRDUT INE FRAGDR
/
/ CONVERTS DECIMAL DIGITS TREATED AS FRACTIONAL MUMRBER
/ TO BINARY VALUE,
/
/ AUTHOR LENMNART NJLSSON 94,05,73
/ REVISED HILDING ELMQVIST 1973-10-17
/
/ ENTER WITH DECIMAL DIGITS |N REGISTER
/ AS FOLLOWS X=,BCD
/
/ EXIT WITH BINARY CODED X IN REG A
/
/ REGISTERS AFFECTED A,B,C,D,E,H
£
.GLORL FRACDB
FRACDB XRA / PUT ZERQ N
LHA / ADD~REG E AND H
LEA _
DiGY oks! / FIRST DEC, DIGIT
JT8 DIG2 / TEST IF DJGIT WAS ZERQ
LA 314 / ADD DEC. 0.1 IN DOUBLE PREC TQ F,H
ADH '
LHA
LA 014
ACE
LEA
. JMP DiGL Z DO T AGAN
niGe pee / SECOND DEC, DIGIT
JTS DIG3 / TEST IF UIGIT WAS ZERD
LA 107 / ADD DEC, 0,01 TO E AND H
ADH
ILHA
LAY 001
AGFE
LEA
JHMP BIG2 / DO |IT AGAIN
DIG3 nen / THIRD DIGIT
JTS READY / TEST {F D{GIT WAS ZERD
LAl 040 / ADD DNEC 0,001 TO E AND H
ADH
LHA
LA 000
ACE
LEA _
JMP DIG3)
READY LAH / GET MOST SIGNIFICANT DIG|T FROM REG, H
RLG
LAl 000
ACE / ADD WITH CARRY
RET

END

B10

INTRD SRC PAGF 1
/ SURRODYTINE INTHD
/
/ CONVERTS BINARY VALUE TREATED AS INTEGER 7O DECIMAL DIGITS
/
/ AUTHOR LENNART NILSSON 08,05,73
/ REVISED HILDING ELMQVIST 1973-10-17
/
/ ENTER WITH X [N REG A
/
/ EXIT #WiTH DECIMAL DIGITS |IN REG
/ AS FOLLOWS: X = BCD
/
/ REGISTERS AFFECTED A,8,C,D
/
LGLOBL INTHD
INTBD LB G6oo / B =D
LCB / Cc =0
REGD Cpi 012
JTS REGC
SuUl 012
INC
JMP REGD
/
/ C = X/012 3 A = X-Cx012
REGC LDA
LAC
CLOOP crPi 012
JTS READY
Sul 012
INR
JMP CLOOP
/
/ B = /012 1 A = C-C#012
READY LCA
RET

+END

B1l1l

INTDB SRC PAGE 1
/ SUBROUT INE INTDB
7 :
/ CONVERTS DECIMAL DIGITS TREATED AS [NTEGER TO BINARY VALUE
/
/ AUTHOR LENNMNART NILSSON 08,05,73
/ REVISED HILDING ELMQV|ST 1973~-10«17
/
/ ENTER WITH DECIMAL DIGITS IN REGISTER AS
/ FOLLOWS X = BCD
/
/ EXIT WITH BINARY CODE IN REG A
/
/ REGISTERS AFFECTED A,B,C,D
/
»GLOBL INTDB
INTDR XRA
DIG1 DCR
JTS D162
AD| 144
JMP 0iG1
DlGe Decc
JTS DIG3
ADI 012
JMP D162
DIG3 DCDh
JTS READY
A1 001
JMP DIG3
READY RET

»END

APPENDIX C

A SUMMARY OF THE THEQRY FOR REDUCED ORDER STATE OBSERVERS

Consider a completely observable system
x{t+l) = ¢ x{t) + r u(t)
y(t) = 0 x(t)

where ¢ is nxn, T is nxl and 0 is lxn. Assume that 0 is
of the form [1 0 0...01]. 1If this is not the case
originally, a simple transformation will bring the system

toc the desired form. Partition the state vector into x

1
of length 1 and x, of length n-1:
®q (£+1) ¢ ¢ xq (t) r
1 _ 11 12 1 N L N
xz(t+l) ¢2l 955 xz(t) Ty

y(t) = (1 0 ..0)x

Since Xy =y, a full order observer for X, will also
constitute a reduced order observer for x. The following

lemma will be needed:

Lemma. If the pair [¢,0] is completely observable, then
so is the pair I¢22,¢12].

Proof. Let xl(O) = 0 and u(t) = 0. If [¢22,¢12] is not
completely observable, there exists an initial value
x2(0) = x20 such that ¢12 xz(t} =.0 for all t. But then
Xl(t) = y(t) = 0 for all t, which implies that [¢,0] has
an unobservable state which is a contradiction.

A direct approach for the observer gives:
X (£41) = 459 ¥IE) + §,, Ry(t) + T, ult) +

+ RIy(£+1) - ¢, v(£) =6y, X () =T, u(t)]

Introduce
z(t) = x,{(t) - K y(t)
2(t) = R,(t) - K y(t)

%, (£) = x,(£) = Xy(t) = z(t) ~ z(t)

Z(t+1) = [$,07Kb 5] Xy () + [95~Kéq;1 y(t) - [Fy=KP] u(t) =
= [0y,Kd 5] 2(8) + [dy=Képy + 9 K-Koq K] y(t) +

+ [ry=Kry] ult)
§<2(t) = z(t) + K y(t)

The reconstruction error is given by
x(t) = z(t) - z(t)
x(t+l) = [¢,, ~Kéy,1 x(t)

Since the pair {¢22,¢12} is completely observable, the

eigenvalues of [¢22—K¢12} may be arbitrarily chosen.

The reduced order observer is thus given by the dynamical

system

zZ{t+l) = ¢, z(t) + T__ ylt) + T, u(t)

Y
%,(8) = 2(t) + K y(t)

with

$p = 435 T Kéyp

Il

Fpg = 021 "Répp 4K~ Key oK

o
n

{r2—~Kr1]

