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tative prediction of the algal popﬁlation:ﬁ”

1. INTROBUCTION.

The plentiful supply of nutrients for the growth of mic-
roorganisms in a reach of non-tidal river produces an
aquatic environment in which so-called "blooms™ of algae
can be readily precipitated under favourable conditions,
In general nutrients enter the stream in effluent dis-~

- charges or from agricultural land drainage and surface

runoff. It has been observed that during periods of pro-
longed, dry, sunny weather significant algal populations
are established which not only increase the amplitude of
diurnal oscillations and mean daily levels of dissolved
oxygen (DO) but also increase the biochemical oxygen de-’
mand {BOD) in the river. Subsequently, with the onset of
&ull, cloudy weathexr the DO falls rapidly to low values,-
partly due to the cessation - of photosynthetic produc-

tion and partly a result of the oxygen demand créated by
mass algal deaths. Ultimately, if it is desired that the
DO be maintained at suitably high levels the presence of
excess nutrients and the stimulation of algal blooms con+
stitute a control problem in water quality [7], {251,

The current discussion is an extension of studies oa &
identification and modelling of the dynamics of BOD-DO
interaction [6]. The previous work included the'colleé
tion of field data over an 80~day period during the :
mer of 1972 from a 4.7 km stretch of tﬁe.River“éaﬁ
eastern England. An initial deterministic simulsti
to the approximate validation of a dynamic modé!
and BOD with the introduction of pseudo-empiric:
to account for the effects of algae [8]; ‘this
thQ discrete'l0w~pass filtering ¢f data on-the
suﬁlight incident on the system each day for®

sidering the presence of random disturbances

teri and chance errors of measurement a moré:




tistical analysis of the wmodel using a2 continuous-disc-

rete version of the extended Kalman filter (gee e.g. Jaz-

e e S

wingki {161} confirmed the preliminary identification of
the model structure and allowed a more precise estimation

of the parameters [9].

In this paper two other methods of identification are
applied to the field data from the River Cam . The first
is a black box mawimum likelihood technigque {3}, for which
it is assumed that the prediction of BOD and DO at the

downstream end {(i.e. output) of the reach of river are in-
dependent of each other and can he considered, therefore, -

as two multiple input~single output systems. The time-se-
ries models obtained in this manner agree with the a prio~

U e S

ri knowledge of the system and further indicate important
features in the BOD and DO data which had hitherto remained
ill-defined; it is found that the effects of the sunlight
conditions (and hence, indirectly, the algal population)
on the BOD and DO are asynchronous. Thus, assuming com-
plete knowledge of the dynamics of all other interactions
between BOD and DO a maximum likelihood method applied to
stochastic differential equations with discrete~time ob-~
servations enables the exploitation of the black box iden-
tification yesults in order to derive a more complete phy-
"sical picture of the disturbances caused by algae.

Now, while it is possible to extend the original pseudo-
empirical expression, what is really réquired is a more
fundamental growth and decay model for algae. Bearing in
mind the type of mathematical description used by .Chen
[10] in ecological modelling and the dynamics of micro-
organism species in the activated-sludge and anaercbic
digestion processes (see e.g. Andrews [1]), a Monod func-
tion [17] is hypothesised for algalvpopulation growth in
which the sunlight conditions are assumed to be the rate
limiting factor. Consequently, a combined DO-BOD-algae




model is proposed, in which the living and dead algal
popiilations are described explicitly as separate state
variables; except for the interaction of algae the DO~
BOD model remains unaltered. Unfortunately, due to data
restrictions™ thé¢ algal model caﬁ only be verified in a
largely qualitative manner through the observed distur-
bances of the BOD and DO levels. The parameters are ac-
cordingly not uniguely identifiable without such neceg-
sary observations and, moreover, in view of the nonlinea-
rities deterministic simulation is of merit in a verifi-
cation study for the time-being.

x } . . . :
d.e. the absence of observations on variables more di-

rectly related to the guantity of algae (e.g. chloro-
phyll-A, algal counts) and the absence of measurements

of nitrogen- and phosphorus—béaring materials, which
could also be growth-rate limiting.




2. THE A PRIORI MODEL FOR ALGAL POPULATION DYNAMICS,
The starting point for the pregsent analysis is the model

identified using the extended Ralman filter which is gi-

ven by the set of lumped-parameter differential- dlrferance
equations {97, :

DO 3y (8) = = Ry + QUE) V)i (E) - Kuy(6) 4 .

(Ve (6) + xpe (e) +

+ K3(I{tk) ~ T} 4+ Dy (i)
BOD: ég(t) EEp. [Kz + Q(t)/V}xz(t) + (Q(t)/v)uz(t)'+ CF
Ry (Tl - I) +on, {41

Tltyg) = I(ty, ;) +‘%[u3(tk)(Titk) - T} /% ~ I(tkﬁl)]
(114}

(Tt = 1) =0 for Ity) < I (iv) |

{the dot notation refers to differentiation with respect
to time t (in days).)

Here Xy = conen. of DO at the downstream end {output) of
the reach (mg/l)
X, = concn. of BOD at the downstream end {(output)
of the reach (mg/1)
U; = concn. of DO at the upstream end (input) of
the reach (mg/l1)
Uy = concn. of BOD at the upstream end (input) of
the reach (mg/l)
(tk) = sunlight incident on the system during day.
t, (hrs/day} :




.= river water temperature (°¢)

T

I(tk} = "sustained sunlight effect" a? day tk **

I = a threshold level for the sunlight effect

T = a mean river water temperature (°C)

Kl_m reaeration rate constant for DO {daynl)

K, = BOD decay rate constant (day?})

Ky o= coefﬁicieft for the sunlight effect in the DO

equation
Ky = coefficient for the sunlight effect in the BOD
*
eguation

Q@ = volumetric flow-rate in the reach (cuft/day) '
V = mean volumetric hold-up in the reach (coft)
C, = saturation concentration of DO in the reach

{mg /1)

T = a time constant for the discrete low~-pass fil-
ter of the sunlight effect {days) .

Dy = rate of addition of DO to the reach by decom-
position of bottom mud deposits ((mg/l)/day)
{1.e. typically Dy < 0 as described by eqn.
I(i)).

Ly = rate of addition of BOD to the reach by local

. surface runoff ((mg/1)/day).

The saturation concentration of DO, CS, is generated from
the following polynonmial in T, the river water tempera-
ture (%C),

Cg (k) = 14.54 - 0.397(t) + 0.01(v(t))? (1)

The model given by egn. I applies to a reach of river as
defined in Figure 1,

* ) -
No specific units are assigned to these quantities owing

to the dimensional anomoly of egn. I(iii).




The experimental field data from the River Cam and the
derivation and identification of model I are presented in
detail elsewhere [6], [8], [9]; however, it is pertinent
ta discuss the features of the sustained sunlight effect
and its interaction with the DO and BOD eguations. First-
ly, the low-pass filter mechanism of egn. I(iii}, albeit

& heuristic data manipulation, has a structure which would
appear intuitively to agree with the true dynamics of an
algal population. The time constant, {, chogsen to be 4
(days) in previous work, implies that a prelonged period
of persistent sunny weather is necessary for a populaticnh
to establish itself and produce observable disturbances

of the BOD and DO; in other words, the choice of 1 per-
mits a certain degree of discrimination between the ef-
fects of isolated sunny days and seguences of consecutive-
ly bright days. However, low-pass filtering the sunlight
data gives I(t;) > 0 for all t, and thus the constraint

of egn. I(iv) is introduced so that the effects of algae
are only discernible in the BOD and DO when I(tk) is
greater than an estimated threshold level, I.

The temperature coefficient (T(tk) - T)/T in eqn. T(iii)
is included for completeness, since the deterministic gi-
mulation responses of model I given in figure 2 and with
the parameter values of table 1, are based

Pable 1 ~ Parameter values for model I (from [9])

, 0.17 [k, 0.32]v 5.4 (109
o , 1=2.7 for Oststlg
K, 0.32|F 6.0 |« 4 D= '

_ A B 0.4 for tty g
.31 |7 8.0. LA 0.0 .

on this version of the model. ﬁoweVer, omission of such
a coefficient has almost negligible effect on the respon-

T

1
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Figure 1 Schematic representation of a

reach of river (all variables as
defined for eqn I).

D(),x1 {mg/1)
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TIME (days)
Figure 2 Simulation responses for model 1; dashed line denpotes respounses with no
algal effects included. )

¥




ses over the "critical" periods t36 1 t48 and from t6O
onwards (approximately) where algal effects are slgnifi-

cant.

Clearly, the sustained sunlight effect only describes
those factors which were observed in the DO and BOD data
and it does not guantify explicitly the dynamics of an
algal population. Nevertheless, in addition to the River
Cam experiment more recent work with a seventy-day period
of observations from the Bedford Ouse has further valida-~
ted thisg type of model for DO-ROD interaction (2231, [23].'
With more data on other variables available in the latter
study it has been possible to improve the prediction of
photosynﬁhetic production of oxygen from algae by a term
which utilises measurements of the chlorophyll-A content
in the river water.

The usefulness of such a pseudo-empirical relationship as.
egn. T(iii) is not in doubt if the objective is to model
only the DO-BOD dynamics of a reach of river. Yet it would
be more satisfying te clarify in mathematical terms the simp-
lified pictographic relationships between BOD, DO and al-
gae in figure 3 and to have some kind of guantitative view
over the bloom conditions in an algal population. The fol-
lowing, therefore, is an initial step in such a direction;
the key to the extended model is the cbservation that, un-
like the single time constant, r, of egn. I{iii), the in-
teraction of the sustained sunlight effect with the BOD
and DO is asynchronous.
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Figure 3 Some DO~BOD~algae inter~relationships,




3. MODEL IDENTIFICATION AND PARAMETER ESTIMATION.

The experimental data from the River Cam have now been
examined with a variety of technigues, which number among
them the Extended Xalman Filter (EKF),'Maximum Likelihood .
(ML) applied to both black box and state-space models, and
& Multivariable extension of the Instrumental Variable -
Approximate Maximum Likelihood method (MIVAML}. The results
of such analyses are reviewed briefly and suitably organ-~
ised according to the overall identification/parameter
estimation/control system synthesis process.

In the first instance, from physico-chemical and biologi-
cal reasoning it appeared that the dynamics of DO-BOD in-
teraction could be described by a lumped-parameter second-
order multivariable model fel. Given such a priori know-
ledge of the system it was logical to exploit this infor-
mation for identification purposes; in this sense, and

because of the coupled nature of DO and BOD dynamics, it
did not seem appropriate or necessary to start from a
black box assumption. Thus, a deterministic simulation
compared against the field data gives a first approxima-
tion of the model structure validity and parameter magni~
tudes {6],[8]. At this stage it is difficult to disting-
uttish between those parté of the response errors which
result either from structural errors or from measurement
errors and stochastic disturbances of the system. Within
the inherent statistical setting of the problem the re-
cursive EKF scheme affords the possgibility of "refining"
both the model structure and the parameter estimates. The
criteria employed to determine structural adeguacy are

open to question; in this case it is reguired that the




recurgive estimatesa of the (assumed} time-invariant pa-
rameters display trajectories which are sensibly stationa-
ry once any initial transiemts have decayed away {61, [97.
In addition the statistical properties of the residual er-
rors at the innovations process can be checked to ensure
that they are reascnably consistent with the a priori as-
sumptions about the nature of the stochastic effects in
the system. Clearly, identification, as opposzed to para-
meter estimation, is important since there is little to

be gained from obtaining relatively efficient estimates

of parameters in a model whose correct form has not been
firmly established. ] ¢

Since the original verification of the DO~BOD model was
demonstrated a better perspective has been evolved on the
position of the BKF in the general area of recursive me-
thods of time~series analysis for model identification and
estlmatlon {see e.qg. Young [241). When the state-space
structure of a model is incompletely known, the flexibi-

~lity of the EXF is an advantage in the ldentification stage

of the analysis., But for parameter estimation convergence
cannot be guaranteed with the EKF; it is @ifficult to as-
Se88 accuracy bounds and its very flexibility can lead to
inefficiency when used to estimate the parameters that
characterise the identified model structure. Consequent-
ly, a multivariable extension of the instrumental variable-
approximate maximum likelihood method hag been proposed for
the parameter estimation phase of the analysis for state-
space representations [26]. This latter, -therefore, repre-
sents a secondary "refinement" of the parameter estimates
and has been successfully applied to the field data from
the River Cam and two reaches of the Bedford Ouse [233,
£26]

*

Note that here the recursive form of the scheme is
¢rucial to the identification process.
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The application of ML technigues to the wmodelling of DO-

- BOD interaction reported herein is essentially a continua-

tion of the identification process. It emerges from the
BKF results that the coupling between the DC and BOD dy-
namics is relatively wedk; hence it is not particularly
restrictive to assume each to be an independent multiple
input-single output system. And in any case the objective
of the black box modelling analysis is primarily to cla-
rify the time-dependency of the outputs on the input sun-
light conditions; as the results indicate we shall inter-
pret the parameter estimates as a measure of the statis;
tical significance of such cause-effect relationships.
This proves to be of great advantage and the physical im-
plications of the results are then tested in an extension
of the state-space model with an ML technique. The fact
that some of the coefficients in the model are time-vary-
ing is not prohibitive since they refer to well-described
dynamic featuresof DO-BOD interaction and it is super-
fluous to estimate them.

Thus, since we have digressed intentionally from the spe-
cifics of DO-BOD interaction, we might offer these com-

. ments on identification and estimation procedures. In an

applications context absolute convergence and statistical
"purity"” of the estimates is not necessarily the ultimate
goal. Moreover, this study confirms that black box and
mechanistic models, together with the fecursive or off-
line approach, may ke equally useful at some stage in the
analysis; each has yielded a little more insight into the
nature of the system.

Of course, which model would prove to be most useful for
control purposes remains to be seen, although an initial
feasibility study has reported results based on a state~
spécé'repreSeﬁtation {67, [25]. It is possible, as we men-
tion later, that a black box model has distinct advantages




1.

but tha question will only be resolved with the innova-

tion of more reliable on-line instrumentation I717.

3.1, Maximuam likelihood ddentification..

The method of maximum likelihood has been widely applied
in identification and parameter estimation analyses; a
detailed presentation of these techniques is unnecessary
and the ‘procedure is merely ocutlined as it applies to the .
two types of model structure used in this study.

Black hoyx models.

The essential feature of a black box model is that it as-
sumes no knowledge of physical relationships between a
system's inputs and output other than that the inputs

. should produce observable responses in the output.

Thus, given the set of input/output data samples {u (t
i=1, 2, ..., m; v(tk), k=1, 2, ..., 8§}, where ui(t
i =131, 2, ..., m, are the m input signals and yit,) is
the output signal, the identification problem is to find
an estimate of the parameters of the system model f147

Y
k)!

-1 o -1 -1,
Mz Oyl = 1B ey () +acE (g (2)

in which n(tk) is a sequence of independent, normal (0,1)
rdndom variables and z denotes the shift operator

a{y{t )} = y(t, 1) etc. , (3)




12,

A(zil), Bi(zfl), i =1, 2, ..., m, and C(z*l) are the
polynomials

Az l) = 1 + alz“l $ vv. + a gz B

~1, _ i =1 -n .,
Bi{z }o= biO b bilz + e binz i=1, 2, ..., m}
C(zﬂl) = ] +'clz“l + ... +cz B

[

The residual errors of eqn. {ELI{E(tk}, k
defined by

l]‘ 2; LR ] N};)

¢tz Myetty) = atz"Hye - .
4

I e~35s

-1

are thus an independent and normal (0,*) sequence. The
logarithm of the likelihood function is now

N
L — ) gg(t } - N log j + constant (6)
2 k
237 k=1

and the maximisation of L is equivalent to minimising the
loss function '

V(o) = iz T ety | (7)

k=1
where 8 is the column vector of parameters in the model,
egn. (2),

T |
7] .='- [al,...,an, blot-“”bln' bzG;-ongbmn, cl;-en,cn] (8)

{superfix T denotes the transpose of a vector or matrix).
When 6 has been found, such that V(8) is minimal, the




13.

maximum likelihood estimate of A is given by

BUEE- X7 (s)
. H

Strictly speaking, the model eqn. (2) ‘applies only to
stable, linear, time-~invariant systemg, A more complete
discussion of the model structure, the minimisation of
the loss function V{(g), and the conditions for the esti-
mates to be consigtent, asymptotically normal and effi-
cient are given in the original source references [3],
143, 1143,

State-space models,

Alternatively, noting the structure of the a prioxi DO~
BOD model, eqn, T, the identification and estimation pro-
cedure can be formulated as a problem of determining the

parameters in the general stochastic differential equa-
tion

dx = Axdt + Budt + dv (10}

A and B are the system and input matrices, respectively,
% is the state vector and u the input vector; it is asg-
sumed that the initial state is a gaussian vector with
mean value §0 and covariance Ry. {v(t), 0 ¢ t ¢ =} is a
Wiener process with incremental covariance-R,dt and is
also assumed td be independent of the initial state. Now
let the observations, y, of thélbutputs of the system at
discrete times tO( Ty eins tN’ be characterised by

Yt = Cxlty) + Dulty) +elt,)  k'=0,1, ..., N (11)

where C and D are matrices of appropriate dimensions. The




measurement errors e(th are assumed to be independent
and gauvssian with zero mean and covariance RQ; further,

they are assumed to be independent of v{t) and the ini-
tial state.

In the particular case of the model described by egns.
(10} and {11), the logarithm of the likelihood Function
can be written as {(c.f. egn. {6)]

N
S R -1
Lo=-~%5 ) & (g)R (tg)e (1)
k=0
N
-5 )} log det R(t,) + constant (12)
k=0 ' :
in which
G(tk) = Y(tk) - Y(tk/tk‘*l) {13)
and §(tk/tk_l} denotes the conditional mean of y(tk) gi~ Y

ven the set of observations up to and including Y(tk¥l);
R{t,) is the conditional covariance of the residual er-
rors s(tk), which, incidentally, are also the so-called
innovations of the output process.

The computation of R(tk), and hence the likelihéod func-
tion, are easily achieved in a recursive manner using
the Kalman-Bucy filtering theory (see e.g. Astrdm [2]).
The maximisation of L. for the optimal estimation of a
parameter vector & and other aspects of the identifica-
tion procedure are discussed more fully in“fsj and [123.
However, note that the implementation of thIS'téchnique
is more difficult than black box ideﬁtification'since
more assumptions must be made about the system model
structure and the noise statistics must be quantified by
the covariance matrices RO’ Ry and Ry«




4. BLACK BOX MODELLING: THE ASYNCHRONOUS DISTURBANCE OF
THE DO AND BOD DYNAMICS BY AM ALGAL POPULATION,

The black box analysis of the BOD and DO data was execu-
ted on a PDP-15 computer using a suite of programs spe-
cifically designed for this type of maximum likelihood
estimation [14], [15]. The major concern ig to identify
the general time-dspendency of the noisy observed out-
puts, DO and BOD, defined by figure 1 and

DO: yqlty) = xl(tk) + el(tk)
k=1, 2, ..., N {14)
BOD:  y,(t,) = x,(5.) + e,(t)

upon the input sunlight conditions g, Although ¥y and
Yo show some slight dependence on other inputs, e.9.
flow rate @ and temperature T, in practice most of the
outpﬁt variations can be adequately characterised by mo-
dels of the general form,

Yl (tk) = fl{Ylf gy s U-3}
. ' (15)
Yz(tk) = fz{Y2f Uy, u3}

where the time arguments of u, are to be identified.

The models suitably identified are all first-order and
the estimates converged within twenty iterations of the
process. Second-order models were attempted, but conver-
gence for the DO was achieved only after some manipula-
tion, such asg assigning fixed zero values to several of
the parameters, notably those of the C(zwl) polynomials,
Second-order models for the BOD proved to be qgquite unsa-
tidfactory with no convergence within foriy iterations.
This is not so surprising when one considers the physi-
cal characteristics of the reach of river from which

the data are taken. The sampling interval of the data




(tk"tkwl} ig 1.0 day, while the transportation delay in
the reach varies approximately between 0,9 and 1.6 days
over the observed 80~day period; thus, theé outputs ylttk)
and yz(tk) would not be expected to be strongly dependent
upon yl(tk~2) and Yz(tk42)5 respectively, or, for the
same reasons, upon ul{tk;é} and uz(tkﬂz), respectively.

The difficulty of fitting second- or higher-order models,
which would be a problem for the multiple delayed effects
of the sunlight input Uy is easily obviated by the gene-
ration of appropriately shifted time~series for the in-~
puts [14], [15]. Other points to notice are that, since
it was not possible to design an experiment with an ar-
tificial disturbance of the'inpﬁts, the system is not
highly excited and the coefficients of the Bi(qu) poly-
nomialg are accordingly poorly estimated. Two data points
have also been adjusted: in the input BOD, uz(tsﬁ) resul-
ted from a thunderstorm and the effects of such a fast
transient are not properly observable in the sampled out-
~ put yz(tk); the DO output observation yl(t34) has been
linearly interpolated owing to a missing measurvement, Fi-
nally, in view of a limited data record length the iden-
tification results are improved by the additional estima-—
tion of initial values-y(tgj of the outputs.

4.1, The BOD model.

An initial test of the time-~dependency of the output BOD,
Yo+ on the incident sunlight input is examined with the
synthesis of several shifted sequences of ug(t,); the
estimated coefficients are given in table 2. From the
relatively poor estimates of byy, by, and bSi it ap-
pears that yz(tk) can be assumed to be a function of

uglt, ,) and usylt, 4} only. The results of such a final
model structure are given in table 3 and figure 4, where
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the pattern of the incident sunlight is also shown. The
dynamics of the "peak" in the BOD between tyg and tya
are wall—deSCribed; note also the similarity between the
model error and the residuals'{s(tk)} which'impliés that
the stochastic effects in the system are largely those
of measurement error (i.e. A{z“l)ac(zﬁlk].

If the identification should have a nice statistical in-
terpretation,; the residuals should be independent, sto-

thastic variables. Figure 5 shows the autocorrelation

Table 2 - lst-order model Yol s
s (tk“l) s UB(tk) ' 133 itk—l) ¢ u3(tk""2} ¥ u3.(tk—3) :

Uy by 4
Coefficient Estimate
ay -0,749+0.066
bll 0.10210.043
bZl ' ~-0.00810.018
,b31 0.027x0.021
bél : 0,03020.021.
bSl 0.008£0.022
bﬁl : 0.053£0.022
3 0.618+0.050
Table 3 -~ lst-order model yz(tk);

u2(tk_l),.u3(tk“2)4.u3(tk44),

. Cogfficient. .. .7 . . .. .. Estimate
ay —0,751;0;062
byy 0.102&9.042
byy Qp04ﬁiq.015
by ' 0.060i9.020
cy ~0.520+£0.,128
A . 0.627+0.051
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function of‘{a(tk)} for the model and it can be seen
that all points lie within the bounds for 95% confidence
that the residuals are independent; similar checks. (see
[15]) using chi-squared goodness—of~fit tests also indi-
cate that the reslduals are satisfactorily normal and
independent of the inputs uz(tk} and uj(tk}‘ Such axa-
mination of the residuals demonstrates whether the final
model gtructure is in reasonable agreement with the ori-
ginal statistical assumptions made in the derivation of
the general model form, eqn. (2},

4.2. The DO model.

The approaéh to the ldentification of a DO model is the
same as for the BOD model; in table 4 are given'the es-
timates for the general test of the causal relationships
hetween yq and 5. Note that the coefficlent ¢y is as-
sumed egual to zero, in which case ML estimation reduces
to a least squares analysis; it ig permissible to do this
in view of the poor estimation and instability of the
C(zul) polynomial. If the poor estimates b41, bSl and b6l
and their associated time-series are assumed negligible,
the estimation results for a final DO model are shown in
table 5 and figure 6. As with previous identification re-
sults [9] there remains an inexplicable initial error

(to - tlg)* in the model output; hence, incidentally, the
quantification of D 1s gilven as time~dependent in table
1. It is also observable that there may be a trend in the

#* .
-It has been proposed that this could be due to biased

measurements of DO. (and possibly BOD) [61, although re-
cent MIVAML results ‘suggest that flow conditions can
account for this error [26]; any such significance of
the flow~rate appears not to be identifiable in the pre-
sent analysis.




Table 4 ~ lst-order model yi(t

k};

3('k'4l'= ..............
. Coefficient . ... ., Bstimate .
ay 0, 74040,074
bll 0.161+0.0572
b21 0.056x0.017
b31 0.040+0.017
bél w0e023i9,018
b51 0.018+0.017
b6l -0.00420,017
cq 0]
3 . 0.543+0.044
Table 5 - lst-order model RN E
ul {tk"l) 7 u3 (t}i) P u3(tk_1)
Coefficient Estimate
ay —0.715&0.064’
bll 0.1740.,.050
b21 0.057£0.015
b31 0.044+0.,017
cy 0 |
A 0.554+0.045

model errox; however, correcting for this, or the inclu-
sion of temperature as an input signal, produces marginal
improvement in the model prediction and the statistics of
the residuals. Nevertheless, the autocorrelation function
of {a(tk)} for the model of table 5 is given in figure 7
and this and other statistical tests of the residuals are
satisfactory. ‘
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Figure 6 Maximum likelihood identification results for the DO model of table 5.
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Figure 8 Observed data during the period of significant algal growth,




4.3. Some implications of the results.

& certain degree of caution should be exercised in draw-
ing physical interpretations from black box models but
in the current study it is Just such that leads to the
final form of the explicit description for algal popula-—
tion dynamics. Expressed concisely in the form of eqn.

(15) the foregoing results give

DOz yy () = By {8y 0y wy(ty ), ugity),

u3(tk~i)}
r o (16)
BOD: Yo (tk) = fZ{YZ{tk“l) Mo (t}{—-l:f f u3(tk"2} d

ug ey 4}

and we can deduce that the dependence of DO and BOD on
the sunlight input, Usg, is asynchronous and not simualta-
neous as implicitly assumed by model I. In other words,
it appears’ that the production of DO in the reach at
time = is a function of the incident sunlight during
that day and the previous day (tkdl); in contrast, a

BOD production results from longer delayed effects of
approximately 2 to 4 days behind the current time. Cer-
tainly these interprstations agree with the observed dy-
namics of the field data shown in figure 8.

But apart from their relevance to algai population dyna-
mics the models display satisfying properties in other
respects. For instance, the order and magnitudes of the
coefficients of the A(zml) polynomials -

1

it

DO: Ay (z T) = (1-0.71527%);

1

i

- {1-0,751z

-1
BOD: Aziz ) )
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indicate that the estimated dynamics of the DO and BOD
are essentially similar; we would expect thisg since the
same term, {Q(t)/V}, is the dominant factor of the eigen-
values of eqna. I{i) and I(ii) in the state~space model.
And, as an aside from the current digcussion, a model for
DO prediction on this basis (egn. {16} } \possesses degir—
able characteristics for contyrol application since it is
not dependent upon the inconvenience of measuring BOD,

which is a five-day procedure by definition.
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5. IDENTIFICATION RESULTS: (2) THE SYNTHESIS OF A MODI-
FIED STATE-SPACE MODEL.

The black box modelling results provide us with a good

basis for the re-examination of a state~space model for
BO~BOD interaction with algal disturbanves. This section
discusses an extension of the pseudo-empirical sustained
sunlight effect of the a priori model, egn. I, such that
the asynchronous responses of DO and BOD to an algal po-

pulation can be identified and their dynamics guantified.

If the maximum likelihood scheme outlined in section 3.1
is to be applied to a linear, continucus—time model, the
discrete low-pass filter mechanism of the sustained sun-
light effect, egn. I{iii), should be represented in an
equivalent continuous-time form, say

arte) . {~ A}z(t) + [‘%‘]us(t) - an
dt Tl L}

where T4 is a time constant (in days) and 94 is a gain
coefficient. Additionally, frém the observed dynamics
of rigure 8 it seems reasconable to suggest that while
DO is related to I{t}, the BOD could be dependent upon
the output I'(t) of a second filter "in series" with
éqn‘ {21), i.e.

art) oo Doy + [z . (18)
dt '{;-2 ' T.2 V

in which T, is & time constant (in days). Thus, defining
two further state variables -

x3(t)'A I{t) 3 x4(£) a IT'{t)




23.

it is possible to represent DO-~BOD interaction as the

following set of differential equations {from equs. T(i),
I(ii}, (17) and (18)]):
k(E) = = (R + 0(8)/V)x (1) - Ky, {(t) + \
+ K3(X3(t) - TD]'+ (Q(t)/vjﬁl(t) 3
+ KyC () + Dy (1)
éztt) = - (K, + Q(t)/v}'xlz(t) * Ky, (8) = I) + L 11,
(e /Vuy (e) + 1, (ii)
Ry (k) = = (/1)) %5(8) + (gy/7;)uy(t) (114)
xg (€)= = (L/r)xy(8) + (1/1,)x,(0) (iv)
Here ED and EB are threshold levels referring to thé

individual effects of X4 on the DO, and of X, on the BOD,
respectively,

Thus finally, it is required that the parameter vector
8 be estimated in the model .

2 U1 %1 8 O ix Bip 0 0 Bygliw
X 0 I 0 8.{ix 0 g 0 B u
‘? . 22 2 ‘2 e 22 2411%2 (19)
X 0 0 f63 0 x3 . »OV 0 85 o u3
%4 _o 0 0, 94_ ‘xéj "o 0 6 0 | wué_

Note that no nonlinear constraint of the form egn. I (iv)
can be suitably accomodated in the structure of the 1i-

near model, eqgn. II.
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vihere .

ay; = - (K, + oe)v) Byp = Byy = Q) /V

P e 314 = chs(t) -+ DB - K3ID
Upy = = (Kz + Qt)/V) Bog = Ly - K4TB

and ué(t) = 1.0, for all t, is a hypothetical signal
such that the terms Byg and Byy Can be included in the
input matriz for computational conveniernce. The parame-
ter vector 6 is define&lby

0" = [Ky, Ky, (L/7)), (1/1,), (gy/ )]

and the values of table 1, with ED = I, = I for simpli-
city, can be substituted for other elements of the mat-

rices in egn. (19): for the evaluation of 314’ we make
the approximation,

Cs(t) = 10.0 for all +

The values assumed for (K3TD) and (K,I,) are somewhat
arbitrary and in any event the estimation of K5 and 34
will not be unigue since it is dependent upon the choice
cf values for ED and st Nevertheless, the objective of
the identification is primarily to estimate the dynamic
components t; and T, and allow the gain'cogfficients gy
K3 and K4 to adjust such that the gystem responses are .
consistent with the ohservations

y%ftki..= {1 0 0 O]Fkl(tk)“ * Je (g7 (20)
Yo (t,) 0 1 0. 0]|x,(t,) e, (t):

x3(tk)

% (8] |
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The formulation of the estimation problem, egns.. (19}
and (20), is partly a function of necessity and partly
a matter of intention; it is not possible to estimate
some of the o and B parameters since they are time-vary-
ing, but, on the other hand, it is reasonable +o assume
that the DO and BOD dynamics are well known apart from
thelr relationships with the algal effects. Hence, the
definition of ¢ is such that the efficiency of the al-
gorithms should be directed towards the estimation of
parameters associated with the dynamics of algal growth
and'decay.

The results of the maximum likelihood identification are
shown in figure % with ¢ estimated as

~

8* = [0.115, 0.146, 0.514, 0.704, 1.196]

From the estimates 53 and 64 the time constants of the
two filtexs are given by 19 = 1.95 (days) and 1, = 1.42
(days}; these values tend to confirm the inferences drawn
from the black box modelling results. The variances of
the residuals for the DO and BOD are 0.34 and 0.59, res-
pectively, although the values are subject to the assump~
tions made in the quantification of the covariance matri~
cas RO’ Rl’ RZ*'

Within the computational scheme it is possible to esti-
mate elements of these matrices as additional parame~
ters of thé'system; however, initial studies showed
that this is not of advantage here. '
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6. A MODEL FOR ALGAL POPULATION DYNAMICS.

The final step in the synthesis of a combined DO-BOD~-
algae model is the translation of the structure of eqgns.
IT into a more meaningful physical terminology. Essenti-
ally, parts of the state-space model idéntified in the
previous section still have a pseudo-enpirical appearance;
but what is important is that the dynamical features of
the model agree well with the empirical observations of
the real system. The task, therefore, is to retain the
structure of the model and hypothesise variables and pa-
rameters which are plausible descriptions of the manner
in which an algal population might interact with the DO
and BOD concentrations of a reach of river.

Firstly, in general it can be stated that photosynthetic
proﬁuction of DO is dependent upon living algae; while

dead algae in due course exert a BOD. Bearing this in

mind, inspection of eqn. II shows that the pseudo-empi -~
rical variables Xq and X4 operate similarly in the descrip-~
tion of BOD~DO interaction; indeed, we shall make the fol-
lowing redefinitions,

X3 = concentration of living algae at the output of the
reach {(mg/l)

concentration of dead algae at the output of the
reach (mg/l)

it

L)

Thus, it is réguired that a mathematical representation
be postulated for the growth and decay of algae, together
with terms accounting for photosynthetic/respiratory ac-
tivity and subsequent production of BOD. Many of the
ideas behind the model originate in parallel modelling
and control problems in wagste-water treatment (see e.q.
Olsson et al [18]) and reference will be made to such ma-
terial in support of the argument.
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The growth of algae in a river can be likened to the con-
tinuous culture of autotrophic micro-organism species in
the activated-sludge and anaerobic digestion processes
(see e.g. Curds {1171, Andrews‘[l}); In fact, the well-
known Monod [17] development of the Michaelis-Menten equa-
tion for enzyme-substrate interaction has already been
used for the study of algal growth kinetiecs [10], [20].
However, for the purposes of the present model the Monod
function is employed in a glightly different manner 50
that, together with a specific decay rate for the algae
fr}, [191, the following is proposed:

Net production rate of living algae, x5 (in (mg/1) /day)

ug {t) ' ‘
el B KDX3(t) o {21)
KS + u3{t)

Fe3

A is the maximum specific growth rate of algae
((mg/l)/day), K, 1s a saturation coefficient for the 1li-
miting nutrient uy {(hrs, sunlight/day) and K, is the spe-
cific decay rate of algae (days_l)e The important fea-
tures of the above eXpregsion are that sunlight is taken
to be the rate-limiting "nutrient” or substrate* and,
since the growth rakte is independent of X35y it is implied.
that algae are not autotrophic organisms. It is not in-
tended that bioclogical theory he contradicted, but for

a mathematical description the following two mitigating
conditions should be considered. Firstly, preliminary si-
mulation showed that if the specific growth rate isg ag-
sumed to be dependent on X4 the dynamics of an algal po-
pulation do not correspond at all with their obsgerved

* -
The field data woulg Suggest that -this is so, and, in

any case, no observations are available for other pos-
sible rate~limiting nutrients such as nitrate, phos-
phate, carbon dioxide ete,

where
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interaction with the BOD and DO, Secondly, in viewof

the fact that the river is a flowing system it seems
unreascnable to proposge that the output concentration

of algae is a factor governing the growth rate'of algae
in the reach. Suffice it to say that with the convenient
lumped~parameter structure [6] of the overall model it
is not possible to transfer directly all the characte-
ristics of micro-organism culture in waste-water treat-

ment to the prediction of algal growth in a river.

In some studies of activated-sludge and anaercbic diges-
tion units the significance of dead organisms is assumed
to be negligible. Nevertheless, for the algal population
under consideration here the omission of a separate dyna-
mic descriptlon of dead algae seems to be inadmissible

if the observed BOD variations are to be simulated cor-
rectly. Thus, making deductions from the parallel inves-
tigations of Westberg and co-workers [13], [21] the fol-
lowing is postulated:

Net production rate of dead algae, x; (in (mg/1)/day)

o ‘(22)

= KXy (t) = Kpx,(t) - R
in which Kp is a rate constant for the redissolution of
dead algae (day ), and R, is the rate of gsedimentation
of undissolved dead algal material {(mg/l)/day). In fact
Westberg proposes more complex expressions for the decay
rate of organisms in (21) ‘and (22) and for the redissolu-
tion of dead material in (22), which strictly speaking
may not be applicable here. The reascons for the inclusion
ofﬁRs are perhaps tenuous, but the model fitted the data
better in this form and, furthermore, such a process could
be 'of significance in the real sysfem fi1o1, f20].

Having defined egns. (21) ‘and (22) we are in a position
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to make component mass balances across the reach of ri-
ver (see figure 1) ‘in order to derive the differential
eguations for X5 and X4+ Adjoining these edquations to
those for the DO and BOD and proposing new terms for the

interaction of X -and Xy with the state variableg Xy and
Xy, we obtain )

xy =~ (R + Q(t)/Vj}il = KpX, +oygx, {u3)S -
- Xy (Q(E)/V)uy + KyC, (£) + Dy (1)
Xy = = (K, + QUEY/V)xy + yKpx, +
+(Q(e) /V)u, + L, (1i) |}
us {e=Ts) _
%3 =~ (K, + QE)/V)x, + @ (111)
_ &y + ug{t=Ty4))
Ey o= - (Rp Q) /V)Rg + vRoxg - R (1iv) |

where lower case s is the erxponential power for the
dependence of algal photosynthetic production of oxy-
gen on sunlight conditions, Td = (tk-fkhl) is ' a pu;e
time delay of one day (i.e. the sampling interval of
the data) , and Y; t =1, 2, 3, 4, are proportionality
- constants such that the model can be fitted to the
data. All other variables are as previously defined
and the argument t has been omitted from'the inputs u
and the state variables x for notational convenierice;

This small data manipulation allows more accurate pre-
diction of the DO conditions over the observational
period tys = t46' indeed, such delayed effects could

be due to the presence of a stored mass of algal popu- -

lation,

IIT
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no living or dead algae are assumed tc be present in
the material influx at the upstrean boundary of the
experimental reach of river.

Remarkably eriough, the model of eqgn. II1 contains all the

features of the gystem which have been hitherto identified:

1) Egn. ITII(i) shows that the photosynthetic production
of oxygen at time t is dependent upon the living al~
gae and the sunlight conditions at time t {(c.f. sec-
tion 4.3); also respiration will occur at a rate pro-

portional to the concentration of living algae.

ii) Egn. III(ii} expresses the concept that a BOD is exer—
ted by dead algal material which has redissolved; note
that our implicit definition of BOD refers to soluble
substances and is therefore not related to particulate
matter which has been sedimented {(e.qg. Rg in egqn. III
A{iv)).

ili) Ang, finally;,if Q(t)/V is taken to be the‘ﬁominant
factor in the dynémics of Xq and x,, it turns out that
the associated time constants when algal effects are
significant are approximgtely 1.5 (days) (c.E. T, and
Ty in section 5); thus, it has been possible to retain
the important dynamical structure of the pseudo-empi-
rical model given by egn. II.

Unfortunately, with such a nonlinear model it is only pos-
sible to make vexification by comparison of the determinis-
tic simulation responses of %, and x, with the DO and BOD
field data. The eventual guantification of the many addi-
tional parameter values in table 6 is not unique, but the
model responses shown in figure 10 are very satisfactory.
All other relevant parameter values are ag given in table

1 with‘cs(t) generated from eqn. (1) and Dy as- described
previously.’
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Table & - Estimated parameter values for eqgn., LII,

Parameter . Value ... Parameter .., . Value
KD §.35 5 0.55
En .25 Yy oo 1.45
i 2.1 Y, \ 2.0
Kq 20.0 Y3 16.0

Perhaps the significant feature of the final model is
the more adequate prediction it gives over t50 > tSO’
vwhose effects the a priori model, eqn. I, does not de-
scribe at all well; this suggests that the disturbances
caused by algae are particularly sensitive to the low
flow-rate tﬁrough the reach of river during this period,

Figure 11 shows the comparison between the sustained
sunlight effect f(tk) of model I and the simulated live

and dead population concentrations of algae, X, and Ky
respectively, given by model III. Both Xy and X4 indicate

the presence of a larger population of algae than would

be predicted by the sustained sunlight effect over the
latter period of the experiment.
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7. CONCLUSIONS.

A dynamic model for the characterisation of DO-BOD~algae
interaction in a fresh-water stream has been synthesised
and verlfiied against field data on the b0 and B0D. The
structure of the model depends essentially on the sepa-
ration of algal dynamics into the consideration of both
a live and a dead population; it is evident that the ef-
fects of the algal population are sensitive to the flow-

rate and residence-time conditions in the resach.

The bhiochemical and biological principles governing the
growth and decay of micro-organisms are complex and the
proposals of this paper are doubtless a considerable simp-
lification of the true dynamics. The model is developed
from a combination of heuristic reasoning, a cross-breed-
ing of ideas from studies on the modelling'of waste~water
treatment processes, and systematic identification of em-.
pirical observations. Indeed, the value of real data and
the treatment of such with several different methods of
identification cannot be emphasised too strongly. But the
results remain tentative in the sense that we have been
forced to hypothesise a model for livingand dead algae in
the absence of any observations relating directly to such
quantities. In particular, the manner in which decomposing
algal material exerts a BOD remains unclear and it is quite

possible that the BOD test itself could obscure the identi-~
fication of such a process.

Naturally the model presented here could be critieised as
a control engineer's view of ecology and biology; hever-

theless, it seems to be a ste? in the right direction. IFf
nothing else it may stimulate a contraction of the lament~

able gap in communication between biologists and control
engineers. '
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