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Introduction

1. Background and Motivation

The topic of this thesis is time-varying systems. The bulk of the existing
control theory is devoted to the study of time-invariant systems. The
reason is of course that time-invariant systems are simpler. Everyone
knows, however, that in reality almost nothing is time invariant: people
get older, machines degrade, the climate changes, etc. Time-invariant
models are still often very useful. If the time scale of the model is small
compared to the life span of the modeled process, time invariance is a
good assumption.

In this thesis we will study models with time scales comparable to
those of ordinary time-invariant models. General time-varying systems
are normally too difficult to analyze, so we will impose linearity on the
models. We argue that linear time-varying systems offer a nice trade-
off between model simplicity and the ability to describe the behavior
of certain processes.

In the research literature one finds many references to linear time-
varying systems. Most of this work is carried out on a purely theoreti-
cal level. Almost all theoretical breakthroughs for linear time-invariant
systems have been followed by generalizations into the time-varying
framework a couple of years later. This is important and has led to
increased insight, such as the connections between H∞-optimal con-
trol and game theory. It is harder to find good clear-cut applications of
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Introduction

linear time-varying modeling in the research literature. Periodic mod-
eling of helicopters is an exception. One of the intentions of this thesis
is to give some further examples where time-varying modeling can be
useful.

The thesis is also devoted to model reduction. This is an old subject.
Model reduction can be seen as the search for systematic methods to
simplify models. To approximate a nonlinear model with a linear one
is one form of model reduction that we will take a closer look at.

One needs to define what is to be considered as a simple model. This
actually depends on the scientific field you work in. In control theory
often the number of equations is a measure of complexity. A small
number of equations significantly simplifies the search for a good con-
troller. In fields such as modeling of chemical kinetics other measures
of simplicity may be taken. One thing to consider during reduction is
to preserve the internal structure of the model to maintain the physi-
cal interpretation. Also, the simplification may be dedicated to find the
dominating chemical reactions. This is not the same as reducing the
number of equations, but rather a simplification of the terms in the
existing equations. This thesis is written in the tradition of automatic
control, so linearization and reduction of the number of equations will
be the main issues.

2. Outline, Contributions, and Related Publications

The thesis consists of three papers and this introduction. Below, the
contributions of the papers are summarized and related publications
are given.

Paper 1

Sandberg, H. and A. Rantzer (2002): “Balanced truncation of linear
time-varying systems.” Submitted for journal publication.

Contributions In this paper model reduction of linear time-varying
systems is considered. More precisely the so-called balanced trunca-
tion procedure is studied. Balanced truncation is often used for linear
time-invariant systems because of its simplicity, the existence of error
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2. Outline, Contributions, and Related Publications

bounds and guarantees of stability for truncated models. In this paper
it is shown that this also holds for balanced truncation of time-varying
systems. Furthermore, the generalized method allow us to study sys-
tems where the model order changes over time. Both continuous- and
discrete-time systems are considered. The method is illustrated on a
diesel exhaust catalyst model.

Related Publications This paper contains and extends the mate-
rial presented in

Sandberg, H. and A. Rantzer (2002a): “Balanced model reduction of
linear time-varying systems.” In Proceedings of the 15th IFAC
World Congress. Barcelona, Spain.

Sandberg, H. and A. Rantzer (2002b): “Error bounds for balanced
truncation of linear time-varying systems.” In Proceedings of the
41st IEEE Conference on Decision and Control. Las Vegas, Nevada.

Paper 2

This is a corrected version of

Sandberg, H. and E. Möllerstedt (2001): “Periodic modelling of power
systems.” In Proceedings of the IFAC Workshop on Periodic Systems
and Control. Cernobbio-Como, Italy.

Contributions This paper deals with periodic modeling of power
systems. The key component modeled is the power converter/inverter.
This is a modern power-electronic component that enables AC/DC and
DC/AC conversion in a very flexible way. However, the component
also generates harmonics in power networks. Interaction of harmonics
(frequency coupling) can be modeled with linear time-periodic systems,
and a simple framework for single-phase converters is developed. In
the paper a brief example of how the converter model can be used
in modeling of the net side of an inverter locomotive is given. This
model is taken from [Möllerstedt and Bernhardsson, 2000], where the
modeling is done in detail.

Paper 3

This is an extended version of
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Introduction

Sandberg, H. and E. Möllerstedt (2000): “Harmonic modeling of the
motor side of an inverter locomotive.” In Proceedings of the 9th
IEEE Conference on Control Applications. Anchorage, Alaska.

Contributions This paper deals with the modeling of the motor side
of an inverter locomotive. The analysis is made under steady state,
and the interaction between the harmonics in inputs and outputs is
represented in a Harmonic Transfer Matrix (HTM). The HTM is a
compact way to represent the interaction, and can be viewed as an
extension of the Bode diagram. The cross coupling of frequencies is
visualized in a simple way.

Related Publications This paper is a summary of the results ob-
tained in the Master’s thesis

Sandberg, H. (1999): “Nonlinear modeling of locomotive propul-
sion system and control.” Technical Report Masters thesis ISRN
LUTFD2/TFRT–5625–SE. Department of Automatic Control, Lund
Institute of Technology, Sweden.

Outline of Chapter

Section 3 contains some motivation as to why it is often sufficient
to study linear approximations of nonlinear systems. It also contains
a section on linearization, i.e. how to obtain linear approximations.
Section 4 contains some suggestions for future work and extensions.
Section 5 finally contains the references of this introductory chapter.

3. About Linear Systems

In the book “Linear Systems” from 1980 Thomas Kailath writes in the
preface

“Linear systems have been under study for a long time, and
from several different points of view, in physics, mathemat-
ics, engineering, and many other fields. But the subject is
such a fundamental and deep one that there is no doubt
that linear systems will continue to be an object of study
for as long as one can foresee.’’

12



3. About Linear Systems

Even today when it is fairly simple to simulate complex models in
computers, students still spend a fair amount of time learning about
linear systems during their undergraduate/graduate education. Most
subjects concerned with modeling use some sort of approximate linear
analysis at some stage. As Thomas Kailath points at, the subject is
fundamental and gives insights that are not possible to obtain from
computer simulations solely.

By linear systems we mean systems of linear differential equa-
tions, treated in books like [Kailath, 1980; Rugh, 1996]. In particular
in control theory linear systems have a central role. This is actually
rather strange, regarding that essentially every natural or technical
process is more or less nonlinear in nature. So why are linear sys-
tems so widely used then? One answer is that it is essentially only
for this class of systems that it is possible to do extensive analytical
analysis. For nonlinear systems one is many times forced to rely on
computer simulations. As computers get faster and easier to use one
might argue that this drawback is getting less important. This is true,
to a certain extent. Modern modeling tools such as MODELICA1 and
MATLAB/SIMULINK2 are today natural to use in the development of, for
example, control systems. But still, if one wants to prove certain char-
acteristics of a system, one often needs to use linear system theory to
at least some degree.

Nonlinear systems can generally be locally approximated by linear
systems, as will be more discussed in the next part of this section.
This allow us to come to conclusions about the nonlinear behavior of
a system from analysis of linear systems. In stability analysis this
is utilized in the so-called Lyapunov’s first method, see for example
[Slotine and Li, 1991]. Results like this often justifies the use of linear
analysis.

Linear systems are particularly useful for automatic control pur-
poses. One reason is that systems under control normally operate close
to some nominal point. For a tank of fluid, for instance, a typical control
problem could be to keep the level close to some reference level. Under
this assumption linear approximations typically work very well. An-
other reason – and an important one – is that control systems normally

1see [Elmqvist et al., 1999] and http://www.modelica.org
2from The MathWorks, Inc. See http://www.mathworks.com
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Figure 1. The Nyquist plot of a linear time-invariant system with a transfer
function G(s). Robustness and stability of the closed-loop system is essentially
determined by how close the curve is to the point −1. If the curve is suffi-
ciently far away the closed-loop system will work even if the true model deviates
from G(s). The closed-loop system is robust. The system behavior around the
crossover frequency is most important. A partial knowledge of the system model
is thus for many purposes enough for control design.

operate in closed loop, i.e. a measured output is fed back to the input.
A remarkable property of feedback systems is that they, if correctly
designed, become robust to model errors and can reject disturbances
from the outside world.

If we have a linear model of some physical process that should be
controlled, the model will normally only approximately describe the be-
havior of the real process. The model can though still be used for control
design. How can this so often be the case? It is perhaps most simply
understood with the help of the Nyquist stability criterion, first pub-
lished in [Nyquist, 1932], and included in most basic control courses,
see for example [Franklin et al., 1993]. If we have a stable linear time-
invariant model with the transfer function G(s) the Nyquist plot can
be drawn. In Figure 1 such a plot is shown. It is the distance of the
curve to the point −1 that determines the stability property of the
closed loop. If the controller is designed so that this distance is suffi-

14



3. About Linear Systems

ciently large the control system will work well, even if the “true” model
deviates from G(s). It is essentially only around the desired crossover
frequency ω c that we need to know G(s) in order to design a working
controller.

This was only to justify that this thesis is mainly concerned with
linear systems. The thesis will not treat the synthesis of controllers.
Instead we will be concerned with the steps normally taken before the
synthesis in the control design process: modeling and model reduction.
One should, however, notice that control design is often an iterative
process and that modeling and reduction may have to be redone several
times.

We will look at time-varying linear systems in this thesis. Often
only time-invariant linear systems are meant when the word “linear
system” is used. We will see, though, that by allowing time-varying
parameters, we can model behavior that often is not considered to be
“linear”, for example, frequency coupling.

Linearization

Most physical or technical systems encountered can be modeled with
differential equations, or at least with differential-algebraic equations.
In physics most theories are formulated as partial differential equa-
tions. However, when it is time for practical computations one often
has a set of ordinary differential equations. These take the form

ẋ(t) � dx
dt
= f (x(t), u(t), t), x(t0) = x0 (1)

where x(t) ∈ Rn is the state of the system. If the state at time t0 is
known and u(t) is given, then we know from the theory of differential
equations that there is an unique solution x(t), t > t0, given that f
is Lipschitz-continuous in its arguments. The signal u(t) ∈ Rm is the
input signal. The input signal is how we can influence the system from
the outside world, and from a control perspective this is very essential.
The role of control engineering can be seen as the art of choosing u(t)
such that x(t) follows a given reference trajectory xre f (t). In practice
equations of the type (1) needs to be solved by numerical ordinary
differential equation solvers.

As noted before, for many purposes it is enough to study linear
approximations of (1). This is particularly true if we know that the
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Introduction

state of the system should be in the neighborhood of some given nom-
inal solution xnom(t). A linearization of the nonlinear system (1) can
be performed around a nominal solution xnom(t) and unom(t) provided
that f is differentiable in its first two arguments. Denoting the devi-
ations from xnom(t) with ∆x(t) and the deviations from unom(t) with
∆u(t), we get the linearization as

∆ ẋ(t) = V f
V x
(xnom(t), unom(t), t) ⋅ ∆x(t) + V f

Vu
(xnom(t), unom(t), t) ⋅ ∆u(t)

or shorter
∆ ẋ(t) = A(t) ⋅ ∆x(t) + B(t) ⋅ ∆u(t) (2)

where A(t) ∈ Rn�n and B(t) ∈ Rn�m. The linearization (2) is a Taylor
expansion where higher order terms have been dropped. It is only valid
in a neighborhood of the nominal solution. It has to be verified to see
its range of applicability.

What is then so much simpler in (2) than in (1)? One simplification
is that there is a closed-form solution to the linear system, namely (see
[Rugh, 1996]):

∆x(t) = Φ(t, t0)∆x(t0) +
∫ t

t0

Φ(t, s)B(s)∆u(s)ds (3)

where Φ(t, t0) ∈ Rn�n is the transition matrix. The transition matrix
is the solution to the matrix differential equation

V
V t

Φ(t, t0) = A(t)Φ(t, t0), Φ(t0, t0) = In.

From closed-form solutions we can make statements about the behav-
ior of the system without solving the equations explicitly. For example,
we can make statements about all possible solutions ∆x(t) for admissi-
ble inputs ∆u(t). Apart from the closed-form solutions, the linearity in
the inputs and the states is very useful in many types of analyses. For
example, if ∆x1(t) and ∆x2(t) are two solutions to (2) for the inputs
∆u1(t) and ∆u2(t), then C1 ⋅ ∆x1(t) + C2 ⋅ ∆x2(t) is a solution for the
input C1 ⋅ ∆u1(t) + C2 ⋅ ∆u2(t) for any constants C1 and C2.

For physical systems one can often not measure the entire state
vector x(t). Instead we typically have some other measurements in

16



4. Future Work

the system output y(t) ∈ Rp. The output often depends on the state
and the input via a map n:

y(t) = n(x(t), u(t), t).

This relation can also be linearized for differentiable maps n:

∆ y(t) = Vn
V x
(xnom(t), unom(t), t) ⋅ ∆x(t) + VnVu

(xnom(t), unom(t), t) ⋅ ∆u(t)

or shorter
∆ y(t) = C(t) ⋅ ∆x(t) + D(t) ⋅ ∆u(t) (4)

with C(t) ∈ Rp�n and D(t) ∈ Rp�m.
When in this thesis the word linear systems is used, one should

think that this system is an approximation of some nonlinear process.
Also notice that even for a time-invariant nonlinear system, the lin-
earization will be time varying if the nominal solution, xnom(t) and
unom(t), is time varying. We need a trajectory, the nominal solution,
to be able to linearize a nonlinear system. This is many times only
possible to obtain from simulations. Linear analysis should be seen as
a complement to simulations. It can never replace the need for simu-
lations.

4. Future Work

Some suggestions for future work are given in the papers. Here some
further suggestions are given.

Model Reduction In Paper 1 balanced truncation is considered. For
time-invariant systems an alternative is often to use optimal Hankel-
norm reduction, [Glover, 1984]. This is in a way a more rational method
for model reduction, in the sense that some sort of optimality is ob-
tained. There are interesting connections to operator theory and Ne-
hari’s theorem, see for example [Young, 1988].

Some work on optimal Hankel-norm reduction of time-variable sys-
tems has already been done, see [Dewilde and van der Veen, 1998].
This could be studied and compared to balanced truncation. The error
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Introduction

bound for balanced truncation is a factor two larger than the bound
for Hankel-optimal reduction in the time-invariant case. Is this true
in the time-varying case?

Synthesis In Paper 2 and 3 modeling and some analysis of linear
time-periodic systems is done. With the help of the model truncation
procedure proposed in Paper 1 it is possible to obtain low-order approx-
imations of these, if needed. For low-order time-variable systems one
could synthesize LQG- or H2/H∞-controllers, see for example [Başar
and Bernhard, 1991].

Another option would be to further explore the harmonic transfer
matrix in Paper 3 or its extension: the harmonic transfer function,
see [Wereley, 1991; Möllerstedt, 2000]. These are generalizations of
the transfer function used for time-invariant systems, and gives a fre-
quency domain interpretation. It could be interesting to investigate the
possibilities for loop shaping and lead-lag compensation using these
system representations. These should allow one to develop the same
engineering intuition that exists for loop shaping of time-invariant sys-
tems.

Modeling, Analysis, and Reduction The power system modeling
in Paper 2 and 3 could be done in greater detail. There is not so much
analysis done using the obtained models. Robustness analysis of al-
ready existing controllers could be done, for example with IQCs as
described briefly in Paper 2.

The exhaust catalyst model in Paper 1 can be used to test and
develop different nonlinear model reduction techniques. Is it possible
to use the information the linear time-varying simplification gives to
obtain a nonlinear simplification?

5. References
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Paper 1

Balanced Truncation of Linear
Time-Varying Systems

Henrik Sandberg and Anders Rantzer

Abstract

In this paper balancing of time-varying linear systems is studied
in discrete and continuous time. Based on relatively basic cal-
culations with time-varying Lyapunov equations/inequalities we
are able to derive both upper and lower error bounds for trun-
cated models. These results generalize well-known time-invariant
formulas. The case of time-varying state dimension is considered.
Input-output stability of all truncated balanced realizations is also
proven. The methods are finally successfully applied to a high or-
der model.
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Paper 1. Balanced Truncation of Linear Time-Varying Systems

1. Introduction

This paper treats model reduction of time-varying linear systems.
Time-varying linear systems are of interest not only for modeling of
time-varying physical processes, but also because of the fact that time-
invariant nonlinear systems can be well approximated by time-varying
linear systems around nominal trajectories. Linear time-varying sys-
tems have attained much attention lately, see for example the survey
over periodic systems in [Bittanti and Colaneri, 1999] and references
therein.

Problem Statement

We will assume a linear system G is given, either in continuous or
discrete time. The system should have a finite-dimensional realization
with n states. The objective is to find a system Ĝ with n̂ states that
approximates G well, where n̂ ideally should be much smaller than n.
One objective is to find simple candidates Ĝ for given G and n̂. Another
objective is to find simple functions C1(⋅) and C2(⋅), error bounds, such
that

C1(n̂) ≤
∥∥∥G − Ĝ

∥∥∥ ≤ C2(n̂), (1)

as this simplifies the selection of Ĝ. The operator norm will be the
induced 2-norm. Notice that we can always compute hhG − Ĝhh to any
wanted degree of accuracy once Ĝ is chosen. However, this is com-
putationally expensive and involves bisection algorithms and solving
time-varying Riccati-equations, see for instance [Tadmor, 1990], which
is hardly something we would like to do for each candidate Ĝ. So
bounds of the type (1) are helpful. Moreover, we would like essential
properties of the original system G, such as stability, to be preserved
for each candidate Ĝ.

Previous Work

To reduce the order of linear time-invariant systems, balanced trunca-
tion is often used. Balanced realizations were introduced in [Mullis and
Roberts, 1976], but were first used for the purpose of model reduction
in [Moore, 1981]. A sufficient condition for asymptotic stability of trun-
cated models was later given in [Pernebo and Silverman, 1982]. Since
then an error bound has been proven, [Enns, 1984; Glover, 1984], which
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1. Introduction

gives a simple bound on the worst case error between the original and
truncated model and justifies the approximation. The bound was first
derived for continuous-time systems, but it also holds for discrete-time
systems as proven in [Al-Saggaf and Franklin, 1987]. The bound is a
sum of truncated Hankel singular values and the result is now consid-
ered to be standard and is included in most courses on robust control
and identification.

Balanced realization for time-varying linear systems have also re-
ceived attention, see for example [Shokoohi et al., 1983; Verriest and
Kailath, 1983] for some early references. However, until recently no er-
ror bound has been given for the time-variable case. To obtain bounds,
methods for uncertain systems could be utilized, see for example [Beck
et al., 1996]. However, these bounds would be conservative as the
known time-variance is encapsulated in an uncertainty ball.

The first explicit error bound for balanced time-varying models, to
the authors’ best knowledge, was given in [Lall et al., 1998] and later
refined in [Lall and Beck, 2001]. There, an operator-theoretic frame-
work was used to give bounds similar to those that apply to time-
invariant models. For time-periodic linear systems bounds have been
proven in [Longhi and Orlando, 1999; Varga, 2000]. There, a special
form of lifting isomorphism was used.

Contributions of This Paper

In this paper we will work directly with the time-varying observability
and controllability Lyapunov inequalities (linear matrix inequalities)
in both continuous and discrete time. It will be seen that it is natu-
ral to allow the state-space dimension to vary in size over time. The
approach will give fairly simple calculations and also in many cases
stronger error bounds (1) than in the previously mentioned references.
Furthermore, the method will give new results on input-output stabil-
ity of the reduced models. As special cases we will recover the known
results for time-invariant and periodic systems mentioned before.

The ability to vary the state-space dimension over time is not only
of interest for technical reasons. In for example stiff problems, such
as chemical reactions, it is frequent that in the initial phase, many
complex reactions take place and that the dynamics then slows down. It
is then reasonable to have a model with many states in the initial phase
and then switch to a low-order model after some time. The analysis
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presented will help to decide when to switch the number of states and
also how much loss in accuracy a certain choice might give.

The organization of the paper is as follows. In section 2 and 3 nota-
tion for discrete and continuous-time systems will be introduced, along
with two lemmas on observability and controllability. The lemmas will
form the basis of the following analysis. In section 4 we will define
what a balanced system is and how we, with the help of the lemmas,
can attain simple upper error bounds. In section 5 input-output stabil-
ity of all truncated models is proved. In section 6 a lower error bound
for truncated models is given. In section 7 an example of how balanced
model truncation works in practice is given. In Appendix 10 it is shown
how sampling of a continuous-time system can be combined with model
truncation.

2. Discrete-Time Systems

As some aspects of the calculations are simpler for discrete-time sys-
tems, we will start at that end. It should, however, be pointed out that
everything presented here will later also be done for continuous-time
systems.

Preliminaries and Notation

The linear systems G that we consider are assumed to have a finite-
dimensional state-space realization:

G :

{
x(k+1) = A(k)x(k) + B(k)u(k), x(0) = 0

y(k) = C(k)x(k) + D(k)u(k) (2)

with m inputs and p outputs. It will be useful to utilize time-varying
state-space dimension as commented in the introduction. It is known
that minimal realizations of linear systems in general have this prop-
erty, see [Gohberg et al., 1992]. However, it will also be a useful techni-
cal tool for reducing the order of systems where the state-space dimen-
sion originally is constant over time. Let the state-space dimension at
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2. Discrete-Time Systems

time k be n(k). The signals and matrices then have the dimensions:

A(k) ∈ Rn(k+1)�n(k) B(k) ∈ Rn(k+1)�m x(k) ∈ Rn(k) u(k) ∈ Rm

C(k) ∈ Rp�n(k) D(k) ∈ Rp�m y(k) ∈ Rp.

We will assume all the matrices are real, bounded, and defined for
k ∈ [0, T ]. Sometimes we will have T = +∞, and then the system is
assumed to be stable. Notice that as the model order may vary with
k, A(k) is not necessarily a square matrix but rather rectangular. We
could also let the number of inputs and outputs vary over time, but
we avoid this for the sake of notational simplicity.

The signals will belong to the Hilbert space Q2[0,T]. We will utilize
the weighted Euclidean norm as defined by

hx(k)h2P = xT (k)P(k)x(k)

with a positive-definite matrix P(k) ∈ Rn(k)�n(k), and also the weighted
Q2-norm

hhxhh2P =
T∑

k=0

hx(k)h2P . (3)

Discrete-time signals x over a time interval [0,∞) belong to Qn
2 [0,∞)

iff the norm (3) is finite for P(k) = I with T = +∞. If we want
to emphasize that the norm is taken over the interval [0, T ], we will
write hhxhhP,[0,T], but the interval will normally be clear from the context.
Linear systems as defined in (2) can be identified with a linear operator
G : Qm

2 [0, T ] → Qp
2[0, T ]. The operator is bounded iff the induced norm

hhGhh = sup
hhuhh≤1

hhGuhh

is bounded. Many times we will make an upper estimate of hhGhh by
finding a constant C(G) > 0 such that

hhyhh ≤ C(G) ⋅ hhuhh

for all admissible u.
The system we would like to obtain, Ĝ, will be called a reduced-

order system. It will have the state-space dimension n̂(k) where n̂(k) ≤
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n(k) for all k. We will construct Ĝ from a truncation of the realization
of G. The following partitions will be used:

A(k) =
[

A11(k) A12(k)
A21(k) A22(k)

]
A11(k) ∈ Rn̂(k+1)�n̂(k) x(k) =

[
x1(k)
x2(k)

]

B(k) =
[

B1(k)
B2(k)

]
B1(k) ∈ Rn̂(k+1)�m

C(k) = [C1(k) C2(k) ] C1(k) ∈ Rp�n̂(k).

If the realization (2) is chosen such that the states x2(k) are “small”
in some sense, a reasonable reduced-order candidate is obtained by
truncating the corresponding states:

Ĝ :

{
x̂(k+1) = A11(k)x̂(k) + B1(k)u(k), x̂(0) = 0

ŷ(k) = C1(k)x̂(k) + D(k)u(k), x̂(k) ∈ Rn̂(k).
(4)

The auxiliary signal

ẑ(k+1) = A21(k)x̂(k) + B2(k)u(k). (5)

will naturally show up later. It is not needed to evaluate the map
Ĝ. ẑ(k) has dimension Rn(k)−n̂(k) and is defined when truncation has
occurred, i.e. n̂(k) < n(k). As ẑ is not necessarily defined for all k, it
will be useful to collect the time points where it does exist in a set T :

T = {k : ẑ(k) exists}. (6)

Furthermore, let us define ẑ(0) = 0 if n̂(0) < n(0).
If the systems G and Ĝ are supposed to have a similar input-output

behavior when the above truncation scheme is used, it is important
that the coordinate system in the realization of G is well chosen. As
we will see, such coordinate systems exist in many cases. A change in
coordinate system, x(k) = T(k)x̃(k), for invertible T(k), will transform
the realization according to

{A(k), B(k), C(k), D(k)} T(k)−→ {Ã(k), B̃(k), C̃(k), D̃(k)}
= {T−1(k+1)A(k)T(k), T−1(k+1)B(k), C(k)T(k), D(k)} (7)
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The Observability Lyapunov Inequality

Consider the Lyapunov observability inequality:

AT(k)Q(k+1)A(k) + CT(k)C(k) ≤ Q(k), k ∈ [0, T ]. (8)

Q(k) is often called the observability Gramian. The positive semidefi-
nite solutions Q(k), k = 0 . . . T+1, bound the amount of energy there
will be in the output for a given initial state x(0) of the system G with
zero input:

hx(T+1)h2Q + hhyhh2[0,T] ≤ hx(0)h2Q .
The inequality can, however, also be used to calculate the Q2-norm
of the difference in the outputs from G and Ĝ when both systems are
driven by the same input signal. To see this, assume there is a positive
semidefinite solution Q(k) to (8) with the block-diagonal structure

Q(k) =
[

Q1(k) 0
0 q(k) ⋅ In(k)−n̂(k)

]
∈ Rn(k)�n(k), k = 0 . . . T+1 (9)

and q(k) scalar. Then rewrite (8) for each k in the following way:
[

A(k)
I

]T[Q(k+1) 0
0 −Q(k)

][
A(k)

I

]
+ CT(k)C(k) ≤ 0. (10)

If we apply the same input signal u to (2) and (4) we obtain the tra-
jectories x and x̂. Use the trajectories to calculate the difference

Xd(k) =
[

x1(k) − x̂(k)
x2(k)

]
∈ Rn(k).

Multiply (10) for each k from the right with Xd(k) and from the left
with X T

d (k). Using that

A(k)Xd(k) =
[

x1(k+1) − x̂(k+1)
x2(k+1) − ẑ(k+1)

]
, C(k)Xd(k) = y(k) − ŷ(k),

and the structure of Q(k) we obtain

∆
∣∣∣∣
[

x1(k) − x̂(k)
x2(k)

]∣∣∣∣
2

Q
− 2q(k+1)ẑT (k+1)x2(k+1)

+ hẑ(k+1)h2q + hy(k) − ŷ(k)h2 ≤ 0. (11)
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The forward difference operator ∆ is defined as

∆r(k) = r(k+1) − r(k).

on a scalar sequence {r(k)}. Now we can state the following lemma:

LEMMA 1—OBSERVABILITY

If there is a solution Q(k) with the structure (9) to the Lyapunov
inequality (8) on the interval [0, T+1], then the solutions of (2) and
(4) satisfy

(i)

∣∣∣∣
[

x1(T+1) − x̂(T+1)
x2(T+1)

]∣∣∣∣
2

Q
+ hhy− ŷhh2[0,T]

+
∑

k∈T

(
hẑ(k)h2q − 2q(k)ẑT (k)x2(k)

)
≤ 0 (12)

where equality holds if (8) was solved with equality.

(ii) For every non-increasing positive scalar sequence {a(k)}T
k=0 we

have

hhy− ŷhh2a,[0,T] −
∑

k∈T

a(k−1)2q(k) ẑT (k)x2(k) ≤ 0. (13)

Proof. (i): Sum the inequalities (11) over the interval k = 0 . . . T and
notice the cancelling terms.
(ii): Multiply (11) with a(k) for each k, and sum over k = 0 . . . T .

For non-increasing a(k) the partially cancelling terms becomes non-
negative numbers. The sum over T is the only sign-indefinite term,
which leads to the inequality (13).
As seen if T = ∅ the difference in output is zero, as G = Ĝ. All terms
in (12) are necessarily non-negative except the terms ẑT(k)x2(k). These
terms are the price we pay for truncating states. One might think that
if the numbers q(k) are small for k ∈ T , hhy− ŷhh2 will be small. Indeed,
if the states x2(k) are unobservable there is a solution Q(k) such that
q(k) = 0 and hhy − ŷhh = 0. Thus a small q(k) could indicate that k
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should be included in the set T and that the corresponding states
x2(k) should be truncated. However, this is only true if ẑ(k) is always
small. As we do not want to calculate ẑ explicitly each time G and Ĝ
are compared, we will obtain an a-priori bound on the terms ẑT(k)x2(k)
by a dual analysis.

The Controllability Lyapunov Inequality

Here it will be seen how far away the states in G and Ĝ can be forced
with the input signal u. The following inequality will be called the
Lyapunov controllability inequality

A(k)P(k)AT (k) + B(k)BT (k) ≤ P(k+1), k ∈ [0, T ]. (14)

P(k) is often called the controllability Gramian. Assume there is a
positive-definite block-diagonal solution to (14):

P(k) =
[

Pk,1 0
0 p(k) ⋅ In(k)−n̂(k)

]
∈ Rn(k)�n(k), k = 0 . . . T+1 (15)

with p(k) scalar. Notice that (14) is equivalent to

[
A(k) B(k)

I 0

]T[ P−1(k+1) 0
0 −P−1(k)

][
A(k) B(k)

I 0

]
≤
[

0 0
0 I

]
. (16)

Now, assume we apply the same input signal u to G and Ĝ. We then
obtain the system trajectories x and x̂. Multiply (16) for each k with

Xs(k) =




x1(k) + x̂(k)
x2(k)
2u(k)


 ∈ Rn(k)+m

from the right and with X T
s (k) from the left. Using that

[ A(k) B(k) ] Xs(k) =
[

x1(k+ 1) + x̂(k+ 1)
x2(k+ 1) + ẑ(k+ 1)

]
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and the structure of P(k) we get

∆
∣∣∣∣
[

x1(k) + x̂(k)
x2(k)

]∣∣∣∣
2

P−1

+ 2p−1(k+1)ẑT (k+1)x2(k+1)

+ hẑ(k+1)h2p−1 ≤ 4hu(k)h2. (17)

Now the following lemma can be stated:

LEMMA 2—CONTROLLABILITY
If there is a solution P(k) to the inequality (14) with the structure
(15) on the interval [0, T+1] then the solutions to (2) and (4) satisfy

(i)

∣∣∣∣
[

x1(T+1) + x̂(T+1)
x2(T+1)

]∣∣∣∣
2

P−1

+
∑

k∈T

(
hẑ(k)h2p−1 + 2p−1(k)ẑT (k)x2(k)

)
≤ 4hhuhh2[0,T]. (18)

(ii) For every positive non-increasing scalar sequence {b(k)}T
k=0

∑

k∈T

b(k−1)2p−1(k)ẑT (k)x2(k) ≤ 4hhuhh2b,[0,T]. (19)

Proof. As in Lemma 1. Use (17) instead of (11).
The lemma gives boundaries on the reachable set in the state-space
for fixed amounts of input energy. Notice that when T = ∅ equation
(18) reduces to the well-known result

hx(T+1)h2P−1 ≤ hhuhh2[0,T] + hx(0)h2P−1 ,

as x(k) = x̂(k) for all k. Also notice that the sum in (19) potentially
can cancel the sum in (13), namely if

a(k− 1)q(k) = b(k− 1)p−1(k) (20)
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for all k ∈ T . We have obtained a bound on the terms ẑT (k)x2(k) and
this will be utilized section 4.

As we will utilize the truncation recursively in the following it is
convenient that the realization of Ĝ, {A11(k),B1(k),C1(k),D(k)}, fulfills
the Lyapunov inequalities (8) and (14), with Q1(k) and P1(k) respec-
tively. This can be seen from straightforward calculations.

3. Continuous-Time Systems

The previous ideas in discrete time goes through in continuous time
without much alternation. However, we have to be somewhat careful
when the number of states change over time.

Preliminaries and Notation

The linear operator G will now operate on the Hilbert space L2[0, T ],
that is G : Lm

2 [0, T ] → Lp
2[0, T ]. A measurable signal x belongs to

Ln
2 [0, T ] iff the norm

hhxhh2P =
∫ T

0
hx(t)h2P dt

is finite for P(t) = I. The norm hhGhh is the standard induced norm. We
assume there is a finite-dimensional realization of G:

G :

{
ẋ(t) = A(t)x(t) + B(t)u(t), x(0) = 0
y(t) = C(t)x(t) + D(t)u(t) (21)

The matrices and signals have the same dimensions as in discrete
time, we will for now assume the state dimension is n(t) = n and is
constant over time. We will assume the matrices are continuous and
bounded over time in all their entries. With these conditions existence
and uniqueness of solutions to (21) is guaranteed, see for example
[Rugh, 1996]. When the infinite time-horizon case is studied the system
is assumed to be stable.
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If we use the same matrix partitions as before we can define the
n̂th-order reduced-order system Ĝ:

Ĝ :

{
˙̂x(t) = A11(t)x̂(t) + B1(t)u(t), x̂(0) = 0
ŷ(t) = C1(t)x̂(t) + D(t)u(t).

(22)

The auxiliary error signal ẑ ∈ Rn−n̂ becomes

ẑ(t) = A21(t)x̂(t) + B2(t)u(t). (23)

As we assume constant state dimension for now, the set T is the in-
terval [0, T ].

Coordinate transformations x(t) = T(t)x̃(t) with a continuously
differentiable T(t), non-singular for all t, gives:

{A(t), B(t), C(t), D(t)} T(t)−→ {Ã(t), B̃(t), C̃(t), D̃(t)}
= {T−1(t)[A(t)T(t) − Ṫ(t)], T−1(t)B(t), C(t)T(t), D(t)}. (24)

so that the input-output map is invariant.

The Observability Lyapunov Inequality

The observability Lyapunov inequality takes the form

Q(t)A(t) + AT(t)Q(t) + Q̇(t) + CT(t)C(t) ≤ 0 (25)

in continuous time. We can perform the same analysis as in section 2
by noting that (25) can be written as

[
A(t)

I

]T [ 0 Q(t)
Q(t) Q̇(t)

][
A(t)

I

]
+ CT(t)C(t) ≤ 0. (26)

As in section 2 we get:

LEMMA 3—OBSERVABILITY

If there is a solution Q(t) with the structure (9) to the Lyapunov in-
equality (25) on the interval [0, T ], then the solutions of (21) and (22)
satisfy
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(i)
∣∣∣∣
[

x1(T) − x̂(T)
x2(T)

]∣∣∣∣
2

Q
+ hhy− ŷhh2 −

∫ T

0
2q(t)ẑT (t)x2(t)dt ≤ 0 (27)

where equality holds if (25) was solved with equality.

(ii) For every non-increasing positive continuous scalar a(t) we have

hhy− ŷhh2a −
∫ T

0
a(t)2q(t)ẑT (t)x2(t)dt ≤ 0. (28)

Proof. As Lemma 1 but use (26) instead of (10). Replace summation
with integration.

The Controllability Lyapunov Inequality

The controllability Lyaponov inequality takes the form

A(t)P(t) + P(t)AT(t) − Ṗ(t) + B(t)BT (t) ≤ 0 (29)

in continuous time. If there is a positive definite solution P(t), (29) is
equivalent to

[
A(t) B(t)

I 0

]T [ 0 P−1(t)
P−1(t) d

dt P−1(t)

] [
A(t) B(t)

I 0

]
≤
[

0 0
0 I

]
. (30)

The analog to Lemma 2 becomes:

LEMMA 4—CONTROLLABILITY
If there is a solution P(t) to the inequality (29) with the structure (15)
on the interval [0, T ] then the solutions to (21) and (22) satisfy

(i)
∣∣∣∣
[

x1(T) + x̂(T)
x2(T)

]∣∣∣∣
2

P−1

+
∫ T

0
2p−1(t)ẑT (t)x2(t)dt ≤ 4hhuhh2. (31)
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(ii) For every positive non-increasing continuous scalar b(t)

∫ T

0
b(t)2p−1(t)ẑT (t)x2(t)dt ≤ 4hhuhh2b. (32)

Proof. As Lemma 2. Use (30) instead of (16). Replace summation with
integration.

Continuous-Time Systems with Time-Varying State Dimension

It is possible to analyze systems where the state dimension varies over
time, i.e. n(t) takes integer values but changes over time. This will be
useful in section 4 as we then do not need to distinguish between
discrete- and continuous-time systems.

Assume G has n states and that Ĝ has n̂1 states until time t−, and
then switches to n̂2 states at t+, i.e. an instant switch. The question
is what to do with new states and also with the ones that disappear.
Furthermore, is Lemma 3 and 4 still valid?

From t− to t+ the control signal u will not have time to influence
the states as the input energy becomes zero on this interval of zero
measure. The dynamics of the original system G becomes

x(t+) = AJ x(t−), AJ = In,

i.e. nothing happens with the states. The truncated realizations AJ
11 ∈

Rn̂2�n̂1 become

AJ
11 =

[
In̂1

0

]
n̂2 > n̂1 or

AJ
11 = [ In̂1 0 ] n̂2 < n̂1.

(33)

So new states should just be initialized to zero. If there are continuous
solutions Q(t) and P(t) to the inequalities (25) and (29) we can readily
use them as solutions to the discrete-time Lyapunov equations for the
jump:

(AJ)T Q(t+)AJ = Q(t−) and AJ P(t−)(AJ)T = P(t+) (34)
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which are fulfilled with Q(t−) = Q(t+) = Q(t) and P(t−) = P(t+) =
P(t). For each jump we therefore get following addition to Lemma 3:

∣∣∣∣
[

x1(t+) − x̂(t+)
x2(t+)

]∣∣∣∣
2

Q
−
∣∣∣∣
[

x1(t−) − x̂(t−)
x2(t−)

]∣∣∣∣
2

Q

+ hẑ(t+)h2q − 2q(t+)ẑT (t+)x2(t+) = 0, (35)

with x̂(t−) ∈ Rn̂1 and x̂(t+) ∈ Rn̂2 . The two first terms get canceled
by the boundary terms of the integrals from the constant state modes
before and after the switch in the lemma. So the only real contribution
is the two last terms. For Lemma 4 the additions become

∣∣∣∣
[

x1(t+) + x̂(t+)
x2(t+)

]∣∣∣∣
2

P−1

−
∣∣∣∣
[

x1(t−) + x̂(t−)
x2(t−)

]∣∣∣∣
2

P−1

+ hẑ(t+)h2p−1 + 2p−1(t+)ẑT (t+)x2(t+) ≤ 0. (36)

Again the only real contribution is the two last terms. The remaining
sign-indefinite terms

q(t+)ẑT (t+)x2(t+) and p−1(t+)ẑT (t+)x2(t+)

can be canceled by proper choice of a(t) and b(t) as will be discussed
in the next section.

The conclusion is that if the jump transitions (33) are used there
is no real change to the results in Lemma 3 and 4 and the set T can
be defined exactly as in the discrete-time case, eq. (6), and we may
replace the integrals

∫ T
0 in Lemma 3 and 4 by

∫
T .

REMARK 1—DISCONTINUITIES IN ŷ
With the proposed scheme we see that when new states are added,
i.e. n̂2 > n̂1, ŷ will be continuous at the switching instant as the new
states are initialized to zero. Moreover ẑ(t+) is zero.

In the other case when n̂2 < n̂1, ŷ can be discontinuous at the
switching instant as states are thrown away, and then h ẑ(t+)h2 > 0.
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REMARK 2—DISCONTINUOUS STATE TRANSFORMATIONS
The technique here can also be used when one, at some time instant,
would like to make an instantaneous state transformation, i.e. T(t)
is discontinuous. Then the jump transition matrix AJ becomes the
solution to

T(t+)AJ = T(t−),
and all the calculations in this section can be redone with this jump
matrix AJ . The corresponding Lyapunov equations to (34) become

(AJ)T Q̃+(t+)AJ = Q̃−(t−) and AJ P̃−(t−)(AJ)T = P̃+(t+).

⋅̃ − and ⋅̃ + denote matrices given in the coordinate systems T(t−) and
T(t+), respectively. How the solutions P(t) and Q(t) are transformed
is discussed in section 4, equation (39).

4. Balanced Realizations and Error Bounds

The previous sections rely heavily on the ability to obtain block-
diagonal solutions to the inequalities (8), (14), (25), and (29), re-
spectively. Often this is possible to obtain. In particular if there are
any solutions P(⋅) > 0 and Q(⋅) > 0 for all time instants in some
realization of G, there exists a balanced realization of G where the
Lyapunov inequalities take the form

ÃT(k)Σ(k+1)Ã(k) − Σ(k) + C̃T(k)C̃(k) ≤ 0,

Ã(k)Σ(k)ÃT (k) − Σ(k+1) + B̃(k)B̃T (k) ≤ 0
(37)

in discrete time, and in continuous time with some extra regularity
conditions

Σ(t)Ã(t) + ÃT(t)Σ(t) + Σ̇(t) + C̃T(t)C̃(t) ≤ 0,

Ã(t)Σ(t) + Σ(t)ÃT (t) − Σ̇(t) + B̃(t)B̃T (t) ≤ 0.
(38)

with the diagonal solution (balanced Gramians)

Σ(⋅) = P̃(⋅) = Q̃(⋅) = diag{σ 1(⋅),σ 2(⋅), . . . ,σ n(⋅)} > 0.
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A linear system G with a realization fulfilling (37) or (38) with a
Gramian Σ is called a balanced system. σ i will be denoted as the singu-
lar value corresponding to the state xi in a particular balanced system.
Notice that it is always possible to permute the singular values in Σ.
Normally one chooses to put the elements in descending order so that

σ 1(⋅) ≥ σ 2(⋅) ≥ . . . ≥ σ n(⋅) > 0.

As the singular values change in size over time it may be that the or-
dering must be changed at some time instants to maintain the above
order. This can be done with an instantaneous coordinate transforma-
tion (permutation), see Remark 2 in section 3. However, as we will
see, the ordering is not critical to our discussion. But in general it
makes good sense to put small singular values last in the Σ-matrix.
By defining a balanced realization with inequalities instead of equal-
ities it becomes non-unique, and the singular values are non-unique.
This was introduced in [Hinrichsen and Pritchard, 1990; Beck et al.,
1996] and has several appealing properties including the possibility
of tighter error bounds and that every truncated realization remains
balanced.

If we have solutions Q(⋅) and P(⋅) in a given coordinate system we
can obtain the needed coordinate transformation T(⋅) to obtain a bal-
anced realization. This is the topic of many papers. In discrete time
see, for example, [Shokoohi and Silverman, 1987; Varga, 2000] and ref-
erences therein. In continuous time we need regularity conditions on
the realization to guarantee the existence of a well-behaved balancing
transformation. In [Verriest and Kailath, 1983], for instance, analytic-
ity of the realization is assumed. In [Shokoohi et al., 1983; Shokoohi
et al., 1984] uniform observability and controllability is assumed. How
in practice to obtain T(t) in continuous time is not obvious, as we need
T(t) and also Ṫ(t) on an interval. Pointwise we can always obtain a
T(t) as we will see. In Section 7 this problem will be more treated.

We will not go into much detail at this point, let us just notice that
under the coordinate transformation (7) and (24) the solutions to the
Lyapunov inequalities transform as

Q̃(⋅) = TT(⋅)Q(⋅)T(⋅)
P̃(⋅) = T−1(⋅)P(⋅)T−T (⋅).

(39)
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so that the eigenvalues of their product is invariant. Therefore we can
calculate the singular values for a realization with Gramians P and Q
as

σ 2
i (⋅) = λ i(P(⋅)Q(⋅)) = λ i(P̃(⋅)Q̃(⋅))

at each time-instant and also obtain a balancing coordinate system
T(⋅). As a first step towards error-bounds for truncated balanced real-
izations let us note that from Lemma 1 and 2 and Lemma 3 and 4 we
get the following bound:

PROPOSITION 1—CANCELLING CONDITION

If the non-increasing weights a(⋅) and b(⋅) are chosen so that for all
time-instants k or t in T

a(k−1)q(k) = b(k−1)p−1(k) (Discrete time)
a(t)q(t) = b(t)p−1(t) (Continuous time)

(40)

then
iy− ŷia ≤ 2 iuib . (41)

Proof. Add Lemma 1 (ii) with Lemma 2 (ii) and notice that the sign-
indefinite terms are canceled if a(k) and b(k) fulfill the above condition.
Analogous in continuous time.

Monotonous Balanced Systems

We will proceed by formulating an error bound for truncated balanced
realizations which looks familiar to the well-known time-invariant re-
sult in [Enns, 1984; Glover, 1984]. We will first look at balanced sys-
tems where the singular values are monotonous in time, as this is the
simplest non-time-invariant case. It is useful to group equal singular
values together as this makes the error bound sharper. If there are
N(⋅) unique singular values use the notation

Σ(⋅) = diag{σ 1(⋅)Is1 , . . . ,σ N(⋅)IsN}.

where s1(⋅) + . . . + sN(⋅) = n(⋅). Now the following result is easily ob-
tained:
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THEOREM 1—MONOTONOUS BALANCED SYSTEMS
Suppose the system G has a balanced realization on the interval [0, T ]
with Σ(⋅) = diag{Σ1(⋅), Σ2(⋅)}:

Σ1(⋅) = diag{σ 1(⋅)Is1 , . . . ,σ r(⋅)Isr}
Σ2(⋅) = diag{σ r+1(⋅)Isr+1 , . . . ,σ N(⋅)IsN}

where each singular value σ i(⋅), i = r + 1 . . . N is either non-
increasing or non-decreasing over time.

The truncated (s1 + ⋅ ⋅ ⋅ + sr)-order system Ĝ is then balanced by
Σ1(⋅) and

∥∥∥G − Ĝ
∥∥∥ ≤ 2

N∑

i=r+1

sup
t∈[0,T]

σ i(t). (42)

Proof. Start by removing the states with the singular value σ N , and
call this truncated system ĜN−1. Thus put p = q = σ N . By assumption
there are two possibilities: σ N is non-increasing or non-decreasing.
First consider the non-increasing case. Then choose b(t) = σ 2

N(t) and
a(t) = 1 in Proposition 1 (T = [0, T ], use a(k − 1) and b(k − 1) in
discrete time) and notice the cancelling condition is fulfilled. In the
non-decreasing case choose a = σ −2

N and b = 1. It follows that

hhy− ŷN−1hh ≤ 2hhuhhσ 2
N

, or

hhy− ŷN−1hhσ−2
N
≤ 2hhuhh

which leads to hhG−ĜN−1hh ≤ 2 supt σ N(t). Next notice that ĜN−1 is still
balanced with the rest of Σ (Σ N−1). We proceed iteratively and remove
σ N−1 from ĜN−1, and repeat the scheme until the system Ĝ = Ĝr is
reached. Finally use the triangular inequality:

hhG − Ĝhh = hhG − ĜN−1 + ĜN−1 + . . .+ Ĝr+1 − Ĝhh ≤ 2
N∑

i=r+1

sup
t∈[0,T]

σ i(t).
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REMARK 3—TIME-INVARIANT BALANCED SYSTEMS
For time-invariant asymptotically stable systems we can find time-
invariant solutions Σ(⋅) = Σ to (37) and (38) and we then recover the
well-known result in [Enns, 1984; Glover, 1984].

Non-Monotonous Balanced Systems

For many systems we expect the balanced Gramians Σ(⋅) to be non-
monotonous in time. We might try to resolve this by changing the
boundary conditions to the Lyapunov inequalities until a monotonous
solution is found, and then use Theorem 1. In [Lall and Beck, 2001]
time-invariant Gramians Σ are searched for. This may lead to good
error bounds. In any case, we would still like to have a bound for
non-monotonous solutions, and this will be derived in this section. The
following definition will be useful:

DEFINITION 1—THE MAX-MIN RATIO OF σ
Let the singular value σ (⋅) be defined on the interval T = [t0, t f ], and
let it have M local maximums for t > t0, located at t0 < tmax

1 < . . . <
tmax
M ≤ t f . Then there will be M local minimums so that

t0 ≤ tmin
1 < tmax

1 < . . . < tmin
M < tmax

M ≤ t f ,

where σ (tmin
i ) is the local minimum immediately before σ (tmax

i ) for
i = 1 . . . M . The max-min ratio of σ is defined as

ST (σ ) = σ (t0)
M∏

i=1

σ (tmax
i )

σ (tmin
i ) , M > 0

ST (σ ) = σ (t0), M = 0.

Now we can formulate a general error-bound that applies both to
monotonous and non-monotonous balanced systems.

THEOREM 2—GENERAL ERROR BOUND
Let l(i) be any function that is defined for i = 1 . . . L and takes integer
values in the range 1 . . . n, where n is the number of states in G.
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The error between the balanced system G and its truncated bal-
anced realization Ĝ, where the states xl(i) have been truncated on the
time intervals T i, i = 1 . . . L, is bounded by

∥∥∥G − Ĝ
∥∥∥ ≤ 2

L∑

i=1

ST i
(σ l(i)), (43)

and Ĝ is balanced.
If the singular value for some other state xk, k �= l(i), coincides with

one in the sum (43), then xk can be truncated over the same interval
without inducing extra error.
Proof. Start to truncate all states with the singular value σ l(L) over
T L, to obtain the system ĜL−1. Permute the states so that we can
use Proposition 1. Then p(⋅) = q(⋅) = σ l(L)(⋅). We need to find non-
increasing a and b such that

a(⋅)σ 2
l(L)(⋅) = b(⋅).

If σ l(L) is initially non-increasing put b(t) = σ 2
l(L)(t) and a(t) = 1 (use

b(k−1) and a(k−1) in discrete time). If σ l(L) reaches a local minimum
at tmin

1 < t f define b(t) = σ 2
l(L)(tmin

1 ) and a(t) = σ 2
l(L)(tmin

1 )/σ 2
l(L)(t) for

t > tmin
1 . A local maximum will be reached, either at the end of the

interval or before, so tmax
1 exists. We can continue to define a(t) and

b(t) as above, i.e. one is always constant and the other decreasing.
When the whole interval T L is covered we have from Proposition 1:

a(t f )hhy− ŷL−1hh2 = inf
t∈T L

a(t)hhy− ŷL−1hh2 ≤ 4 sup
t∈T L

b(t)hhuhh2 = 4b(t0)hhuhh2,

and therefore

hhG − ĜL−1hh ≤ 2

√
b(t0)
a(t f )

= 2ST L
(σ l(L)).

If σ l(L) is initially non-decreasing an analogous treatment is applicable.
Finally we can continue recursively with i = L−1 . . . 1 and use the

triangular inequality to obtain the final result, just as in Theorem 1.
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REMARK 4—LARGE MAX-MIN RATIOS
The max-min ratio may in some cases be an unnecessarily conservative
bound. This is the case when σ (tmax

i )/σ (tmin
i ) is a large number. Then

it is advisable to split the interval T into two intervals: T 1 = [t0, tmin
i ]

and T 2 = [tmin
i , t f ], and truncate the state in two steps. We can always

divide every time interval T into smaller ones so that the singular
value is monotonous in each subinterval, and remove them recursively.

EXAMPLE 1—THE MONOTONOUS CASE

Theorem 1 follows from Theorem 2. Notice that for monotonous singu-
lar values σ (⋅), ST (σ ) = supT σ (⋅). So we have

l(1) = r + 1, T 1 = [0, T ], ST 1
(σ r+1) = sup

t∈T 1

σ r+1(t),

...
...

...
l(L) = N, T L = [0, T ], ST L

(σ N) = sup
t∈T L

σ N(t).

EXAMPLE 2—CONTINUOUS-TIME SYSTEM

Assume we have a third-order balanced continuous-time system G over
the time interval [0, 1]. The realization has the dimensions

A(t) ∈ R3�3, B(t) ∈ R3�1, C(t) ∈ R1�3

and the balanced Gramian is Σ(t) = diag{σ 1(t),σ 2(t),σ 3(t)}, so that
σ i is the singular value of state xi. The singular values are plotted in
Figure 1. If we truncate the state x3 over [0, 1] we obtain the system
Ĝ2. As σ 3 is monotonous we can use Theorem 1:

hhG − Ĝ2hh ≤ 2 sup
t

σ 3(t) = 0.8.

Alternatively we use Theorem 2 and get the same value

hhG − Ĝ2hh ≤ 2S[0,1](σ 3) = 2σ 3(0)
σ 3(1)
σ 3(0)

= 0.8.

42



4. Balanced Realizations and Error Bounds

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

PSfrag replacements

σ 1(t)

σ 2(t) σ 3(t)

t

Figure 1. The singular values for Example 2. σ 2 and σ 3 are truncated in the
example.

If we then want to truncate x2 over [0, 1] from Ĝ2, to get Ĝ1, we have
the bound

hhĜ2 − Ĝ1hh ≤ 2S[0,1](σ 2) = 2σ 2(0)
σ 2(0.2)
σ 2(0)

= 0.7,

as the only maximum is σ 2(0.2), and the minimum immediately before
is σ 2(0). Therefore the error between the first-order system Ĝ1 and G
is bounded by

hhG − Ĝ1hh ≤ 0.8+ 0.7 = 1.5.

As noted in Remark 4 it is important how the intervals T i are chosen
and how much the singular values varies over that interval. It may
very well be that we need to let the state dimension vary in order for
the error to be smaller than some chosen threshold.

Periodic Balanced Systems

Periodic systems are very important special cases of time-varying sys-
tems. For instance, we obtain such a system when a non-linear systems
is linearized about a limit cycle. Periodic systems have realizations
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where

A(⋅) = A(⋅+ω ) B(⋅) = B(⋅+ω )
C(⋅) = C(⋅+ω ) D(⋅) = D(⋅+ω )

for some time-period ω . These systems have received much attention
in the literature, see, for instance, [Bittanti and Colaneri, 1999; Möller-
stedt, 2000] and the references therein. For stable balanced periodic
systems we can find periodic Gramians

Σ(⋅) = Σ(⋅+ω )

which solves (37) and (38) with equality, see [Kano and Nishimura,
1996; Varga, 2000]. These solutions are clearly not monotonous. A prob-
lem with applying Theorem 2 directly to these solutions is that for
each new period included in T i, the bound grows. Still we would like
to let t f → ∞ for many periodic systems. In [Longhi and Orlando,
1999; Varga, 2000] a bound for balanced discrete-time periodic system
is presented. We can also derive this bound:

COROLLARY 1—PERIODIC BALANCED DISCRETE-TIME SYSTEMS
If the balanced system G has a Gramian Σ(k+ω ) = Σ(k) for all k and
some ω , and Σ(k) is partitioned as in Theorem 1, then its truncation
Ĝ is balanced with Σ1(k) and

∥∥∥G − Ĝ
∥∥∥ ≤ 2

ω∑

k=1

N(k)∑

i=r(k)+1

σ i(k) (44)

over the infinite horizon [0,∞).
Proof. Use Proposition 1. Remove first the states with the singular
value σ N(1). As the system is periodic we can simultaneously remove
these states at 1, 1+ω , 1+ 2ω , . . .. So T = {1, 1+ω , 1+ 2ω , . . .}. The
constant values a(k) = 1 and b(k) = σ 2

N(1) for all k fulfills the can-
celling condition. Continue then recursively over the whole period and
use then the triangular inequality.

This might seem to be a satisfactory error bound. However, if the period
is long (ω large) this bound gets large very quickly if states are re-
moved over the whole period. In particular, if we sample a continuous-
time periodic system then the bound gets less useful the faster we have
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sampled the system. In the limit case, when we use the result directly
on a continuous-time system, the bound is always infinity. More on
sampling is given in Appendix 10.

A better technique to obtain a bound is to utilize the inequalities in
(37) and (38) and to look for time-invariant diagonal solutions Σ. This
was done in [Lall and Beck, 2001]. Solutions where only some singular
values are constant over the whole period or constant for some fraction
of the period is also better. It is indeed possible to find time-invariant
solutions Σ in most cases. In discrete time it is always possible as is
proven in [Lall and Beck, 2001]. As this methodology requires you to
solve a potentially large LMI-system, we cannot consider the problem
of finding good error bounds for truncation of periodic balanced systems
on infinite time horizons as being fully solved.

5. Input-Output Stability of Truncated Systems

One of the advantages of the analysis so far is that it has not been nec-
essary to worry about stability. The only thing we need is a diagonal
solution Σ(⋅) over some interval [0, T ]. We could for instance reduce
an unstable plant over a finite interval and still get error bounds.
Many balanced truncation schemes in the literature requires asymp-
totic stability of the plants. Still, in order for our methodology to be
good, a truncated realization of a stable system G should also be sta-
ble in some sense. That this is indeed the case will be shown here in
the continuous-time case. The discrete-time case is analogous. Assume
from now on that there exist constants

0 < σ ⋅ I ≤ Σ(t) ≤ σ ⋅ I < ∞ (45)

for 0 ≤ t < ∞. From the controllability Lyapunov inequality we have

xT (t)Σ−1(t)x(t) ≤ hhuhh2[0,t]

x̂T (t)Σ−1
1 (t)x̂(t) ≤ hhuhh2[0,t].

(46)

So for all u ∈ Lm
2 [0,∞) both x and x̂ will be bounded. Even if the states

in both G and Ĝ are bounded, it is not clear that if G is input-output
stable (finite L2-gain), that Ĝ will be input-output stable. But with
the results from previous sections we have the following theorem.
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THEOREM 3—INPUT-OUTPUT STABILITY
If the balanced system G is input-output stable and there are constants
satisfying (45), then all states x are bounded for all u in Lm

2 [0,∞), and
every truncated system Ĝ is also input-output stable and the states x̂
are bounded.
Proof. See Appendix A.

This result might seem contradictory to the result in [Pernebo and Sil-
verman, 1982], which says that we get guaranteed asymptotic stability
on Ĝ if Σ1 and Σ2 have no entries in common. But in the theorem above
we concentrate on input-output stability. To see the effects consider the
example below from [Zhou and Doyle, 1998].

EXAMPLE 3—ZHOU & DOYLE (1998)
The continuous-time system with the transfer function

s2 − s+ 2
s2 + s+ 2

and realization

[
A B
C D

]
=




0 −
√

2 0√
2 −1

√
2

0
√

2 1




is balanced with Σ = I. The {σ 2}-truncated system
[

A11 B1

C1 D

]
=
[

0 0
0 1

]

is clearly not asymptotically stable but the pole is neither observable
nor controllable, and the system is input-output stable and x1 will be
bounded, more precisely 0, for all u. Theorem 3 says that this will
always happen when truncating a balanced system. (Obviously, in this
case, a better approximation is just to keep D = 1, as we then get a
zero-order model and the same error bound.)
The result may seem unnecessary as we can truncate states that have
equal singular values without extra cost. But the result shows that
we do not need to worry about singular values that are equal for some
time-instants, we will not lose input-output stability. The example also
shows that a truncated system may have a non-minimal realization.
The theorem, however, guarantees it is well behaved.
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6. A Lower Bound on the Approximation Error

When doing optimal Hankel-norm approximation of time-invariant
system a lower bound on the Hankel-norm for approximations of
different system order (McMillan degree) is obtained, see [Glover,
1984; Green and Limebeer, 1995]. As the Hankel-norm always is
smaller than or equal to the induced L2-norm we also get a bound
on the best possible approximation in this norm. We will see that a
similar analysis is possible for linear time-varying systems. Let us
consider finite-horizon linear systems G in continuous time and the
following Lyapunov equations:

AT(t)Q(t) + Q(t)A(t) − Q̇(t) + CT(t)C(t) = 0, Q(t f ) = 0 (47)
A(t)P(t) + P(t)AT(t) + Ṗ(t) + B(t)BT (t) = 0, P(t0) = 0 (48)

t ∈ (t0, t f ) : P(t) > 0, Q(t) > 0. (49)

Inequality (49) means the realization of G is completely controllable
and observable. Notice that we here have dropped the Lyapunov in-
equalities for equalities. This is not a severe restriction. In practice
one often solves the equalities as a first step anyhow, as it is less com-
putationally expensive than solving the strict inequalities with semi-
definite programming, and because it often gives good enough upper
error bounds.

If we can balance the equations (47)-(49), the balanced Gramian
will have the interesting property Σ(t0) = Σ(t f ) = 0. Balanced
finite-horizon systems of this sort were throughly studied in [Ver-
riest and Kailath, 1983]. Among other things it was shown that
if {A(t), B(t), C(t)} are analytic functions in t, then the coordi-
nate transformation T(t) needed to obtain a balanced realization
{Ã(t), B̃(t), C̃(t)} exists, and is a Lyapunov transformation in every
compact subset of (t0, t f ). The entries of the balanced realization will
tend to infinity at the boundaries t0 and t f . For practical computations
it seems to be reasonable to embed the interval of interest, [0, T ], in a
sufficiently large interval [t0, t f ].

Let us look at the linear system G on the time interval [t0, t f ], and
divide the interval into two parts: [t0,τ ] and [τ , t f ]. If we have a solution
Q(t) to the observability Lyapunov equation (47) we can compute the
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norm hhyhh[τ ,t f ] simply if u(t) = 0 for t > τ and x(τ ) is known. Then,

xT (τ )Q(τ )x(τ ) =
∫ t f

τ
hy(t)h2dt = hhyhh2[τ ,t f ].

Analogously we have results for the controllability equation (48) and
from linear optimal control theory. There is a minimum control signal
u∗(t) (in L2-sense) that takes the state from x(t0) = 0 to any x(τ ) that
fulfills

xT (τ )P−1(τ )x(τ ) =
∫ τ

t0

hu∗(t)h2dt = hhu∗hh2[t0,τ ],

see for example [Green and Limebeer, 1995]. Now define the Hankel-
norm hhGhhH,τ at time τ and calculate it as

hhGhh2H,τ = sup
u�=0

hhyhh2[τ ,t f ]

hhuhh2[t0 ,τ ]
= sup

x(τ )

xT (τ )Q(τ )x(τ )
xT (τ )P−1(τ )x(τ ) = σ (P(τ )Q(τ ))

where u(t) = 0 for t > τ . As P(τ ) > 0 and Q(τ ) > 0 we can find
a balancing coordinate transformation at time τ from eq. (39), so we
have σ (P(τ )Q(τ )) = σ (Σ2(τ )) = σ 2

1(τ ), because the Hankel-norm is
invariant under coordinate transformations. Also notice that hhGhhH,t0=
hhGhhH,t f = 0 and that

hhGhhH,τ ≤ hhGhh = sup
u�=0

hhyhh[t0,t f ]
hhuhh[t0 ,t f ]

(50)

for all τ in [t0, t f ]. Next, define the Hankel-operator of G at time τ ,
ΓG,τ , as the past to future restriction of G

ΓG,τ : Lm
2 [t0,τ ] G−→ Lp

2[τ , t f ].

We see that hhΓG,τ hh = hhGhhH,τ . The operator ΓG,τ has finite rank, namely
n. We here only consider constant-state-dimensional systems as full-
order systems G often come in this form. For each choice of τ there
is a singular-value decomposition (Schmidt decomposition, see [Young,
1988; Green and Limebeer, 1995]) of ΓG,τ :

ΓG,τ =
n∑

i=1

σ i(τ )〈u, vi〉wi
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where {vi}n
1 is a set of orthonormal functions in Lm

2 [t0,τ ] and {wi}n
1 is

a set of orthonormal functions in Lp
2[τ , t f ]. σ i(τ ) = λ1/2

i (P(τ )Q(τ )) are
the singular values. 〈⋅, ⋅〉 is the standard scalar product on Lm

2 [t0,τ ]:

〈u, v〉 =
∫ τ

t0

uT (s)v(s)ds.

We can now state the following theorem:

THEOREM 4—LOWER ERROR BOUND
Suppose G is a linear system with a finite-horizon nth-order realization
with Gramians that fulfill (47)–(49). Let the singular values be ordered
so that σ 1(t) ≥ . . . ≥ σ n(t) > 0 for each t. Then for any linear system
Ĝ of order r < n it holds that

hhG − ĜhhH,τ ≥ σ r+1(τ ) (51)

for all τ ∈ [t0, t f ]. Furthermore,

hhG − Ĝhh ≥ max
t

σ r+1(t). (52)

Proof. The operator Γ Ĝ,τ has rank r. If we use the Schmidt vectors
vi from ΓG,τ as basis there exist numbers α i �= 0 such that the signal
v =∑r+1

i=1 α ivi gives ΓĜ,τ v = 0. Now,

hh(ΓG,τ − ΓĜ,τ )vhh2 = hhΓG,τ vhh2 = hh
r+1∑

i=1

α iσ i(τ )wihh2 =

r+1∑

i=1

α 2
i σ 2

i (τ ) ≥ σ 2
r+1(τ )

r+1∑

i=1

α 2
i = σ 2

r+1(τ )hhvhh2.

This gives (51), and (50) then gives (52).
If we make a one-step truncation (L = 1) of a finite-horizon balanced
system G and truncate the states with the singular value σ N(t), we
get

max
t

σ N ≤
∥∥∥G − Ĝ

∥∥∥ ≤ C ⋅ max
t

σ N
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where C ≥ 2 depends upon the monotonicity conditions as discussed
in Theorem 2. Therefore we can many times expect a very good ap-
proximation in this type of one-step reductions. For multi-step re-
ductions (L > 1) the approximation may be much less close to an
optimal approximation, just as for standard balanced truncation for
time-invariant systems. But notice that we have not proven that there
exists an approximation that really obtains the lower bound, so we
do not know exactly how far away the optimum is. In [Lall and Beck,
2001] a sufficient and necessary condition for the existence of a system
Ĝ of order r for a given approximation error γ is given. The condition
is however non-convex and hard to check. The discussion here only
justifies the balanced truncation procedure when the lower and upper
bounds are close to each other.

7. Balancing Transformations and Numerical Issues

To to use the methods in this paper in practice, we need to find diag-
onal solutions to Lyapunov inequalities. If we are aiming for balanced
solutions, one way is to find a coordinate transformation T(⋅) for some
solutions P(⋅) and Q(⋅) such that

Σ(⋅) = TT (⋅)Q(⋅)T(⋅)
Σ(⋅) = T−1(⋅)P(⋅)T−T(⋅).

(53)

Then one could apply the truncation described in this paper. In order
for a coordinate transformation to be balancing, the columns in T(⋅)
must be right eigenvectors of P(⋅)Q(⋅), and the rows in T−1(⋅) must
be left eigenvectors of P(⋅)Q(⋅). Furthermore, the vectors have to be
scaled such that the observability and controllability Gramians not
only become diagonal but also equal. Let us assume the vectors have
been scaled in such a way. Later it will be seen how the scaling is
dealt with. In the following we will consider the continuous-time case,
as this is slightly more difficult.

Let us use the following notation for the eigenvectors

T(t) = [ r1(t) r2(t) . . . rn(t) ] , ri(t) ∈ Rn�1, (54)
T−1(t) = [ lT

1 (t) lT
2 (t) . . . lT

n (t) ]T , li(t) ∈ R1�n, (55)
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so that

P(t)Q(t)ri(t) = σ 2
i (t)ri(t)

li(t)P(t)Q(t) = σ 2
i (t)li(t).

The eigenvalues (singular values) are assumed to be ordered in de-
scending order. For a truncated balanced system, Ĝ, the elements in
x̂(t) ∈ Rn̂ are coordinates in the subspace spanned by r1(t), . . . , rn̂(t),
where σ 1, . . . ,σ n̂ are the largest singular values. Let us call this sub-
space the dominating subspace. We can always represent any state x̂
in the original coordinate system by the relation:

Rn # x(t) = [ r1(t) . . . rn̂(t) ] ⋅ x̂(t) = Tn̂(t) ⋅ x̂(t). (56)

When we project the original state x onto the subspace spanned by the
dominating right eigenvectors of P(t)Q(t), we will loose some informa-
tion in the state. The projection becomes

Rn̂ # x̂(t) =




l1(t)
...

ln̂(t)


 ⋅ x(t) = T−1

n̂ (t) ⋅ x(t), (57)

and we have

T−1
n̂ (t)P(t)Q(t)Tn̂(t) = Σ2

1(t) = diag{σ 2
1(t), . . . ,σ 2

n̂(t)}.

The balanced truncated state-space realization of Ĝ therefore becomes

Ĝ :





ÂB(t) = T−1
n̂ (t)[A(t)Tn̂(t) − Ṫn̂(t)] ∈ Rn̂�n̂

B̂B(t) = T−1
n̂ (t)B(t) ∈ Rn̂�m

ĈB(t) = C(t)Tn̂(t) ∈ Rp�n̂.

(58)

The subscript B is used here to emphasize that the realization is truly
balanced, i.e. the corresponding Gramians are diagonal and equal.

A problem with obtaining T(t) in continuous time is that there
may not exist a continuously differentiable balancing transformation,
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even if the singular values σ i(t) are continuous and differentiable. In
[Shokoohi et al., 1983] sufficient conditions are given for the existence
of smooth balancing coordinate transformations. But even when these
are fulfilled it is not obvious how to obtain a smooth transformation
numerically. In [Imae et al., 1992] it is instead suggested that one
should find approximate balancing transformations by solving a time-
varying Riccati equation. In this paper we take the somewhat “naive”
approach to calculate the coordinate transformation pointwise, and a
check is made afterwards to see if the obtained coordinate transfor-
mation is smooth over time. If so, a finite-difference approximation of
the derivative Ṫ(t) is made. If there are isolated discontinuities in the
transformation we may use jump transition matrices as discussed in
Remark 2. The jump transition matrix AJ

11 at time ti becomes in this
case:

x̂(t+i ) = T−1
n̂2
(t+i )Tn̂1(t−i )︸ ︷︷ ︸

AJ
11(ti)

x̂(t−i ), x̂(t−i ) ∈ Rn̂1 , x̂(t+i ) ∈ Rn̂2 . (59)

Another issue is that even for time-invariant systems it is known
that if the eigenvectors are used directly as basis in the dominating
subspace, it may lead to ill-conditioned numerics, as pointed out in
[Safonov and Chiang, 1989]. In particular this is often the case when
the sizes of the singular values differ a lot in magnitude, i.e. the case
where we would benefit the most from balanced truncation as the er-
rors are guaranteed to be small.

Choosing a Basis in the Dominating Subspace

Often it is better to use a different basis than the eigenvectors in the
dominating subspace. In [Safonov and Chiang, 1989] an algorithm is
given that uses arbitrary bases in the right and left eigenspaces corre-
sponding to the dominating singular values, to compute a realization
{Â, B̂, Ĉ} for the truncated system Ĝ. By using this approach there is
no need to really balance the system at any time, and we can avoid
potential ill-conditioned numerics.

Consider any continuously differentiable matrix VR(t) ∈ Rn�n̂

where the columns span the same subspace as the columns in Tn̂(t),
and any continuously differentiable matrix V T

L (t) ∈ Rn̂�n where the
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rows span the same subspace as the rows in T−1
n̂ (t). We can from

VR and VL construct a realization {Â, B̂, Ĉ} of Ĝ, i.e. a different
realization of the same truncated system obtained in (58). This new
realization will normally not be balanced but it will many times have
good numerical properties. We here make a straightforward extension
of the method in [Safonov and Chiang, 1989], so that it applies to
time-varying systems. For a continuous-time system we then need a
sufficiently dense time grid {tk}.

PROCEDURE 1
1. Choose the next time point in the time grid {tk}.
2. Compute E(tk) = V T

L (tk)VR(tk) and its singular-value decompo-
sition E(tk) = UE(tk)SE(tk)V T

E (tk).
3. Let

SR(tk) = VR(tk)VE(tk)S−1/2
E (tk) ∈ Rn�n̂

and
SL(tk) = VL(tk)UE(tk)S−1/2

E (tk) ∈ Rn�n̂.

4. Goto 1 and iterate through the time grid.

Therefore ST
L(t)SR(t) = In̂ and the matrix SR is a projection that re-

places Tn̂ in (56). ST
L replaces T−1

n̂ in (57). These are the new coordinate
transformations. A realization of the truncated system Ĝ is given by

Ĝ :





Â(t) = ST
L (t)[A(t)SR(t) − ṠR(t)] ∈ Rn̂�n̂

B̂(t) = ST
L (t)B(t) ∈ Rn̂�m

Ĉ(t) = C(t)SR(t) ∈ Rp�n̂.

(60)

After computing SL(tk) and SR(tk) from Procedure 1, one should check
that they are smooth over time. If the time grid is sufficiently dense and
all the involved matrices are smooth in t we can approximate ṠR(tk)
with a finite-difference approximation. If there are discontinuities at
isolated time instants ti, or if we want to change the number of states,
the jump transition matrix AJ

11(ti) becomes

AJ
11(ti) = ST

L(t+i )SR(t−i ) ∈ Rn̂2�n̂1 , x̂(t−i ) ∈ Rn̂1 , x̂(t+i ) ∈ Rn̂2 .
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If this method should improve the numerical properties of balanced
truncation, we should find good bases in the left and right eigenspaces,
i.e. VL and VR. Often orthogonal bases have good properties. In [Sa-
fonov and Chiang, 1989] a Schur decomposition of PQ is used to obtain
orthogonal bases in the left and right eigenspace. This seems to be a
reasonable method also for time-varying systems. With this method
the columns in SL(tk) and SR(tk) are orthogonal.

8. Example: Reduction of a Diesel Exhaust Catalyst
Model

Until now there has been no computations that show that the sug-
gested methods really give rise to good low-order approximations in
practice. In fact, there has been a fair amount of theoretical work done
in the literature on time-varying balancing, but the authors have not
found many real examples. Here we will give a brief overview of the
results for an example, just to show that the computations are feasible.

The Linearization

We will look at a model taken from [Westerberg et al., 2002]. This
is a model of a diesel exhaust catalyst. At the inlet of the catalyst
the exhausts from a diesel engine comes in. The exhausts are blended
with some extra diesel fuel (HC). The amount of added diesel fuel is
the control input in this example. In the catalyst the exhausts and the
diesel react and at the outlet of the catalyst the concentration of NOx
will have decayed.

The given model consists of 28 nonlinear stiff differential equa-
tions which describe concentrations of substances and temperatures
throughout the catalyst. To get a single-input single-output (SISO)
system we choose the added amount of HC at the inlet as input, and
the concentration of NO2 at the outlet as output. If we are only inter-
ested in these aspects of the system, we can drop 4 of the states in the
nonlinear model as these are not effected by changes in HC.

To apply the methods of this paper we need a linear system. In
order to get a time-varying system we linearize the system around a
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Figure 2. A step response for the diesel exhaust catalyst model. There is an
increase of about 30% in the HC-injection after 50 s. The plot shows the devia-
tion from the nominal solution. The oscillations come from the three pulses in
the nominal solution. The linear approximation works well for small outputs,
but there is a considerable undershoot for inputs of this magnitude. The approx-
imation gets better the smaller the input is. As the shape of the approximation
is correct, a simple gain adjustment would improve the output.

pulsating input signal (3 pulses) over a finite horizon of 460 s, so that
the system does not reach steady state. We then get a time-varying
linear system G with 24 states around a nominal trajectory. The lin-
earization is made numerically so that {A(t), B(t), C(t)} are obtained
from finite-difference approximations. A step response of the linear
system G and the full nonlinear system is seen in Figure 2 as a com-
parison. The step in u increases the input with about 30%. As seen
the approximation is good for small outputs. There is a considerable
undershoot in the linearization for inputs of this magnitude, smaller
inputs get better approximations. But as the shape of the output of
G is correct, a simple gain adjustment would improve the output. We
will continue to work with the linear time-varying approximation G,
as the methods in this paper apply to such systems.
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Figure 3. The singular values for the linear time-varying system G, which
approximates the diesel exhaust catalyst over the time interval 0–450 s. One
singular value is dominating, which predicts that one state is needed to make
the approximation.

The Singular Values

To find a balanced realization and the singular values we need to solve
two time-varying Lyapunov inequalities. As n = 24 this involves rather
heavy computations. We choose to first find solutions to the system
(47)–(48), with t0 = −10 s and t f = 450 s. The singular values, σ i(t) =
λ1/2

i (P(t)Q(t)), are plotted in Figure 3. The plot is in logarithmic scale
and we notice that one singular value, σ 1(t), is dominating. The three
pulses in the nominal input can be seen as three drops in the singular
values. To reduce the computation time we have chosen the ODE-solver
tolerance (for ode15s in MATLAB) so that only the two largest singular
values have good accuracy.

Already at this stage we can get a-priori bounds on the error of
truncated balanced realizations of G. We have shown in this paper
that we can truncate balanced states that have a small singular value
without inducing large errors, see Section 4. For a first-order approx-
imation denoted by Ĝ1 (n̂ = 1), the upper error bound is essentially
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2 ⋅ S[−10,450](σ 2), if we assume that the other much smaller singular
values also really only have 4 maximums. Now, as σ 2,max � 6 ⋅ 10−3

and σ 2,min � 1 ⋅ 10−3 we get that S[−10,450](σ 2) � (6 ⋅ 10−3)4/(1 ⋅ 10−3)3 =
1296 ⋅ 10−3. This is an overly conservative bound. Instead one should
divide into time intervals as suggested in Remark 4. So another, and
better, bound is given by 2 ⋅ (S[−10,110]+S[110,225]+S[225,340]+S[340,450]) �
2 ⋅ 4 ⋅ σ 2,max = 48 ⋅ 10−3. As we also derived a lower bound in section 6
we can say

6 ⋅ 10−3 ≤
∥∥∥G − Ĝ1

∥∥∥ ≤ 48 ⋅ 10−3. (61)

For a second-order truncated model denoted by Ĝ2 (n̂ = 2), it is hard to
evaluate an exact bound as we have so low accuracy on σ 3(t). But the
error should be of the order 10−4 according to Figure 3, i.e. it should
be about a factor of ten smaller than for Ĝ1.

How should one interpret these bounds? The interpretation depends
on the physical meaning of the input and the output. Many times the
L2-norm does not have a direct physical meaning. But one should know
that the L2-norm is a fairly strong norm, meaning that if it is small,
then many other norms will also be small. The best interpretation here
is perhaps that the area between the outputs of the full-order system
G and the approximations Ĝ will be very small.

The Coordinate Transformations

To find realizations for the systems Ĝ1 and Ĝ2 we use Procedure 1
outlined in Section 7. We then need a time grid {tk}, which is chosen
as the 801-point grid

{tk} = {0.0, 0.5, . . . , 400.0}.

We then compute orthogonal bases for the dominating right and left
eigenspaces of P(tk)Q(tk), one-dimensional for Ĝ1 and two-dimensional
for Ĝ2. This is done by making Schur-factorizations for each tk. Linear
interpolation is used between the grid points.

According to the method suggested in Section 7 we should check the
regularity of the coordinate transformations SL(t) and SR(t) so that
they are continuously differentiable. This can be done by plotting how
the lengths and the angles of the columns change over time. In this
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Figure 4. The evolution of the angles (left) and lengths (right) for the basis
vectors in the dominating subspace used for Ĝ2 . They are fairly regular and
change rapidly at the time instants for the pulses in the nominal input.

case let us check the transformations for Ĝ2:

SL(t) = [ sL1(t) sL2(t) ] ∈ R24�2

SR(t) = [ sR1(t) sR2(t) ] ∈ R24�2.

Let us plot the angles φ i(t) given by

sT
Ri(t0)sRi(t) = hsRi(t0)hhsRi(t)h cos φ i(t).

and also the lengths of the columns hsRi(t)h which are equal to hsLi(t)h.
These curves should look smooth if they should give rise to a coordinate
transformation without any jump transition matrices. The curves are
plotted in Figure 4. One sees that they are fairly regular and that no
jump transitions are needed. It is interesting to notice that this is truly
a time-varying coordinate transformation and that during the pulses
in the nominal input the dominating two-dimensional subspace turns
quickly in the 24-dimensional original state space.

The Evaluation

One should of course make some simulations of the models to see if
the approximations really are good, as there are many numerical ap-
proximations in the model truncation process. In Figure 5 we see a
step response test for G, Ĝ1, and Ĝ2.
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Figure 5. (Left) The step responses for the 24th-order linear time-varying
system G and its first-order approximation Ĝ1 , and its second-order approxi-
mation Ĝ2. (Right) The absolute errors between the responses of the systems.
In this case hhy− ŷ1hh/hhuhh = 7.2 ⋅ 10−3.

The error between G and Ĝ1 in this particular case is 7.2 ⋅ 10−3,
which shows that a typical error is in the same order of magnitude
as the worst-case bounds in (61). Notice that the step responses here
are very different from what is obtained from time-invariant linear
systems. If we instead use the second-order approximation Ĝ2, there
is no visible error in the step response test.

Now we return to the original nonlinear system. As we saw in
Figure 2 the only real error is the undershoot. We will use the linear
model Ĝ1 and try to modify its gain to increase its accuracy. This is
done by making six step responses of the nonlinear system and Ĝ1, and
then we see how much the gain needs to be changed. We use spline
interpolation to obtain an amplitude dependent input scaling K (u).
The weakly nonlinear first-order approximation becomes

Ĝ1 ⋅ K (⋅) :

{
˙̂x(t) = â(t)x̂(t) + b̂(t)K (u(t))u(t)
ŷ(t) = ĉ(t)x̂(t)

(62)

where {â(t), b̂(t), ĉ(t)} is the scalar realization of Ĝ1. The functions
are shown in Figure 6. Notice that the nonlinear system is not sym-
metric for negative and positive inputs. One would expect K (0) � 1,
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ĉ(
t)

t [s]

Figure 6. (Top left) The scaling K (u) used to improve the accuracy of Ĝ1 .
Notice that it is not symmetric with respect to u = 0. The system is more
sensitive to negative inputs. (Top right) â(t) in the realization. (Bottom left)
b̂(t) in the realization. (Bottom right) ĉ(t) in the realization of Ĝ1 .

as linearizations typically are almost exact for small inputs. Here
K (0) � 0.75. This is probably because the linearization was made
with finite-difference approximations.

Next we make a test of the first-order approximation Ĝ1 ⋅ K (⋅) and
the full 24th-order nonlinear system. We apply a sine wave this time
in order to see if the approximation works for different inputs than
steps. In Figure 7 the input and the responses are shown. As noted
the responses are very close to each other.
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Ĝ1 ⋅ K (⋅)

PSfrag replacements

100
0

−100

u(t) [ppm]

100

80

60

40

20

0

−20
0 50 100 150 200 250 300 350 400

450

t [s]

C
on

ce
nt

ra
ti

on
N

O
2
[p

pm
]

Sine input

Output responses

Nonlinear system
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Figure 7. The responses of the full 24th-order nonlinear model and the first-
order approximation Ĝ1 ⋅ K (⋅) to a sine wave (right). The amplitude of the input
is about 30% of the amplitude of the nominal input (left). The approximation
must be considered as very good.

We have succeeded in finding a low-order time-varying approxima-
tion for a non-trivial high-order nonlinear system. One might ask how
it can be possible to make such a low-order approximation of a com-
plex physical system. One should then remember two things. First of
all we have here only modeled the relation between injected HC and
the NO2-concentration at the outlet. The original nonlinear model de-
scribes the behavior of all concentrations and temperatures throughout
the catalyst. It is to expect that the more inputs and outputs we are
interested in, the more states we need in the approximation. Second,
the approximation is almost linear. It is only valid in some region close
to the nominal solution. One has to check for how large perturbations
the model is valid by simulations like the one in Figure 7. However, it
seems in this case to be quite simple to update the input scaling K (u)
to increase the region of validity.

The drawback of the model truncation described here is that solving
for P(t) and Q(t) is computationally heavy, although it is feasible for
n of this order of magnitude.
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9. Conclusions

In this paper we have from basic analysis of the controllability and
observability Lyapunov inequalities analyzed the effects of truncation
of states for linear systems, in both continuous and discrete time. The
analysis also covers the case when the state dimension varies over
time. This is valuable as systems may need a different amount of states
for different time intervals to be well approximated.

In particular we have studied balancing of time-varying systems.
From the solutions to the two Lyapunov inequalities we obtain a bal-
anced coordinate system, often well suited for truncation, and singular
values. The singular values give an upper bound on the L2-induced er-
ror for truncated models. Furthermore, we also obtained a lower error
bound also expressed in the singular values. Both bounds are general-
izations of well-known results for time-invariant systems.

Stability was not a main issue in the paper, as we can make ap-
proximations over a finite time horizon. Nevertheless, we proved that
if a full-order system is input-output stable, then all of its truncated
balanced realizations will also be input-output stable.

Finally, in an example we showed that the methods are applicable
to real models. A 24th-order nonlinear model of a diesel exhaust cat-
alyst was truncated to a first-order time-varying system with almost
no error.

Future work could include finding sharper error-bounds. Especially
in the infinite time-horizon case. The monotonicity conditions intro-
duced may cause the error bound to become conservative. Furthermore,
numerical issues should be considered. The requirement of solutions to
the Lyapunov inequalities/equalities restricts the use of the method.
For large-order systems they may be too computationally expensive to
obtain.
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Appendix A. Proof of Theorem 3

We will prove that input-output stability is maintained every time
Proposition 1 is used to truncate a system. Under the given assump-
tions there are constants

0 < δ a ≤ a(t) ≤ ε a < ∞ 0 < δ P ≤ P(t) ≤ ε P < ∞
0 < δ b ≤ b(t) ≤ ε b < ∞ 0 < δ Q ≤ Q(t) ≤ ε Q < ∞

for all t. The calculations will be made in continuous time, but it is
very similar in discrete time. Upon adding Lemma 3 (ii) and Lemma 4
(ii) we obtain

∣∣∣∣
[

x1(T) + x̂(T)
x2(T)

]∣∣∣∣
2

bP−1

+
∣∣∣∣
[

x1(T) − x̂(T)
x2(T)

]∣∣∣∣
2

aQ
+ hhy− ŷhh2a ≤ 4hhuhh2b.

Using the inequality hhx + yhh2a ≥ 1
2 hhxhh2a − hhyhh2a we get:

1
2
hx̂(T)h2aq+bp−1+

1
2
hh ŷhh2a ≤ 4hhuhh2b+hhyhh2a+hx1(T)h2aQ1+bP−1

1
−hx2(T)h2aq+bp−1 .
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If u ∈ L2[0,∞) and G is input-output stable we know that the terms
hhuhh2b and hhyhh2a are bounded. Because of the relations (46) and 0 <
aq+bp−1 ≤ ε aε Q+ε bδ −1

P < ∞ for all t we see that the terms involving
x̂(T), x1(T) and x2(T) are bounded for all T . Therefore we conclude
that ŷ ∈ L2[0,∞).

Appendix B. Sampled Lyapunov Equations

In this paper we have treated systems in both discrete and continuous
time. Models from physics and engineering often come in the form of
differential equations. For control purposes, however, systems have to
at some point be transformed into discrete time if implementation on
computers is intended. We will see that this discretization can be done
at the same time as the model reduction is performed.

The first step towards discretization in time is to find a different
system representation. We will use so-called lifting, see for instance
[Bamieh and Pearson, 1992]. This transformation is an isomorphic
isometry, i.e. the transformation preserves the structure and the norm
of the system. We will call the discretization time points {t(k)}. The
inputs and the outputs of the lifted system belong to the signal spaces

ū(k) ∈ Lm
2 [t(k), t(k+1)], ȳ(k) ∈ Lp

2[t(k), t(k+1)], x̄(k) ∈ Rn.

The lifted n-state continuous-time system G is given by

x̄(k+ 1) = Ā(k)x̄(k) + B̄(k)ū(k)
ȳ(k) = C̄(k)x̄(k) + D̄(k)ū(k)

where

Ā(k) = Φ(t(k+1), t(k)) (63)

B̄(k)ū(k) =
∫ t(k+1)

t(k)
Φ(t(k+1), s)B(s)ū(k; s)ds (64)

C̄(k; t) = C(t)Φ(t, t(k)) (65)

D̄(k)ū(k)(t) =
∫ t

t(k)
C(t)Φ(t, s)B(s)ū(k; s)ds+ D(t)ū(k; t), (66)
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and Φ(t, s) is the transition matrix for ẋ = A(t)x. The operators act on
the following spaces

Ā(k) : Rn → Rn

B̄(k) : Lm
2 [t(k), t(k+1)] → Rn

C̄(k) : Rn → Lp
2[t(k), t(k+1)]

D̄(k) : Lm
2 [t(k), t(k+1)] → Lp

2[t(k), t(k+1)].

We will need the adjoint operators. These act on the dual spaces. As
all involved spaces are Hilbert spaces we can represent all elements
in the dual space with elements in the primal space. The adjoints we
need are given by

Ā∗(k) = ΦT(t(k+1), t(k)) (67)
B̄∗(k) = BT (t)ΦT(t(k+1), t) (68)

C̄∗(k) ȳ(k) =
∫ t(k+1)

t(k)
ΦT(s, t(k))CT(s) ȳ(k; s)ds. (69)

We will now see that if we have solutions to the continuous-time Lya-
punov equations, Q(t) and P(t), we can use them at the sampling
instants for the lifted system. Consider the observability Lyapunov
equation in continuous time for t ∈ [t(k), t(k+ 1)]

Q(t)A(t) + AT(t)Q(t) + Q̇(t) + CT(t)C(t) = 0

and its solution

ΦT(t(k+ 1), t)Q(t(k+ 1))Φ(t(k+ 1), t)

+
∫ t(k+1)

t
ΦT(s, t)CT(s)C(s)Φ(s, t)ds = Q(t). (70)

Using the lifting operators putting t = t(k), the solution (70) can be
written as a discrete Lyapunov equation with the solution Q(t(k)):

Ā∗(k)Q(t(k+1))Ā(k) + C̄∗(k)C̄(k) = Q(t(k)). (71)
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We get analogous results for the controllability Lyapunov equation

A(t)P(t) + P(t)AT(t) − Ṗ(t) + B(t)BT (t) = 0

with the solution

Φ(t, t(k))P(t(k))ΦT (t, t(k))

+
∫ t

t(k)
Φ(t, s)B(s)BT(s)ΦT(t, s)ds = P(t) (72)

which with the lifting operators becomes

Ā(k)P(t(k))Ā∗(k) + B̄(k)B̄∗(k) = P(t(k+1)). (73)

So we can first compute continuous-time solutions Q(t) and P(t),
and then choose suitable sampling instants {t(k)} and compute the
pointwise balancing transformation T(t(k)) to balance (71) and (73).
Then we can truncate the lifted system and obtain error bounds
as we have done before with discrete Lyapunov equations. Finally,
finite-dimensional bases should be chosen to approximate the infinite-
dimensional signal spaces. For instance, zero-order hold could be used
for the signals ū(k).

As an alternative, we could for instance first do zero-order hold sam-
pling of the continuous-time system G and then balance the resulting
discrete-time system. We would then not obtain the same approxima-
tion as above and the error bound will be in induced Q2-sense, not in
induced L2-sense as in the lifting approach.
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Paper 2

Periodic Modeling of Power
Systems

Henrik Sandberg and Erik Möllerstedt

Abstract

This paper treats modeling of power systems with converters in a
linear time-periodic framework. A power converter is a nonlinear
switching device connecting an AC system to a DC system. The
converter generates harmonics that might cause instabilities in
systems of this kind. About a nominal periodic trajectory the power
converter is well described by a periodic gain matrix, whereas
the power grids often can be described by linear time-invariant
models. Put together they form a linear time-periodic model. It is
also shown in this paper how Integral Quadratic Constraints may
be used for robustness analysis. To conclude an inverter locomotive
is modeled with the described techniques.
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1. Introduction

The periodicity of currents and voltages ought to make AC power sys-
tems an ideal application for linear time-periodic system theory. These
systems are driven by a voltage of defined frequency and amplitude.
Since only relatively small deviations from this nominal voltage are
allowed, the dynamics of these systems are well captured by models
which are linearized about the nominal operating trajectory. This leads
to linear time-periodic (LTP) models.

However, surprisingly little periodic modeling of power systems is
found in the literature. The reason for this is the following: a tra-
ditional power system consists of a number of generators connected
to the grid. The generators are rotating synchronously at fundamen-
tal frequency (generally 50 or 60 Hz). The heavy generators efficiently
damp all other frequencies. This means that even though harmonics
exist due to nonlinearities, they are not believed to have a significant
effect on the dynamics of the system. For stability analysis it is then
enough to work with linear time-invariant (LTI) models which capture
the dynamics of the fundamental frequency component. Harmonics are
considered as a static filtering problem.

The introduction of power electronics in power systems has dramat-
ically changed the power systems during the last decades. Power elec-
tronic devices increase the flexibility and make more optimal utiliza-
tion of the grid and improved load performance possible. New concepts
and solutions have emerged, like high voltage DC (HVDC) transmis-
sion and distributed power generation (DPG). The deregulation of the
electricity market has further helped to make these new concepts eco-
nomically viable. To allow a more optimized operation of the system,
accurate methods for analysis and control design are essential. How-
ever, the switching nature of power electronics leads to systems that
are much harder to analyze. Traditional analysis using LTI models is
not sufficient to fully utilize the capacity of the power electronics.

Actively controlled power electronic devices like power converters,
are very powerful actuators. Power flows can be changed in a fraction of
a cycle. Since the grid itself is not low pass, the total system cannot be
assumed to have slow dynamics. Furthermore, because of the switching
dynamics, there is coupling between frequencies. Consequently, to fully
utilize the possibilities brought by the power electronics, and to avoid
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overly conservative solutions, harmonics and frequency coupling must
be considered. For reasons of simplicity and tradition, however, LTI
models that only capture the dynamics of the fundamental frequency
component are still often used for the analysis.

Power systems are very large and complex. It is therefore unre-
alistic to model complete systems as LTP. However, LTP models are
useful to understand the dynamics of power systems with switching
power electronic components. In this paper it will be shown how peri-
odic models of power systems can be used for improved analysis and
control design. A power converter is used to illustrate the ideas. A re-
lated method is the so called dynamic phasors, [Stankovic et al., 1999].
Related approaches to steady-state analysis of harmonic distortion in
power systems are found in the literature under names like harmonic
balancing, harmonic power flow studies etc. [Arrillaga et al., 1994; Xu
et al., 1991]. However, these methods do not capture the dynamics of
the system and cannot be used for stability analysis.

2. Converter Modeling

A power converter is a nonlinear coupling between two electric sys-
tems. They are often built using GTO (Gate Turn Off)-thyristors with
switching frequency up to 500Hz. IGBTs (Insulated Gate Bipolar Tran-
sistors) can also be used with switching frequency up to 10kHz. Most
common is that the converter is used to connect an AC system to a DC
system. The AC side and DC side dynamics can generally be captured
with linear time-invariant models. The problem is to obtain a good
description of the coupling between the two sides, one that facilitates
analysis and design of the complete system.

An Ideal Converter

An ideal single phase converter is shown in Figure 1. The ideal con-
verter has no losses and no energy storage. The basic goal of the con-
verter control is to shape the AC voltage so that the desired power
is fed through the converter. This is done by proper switching. From
Figure 1 it can be concluded that

vAC(t) = s(t)vDC(t) (1)
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Figure 1. An ideal converter. The switches are used to control the power flow
through the converter, and the reactive power generated on the AC side.

where the switch function s(t) can be assigned the values 1, -1, and
0, since ideal switching is assumed. The desired AC voltage is smooth
(sinusoidal), and must be approximated by using pulse width modula-
tion, for instance.

The switch function also gives a relation between AC current and
DC current:

iDC(t) = s(t)iAC(t). (2)
Since an ideal converter has no losses and no energy storage, the in-
stantaneous power on the DC side and the AC side must be equal, that
is,

pDC(t) = vDC(t)iDC(t) = vAC(t)iAC(t) = pAC(t). (3)
The current relation (2) can also be derived from this power balance.

In (1) and (2) vDC and iAC are the chosen input quantities. It would
be possible to instead choose vAC and iDC as inputs. Which pair to
choose depends on the topology of the total system. As will be seen
in Section 3 the inputs to the converter are the outputs of the rest of
the power system and thus the controlled variables. When modeling
power systems using block diagrams the problem of choosing correct
inputs and outputs always arises. It is vital that subsystems are mod-
eled such that they are possible to interconnect. A behavioral model-
ing approach, as suggested by Willems [Willems, 1971], and used by
equation based modeling languages like MODELICA avoids this problem,
[Elmqvist et al., 1999].

72



2. Converter Modeling

Linearizing the Converter

The local behavior of the converter in the neighborhood of a nominal
periodic solution {vn

DC(t), in
AC(t), sn(t)} is well described by a linear

approximation of (1) and (2):

∆vAC(t) = sn(t)∆vDC(t) + ∆s(t)vn
DC(t)

∆iDC(t) = sn(t)∆iAC(t) + ∆s(t)in
AC(t)

(4)

This can be written

[
∆vAC(t)
∆iDC(t)

]
=
[

0 sn(t) vn
DC(t)

sn(t) 0 in
AC(t)

]


∆iAC(t)
∆vDC(t)

∆s(t)




Since the nominal solution, around which the system is linearized, is
periodic, the converter is represented by a periodic gain matrix. Ideally
vn

DC is constant and vn
AC sinusoidal of fundamental frequency. From

(1) it is seen sn(t) should also be sinusoidal. However, since s(t) only
takes discrete values (±1, 0) this can only be an approximation. For
three-phase systems the same approach can be taken. The AC voltage
and current, as well as the switch signal are replace by vectors of the
three phase quantities, vAC = [va vb vc], etc. Three-phase AC systems
are conveniently represented in rotating coordinates, the so called dq0-
reference frame [Kundur, 1994]. Due to the high degree of symmetry
in balanced three-phase systems the effects of harmonics are often
reduced.

Stability of Interconnections

Often the lines of the converter are connected to systems that are well
described by linear time-invariant models (pure AC or DC systems), at
least close to the nominal solution. Hence, ∆iAC and ∆vDC are obtained
as

∆iAC = YAC(s)∆vAC,
∆vDC = ZDC(s)∆iDC,

73



Paper 2. Periodic Modeling of Power Systems
PSfrag replacements
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Figure 2. A feedback model of a power converter, ∆(t), that connects an AC
power grid to a DC power grid. ∆(t) is here a time-periodic gain matrix given
by (5) or (7).

where YAC(s) is the admittance of the AC system, and ZDC(s) is the
impedance of the DC system. The resulting closed loop is shown in
Figure 2 with

∆(t) = ∆(t+ T) =
[

0 sn(t)
sn(t) 0

]
(5)

where T is the period of the nominal trajectory, and e and f are ex-
ternal noise signals. If the models of the AC/DC systems are finite
dimensional, a periodic state-space model can be obtained. There are
common examples of infinite dimensional systems, for example long
transmission lines. However these are often approximated with finite
dimensional systems.

The feedback interconnection in Figure 2 is a well-posed problem
if ZDC(∞)YAC(∞) < 1 and sn(t) ≤ 1 for all t. It is of interest to de-
termine if the nominal solution is asymptotically stable, i.e. if all un-
forced solutions will converge asymptotically to the nominal solution.
Once the system is written in state-space form this can be determined
by Floquet-analysis, for instance. If asymptotic stability is to be deter-
mined for different sn(t) various robustness criteria can be used, for
example IQCs as described in the next section.
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As the system trajectories are supposed to stay close to a nominal
solution, which is different for different operating conditions, a stabi-
lizing controller is generally needed. In the simplest case let us assume
the switching signal is obtained from a differentiable map K (⋅, ⋅):

s(t) = K (iAC(t), vDC(t)). (6)

Then ∆s(t) in (4) is obtained by

∆s(t) = K n
iAC
(t)∆iAC(t) + K n

vDC
(t)∆vDC(t)

with

K n
iAC
(t) = VK

V iAC
(in

AC(t), vn
DC(t))

K n
vDC
(t) = VK

VvDC
(in

AC(t), vn
DC(t)).

The feedback interconnection in Figure 2 is still valid but the time-
periodic block is updated by

∆(t) =
[

vn
DC(t)K n

iAC
(t) sn(t) + vn

DC(t)K n
vDC
(t)

sn(t) + in
AC(t)K n

iAC
(t) in

AC(t)K n
vDC
(t)

]
. (7)

Asymptotic stability and robustness of this feedback interconnection
is, of course, a necessity for the power system. A static controller is a
large restriction so it is vital to be able to use dynamic controllers with
integral action, for instance. In the modeling example that is treated
in section 3 it is shown how to include dynamic controllers and still
keep much of the structure presented here.

Stability and Robustness Analysis with IQCs

To determine stability and check for robustness of the system in Fig-
ure 2 the method of Integral Quadratic Constraints (IQCs) is a valu-
able tool. For this analysis let us define

G(s) =
[

YAC(s) 0
0 ZDC(s)

]
(8)
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and assume it is asymptotically stable. Let w = ∆(t)v with ∆(t) defined
as before. We would now like to prove asymptotic stability of the inter-
connection for sets of nominal periodic solutions {vn

DC(t), in
AC(t), sn(t)},

that correspond to different operating conditions of the power system.
One way to do this is to give constraints on the Fourier transforms of w
and v, denoted by ŵ and v̂, that are related by ∆(t). These constraints
are formulated as

∫ ∞

−∞

[
v̂( jω )
ŵ( jω )

]∗

Π( jω )
[

v̂( jω )
ŵ( jω )

]
dω ≥ 0, (9)

where v, w ∈ L2
2[0,∞) are said to satisfy the IQC defined by Π : jR →

C4�4, where Π( jω ) is Hermitian. The main result is as follows: if the
interconnection of G(s) and ∆(t) is well-posed and there exist ε > 0
such that [

G( jω )
I

]∗

Π( jω )
[

G( jω )
I

]
≤ −ε I (10)

for all ω ∈ R, then the interconnection is asymptotically stable. As this
is only a sufficient condition it is crucial that Π( jω ) is well chosen,
otherwise the result can be conservative.

In [Megretski and Rantzer, 1997] the theory of IQCs is given along
with a list of Π for different types of ∆. Of special interest here are
those concerning time-periodic matrices. If ∆(t) satisfies several IQCs
they are readily combined into a single Π giving less conservative re-
sults. In [Möllerstedt et al., 2000] some numerical experiments in this
direction is done to study the robustness of Distributed Power Gener-
ators (DPGs) connected to a stiff power grid.

As the nominal system here is time-periodic it would be better to
include the known periodicity in G to reduce conservatism in the anal-
ysis. The original theory of IQCs however require time-invariant mod-
els G(s). In [Jönsson et al., 1999] an extension of the theory to handle
linear time-periodic models is done. This could be utilized for the con-
verter analysis.

EXAMPLE 1—PERIODIC SCALARS
For uncertain periodic scalars there is an IQC that gives the result in
[Willems, 1971]. Signals w = sn(t)v with a T-periodic scalar sn(t) ≤ 1

76



3. Periodic Modeling of an Inverter Locomotive

satisfies the IQC given by

Π( jω ) =
[

X ( jω ) Y( jω )
Y∗( jω ) −X ( jω )

]

for any

X ( jω ) = X ( j(ω + 2π/T)) = X ∗( jω ) ≥ 0
Y( jω ) = Y( j(ω + 2π/T)) = −Y∗( jω ).

If (5) is used as ∆(t) and we choose X ( jω ) = diag{x1, x2}, with x1 and
x2 non-negative scalars and Y( jω ) = 0 the condition (10) becomes

[
x2hYAC( jω )h2 − x1 0

0 x1hZDC( jω )h2 − x2

]
≤ −ε I (11)

for all ω ∈ R and some ε > 0. If we choose x1 = x2 = 1 this is just
the small-gain theorem. If YAC(s) and ZDC(s) are known we might
however find ( j2π/T)-periodic x1( jω ) and x2( jω ) that satisfies (11),
and thereby proving stability of the interconnection in Figure 2 for
every nominal T-periodic sn(t).

3. Periodic Modeling of an Inverter Locomotive

In this section it is shown that periodic modeling of a fairly complex
power system is indeed possible, and also provides with more informa-
tion than a linear time-invariant approach would have done. Here an
inverter locomotive is studied, schematically illustrated in Figure 3,
with two power converters connected via a DC-link, a so-called back-
to-back configuration. This is a common solution in modern variable-
speed drives. It offers great flexibility. For example, it can operate on
different power grids and be used to minimize the reactive power on
the grid. However, this type of locomotive has been involved in in-
stabilities on the power net, as in Zürich 1995 [Meyer, 1999a], which
makes it an interesting modeling object. Some of the problems are be-
lieved to be due to the creation of harmonics in the power converters of
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Figure 3. A schematic figure of an inverter locomotive. The locomotive consists
of a transformer, a line converter, a DC-link, and the motor side. The construc-
tion opens new possibilities for control, and for operating the same locomotive
on different power grids, which simplifies border crossing.

the locomotives. Such effects should be captured in a periodic model.
In [Möllerstedt and Bernhardsson, 2000] the locomotive modeling was
done in detail. Here those results will be summarized and it will be
shown how the model fits into the framework of Section 2.

The line converter is used to keep the DC-link voltage level constant
and to draw a sinusoidal current of correct frequency and phase from
the grid. By controlling the shape of iAC the locomotive can be used to
compensate for reactive power on the net. The equations (1) and (2)
describe the relation between the transformer and the link. Ideally iDC
would be constant but from (2) it is seen that it equals the product of
two sinusoids and thus a strong harmonic of twice the grid frequency
is present. This frequency is damped by a passive filter in the link.
The link also contains a large capacitor to stabilize the voltage level of
the link. Here the link is modeled by a third-order impedance

ZDC(s) = −
Cf L f s2 + Cf R f s+ 1

(Cf L f s2 + Cf R f s+ 1)(Cs+ 1/R) + Cf s

where C is the capacitance of the large capacitor, R is the resistance
of the link, and Cf , L f , and R f belong to the passive filter. Now vDC =
ZDC(s)(iload− iDC). The transformer that is connected to the other side
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3. Periodic Modeling of an Inverter Locomotive

of the converter is modeled with the admittance

YAC(s) =
1

sLtr + Rtr

with Ltr and Rtr being the inductance and resistance of the trans-
former. The model of the AC side becomes iAC = YAC(s)(vline − vAC).

There is a second converter in the locomotive used to generate
three-phase AC of variable frequency to control an asynchronous en-
gine. The symmetry in the three-phase arrangement reduces the har-
monics from the engine. With the so called dq0-transformation, men-
tioned before, this side can be modeled as an LTI system. Here the
motor side will be replaced by a current sink, iload =constant. This is
a fairly good approximation of a three-phase engine running in steady
state, as it then requires constant instantaneous power. In [Sandberg
and Möllerstedt, 2000] modeling of the motor side of an inverter loco-
motive is done.

To get a linear time-periodic model a periodic trajectory of the sys-
tem is needed. For complex systems this is done by first simulating
the entire system. Here the periodic trajectory will have a frequency
of 16+ 2/3Hz (the grid frequency). in

AC(t) and sn(t) are sinusoids, and
vn

DC and iload are constant. The linearized model can be put together
as in Figure 4 with

∆(t) =
[

0 sn(t) vn
DC(t)

sn(t) 0 in
AC(t)

]
(12)

and G(s) containing ZDC(s) and YAC(s) as before. Notice ∆(t) now has
one more input that comes from a possibly dynamic controller. The
loop now contains the normal control system blocks: the controller,
the actuator (the converter), and the process (the transformer and the
link).

As G(s) and ∆(t) can be assembled into a linear time-periodic state-
space model standard techniques can be used to design a local con-
troller about the nominal trajectory. Here however, a global controller
is just taken from [Möllerstedt and Bernhardsson, 2000], is linearized
and put into the loop to allow us to do some analysis. The controller
contains a PI-controller, a model of the transformer and a simple model
of the pulse width modulation used to get s(t).
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Figure 4. A block diagram of the linearized inverter locomotive with a con-
verter controller trying to keep vDC constant. The converter model, a time-
periodic matrix ∆(t), is here given by (12).

With this model different types of linear analysis can be made. For
example, with the Nyquist stability criterion for linear periodic sys-
tems presented in [Wereley, 1991], a gain margin for the PI-controller
is obtainable. Simulations verify that this predicted stability margin
actually is very close to the real one, see [Möllerstedt and Bernhards-
son, 2000] for details. Analysis like this is valuable as simulations can
only give a simple yes/no answer to the stability question. With stabil-
ity margins, bounds on acceptable component parameters in the link
can be obtained. This is useful as parameters of electrical components
always are uncertain to some degree.

To study stability of interconnections of several locomotives the
admittance of each locomotive is needed. Admittance is here defined
to be the influence of the grid voltage (∆vline) on the drawn current
(∆iAC). Often this relation is modeled with a time-invariant system,
see [Meyer, 1999a]. By plotting how harmonics interact in the periodic
locomotive model we derived above, we can see if this would be possible
in this case. In Figure 5 the interaction is visualized for two different
operating conditions of a locomotive. The main diagonal is essentially
the amplitude part of a Bode plot, i.e. amplification of a frequency. The
sub-diagonals show the transfer from one frequency to another. The
shift in these cases is twice the grid frequency, 33+1/3Hz. The sub-
diagonals are considerably large in both cases and even contain reso-
nance peaks. Thus to design controllers based only on time-invariant
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models (essentially the main diagonals) leads to either unsafe or overly
conservative solutions in this case. The analysis of interconnections of
several locomotive models remains to be done.
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Figure 5. Plots showing the amplitude (A/V) of the coupling between the
frequencies in ∆vline and ∆iAC for a single locomotive. The main diagonal is
essentially the amplitude part of a Bode plot, a time-invariant model could only
capture this part. The sub-diagonals show the transfer from one frequency to
another. The load current is iload = 500 A in the upper plot and iload = −500 A in
the lower plot illustrating the difference for a motor working as a load (driving)
and as a generator (braking).
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4. Conclusions and Future Work

Some of the possibilities of using periodic modeling of power systems
have been shown. A model of a power converter was developed. It
turned out to be a periodic gain matrix. This was used to model an
inverter locomotive. The locomotive had a considerable frequency cou-
pling, something that normally is not taken into account during con-
troller design and stability analysis.

It was also shown how IQCs may be used in the analysis of systems
with power converters. This could be further studied. Also it would be
interesting to look at larger problems. For example interconnections of
several locomotives running on the same net. Such systems must be
very large in order to be realistic. This should require model reduction
of time-periodic models which also is an interesting topic to be further
studied.
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Paper 3

Harmonic Modeling of the Motor
Side of an Inverter Locomotive

Henrik Sandberg and Erik Möllerstedt

Abstract

An AC-voltage source feeding an electric network results in a pe-
riodic excitation of the network. In steady state, all currents and
voltages will be periodic with cycle time corresponding to the fre-
quency of the voltage source. If the network is linear, all signals
are sinusoidal and the network is solved using traditional meth-
ods. If the network contains components with nonlinear or switch-
ing dynamics, iterative methods based on harmonic balance are
often required to obtain the periodic steady state solution.

By linearization of the system around the periodic solution, a
linear time-periodic model is obtained. This can be used as a local
description of the system in the neighborhood of the periodic solu-
tion. If only periodic signals are considered, a linearized model can
be represented by a matrix, called the Harmonic Transfer Matrix
(HTM).

The method is applied to the motor side of a modern inverter
locomotive. Via the HTM, the steady-state response to constant
or periodic disturbances or changes in reference values can be
obtained.
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1. Introduction

One example where traditional transfer function analysis has proven
to be insufficient is in railway networks with modern inverter loco-
motives. These locomotives are equipped with voltage converters with
high switching frequencies. The advantage compared to older locomo-
tives include improved efficiency and less maintenance. There have
been problems when these modern locomotives have been used with
old power networks and signaling equipment. One historical exam-
ple comes from Switzerland. During 1995 a power network resonance
occurred which led to automatic shutdown of several inverter locomo-
tives. Later studies showed that these locomotives were actually the
cause of the incident. In some frequency bands the locomotives turned
out to work more or less as negative resistors. One of these bands
happened to overlap a network resonance frequency. At the time of
the incident many older locomotives which normally damp the reso-
nance were not in operation. Together these circumstances resulted in
high amplitude current oscillations. This particular event is further
described in [Meyer, 1999a].

A better understanding of the effects is thus wanted. There is
an international research project named ESCARV (Electrical System
Compatibility for Advanced Rail Vehicles), which has as goal to de-
velop methods to test compatibility of rail networks, locomotives and
signaling equipment. All the large train manufacturers in Europe,
the Swiss and Italian railway companies and some universities are
members in this project. The project should be finished in the end of
year 2000. More information can be found in [Meyer, 1999a] and on
http://www.enotrac.com/escarv.

To analyze these systems, time simulations or iterative methods
like Harmonic Balance, see [Gilmore and Steer, 1991], often are used.
Similar types of studies have been made under various names, Har-
monic Power Flow Study in [Xia and Heydt, 1982], Unified Solution
of Newton Type in [Acha et al., 1989], and Harmonic Domain Algo-
rithm in [Arrillaga et al., 1994]. Unfortunately iterative methods are
not guaranteed to converge and it is difficult to do stability and ro-
bustness analysis in time simulators. A method that avoids some of
these problems was described in [Möllerstedt, 1998]. If a steady-state
periodic solution is known it is possible to approximate the system as
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2. Method

a linear time-periodic system locally. A matrix called the Harmonic
Transfer Matrix (HTM) describes how periodic signals interact in the
neighborhood of the known solution.

In this paper a HTM of the motor side of an inverter locomotive
is calculated and some typical results are shown. A similar model of
a diode converter locomotives is made in [Möllerstedt and Bernhards-
son, 2000a]. With the HTM it is possible to do detect dangerous cross-
coupling of frequencies, and with some slight extensions to do stability
and robustness analysis. This is not done here, see [Möllerstedt and
Bernhardsson, 2000b; Möllerstedt and Bernhardsson, 2000a; Wereley,
1991] for more details.
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Andrew Paice at ABB Corporate Research Switzerland for working
with us on this project and giving us the opportunity to work at the
company.

2. Method

In this report all considerations will be made under steady state. This
means all transients have died out and all quantities are constant or
periodic. Periodic functions can be expanded into Fourier series with
harmonic functions as basis. In the general case you need an infinite
number of frequencies to expand a function, but in computer imple-
mentations you have to truncate after a finite number of terms. In
practice this is sufficient, as the functions under consideration may
often be approximated with just a few harmonics.

Let the periodic function have a fundamental frequency of ω 0 and
the corresponding period T . The harmonics might be represented in
complex form ejω 0t or in real form sin ω 0t and cosω 0t where ω 0T = 2π .
Both representations have their advantages. In this article the complex
form will be used. The Fourier series of a periodic function v(t) is

v(t) =
∞∑

k=−∞
vkejkω 0t
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where

vk =
∫ t+T

t
v(τ )e− jkω 0τ dτ .

We are going to store the coefficients in a doubly-infinite frequency
vector

V = [ . . . v−2 v−1 v0 v1 v2 . . . ]T

If the series is truncated after N frequencies this leads to (2N + 1)-
dimensional vectors. If the function v(t) is real then v−k = v∗

k where ∗

denotes complex conjugate. Time-periodic vector and matrix functions
will later also be expanded, and the same notation is used for them. The
coefficients then have the same dimensions as the original function.

The relationship between input and output frequency vectors for a
dynamical system under steady state is

J = F(V ), J ,V ∈ C2N+1

where F in general is a nonlinear vector function. F is normally cum-
bersome to derive and to use. The method of equating harmonics in an
iterative way goes under the name Harmonic Balance and is reviewed
in for example [Gilmore and Steer, 1991].

In [Möllerstedt, 1998] a way to go around the complicated procedure
is presented. The idea is to make a linearization of F. If a steady-state
solution, with frequency vectors J0 and V0, is known it can be used as
a linearization point. Around this point the relationship between the
frequency vectors J and V approximately can be written

J = J0 +G (V −V 0) (1)

as a first-order Taylor expansion with

G = VF
VV =




V j−N

Vv−N

V j−N

Vv−N+1
. . .

V j−N

VvNV j−N+1

Vv−N

V j−N+1

Vv−N+1
. . .

V j−N+1

VvN
...

...
. . .

...
V jN

Vv−N

V jN

Vv−N+1
. . .

V jN

VvN




. (2)
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Figure 1. System overview of an inverter locomotive. The locomotive consists
of two subsystems: the line and the motor side. They are connected with the
DC-link. The method described in this article is applied to the motor side. Thus
the effects on the motor and on the link from changing voltages in the DC-link
and changing set points in the motor controller can be analyzed.

Here jk are the coefficients of J and vk are the coefficients of V . G
will in the following be called a Harmonic Transfer Matrix (HTM).
The problems here are to find the linearization point and to evalu-
ate the Jacobian (2). These things might be convenient to do through
simulations or experiments, see [Möllerstedt, 1998]. The steady-state
behavior of a Linear Time Periodic (LTP) system can be exactly de-
scribed by a HTM, see [Wereley, 1991]. A Linear Time Invariant (LTI)
system results in a HTM where only the main diagonal is non-zero, as
there is no frequency coupling. The LTI-approximation of a modeled
system is thus obtained by taking the main diagonal of the HTM.

3. System

A simple model of an AC-locomotive is shown in Figure 1. The locomo-
tive is of general type propulsed by an Asynchronous Electrical Motor
(ASM) fed through voltage converters. The converters are constructed
with GTO-thyristors (Gate Turn-Off thyristors) or IGBTs (Insulated
Gate Bipolar Transistor), high-voltage semiconductor switches. The
technology is quite modern. It was not until the 80’s this technology
had its breakthrough and became economically efficient.
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Figure 2. A simplified circuit describing the motor side of a converter locomo-
tive. The currents and voltages are defined for the DC-link and the phases of
the Asynchronous Electrical Motor (ASM). The three switches in the converter
are displayed. The task of the controller is to switch these so that the magnetic
flux in the motor moves on a circle and so that the correct mechanical torque is
delivered.

The line voltage is first transformed down to a lower voltage and
then fed to the line converter. The goals of the line controller is to
keep a constant DC-link voltage and to draw a sinusoidal current from
the line, in phase with the voltage to minimize reactive power. The
instantaneous power into the locomotive from the line pulsates with
the double net frequency, 33 1

3 Hz. The motor side on the other hand
needs more or less constant instantaneous power. Therefore a capacitor
and a filter is placed in the DC-link to compensate for the 33 1

3 Hz
oscillation.

A motor converter is connected at the other end of the DC-link.
This converter makes AC of variable frequency. The frequency must
be variable in order to drive the engine at different speeds and torques.
The motor converter and the engine are together called the motor side.
The motor side is modeled in the following.

A good reference for learning more about trains in general is [Fil-
ipović, 1989]. For the network interaction issue of converter locomo-
tives see [Meyer, 1999a] and [Meyer, 1999b].
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Motor Converter

The converter is implemented with three switches, each one of them
connected to one of the engine phases, see Figure 2. The converter
switches the engine phases between ±UDC to induce a sinusoidal motor
flux of desired frequency.

The converter is modeled with a power balance where the power
loss is neglected:

pDC(t) = 2UDC(t)IDC(t)
= ua(t)ia(t) + ub(t)ib(t) + uc(t)ic(t) = pmotor(t). (3)

We now need to construct a frequency vector model of the converter.
The power balance is a sum of terms which consist of multiplication
of two time-periodic variables, voltage and current. Let us study the
HTM of one of these terms and call the factors u(t) and i(t). Assume
now each of them are perturbed by ∆u(t) and ∆i(t). Their product is
then well approximated (small perturbations) by:

∆p(t) � i 0(t)∆u(t) + u0(t)∆i(t) (4)

where u0(t) and i 0(t) are nominal periodic solutions. The error is here
of second order. Notice that if the nominal solutions is constant this
reduces to a classical linearization, otherwise we have multiplication
with time-periodic factors. The HTM for a term in (4), generalized to
apply for multi-dimensional inputs and outputs, is given in Lemma 1.

LEMMA 1—MULTIPLICATION WITH PERIODIC FUNCTION

Let all the signals in the vector-matrix multiplication

y(t) = A(t)x(t) (5)

be periodic with the angular frequency ω 0. Equation (5) formulated
with frequency vectors become

Y = A X , (6)

91



Paper 3. Harmonic Modeling of . . . Inverter Locomotive

with the HTM (of Toeplitz structure)

A =




. . .
...

...
...

. . . A0 A−1 A−2 . . .

. . . A1 A0 A−1 . . .

. . . A2 A1 A0 . . .
...

...
...

. . .




(7)

and the frequency vectors

X T =
[

. . . xT
−1 xT

0 xT
1 . . .

]

Y T =
[

. . . yT
−1 yT

0 yT
1 . . .

]
.

Proof: By multiplication of the two complex Fourier series of A(t) and
x(t) and equating the harmonics with y(t) the relation is obtained:

( ∞∑

k=−∞
Akejkω 0t

)( ∞∑

i=−∞
xi ejiω 0t

)
=

∞∑

k,i=−∞
Akxi ej(k+i)ω 0t

=
∞∑

k=−∞

( ∞∑

i=−∞
Ak−ixi

)
ejkω 0t =

∞∑

k=−∞
ykejkω 0t.

By using (4) and Lemma 1 repeatedly in (3) we get a matrix relation
between all the deviations of the voltages and currents if a nominal
solution is given.

If the three-phase engine is a symmetric load it is enough to make
the calculations with two variables. The three phases have a phase
difference of 120○ to one another. Therefore introduce the coordinate
transformation (a, b, c) =→ (α , β ). The new coordinates are stored as
complex numbers:

Ox = 2
3
(
xaej0○ + xbej120○ + xc e− j120○) = xα + j xβ (8)
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The equations in the following are expressed in these (α , β )-coord-
inates. The power for example becomes:

pmotor(t) =
3
2
(uα (t)iα (t) + uβ (t)iβ (t))

The power balance of the converter expressed in frequency vectors thus
looks like

2(U0
DC∆I DC + I 0

DC∆U DC)

= 3
2
(U0

α ∆Iα + I 0
α ∆Uα +U0

β ∆Iβ + I 0
β ∆Uβ ) (9)

where U 0 and I 0 are Toeplitz matrices with the Fourier coefficients
of the nominal voltage and currents solutions as elements, just as in
Lemma 1. The α , β -variables are later going to be substituted.

Asynchronous Electrical Motor and Controller

On the right hand side of (9) we want to insert the ASM equations with
the controller. In the following all the variables are given as complex
numbers on the form Ox = xα + j xβ , according to (8). In normalized
quantities the ASM equations can be written as:

T∗ d
dt
Oψ µ (t) = n0 Ou(t) − ρ Oψ µ(t) + ρ (1− σ ) Oψ r(t) (10)

T∗ d
dt
Oψ r(t) = ( jn(t) − 1) Oψ r(t) + Oψ µ(t) (11)

and

mis(t) = 2(ψ µβ (t)ψ rα (t) −ψ µα (t)ψ rβ )(t),
ns(t) = nr(t) + n(t),

Oy(t) = 1
1− σ

Oψ µ(t) − Oψ r(t)

where Oψ µ is the total flux, Oψ r the rotor flux, Ou the stator voltages, mis
the delivered mechanical torque, Oy the stator currents, n the mechani-
cal motor frequency, ns the electrical frequency and nr the slip. All the
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variables are normalized and have dimension [1]. n0 is the so-called
frequency ratio, ρ the time-constant ratio and σ the stray ratio, they
are all motor parameters and are defined in [Sandberg, 1999]. There
are other and more accurate models of ASMs. An introduction to ASMs
is found in for example [McPherson and Laramore, 1990].

The fluxes are both rotating with the electrical frequency in the
engine. This frequency normally differs from the mechanical frequency.
The difference of the two is called the slip and is related to the delivered
torque and to the angle between the fluxes. A positive slip results in
a positive torque. When there is a negative slip the motor works as a
brake and generates power which can be fed out to the line.

The engine is controlled by so-called indirect self control. Here this
is modeled as multiplication of the measurable stator currents and the
fluxes with a time-periodic gain, this feedback gives the applied stator
voltages Ou. A HTM of this is obtained with Lemma 1. In the implemen-
tation the continuous control signal is converted to switching signals
by Pulse Width Modulation (PWM). This is modeled as a time lag of 1
ms corresponding to the switching frequency 250 Hz. See [Sandberg,
1999] for details.

There is a known sinusoidal solution to the engine equations. This
is used as nominal solution. Now the engine-controller loop can be
linearized and written on the form:

ẋ(t) = A(t)x(t) + B(t)u(t) (12)
y(t) = C(t)x(t) + D(t)u(t) (13)

where A(t + T) = A(t) and analogously for B(t), C(t), D(t), T is the
electrical period. In this case the vectors contain

x(t) = [∆ψ µα ∆ψ µβ ∆ψ rα ∆ψ rβ ]T

u(t) = [∆msp ∆UDC]T

y(t) = [∆ψ µα ∆ψ µβ ∆ yα ∆ yβ ∆mis]T

where ∆msp is the set point of the torque given to the engine controller.
We want to derive a HTM between u(t) and y(t). This is obtained in
Lemma 2. In the thesis [Wereley, 1991], linear time-periodic systems
of this kind are studied and the result is taken from there.
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LEMMA 2—[WERELEY, 1991]
The HTM G of a finite-dimensional linear time-periodic system as
(12)–(13) is given by

Y = GU

with
G = C (N −A )−1B +D

where N = blkdiag{ jnω 0 I}, n ∈ Z , and A , B ,C ,D are block-Toeplitz
matrices as in equation (7).

To connect the engine to the converter we can substitute these fre-
quency vectors into (9).

4. Analysis of the System

Now we have HTMs of the engine-controller loop and the converter
connection. It is then possible to plot different relations between inputs
and outputs. If the main diagonal of a HTM is plotted, a sample of the
Bode plot is obtained. If sub diagonals are present we can also study
how frequencies interact. This enables a more powerful analysis.

As one input frequency can result in many output frequencies it is
important that none of them excite a resonance in the system, in this
case the DC-link is critical. Such studies can be made with HTMs.

It turns out in these examples that the sub diagonals often become
zero when the nominal solution of the engine is pure sinusoidal. This is
because the engine is a balanced three-phase load. When the engine is
driven at higher speeds the frequency coupling is greater due to other
controller strategies.

The Influence of the Set Point of the Torque on the DC-Link Current

Here the HTM to study the influence of msp on IDC is constructed. In
Figure 3 the linear time-invariant part (main diagonal) of the HTM
is plotted. In fact the sub diagonals are zero in this case. The rea-
son for this can be understood by studying the power of the engine.
Under steady state the engine needs constant instantaneous power as
the flux moves on a circle (perfect symmetric load). When a periodic
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Figure 3. The amplitude and phase of the main diagonal of the HTM between
∆IDC and ∆msp. The solid line is from the HTM without PWM modeling and the
dashed is with PWM modeling. The (◊) are from time simulations with PWM
and (o) without PWM. It is seen that the PWM influences the transfer function
for high frequencies.

perturbation is introduced the power will change with the same fre-
quency. The DC-link voltage is assumed to be constant, and as input
power equals output power the first-order approximation will be linear
time invariant. If the DC-link voltage is assumed to be periodic, sub
diagonals will arise due to the power balance.

Notice that the small time lag introduced by the PWM results in
quite large changes for higher frequencies.

The influence of the Set Point of the Torque on the Stator Current

Here the relationship between the torque set point and the stator cur-
rent in the motor will be shown. In Figure 4 time-domain results are
plotted for one fundamental period. The input is a pure cosine of fre-
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Figure 4. The time-domain appearance of one fundamental period, T , of the
normalized stator current ∆ yα . At the top the input is displayed. It is followed
by the result from the HTM-model, the simulated result, and the difference of
the two. It is seen that the modeling is accurate for low frequencies. The high
frequency ripple is outside the studied range.

quency 4 Hz and in the output there are two frequencies, 8 and 32 Hz.
When compared to time-domain simulations it is seen that the low fre-
quency parts are almost perfectly modeled. The high frequency ripple
from the converter is not captured with this model, it is outside the
studied frequency range.

The Admittance Matrix of the Motor Side

Here a so-called admittance matrix will be plotted. We want to study
the behavior of the entire motor side as seen from the DC-link for some
operating point of the engine. This means to find the relationship of
how ∆UDC influences ∆ IDC. The admittance matrix can be used to
connect the motor side with a similar line side model. The motor side
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Figure 5. The absolute values of the admittance (HTM) matrix for the motor
side of an inverter locomotive. That is the relation between current and the
voltage in the DC-link. The locomotive is operating with a constant torque with
small 33 Hz oscillations in UDC . The main diagonal is dominating, which means
that the motor side is mainly linear time-invariant at this operating point. The
distance between the sub diagonals is 33 Hz.

is linearized around a periodic trajectory with small 33 Hz oscillations
in the DC-link and the motor delivering a constant torque. This is a
conceivable operating point, as the energy pulsates into the DC-link
from the line side converter with the double line frequency.

The absolute values of the HTM is shown in Figure 5. The main
diagonal is strongly dominating here. So a linear time-invariant model
seems to be able to model most of the dynamics. If there were no
oscillations in the DC-link at the operating point, no sub diagonals
would be present. An operating point with larger oscillations would
give larger sub diagonals. This is a consequence of the symmetries in
the model and the control technique.

The main diagonal alone is plotted in Figure 6 (solid line) in a
Bode diagram. From this we see that the motor side is an inductive
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Figure 6. Here the amplitude and phase of the main diagonal of the admit-
tance matrix in Figure 5 are displayed in a wider frequency range (solid line).
For frequencies above 50 Hz the phase plot indicates that the motor side works
as an active load (negative resistance) to the DC-link. This might inflict stability
problems when the line side is included in the model. A first-order transfer func-
tion, Ymotor(s), fits the main diagoal well (dashed line). This is a non-minimum
phase system.

load to the link and that for frequencies above 50 Hz it has negative
resistance. This means the motor side supplies the link with energy for
high frequencies, which could be problematic from a stability point of
view. We also see from the relationship of the amplitude and the phase
that there seems to be a zero in the right half plane, i.e. the motor side
is non-minimum phase. Such systems are known to be inherently hard
to control. By simple curve fitting we see that a first-order transfer
function

Ymotor(s) = −0.32 ⋅
s− 20
s+ 80

[A/V] (14)

fits the main diagonal well (dashed line). For a simplified analysis of
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the motor side this model could be used.
The non-minimum phase behavior can be understood as the motor

is controlled to deliver a constant torque. When the voltage level rises
in the DC-link, the current must decrease in order to keep the power
input to the motor constant. There is, however, a feedforward loop from
the DC-link voltage to the motor controller that raises the torque set
point, in order to help the line side controller in the stabilization of
the DC-link. This only works for low frequencies.

5. Conclusions and Future Work

In this article we have studied harmonic transfer matrices and have
shown how to use them to model systems with switching components.
The method was exemplified on an inverter locomotive. In particular,
a simplified model of the admittance of the motor side was developed.

The HTMs are useful to describe periodic systems. They give a
compact description and are easy to interpret. With the HTM it is
possible to answer a wider range of questions than it is possible to with
traditional analysis. Particularly frequency interaction is described,
which is often seen in nonlinear systems with periodic trajectories.

A generalization of the HTM described here, is the Harmonic Trans-
fer Function (HTF), see [Möllerstedt and Bernhardsson, 2000a; Were-
ley, 1991; Möllerstedt and Bernhardsson, 2000b]. There exist a Nyquist
criterion for the HTF which enables stability and robustness studies.
There are many analogies between the HTF and the transfer function
for LTI systems, future work would include transferring more results
from LTI theory.
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