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We live on an island
surrounded by a sea of ignorance.
As our island of knowledge grows,
so does the shore of our ignorance.

Archibald Wheeler
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Abstract

The efficient simulation of thermal interaction between fluids and structures is crucial
in the design of many industrial products, e.g. turbine blades or rocket nozzles. The
main goal of this work is to present a high order time adaptive multirate parallel parti-
tioned coupled method for the efficient numerical solution of two parabolic problems
with strong jumps in the material coefficients that can be further extended to thermal
fluid-structure interaction simulation.

Our starting point was to analyze the convergence rate of the Dirichlet-Neumann
iteration, which is one of the basic methods for simulating fluid-structure problems, for
the fully discretized unsteady transmission problem. Specifically, we consider the coupling
of two linear heat equations on two identical non overlapping domains with jumps in the
material coefficients across these as a model for thermal fluid-structure interaction. We
provide an exact formula for the spectral radius of the iteration matrix in 1D. We then
show numerically that the 1D result estimates the convergence rates of 2D examples and
even of nonlinear thermal fluid-structure interaction test cases with unstructured grids.

However, an important challenge when coupling two different time-dependent prob-
lems is to increase parallelization in time. We suggest a multirate Neumann-Neumann
waveform relaxation algorithm to solve two heterogeneous coupled heat equations as an
alternative to the Dirichlet-Neumann method. In order to fix the mismatch produced by
the multirate feature at the space-time interface a linear interpolation is constructed.

Furthermore, we perform a one-dimensional convergence analysis for the nonmulti-
rate fully discretized heat equations to find the optimal relaxation parameter in terms of
the material coefficients, the step size and the mesh resolution. This gives a very efficient
method which needs only two iterations. Numerical results confirm the analysis and show
that the 1D nonmultirate optimal relaxation parameter is a very good estimator for the
multirate 1D case and even for multirate and nonmultirate 2D examples.

Finally, we also include in this work a time adaptive version of the multirate Neumann-
Neumann waveform relaxation method mentioned above. Building a variable step size
multirate scheme allows each of the subsolvers to freely construct its own time grid inde-
pendently of each other. Therefore, the overall coupled method is more efficient than the
previous multirate version.
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Popular Science Summary

The invention of computers revolutionized the way of doing science and in particular the
field of mathematics. Computers were faster than any human mind in doing calculations
and they did not make mistakes opening a wide range of possibilities that earlier where in
practice uncomputable. Scientists observe the behavior of nature and find mathematical
equations that model the different phenomena. In other words, they translate the multi-
plicity of phenomena observed in nature into mathematical language. Sometimes one is
able to find a solution of an equation in the classical way, by pen and paper. This is called
an analytical solution. However, most of the times this is not possible because the equa-
tions are too complicated and either the analytical solution is yet unknown or it has been
proved to not exist. In those cases, it is still possible to find a numerical solution which
is a discrete approximation to the unknown continuous analytical solution. Numerical
analysis is the discipline that builds and analyzes new numerical methods to approximate
solutions to all kinds of equations; from climate models to rocket engines.

The work in this thesis is motivated by the simulation of thermal fluid-structure inter-
action (FSI). The thermal interaction between fluids and structures, also called conjugate
heat transfer, occurs when a deformable or moving structure transfers or receives heat from
a surrounding or internal fluid flow. Examples of this are cooling of gas-turbine blades,
thermal anti-icing systems of airplanes, supersonic reentry of vehicles from space or gas
quenching, which is an industrial heat treatment of metal workpieces. These problems
are usually too complex to solve them analytically, and therefore, numerical simulations
of the conjugate heat transfer are essential.

There are three different aspects that one needs to take into account for the simulation
of thermal FSI. Firstly, we need a fluid solver that models the behavior of the gas in the
quenching process of metal workpieces or in the liquid chemicals of the anti-icing systems
of airplanes. Secondly, a structure solver is needed to model the temperature distribution
over the metal workpiece or the airplane. Thirdly, the temperature interaction in the
places where the fluid and the structure meet needs to be taken into consideration as
well. There are basically two approaches for the numerical simulation of thermal FSI. On
one hand, one can set a numerical method that includes the fluid model, the structure
model and the corresponding interaction building a new holistic model for each specific

ix
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application. This is called monolithic approach. As an alternative, one can reuse existing
models for the simulation of the fluid and the structure and set a coupled numerical
method to handle the interaction between fields in an iterative manner. This is known as
partitioned approach and even though the advantages with respect to the monolithic are
clear because only the coupling needs to be taken into account, it depends on an iterative
procedure that does not guarantee in general to achieve a solution.

My contribution is focused on providing efficient partitioned numerical methods
for the simulation of thermal FSI. The efficiency of a partitioned method is measured
through the speed of the iterative solver to achieve an accurate numerical solution. Three
scenarios are possible; the iteration does not converge to any solution, the method ap-
proaches to the solution but very slowly, meaning that needs many iterates to find it or
the method is very fast and achieves the solution in few iterates. The first scenario is un-
interesting and the speed of the iteration to determine if the method is fast and efficient
or slow and inefficient is measured through its rate of convergence.

In this thesis, we have measured the rate of convergence of the Dirichlet-Neumann
iteration which is one of the classical coupled partitioned methods for FSI simulation.
We are interested in time-dependent problems. This means that we find the numerical
solution over a certain time grid corresponding to a time interval. Then, for each of the
values of the time grid, one performs the Dirichlet-Neumann iteration to coordinate the
solution of the fluid and the structure models. The rate of convergence of the Dirichlet-
Neumann method is highly dependent on the materials that one couples. In particular,
the rate will be very small and consequently the coupled method will be very fast when
there exist strong jumps in the material properties. This means that when for instance one
couples air with steel where their densities and heat conductivities are strongly different,
one gets a very fast method. Conversely, the rate will be larger and consequently the
numerical method will be very slow or even divergent when the properties of the coupled
materials are very similar to each other. In conclusion, the Dirichlet-Neumann iteration is
a very good choice when coupling fields with strongly different material properties. This
is exactly the situation we have in the air cooling of metal workpieces.

In spite of the efficient behavior of the Dirichlet-Neumann iteration in the thermal
FSI framework, it has a main disadvantage. The subsolvers for the fluid and the struc-
ture wait for each other, and therefore, they perform the iterative procedure sequentially.
In order to increase time parallelization we use the Neumann-Neumann waveform relax-
ation (NNWR) algorithm as an alternative to the Dirichlet-Neumann method. Using the
NNWR algorithm we were able to construct a new method that allows at each iteration
to find the solution of the two subproblems in parallel over the whole time interval before
performing the coupling across the interfaces. In addition, this method also allows each
of the subsolvers to freely construct their own time grid independently of each other.
Therefore, our proposal increases parallelism and it is more efficient than the classical
Dirichlet-Neumann method in most cases.
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Chapter 1

Introduction

The space industry has grown strongly over the last years. The three major sectors of
the space industry are satellite manufacturing, support ground equipment manufacturing
and the launch industry. The "2017 Space Report" [31] estimates that in 2016 total
global space activity was $329 billion. The companies SpaceX and PLD Space founded in
2002 and 2011, respectively, believe that a fully and rapidly reusable rocket is the pivotal
breakthrough needed to substantially reduce the cost of space access. On the other hand,
nowadays communities are increasingly concerned about the impact of these industries
on the environment. For example, the European commission published a report, named
"European Aeronautics: a vision for 2020" [2], where as a main goal for this industry a
50 % reduction of the noise and the CO2 emissions is specified. All these facts show the
need for rapid development in this area.

Numerical analysis plays an important role in the development of space launch vehi-
cles. The invention of super computers and advanced numerical methods allows numer-
ical modelling of different aspects of an engine, helping in the design process. Modeling
of the cooling/heating of the thrust chamber nozzle is a typical example. Thus, for a
reasonable description a coupled simulation needs to be performed.

Due to new developments in computer technology during the last years the simula-
tion of a coupled interaction between fluids and structures is now feasible. Nevertheless,
investigating only the interaction between fluid forces and structural deformations in a
rocket engine is not sufficient because the temperature plays a crucial role in the engine.
The temperature achieved in the turbines has increased over the years due to progress in
the building materials and therefore, advanced cooling methods are needed. Thus, devel-
oping an efficient model for the heat transfer is essential for the numerical simulation of
these problems.

1
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1.1 State of the art

The efficient numerical simulation of fluid-structure interaction (FSI) models is one of
the current challenges in scientific computing as stated in [15]:

“The issue of coupling models of different events at different scales and gov-
erned by different physical laws is largely wide open and represents an enor-
mously challenging area for future research.”

One finds examples in diverse fields like aeronautics [24], turbomachinery [98], bio-
mechanics [73, 89], or even in the food industry [64]. There exist two main methods to
simulate FSI models: the monolithic and the partitioned approaches.

In the monolithic method (or direct coupling), a new code is tailored for the coupled
equations. Different methods exist for the boundary formulations, for instance, moving
reference frames [53] or coordinate transformations [63].

On the other hand, the partitioned approach allows to reuse existing software for each
sub-problem. The coupling is done by a master program which calls interface functions
of the other codes [18, 20, 27]. If the data transfer between the subsolvers is done only
once per time step, we are using a loosely coupled scheme [29]. However, for stability
reasons, often a strongly coupled scheme needs to be used [51]. In this case the data
exchange at every time step is repeated until a convergence criterion is satisfied.

The partitioned coupling methods offer the attractive advantage of reusing existing
solvers for the fluid and the structure when simulating FSI problems [93, 14]. One of
the basic methods for managing the coupling is the Dirichlet-Neumann iteration. More
specifically, the Dirichlet-Neumann iteration is a basic method in both domain decompo-
sition and fluid-structure interaction. To satisfy the coupling conditions at the interface,
the subsolvers are iterated by providing Dirichlet- and Neumann data for the other solver
in a sequential manner.

In the domain decomposition context, the iteration has two main problems, namely
slow convergence and the need for an implementation using a red-black colouring. The
slow convergence can be improved using a relaxation procedure. In fluid-structure inter-
action, there are only two domains, coupled along an interface, making the application
straight forward. However, the convergence rate is not great for the coupling between a
compressible fluid and a structure [23], which is why a lot of effort goes into convergence
acceleration. On the other hand, the Dirichlet-Neumann iteration was reported to be a
very fast solver for thermal fluid-structure interaction [9] although a convergence analysis
has not been performed.

Thermal FSI applications typically consist of two domains with jumps in the material
coefficients across a connecting interface. For this reason, the transmission problem is
considered a basic building block in thermal fluid-structure interaction. For the case of
coupled heat equations, a one dimensional stability analysis was presented by Giles [37].
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There, an explicit time integration method was chosen with respect to the interface un-
knowns. On the other hand, Henshaw and Chand provided in [44] a method to analyze
stability and convergence speed of the Dirichlet-Neumann iteration in 2D based on ap-
plying the continuous Fourier transform to the semi-discretized equations. Their result
depends on ratios of thermal conductivities and diffusivities of the materials. This is sim-
ilar to the situation in [18, 3] where the performance of the coupling for incompressible
fluids is affected by the added mass effect.

In spite of the efficient behavior of the Dirichlet-Neumann iteration in the ther-
mal FSI framework, it has two main disadvantages. Firstly, the subsolvers wait for each
other, and therefore, they perform sequentially. Secondly, in the time-dependent case the
Dirichlet-Neumann iteration is used at each time step and consequently, both fields are
solved with a common time resolution. Using instead a time adaptive multirate scheme
that allows for different time resolutions on each subdomain would be more efficient.

Some work has already been done in that direction for the simulation of FSI prob-
lems. A time adaptive partitioned approach built over the Dirichlet-Neumann iteration
for thermal FSI was presented in [11]. In [57], two new iterative partitioned coupling
methods that allow for the simultaneous execution of flow and structure solvers were in-
troduced. Furthermore, coupled schemes with two different time integration methods or
using two different time steps sometimes leads to a degradation of the overall time inte-
gration method to first order convergence affecting stability [7, 13, 38]. A more general
solution when coupling time integration methods with arbitrary order using the coupling
library preCICE is given by [71].

A new method that at each iteration solves the two subproblems over the whole
time window before exchanging information across the interfaces for the coupling of two
parabolic problems was introduced in [50, 34]. There, the Neumann-Neumann wave-
form relaxation (NNWR) method which is a waveform relaxation (WR) method based
on the classical Neumann-Neumann iteration is described. The WR methods were origi-
nally introduced in [52] for ordinary differential equation (ODE) systems, and they were
used for the first time to solve time-dependent PDEs in [35, 36]. They allow the use of
different spatial and time discretizations for each subdomain which is specially useful in
problems with strong jumps in the material coefficients [33] or the coupling of differ-
ent models for the subdomains [32]. In [65], a pipeline implementation of the NNWR
method together with its parallel efficiency is analyzed for the coupling of homogeneous
materials. However, parallelization in time for the coupling of heterogeneous materials
was not yet considered.

1.2 Thesis overview

The aim of this work is to present a high order time adaptive multirate partitioned cou-
pled method for the efficient simulation of the solution of two coupled parabolic prob-
lems with strong jumps in the material coefficients that can be further extended to thermal
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FSI simulation. This work is not simple and faces two main challenges. One hand, the
efficiency of a partitioned approach always depends on the speed of its coupled iteration
across the interfaces. For that reason, we analyze the convergence rates of different cou-
pled methods explaining under which circumstances are those a great option for thermal
FSI simulation. On the other hand, our time adaptive multirate method that couples
two variable time integration schemes on the two subdomains increases efficiency of the
overall coupled simulation with respect to current approaches.

The research collected in this thesis consists of three stages. Firstly, we performed
a convergence analysis of the classical Dirichlet-Neumann partitioned coupled method
motivated by the fast behavior observed in [9] for the simulation of thermal FSI. We
concluded that strong jumps in the material coefficients of the coupled PDEs imply fast
convergence. This is often the situation in thermal FSI where the density and thermal
conductivity for the fluid are typically way smaller than for the structure. Conversely, the
coupling iteration will be slow when the material coefficients are continuous over all the
subdomains. Secondly, we proposed and analyzed a multirate partitioned approach based
on the NNWR algorithm [50, 34] for two coupled parabolic problems with heteroge-
neous material coefficients. Additionally, we determined the optimal relaxation param-
eter Θopt in terms of the material coefficients and the temporal and spatial resolutions
∆t and ∆x. The method using Θopt converges extremely fast, typically within two itera-
tions. Finally, time adaptivity is added to the multirate approach resulting in a partitioned
coupled scheme that allows at each iteration to find the local solutions of the subproblems
over a certain time window using different time step controllers. In this setting, one does
not need to exchange information across the interface after each time step. The numer-
ical results show the advantages of the time adaptive method over the previous multirate
approach.

All the analyses contained in this thesis are performed after the full discretization of
the coupled problem meaning both space and time dimensions. With regards to the
space, we consider two different cases. We either use a finite element method (FEM) to
discretize both subdomains or use a finite volume method (FVM) on one domain and a
FEM on the other. With regards to time integration methods, we either use implicit Euler
or a second order singly diagonally implicit Runge-Kutta method (SDIRK2). Once we
have a fully discrete coupled problem, the efficiency of the resulting iterative method is
measured through its convergence rate. In principle, the convergence rate of the method is
analyzed in any standard book on domain decomposition methods, e.g. [69, 91]. There,
the iteration matrix is derived in terms of the stiffness and mass matrices of finite element
discretizations and the convergence rate is the spectral radius of that. However, this does
not provide a quantitative answer, since the spectral radius is unknown. Computing the
spectral radius is in general a non trivial task. In our context, the material properties are
discontinuous across the interface and as a consequence, computing the spectral radius of
the iteration matrix is even more difficult.

The core idea that it is used is the following: we computed the spectral radius of the
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corresponding iteration matrix exactly in terms of the eigendecomposition of the result-
ing matrices for the model problem. In the 2D case, we provided an approximation of the
convergence rate. The asymptotics of the convergence rates when approaching the con-
tinuous case in either time or space are also computed for the different choices of spatial
discretizations. These results are consistent with numerical experiments. They describe
the convergence rates of the thermal interaction between two different materials using the
Dirichlet-Neumann iteration or the NNWR algorithm. Furthermore, we showed numer-
ically that the theoretical results describing the convergence behavior of the two coupled
linear heat equations are a very good estimate for the convergence rates of two nonlinear
thermal FSI test cases.

1.3 Organization of the thesis

In chapter 2, the general framework of the thesis is presented. Basic concepts about
thermal fluid-structure interaction are explained as well as its simulation. In chapter 3,
we define the time-dependent transmission problem as a simplified model for thermal
fluid-structure interaction in terms of the partial differential equations, boundary condi-
tions and interface conditions. We also give a description of the discretizations and the
Dirichlet-Neumann model is explained. Our convergence analysis for the discrete case of
the model problem using Dirichlet-Neumann interface conditions is presented in chapter
4. In chapter 5, the analysis is repeated for mixed discretizations. Here we discretize one
domain with finite volumes and the other with finite elements as usually done in the FSI
models. In chapter 6, we present our multirate approach for the coupling of two hetero-
geneous materials based on the NNWR algorithm. This approach is further extended to
its time adaptive version in chapter 7. Conclusions and future work can be found in the
final chapter.





Chapter 2

Thermal fluid-structure
interaction

Fluid structure interactions occurs when a deformable or moving structure interacts with
a surrounding or internal fluid flow. Fluid structure interaction covers a wide range of
subjects as aero-elasticity [28, 47], hydro-elasticity [75, 12], flow-induced vibration [74],
thermal deformation [54, 100], the analysis of aneurysms in large arteries [90, 4, 5] and
artificial heart valves [17, 22, 19] among others.

Our specific field of interest is thermal interaction between fluids and structures,
the so-called conjugate heat transfer. Examples for thermal fluid-structure interaction
are cooling of gas-turbine blades, thermal anti-icing systems of airplanes [16], super-
sonic reentry of vehicles from space [58, 45], gas quenching, which is an industrial heat
treatment of metal workpieces [43, 88] (see figure 2.1) or the cooling of rocket nozzles
[48, 49]. These problems are too complex to solve them analytically, and therefore, nu-
merical simulations of conjugate heat transfer are essential in many applications.

2.1 Motivation

The research that will be presented in this thesis was inspired by the problem of cooling
of rocket thrust chambers. In particular, we consider the Ariane 5 rockets which are
manufactured under the authority of the European Space Agency (ESA). The Ariane 5
is used to deliver payloads into the geostationary transfer orbit (GTO) or the low Earth
orbit (LEO), see figure 2.2a. The cooling of rocket thrust chambers we consider takes
place in the first stage rocket engines for the Ariane 5 called Vulcain 2, see figure 2.2b.

Figure 2.2c shows a combustion chamber with an opening, the nozzle, through which
gas can escape. The pressure distribution within the chamber varies a little, but near
the nozzle it decreases. At the bottom of the combustion chamber the force due to gas

7
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(a) Inductive heating. (b) Thermo-mechanical forming. (c) Local air-cooling.

Figure 2.1: Gas quenching. Left and center picture taken from [39]. Right picture taken
from [86].

(a) Ariane 5 on the launch pad. (b) The Vulcain engine in a
museum.

(c) Sketch of the rocket thrust cham-
ber.

Figure 2.2: Cooling of rocket thrust chambers. Left picture: DLR German Aerospace
Center, CC BY 2.0. Center picture: Pline, CC BY-SA 3.0
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Figure 2.3: Sketch of the coupling surfaces. Figure taken from [48].

pressure difference is not compensated from the outside. The resulting force (the thrust)
is opposite to the direction of the hot gas and it pushes the chamber upwards.

The cooling process of the rocket thrust chamber takes place during the combustion.
Then, the hot gas produced during the combustion process is flowing inside the nozzle.
The nozzle is delimited by a structure that can be damaged due to the high temperature
of the gas flowing inside. In order to avoid this, the nozzle has a cooling system. A cooling
fluid flows through small channels contained inside the structure. This results in a system
with two related thermal interactions between fluids and structures. On one hand, the
thermal interaction between the hot gas coming out from the combustion chamber and
the structure recovering the nozzle. On the other hand, the thermal interaction between
the cooling fluid and the structure. A sketch of the coupling surfaces can be consulted in
figure 2.3 where Γs,cf corresponds to the interface between the structure and the cooling
fluid and Γs,hg to the interface between the structure and the hot gas.

Currently, there exist several research goals related to the simulation of the cooling
process of the rocket thrust chamber. First of all, engineers are concerned about the design
of the cooling system in the nozzle. In other words, if the small channels are well designed
to cool down the nozzle preventing damage in the structure. On the other hand, the first
stage rocket engine is only used during the launch of the rocket. Therefore, recovering
and reusing the first stage will reduce the cost of space access and the environment impact.

Related to this, the company SpaceX is developing a set of new technologies for an
orbital launch system that may be reused many times in a manner similar to the reusability
of aircraft. The first controlled vertical splashdown of an orbital rocket stage on the ocean
surface was achieved in April 2014. The next two flights in January and April 2015
attempted to land the returning first stage on a floating platform. Both of them were
guided accurately to the target, but they did not succeed in landing vertically on the
floating platform and were destroyed [84]. The first vertical landing was achieved on
December 21, 2015, when the first stage of Falcon 9 Flight 20 successfully landed on
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(a) Unsuccessul vertical landing
attempt.

(b) First stage landing vertically
on solid ground in December
2015.

(c) First stage landed on autonomous drone-
ship in April 2016.

Figure 2.4: SpaceX reusable launch system development program. SpaceX Photos, CC0
1.0.

solid ground [79, 81]. On April 8, 2016, Flight 23 achieved the first soft landing on a
drone ship in the Atlantic Ocean [80, 82], see figure 2.4. Finally, SpaceX achieved the
world’s first reflight of an orbital class rocket launching a Falcon 9 on March 30, 2017.
The first stage successfully landed on a drone ship in the Atlantic ocean for a second time
[83, 85].

With similar objectives, the Spanish company PLD Space founded in 2011 is de-
veloping reusable cost-effective launch vehicles. Since 2014 the company is operating a
liquid fuel engine test stand located at Teruel airport where they have successfully accom-
plished their first tests [68]. Currently, the company is developing two rockets: ARION
1 [66] and ARION 2 [67]. On one hand, ARION 1 is designed to perform research or
technology development in micro-gravity environment and/or in the upper atmosphere
during sub-orbital flights. It can fly a payload of up to 200 kg and in its first mission
scheduled for the middle of 2019 it will carry 100 kg of payload to an apogee of 150
km. A second test flight will follow at the end of the year and the commercial flight
service is planned for 2020 targeting up to eight sub-orbital launches per year. In addi-
tion, ARION 1 is equipped with a recovery system, that enables PLD Space to recover
and reuse the complete launch vehicle becoming the first recoverable rocket in Europe.
On the other hand, ARION 2 provides orbital capabilities for smaller payloads (up to
150 kg), that need a flexible and dedicated launch vehicle and therefore can not fly with
traditional vehicles. The first stage is designed to be reused several times. The first test
flight of ARION 2 is planned for the end of 2020, with the commercial launch service
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(a) Headquarters of PLD Space in Elche, Alicante. (b) The reusable engine of ARION 1.

Figure 2.5: PLD Space reusable launch system development program. Benjamín Núñez
González, CC BY-SA 4.0.

starting in 2021.
In view of these achievements, it is of main interest to simulate several cycles of the

combustion-cooling process of the thrust chamber. This will tell how many times the
engine can be used without damaging the structure. More details about this can be found
in [48, 49].

2.2 Thermal FSI methodology

The basic setting we are in is that on a domain Ω1 ⊂ Rd where d corresponds to the spa-
tial dimension, the physics is described by a fluid model, whereas on a domain Ω2 ⊂ Rd,
a different model describing the structure is used. The two domains are almost disjoint
in that they are connected via an interface Γ ⊂ ∂Ω1 ∪ ∂Ω2. At the interface Γ, coupling
conditions are prescribed that model the interaction between fluid and structure. For the
thermal coupling problem, these conditions are that temperature and the normal compo-
nent of the heat flux are continuous across the interface. This thermal FSI methodology
was used in papers I and II in the appendix.

2.2.1 Governing equations

The fluid is modeled using the time-dependent compressible Navier-Stokes equations,
which are a second order system of conservation laws (mass, momentum, energy) mod-
eling compressible flow. We consider the two dimensional case, written in conservative
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variables density ρ, momentum m = ρv and energy per unit volume ρE as:

∂tρ+∇ · ρv = 0,

∂tρvi +

2∑

j=1

∂xj
(ρvivj + pδij) =

1
Re

2∑

j=1

∂xjSij , i = 1, 2, (2.1)

∂tρE +∇ · (ρHv) =
1
Re

2∑

j=1

∂xj

(
2∑

i=1

Sijvi +
qj
Pr

)
.

As the equations are dimensionless, the Reynolds numberRe and the Prandtl number
Pr appear. Here, enthalpy is given by H = E + p/ρ with p = (γ − 1)ρ(E − 1/2(v2

1 +
v2

2)) being the pressure and γ = 1.4 the adiabatic index for an ideal gas. Furthermore,
qf = (q1, q2)T represents the heat flux and S = (Sij)i,j=1,2 the viscous shear stress
tensor given by

Sij = µ(∂xjvi + ∂xivj) + δijλ(∂x1v1 + ∂x2v2), (2.2)

with µ being the viscosity and λ the thermal conductivity. The relation between µ and
λ is defined by the Stoke’s hypothesis to be λ = −2/3µ. Moreover, the Sutherland law
represents the correlation between temperature and viscosity:

µ = T 3/2

(
1 + Su

T + Su

)
, (2.3)

with Su being the Sutherland constant and T the fluid temperature.
The nondimensional Navier-Stokes equations in (2.1) using the vector of conservative

variables u = (ρ, ρv1, ρv2, ρE)T , the convective fluxes

fc1(u) =




ρv1

ρv1v1 + p
ρv1v2

ρHv1


 , fc2(u) =




ρv2

ρv2v1

ρv2v2 + p
ρHv2


 , (2.4)

and the viscous fluxes

fv1 (u) =
1
Re




0
S11

S12∑2
i=1 S1ivi − q1

Pr


 , fv2 (u) =

1
Re




0
S21

S22∑2
i=1 S2ivi − q2

Pr


 ,

(2.5)



2.2. THERMAL FSI METHODOLOGY 13

can be written as

ut + ∂x1 f
c
1(u) + ∂x2 f

c
2(u) = ∂x1 f

v
1 (u,∇u) + ∂x2 f

v
2 (u,∇u), (2.6)

or in a more compact form:

ut +∇ · fc(u) = ∇ · fv(u,∇u). (2.7)

The Reynolds Averaged Navier-Stokes equations (RANS) are a turbulence model that
tries to resolve only the larger eddies and not smaller eddies and it is derived from the
Navier-Stokes equations. The effect of small scale eddies is incorporated using additional
terms in the original equations. In particular, the RANS equations are obtained by aver-
aging the Navier-Stokes equations. Thus, every quantity is represented by a mean value
plus a fluctuation:

φ(x, t) = φ̄(x, t) + φ′(x, t). (2.8)

Furthermore, to avoid the computation of mean values of products, the Favre or
density weighted average is introduced:

φ̃ =
ρφ

ρ̄
, (2.9)

with a corresponding different fluctuation

φ(x, t) = φ̃(x, t) + φ′′(x, t). (2.10)

We thus obtain the RANS equations:

∂tρ̄+∇ · ρ̄ṽ =0,

∂tρ̄ṽ +

2∑

j=1

∂xj
(ρ̄ṽiṽj + p̄δij) =

1
Re

2∑

j=1

∂xj

(
S̃ij + SRij

)
, i = 1, 2, (2.11)

∂tρ̄Ẽ +∇ ·
(
ρ̄H̃ ṽ

)
=

2∑

j=1

∂xj

(
2∑

i=1

((
1
Re

Sij − SRij
)
vi + S̃ijv′′i

)

−ρ̄ṽ′′j − ρ̄ṽ′′j k +
q̄j

RePr

)
,
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where the Reynolds stresses are given by

SRij = −ρ̄ṽ′′i v′′j , (2.12)

and the turbulent energy by

k =
1
2

2∑

j=1

v′jv
′
j . (2.13)

Additionally, we prescribe appropriate boundary conditions at the boundary of Ω1 ex-
cept for Γ, where we have the coupling conditions. In the Dirichlet-Neumann coupling,
a temperature value is enforced at Γ.

Regarding the structure model, we will consider heat conduction only. Thus, we have
the nonlinear heat equation for the structure temperature Θ

ρ(x)cp(Θ)
d

dt
Θ(x, t) = −∇ · q(x, t), (2.14)

where
qs(x, t) = −λ(Θ)∇Θ(x, t)

denotes the heat flux vector. For alloys, the specific heat capacity cp and heat conductivity
λ are temperature-dependent and highly nonlinear.

2.2.2 Partitioned coupled method

As mentioned earlier in the introduction, we choose a partitioned implementation be-
cause this allows us to reuse existing software for each sub-problem. We use an inhouse
code named Native for the structure computation and we got permission to use the DLR-
TAU-Code [72] for solving the fluid. The partitioned approach is dealt with a C++
library named Component Template Library (CTL) [56]. With regards to the space dis-
cretization, we discretize the two fields separately following the partitioned approach. In
particular, we use a finite element method (FEM) for the structure and a finite volume
method (FVM) for the fluid. The coupling conditions have to be enforced via boundary
conditions at the interface. In particular, one imposes that the temperature and the heat
flux have to be continuous accross the interface. This can be interpreted as prescribing
the temperatures at the interface ΘΓ provided by the structure solver to the fluid solver as
Dirichlet boundary conditions at the interface. Similarly, the heat fluxes at the interface
qΓ provided by the fluid solver are used as Neumann boundary conditions at the interface
for the structure solver. This interaction between the fluid and the structure results in a
fixed point iteration.

We study transient processes and therefore a numerical method needs to be chosen
for the time discretization. In [55], the implicit midpoint rule is used in a monolithic
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scheme to analyze energy conservation of an aeroelasticity problem. Already in [6, 21],
it is suggested to use an explicit high order Runge-Kutta scheme for both subproblems
with data exchange at each stage. However, the resulting scheme has limited time steps
due to the explicit nature of the method. The order of coupling schemes on moving
meshes is analyzed in [40], but only first order convergence is proved for p-th order
schemes. Moreover, higher order implicit Runge-Kutta schemes on moving meshes are
analyzed in [95] (in 1D) and in [96] (in 3D). There, so called explicit first stage, singly
diagonally implicit Runge-Kutta schemes (ESDIRK) are employed and higher order in
time is shown by numerical results. The master program of the FSI procedure can be
extended to SDIRK methods very easily as explained in [8, ch.4]. Finally, time adaptivity
can be added into this framework as explained in [10, 11].

Summarizing, simulation of thermal FSI involves two subsolvers (fluid and structure)
and two embedded iterations. There exists an outer loop corresponding to the time
integration. Then, at each time step, a subiteration enforces the temperature and the heat
flux across the interface to be continuous, the so called Dirichlet-Neumann coupling.
Namely, the boundary conditions for the two subsolvers are chosen such that we prescribe
Dirichlet data for one solver and Neumann for the other. Figure 2.6 illustrates this.

Figure 2.6: Illustration of the FSI solver.

2.3 Thermal FSI test cases

In this section we present two thermal FSI test cases that have been used in papers I and
II to test our numerical methods. The two examples are cooling systems: the cooling of
a flat plate and the cooling of a flanged shaft. For the first problem, structured grids are
used and for the second, unstructured grids.

2.3.1 Flow over a plate

The first test case is the cooling of a flat steel plate resembling a simple work piece [11].
The work piece is initially at a much higher temperature than the fluid and then cooled
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Figure 2.7: Sketch of the cooling of a flat plate.

by a constant laminar air stream, see figure 2.7.
The inlet is given on left, where air enters the domain with an initial velocity of

Ma∞ = 0.8 in horizontal direction and a temperature of 273K. Regarding the initial
condition in the structure, a constant temperature of 900K at t = 0 is chosen throughout.
For this test case, the obtained results were compared with the experiments of van Driest
for the temperature boundary layer [94].

The grid, see figure 2.8, is chosen cartesian and equidistant in the structural part.
In the fluid region the thinest cells are on the boundary and then become coarser in
y-direction. Furthermore, the points of the primary fluid grid and the nodes of the
structural grid match on the interface Γ.

Figure 2.8: Full grid (left) and zoom into shaft region (right).

2.3.2 Cooling of a flanged shaft

The second test case is the cooling of a flanged steel shaft by cold high pressured air (this
process is also known as gas quenching) [97]. Here, we have a hot flanged shaft that is
cooled by cold high pressured air coming out of small tubes, see figure 2.9. We assume
symmetry along the horizontal axis in order to consider one half of the flanged shaft
and two tubes blowing air at it. We also assume that the air leaves the tube in straight
and uniform way at a Mach number of 1.2. Moreover, we assume a freestream in x-
direction of Mach 0.005. The Reynolds number is Re = 2500 and the Prandtl number
Pr = 0.72.
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Figure 2.9: Sketch of the cooling of the flanged shaft.
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Figure 2.10: Full grid (left) and zoom into shaft region (right).

The grid, see figure 2.10, consists of an unstructured grid of quadrilaterals in the
boundary layer and triangles in the rest of the domain for the fluid and quadrilateral ele-
ments in the structure. Regarding the initial conditions, we use the procedure explained
in [9].



Chapter 3

The classical partitioned
approach

In this chapter we are going to analyze the convergence behavior of the Dirichlet-Neumann
iteration which is a classical domain decomposition method widely used for partitioned
FSI simulation. This chapter and the next one were part of my Licentiate thesis which is
a midterm degree in the Swedish high education system.

The subsolvers involving FSI simulations are usually computationally expensive. We
are then interested in a coupling method that converges fast and helps the FSI procedure
to gain efficiency. Therefore, a convergence analysis of the subiteration will help experts to
choose parameters to run efficient FSI simulations. As explained before, the interactions
between fluids and structures offer a wide range of possibilities and result in very different
models depending on the context. All this influences the convergence analysis of the
Dirichlet-Neumann coupling which will behave differently depending on diverse factors.
Let’s give some examples to illustrate this. For instance, the convergence rate of the
Dirichlet-Neumann iteration is not great for the coupling between a compressible fluid
and a structure [23], which is why a lot of effort goes into convergence acceleration. On
the other hand, the Dirichlet-Neumann iteration was reported to be very fast solver for
thermal fluid-structure interaction. More specifically, in [9] the subiteration is extremely
efficient and achieves a very accurate solution with at most two iterates per time step.
These numerical results motivated the work to be explained in this chapter. To analyze the
convergence behavior of the Dirichlet-Neumann iteration will explain why this coupling
method is very efficient in some FSI models and very inefficient in some others.

Some work has been done with respect to the convergence behavior of the subit-
eration in other FSI applications. In [3, 18] the design of the partitioned approach is
improved when the coupling is affected by the added mass effect. In [92], it is shown for
a model problem that on increasingly small time intervals, the added mass of a compress-

19
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ible flow is proportional to the length of the time interval, whereas the added mass of an
incompressible flow approaches a constant. The distinct proportionalities of the added
mass to the time step for compressible and incompressible flows yield essentially differ-
ent behavior of the subiteration method for fluid-structure problems. In a latter article
[93], the convergence behavior of several partitioned iterative solution methods for FSI
are examined. However, the thermal fluid-structure interaction model explained in the
previous chapter is beyond current convergence theory.

3.1 Model problem

We are basically interested in the conjugate heat transfer between a compressible fluid
and a solid. We typically think of the coupling between air and steel. It is then a sensible
simplification to consider the linear heat equation with different constant coefficients
corresponding to the two fields as a model for the thermal interaction between a fluid
and a structure. In particular, we consider a domain Ω ⊂ Rd which is cut into two
subdomains Ω1 ∪ Ω2 = Ω. Each of the fields is restricted to one of the subdomains.
Thus, we consider the following model:

α(x)
∂u(x, t)
∂t

−∇ · (λ(x)∇u(x, t)) = 0, t ∈ [t0, tf ], x ∈ Ω ⊂ Rd,

u(x, t) = 0, t ∈ [t0, tf ], x ∈ ∂Ω,

u(x, 0) = u0(x), x ∈ Ω,

(3.1)

where the functions α(x) and λ(x) are defined by

α(x) =

{
α1 if x ∈ Ω1

α2 if x ∈ Ω2
, λ(x) =

{
λ1 if x ∈ Ω1

λ2 if x ∈ Ω2
. (3.2)

Here, the constants λ1 and λ2 describe the thermal conductivities of the materials on Ω1

and Ω2 respectively. D1 and D2 represent the thermal diffusivities of the materials and
they are defined by

Dm =
λm
αm

, with αm = ρmcpm (3.3)

where ρm represents the density and cpm the heat capacity of the material placed in Ωm,
m = 1, 2. Note that (3.1) has a unique weak solution as proven by any book in PDEs,
e.g, [26, chapt.7].

However, we want to rewrite (3.1) in a multi-domain formulation to be able to define
the coupling iteration between the two subdomains and later analyze the convergence
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behavior of that coupling. To that end, we consider the unsteady transmission problem
with two coupling conditions at the interface Γ = Ω1 ∩ Ω2. Those are continuity of the
solutions and continuity of the heat fluxes across the interface:

αm
∂um(x, t)

∂t
−∇ · (λm∇um(x, t)) = 0, t ∈ [t0, tf ], x ∈ Ωm ⊂ Rd,

um(x, t) = 0, t ∈ [t0, tf ], x ∈ ∂Ωm\Γ,
u1(x, t) = u2(x, t), x ∈ Γ,

λ2
∂u2(x, t)
∂n2

= −λ1
∂u1(x, t)
∂n1

, x ∈ Γ,

um(x, 0) = u0
m(x), x ∈ Ωm,

(3.4)

where nm is the outward normal to Ωm for m = 1, 2, and we consider d = 1, 2 (see
figure 3.1).

Figure 3.1: Illustration of the domains for the model problem (3.4). On the left, domains
when d = 1. On the right, domains when d = 2.

Problems (3.1) and (3.4) are equivalent in a variational sense as proved in any basic
book on domain decomposition methods, e.g: [69, chap. 7].

In the one-dimensional case (d = 1), we discretize this problem with a constant mesh
width of ∆x = 1/(N + 1) with N being the number of interior space discretization
points in the intervals Ωm, m = 1, 2. If instead we consider (3.4) with d = 2, we
will use a constant mesh width with respect to both spatial components (∆y := ∆x)
resulting inN 2 interior space discretization points in both Ω1 and Ω2. We use the implicit
Euler method for the time discretization for both d = 1, 2. With regards to the spatial
discretization, we consider two cases. On one hand, we use a finite element method
(FEM) on both domains. On the other hand, we use a finite volume method (FVM) on
Ω1 and FEM on Ω2.
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3.2 Finite element discretization

In this section we describe the FEM formulation of (3.4). Let Vm := H1
0 (Ωm) be the

closure of C∞0 (Ω) in the Sobolev space H1(Ω). More specifically,

H1
0 (Ω) := {u ∈ H1(Ω) : ∃{um}∞m=1 ⊂ C∞0 (Ω) s.t. um → u in H1(Ω)}, (3.5)

where the Sobolev space H1(Ω) is defined by

H1(Ω) := {u ∈ L2(Ω) : Dbu ∈ L2(Ω) for |b| ≤ 1}, (3.6)

with

Dbu :=
∂|b|

∂xb1
1 · · · ∂xbdn

, (3.7)

for b ∈ Nn0 and b 6= 0 with |b| = ∑n
i=1 bi. If b = 0, then D0u := u.

A semi-discretization in space of the first two equations in (3.4) can be defined via a
Galerkin approximation of the spaces Vm by finite dimensional subspaces Vm,h for m =
1, 2. Then, the semi-discrete approximate problem reads as follows: Given u0

m,h ∈ Vm,h
being a suitable approximation of the initial data u0

m, find um,h ∈ Vm,h such that for
each t ∈ [t0, tf ],

αm

∫

Ωm

d

dt
um,hvm,hdx− λm

∫

Ωm

∆um,hvm,hdx = 0 ∀vm,h ∈ Vm,h, x ∈ Ωm,

u1,h = u2,h on Γ,

(3.8)

for m = 1, 2.
We suppose that the interface Γ does not cut any element (see figure 3.2). This

implies that a global triangulation of Ω induces the two triangulations of Ω1 and Ω2 that
are compatible on Γ (they share the same nodes on Γ).

It is now useful to consider a global finite dimensional subspace Vh in H1
0 (Ω). Let

{φj} be a nodal basis of Vh and consequently uh(t) =
∑
j uj(t)φj . Therefore, apply-

ing integration by parts to the first equation in (3.8) in order to remove the Laplacian
operator, we can write the resulting discrete systems in the following compact form:

M1u̇(1)
I + M(1)

IΓ u̇Γ + A1u(1)
I + A(1)

IΓ uΓ = 0, (3.9)
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Figure 3.2: Splitting of Ω and finite element triangulation.

M2u̇(2)
I + M(2)

IΓ u̇Γ + A2u(2)
I + A(2)

IΓ uΓ = 0. (3.10)

Here, the unknown coefficient functions u(1)
I and u(2)

I correspond to the interior
nodes on Ω1 and Ω2 respectively and uΓ corresponds to the nodes at the interface Γ. Am
and Mm are the stiffness and the mass matrices for the interior nodes on Ωm, m = 1, 2
and they are given by

(Am)ij = λm

∫

Ωm

∇φi∇φjdx, x ∈ Ωm, (3.11)

(Mm)ij = αm

∫

Ωm

φiφjdx, x ∈ Ωm. (3.12)

The required data from the interface is inserted in the equations by the matrices A(m)
IΓ

and M(m)
IΓ , m = 1, 2 given by (3.11) and (3.12) as well, but with i running over the

interior nodes of Ωm and j over the nodes at Γ.
Finally, if φj is a nodal basis function for a node on Γ we observe that the nor-

mal derivatives in the fourth equation of (3.4) can be written as linear functionals using
Green’s formula [91, pp. 3]. Thus,

λm

∫

Γ

∂um
∂nm

φjdS = λm

∫

Ωm

(∆umφj +∇um∇φj)dx

= αm

∫

Ωm

d

dt
umφj + λm

∫

Ωm

∇um∇φjdx, m = 1, 2.
(3.13)

Letting j run over the nodes on Γ we obtain the following compact expression equiv-
alent to the fourth equation in (3.4):
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M(2)
ΓΓu̇Γ + M(2)

ΓI u̇(2)
I + A(2)

ΓΓuΓ + A(2)
ΓI u(2)

I = −M(1)
ΓΓu̇Γ −M(1)

ΓI u̇(1)
I − A(1)

ΓΓuΓ − A(1)
ΓI u(1)

I .
(3.14)

Here, A(m)
ΓΓ and M(m)

ΓΓ are the stiffness and the mass matrix with respect to the nodes
located at Γ and they are given by (3.11) and (3.12) with i, j running over the nodes at
Γ. Finally, the required data from domains Ω1 and Ω2 is inserted in the equation (3.14)

by the matrices A(m)
ΓI and M(m)

ΓI , m = 1, 2 given by (3.11) and (3.12) with i running
over the nodes at Γ and j over the interior nodes of Ωm.

Thus, equation (3.14) completes the system (3.9)-(3.10). We now reformulate the
coupled equations (3.9), (3.10) and (3.14) into an ODE for the vector of unknowns

u = (u(1)
I , u(2)

I , uΓ)T

M̃u̇ + Ãu = 0, (3.15)

where

M̃ =




M1 0 M(1)
IΓ

0 M2 M(2)
IΓ

M(1)
ΓI M(2)

ΓI M(1)
ΓΓ + M(2)

ΓΓ


 , Ã =




A1 0 A(1)
IΓ

0 A2 A(2)
IΓ

A(1)
ΓI A(2)

ΓI A(1)
ΓΓ + A(2)

ΓΓ


 .

3.3 Time discretization

Applying the implicit Euler method with time step ∆t to the system (3.15), we get for

the vector of unknowns un+1 = (u(1),n+1
I , u(2),n+1

I , un+1
Γ )T

Aun+1 = M̃un, (3.16)

where

A = M̃ + ∆tÃ =




M1 + ∆tA1 0 M(1)
IΓ + ∆tA(1)

IΓ

0 M2 + ∆tA2 M(2)
IΓ + ∆tA(2)

IΓ

M(1)
ΓI + ∆tA(1)

ΓI M(2)
ΓI + ∆tA(2)

ΓI MΓΓ + ∆tAΓΓ


 ,

with MΓΓ = M(1)
ΓΓ + M(2)

ΓΓ and AΓΓ = A(1)
ΓΓ + A(2)

ΓΓ.
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3.4 Dirichlet-Neumann iteration

We face now the task of solving the discrete multi-domain problem (3.16) by an itera-
tive procedure. In particular, we employ the standard Dirichlet-Neumann iteration that
consists of two fractional steps corresponding to the two subdomains Ω1 and Ω2. Given
an initial guess u0

Γ, we first solve a Dirichlet problem on Ω1 with Dirichlet data u0
Γ at

the interface Γ, and then a Neumann problem on Ω2 with a Neumann condition at Γ

determined by the solution u(1)
I on Ω1 obtained in the previous step.

Thus, from (3.16) employing the Dirichlet-Neumann method one gets for the k-th
iteration the two equation systems

(M1 + ∆tA1)u(1),n+1,k+1
I = −(M(1)

IΓ + ∆tA(1)
IΓ )un+1,k

Γ + M1u(1),n
I + M(1)

IΓ unΓ,
(3.17)

Âûk+1 = M̂un − bk, (3.18)

to be solved in succession. Here,

Â =

(
M2 + ∆tA2 M(2)

IΓ + ∆tA(2)
IΓ

M(2)
ΓI + ∆tA(2)

ΓI M(2)
ΓΓ + ∆tA(2)

ΓΓ

)
, M̂ =

(
0 M2 M(2)

IΓ

M(1)
ΓI M(2)

ΓI MΓΓ

)
,

and

bk =

(
0

(M(1)
ΓI + ∆tA(1)

ΓI )u(1),n+1,k+1
I + (M(1)

ΓΓ + ∆tA(1)
ΓΓ)un+1,k

Γ

)
,

ûk+1 =

(
u(2),n+1,k+1
I

un+1,k+1
Γ

)
,

with some initial condition, here un+1,0
Γ = unΓ. The iteration is terminated according to

the standard criterion ‖uk+1
Γ − ukΓ‖ ≤ τ where τ is a user defined tolerance.

One way to analyze this method is to write it as a splitting method for (3.16) and try
to estimate the spectral radius of that iteration. However, the results obtained in this way
are much too inaccurate. For that reason, we now rewrite (3.17)-(3.18) as an iteration for
un+1

Γ to restrict the size of the space to the dimension of uΓ. To this end, we isolate the

term u(1),n+1,k+1
I from (3.17) and u(2),n+1,k+1

I from the first equation in (3.18):
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u(1),n+1,k+1
I = (M1 + ∆tA1)−1(−(M(1)

IΓ + ∆tA(1)
IΓ )un+1,k

Γ + M1u(1),n
I + M(1)

IΓ unΓ),
(3.19)

u(2),n+1,k+1
I = (M2 + ∆tA2)−1(−(M(2)

IΓ + ∆tA(2)
IΓ )un+1,k+1

Γ + M2u(2),n
I + M(2)

IΓ unΓ).
(3.20)

Inserting (3.19) and (3.20) into the second equation of (3.18) one obtains the itera-
tion un+1,k+1

Γ = Σun+1,k
Γ + ψn, with iteration matrix

Σ = −S(2)−1
S(1), (3.21)

where

S(m) = (M(m)
ΓΓ + ∆tA(m)

ΓΓ )− (M(m)
ΓI + ∆tA(m)

ΓI )(Mm + ∆tAm)−1(M(m)
IΓ + ∆tA(m)

IΓ ),
(3.22)

for m = 1, 2 and ψn contains terms that depend only on the solutions at the previous
time step. Notice that Σ is a discrete version of the Steklov-Poincaré operator.

Then, the Dirichlet-Neumann iteration un+1,k+1
Γ = Σun+1,k

Γ + ψn is convergent
only if the powers Σk go to zero. And those approach zero if and only if every eigenvalue
of Σ satisfies that its absolute value is smaller than 1. The rate of convergence of the
iterative method is then governed by the largest absolute eigenvalue, which is called the
spectral radius of Σ. This result is proved in any basic book on numerical analysis, e.g,
[87, chap. 5]. Thus, the Dirichlet-Neumann iteration is a linear iteration and the rate of
convergence is described by the spectral radius of the iteration matrix Σ.

3.5 Semidiscrete analysis

Before we present our analysis for the fully discrete equations, we want to describe previ-
ous results which analyze the behavior of the Dirichlet-Neumann iteration for the trans-
mission problem in the semidiscrete case. Henshaw and Chand applied in [44] the im-
plicit Euler method for the time discretization on both equations in (3.4) but kept the
space continuous. Then, they applied the Fourier transform in space (with dual variable
k) in order to transform the second order derivatives into algebraic expressions. Once
they have a coupled system of algebraic equations, they insert one into the other and
obtain the Dirichlet-Neumann convergence rate β:
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β =

∣∣∣∣∣∣
−λ1

λ2

√
1/(D1∆t) + k2

1/(D2∆t) + k2

tanh
(
−
√

1/(D2∆t) + k2
)

tanh
(√

1/(D1∆t) + k2
)

∣∣∣∣∣∣
. (3.23)

In the 1D case, the transverse Fourier mode k is zero. Then, for ∆t small enough, we
have tanh

(
−1/
√
D2∆t

)
≈ −1 and tanh

(
1/
√
D1∆t

)
≈ 1 and therefore:

β ≈ λ1

λ2

√
D2

D1
. (3.24)

On the other hand, for ∆t big enough, we have tanh
(
−1/
√
D2∆t

)
≈ −1/

√
D2∆t

and tanh
(
1/
√
D1∆t

)
≈ 1/

√
D1∆t and therefore:

β ≈ λ1

λ2

√
D2

D1

√
D1∆t√
D2∆t

=
λ1

λ2
. (3.25)





Chapter 4

Convergence analysis for FE
discretizations

In this chapter we perform a convergence analysis of the coupling iteration for the un-
steady transmission problem (3.4) presented in the previous chapter. In FSI models, the
solid is typically discretized using finite elements. On the other hand, although the fi-
nite element method (FEM) is applicable to computational fluid dynamics, the finite
volume method (FVM) is generally a better choice for the discretization of the fluid.
This method guarantees the conservation of fluxes through a particular control volume.
Moreover, FVM has also an advantage in memory usage and solution speed.

Nevertheless, this analysis with mixed discretizations will not be presented until the
next chapter. Firstly, we introduce in this chapter a convergence analysis of the coupling
iteration for the unsteady transmission problem using finite elements for the discretization
of both subdomains. This simplification of the model let us compare the obtained results
with previous research that is summarized in section 3.5.

4.1 Discrete analysis in 1D

We now study the iteration matrix Σ for two specific linear FEM discretizations in 1D
and 2D. A previous work using finite differences can be found in [62, pp. 452-463] and
a summary of the one-dimensional case using finite elements in [61, pp. 733-734]. Here,
we will give an exact formula for the convergence rates in 1D and we will propose an
approximation for the 2D case. The behavior of the rates when approaching both the
continuous case in time and space is also given.

Firstly, we analyze the iteration matrix for the 1D case. Specifically, we use Ω1 =
[−1, 0], Ω2 = [0, 1] and the standard piecewise-linear polynomials

29
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φk(x) :=





x−xk−1

xk−xk−1
, if xk−1 < x ≤ xk

xk+1−x
xk+1−xk

, if xk < x ≤ xk+1

0, otherwise





(4.1)

as test functions.
If we consider ej =

(
0 · · · 0 1 0 · · · 0

)T ∈ RN where the only nonzero
entry is located at the j-th position, the discretization matrices are given by

Am =
λm
∆x2




2 −1 0

−1 2
. . .

. . .
. . . −1

0 −1 2



, Mm =

αm
6




4 1 0

1 4
. . .

. . .
. . . 1

0 1 4



,

A(1)
ΓΓ =

λ1

∆x2
, A(2)

ΓΓ =
λ2

∆x2
, M(1)

ΓΓ =
2α1

6
, M(2)

ΓΓ =
2α2

6
,

A(1)
IΓ = − λ1

∆x2
eN , A(2)

IΓ = − λ2

∆x2
e1, A(1)

ΓI = − λ1

∆x2
eTN , A(2)

ΓI = − λ2

∆x2
eT1 ,

M(1)
IΓ =

α1

6
eN , M(2)

IΓ =
α2

6
e1, M(1)

ΓI =
α1

6
eTN , M(2)

ΓI =
α2

6
eT1 ,

where ∆x = 1/(N + 1), Am, Mm ∈ RN×N , A(m)
IΓ , M(m)

IΓ ∈ RN×1 and A(m)
ΓI , M(m)

ΓI ∈
R1×N for m = 1, 2.

Note that the iteration matrix Σ is just a real number in this case and thus its spectral
radius is its modulus. The goal now is to compute S(1) and S(2). Inserting the corre-
sponding matrices specified in (3.22) we have

S(1) =

(
α1

3
+ ∆t

λ1

∆x2

)
−
(
α1

6
−∆t

λ1

∆x2

)2

eTN (M1 + ∆tA1)−1eN

=

(
α1

3
+ ∆t

λ1

∆x2

)
−
(
α1

6
−∆t

λ1

∆x2

)2

α1
NN ,

(4.2)

S(2) =

(
α2

3
+ ∆t

λ2

∆x2

)
−
(
α2

6
−∆t

λ2

∆x2

)2

eT1 (M2 + ∆tA2)−1e1

=

(
α2

3
+ ∆t

λ2

∆x2

)
−
(
α2

6
−∆t

λ2

∆x2

)2

α2
11,

(4.3)
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where αmij represent the entries of the matrices (Mm + ∆tAm)−1 for i, j = 1, ..., N ,
m = 1, 2. Observe that the matrices Mm + ∆tAm, m = 1, 2 are tridiagonal Toeplitz
matrices but their inverses are full matrices. The computation of the exact inverses is
based on a recursive formula which runs over the entries [30] and consequently, it is non
trivial to compute α1

NN and α2
11 this way.

Due to these difficulties, we propose to rewrite the matrices (Mm + ∆tAm)−1, m =
1, 2 in terms of their eigendecomposition:

(Mm + ∆tAm)−1

=

[
tridiag

(
αm∆x2 − 6λm∆t

6∆x2
,

2αm∆x2 + 6λm∆t

3∆x2
,
αm∆x2 − 6λm∆t

6∆x2

)]−1

= VΛ−1
m V,

(4.4)

for m = 1, 2 where the matrix V has the eigenvectors of any symmetric tridiagonal
Toeplitz matrix as columns. The entries of V are not dependent on the entries of Mm +
∆tAm due to their symmetry. Moreover, the matrix Λm is a diagonal matrix having the
eigenvalues of Mm + ∆tAm as entries. These are known and given e.g. in [59, pp.
514-516]:

vij =
1√∑N

k=1 sin2
(

kπ
N+1

) sin

(
ijπ

N + 1

)
,

λmj =
1

3∆x2

(
2αm∆x2 + 6λm∆t+ (αm∆x2 − 6λm∆t) cos

(
jπ

N + 1

))
,

(4.5)

for i, j = 1, ..., N and m = 1, 2.
The entries α1

NN and α2
11 of the matrices (M1 + ∆tA1)−1 and (M2 + ∆tA2)−1,

respectively, are now computed through their eigendecomposition resulting in

α1
NN =

∑N
i=1

1
λ1
i

sin2
(
iπN
N+1

)

∑N
i=1 sin2

(
iπ
N+1

) =
s1∑N

i=1 sin2(iπ∆x)
, (4.6)

α2
11 =

∑N
i=1

1
λ2
i

sin2
(

iπ
N+1

)

∑N
i=1 sin2

(
iπ
N+1

) =
s2∑N

i=1 sin2(iπ∆x)
, (4.7)
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with

sm =

N∑

i=1

3∆x2 sin2(iπ∆x)

2αm∆x2 + 6λm∆t+ (αm∆x2 − 6λm∆t) cos(iπ∆x)
, (4.8)

for m = 1, 2.
To simplify this, the finite sum

∑N
i=1 sin2(iπ∆x) can be computed. We first rewrite

the sum of squared sinus terms into a sum of cosinus terms using the identity sin2(x/2) =
(1 − cos(x))/2. Then, the resulting sum can be converted into a geometric sum using
Euler’s formula:

N∑

j=1

sin2(jπ∆x) =
1−∆x

2∆x
− 1

2

N∑

j=1

cos(2jπ∆x)

=
1−∆x

2∆x
− 1

2
Re




N∑

j=1

e2ijπ∆x




=
1−∆x

2∆x
− 1

2
Re

(
e2iπ∆x

(
1− e2iNπ∆x

)

1− e2iπ∆x

)
=

1
2∆x

.

(4.9)

Now, inserting (4.9) into (4.6) and (4.7), and those into (4.2) and (4.3) we get for
S(1) and S(2),

S(1) =

(
α1∆x2 + 3λ1∆t

3∆x2

)
− (α1∆x2 − 6λ1∆t)2s1

18∆x3
, (4.10)

S(2) =

(
α2∆x2 + 3λ2∆t

3∆x2

)
− (α2∆x2 − 6λ2∆t)2s2

18∆x3
. (4.11)

With this we obtain an explicit formula for the spectral radius of the iteration matrix
Σ as a function of ∆x and ∆t:

ρ(Σ) = |Σ| = |S(2)−1
S(1)| = 6∆x(α1∆x2 + 3λ1∆t)− (α1∆x2 − 6λ1∆t)2s1

6∆x(α2∆x2 + 3λ2∆t)− (α2∆x2 − 6λ2∆t)2s2
.

(4.12)

We could not find a way of simplifying the finite sum (4.8) because ∆x depends on
N (i.e., ∆x = 1/(N + 1)). However, (4.12) is a computable formula that gives exactly
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the convergence rates of the Dirichlet-Neumann iteration for given ∆x, ∆t, αm and λm,
m = 1, 2.

We are now interested in the asymptotics of (4.12). In particular, we want to know
the behavior of (4.12) when ∆t or ∆x tend to 0, so that we can relate this to the results
of the semidiscrete analysis in section 3.5. However, the denominator of (4.8) becomes
zero when ∆x tends to 0. To solve this problem, we reformulate (4.12) in terms of
c := ∆t/∆x2. Figure 4.1 illustrates the relation between computing c → 0 or ∆t → 0
and c→∞ or ∆x→ 0.
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Figure 4.1: Relation between computing c→ 0 or ∆t→ 0 and c→∞ or ∆x→ 0.

From figure 4.1 one can observe that for a fixed ∆x, if we choose a ∆t that enforces
the condition ∆t � ∆x2 (i.e, c → 0), we approach the green line. Similarly, for a
fixed ∆t, if we choose a ∆x that enforces the condition ∆t � ∆x2 (i.e, c → ∞), we
approach the blue line.

Thus, we multiply (4.12) by ∆x2 both in the numerator and denominator and get

|Σ| = 6∆x(α1 + 3λ1c)− (α1 − 6λ1c)
2s′1

6∆x(α2 + 3λ2c)− (α2 − 6λ2c)2s′2
(4.13)

where

s′m =
N∑

i=1

3 sin2(iπ∆x)

2αm + 6λmc+ (αm − 6λmc) cos(iπ∆x)
(4.14)

for m = 1, 2.
Finally, computing the limits of (4.13) when c→ 0 and c→∞, we get
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lim
c→0
|Σ| = lim

c→0

6∆xα1 − α2
1

∑N
i=1

3 sin2(iπ∆x)
α1(2+cos(iπ∆x))

6∆xα2 − α2
2

∑N
i=1

3 sin2(iπ∆x)
α2(2+cos(iπ∆x))

= lim
c→0

α1

(
6∆x−∑N

i=1
3 sin2(iπ∆x)
2+cos(iπ∆x)

)

α2

(
6∆x−∑N

i=1
3 sin2(iπ∆x)
2+cos(iπ∆x)

) =
α1

α2
=: γ,

(4.15)

lim
c→∞

|Σ| = lim
c→∞

6∆x3λ1c− (6λ1c)
2∑N

i=1
3 sin2(iπ∆x)

6λ1c(1−cos(iπ∆x))

6∆x3λ2c− (6λ2c)2
∑N
i=1

3 sin2(iπ∆x)
6λ2c(1−cos(iπ∆x))

= lim
c→∞

λ1

(
6∆x− 6

∑N
i=1

3 sin2(iπ∆x)
1−cos(iπ∆x)

)

λ2

(
6∆x− 6

∑N
i=1

3 sin2(iπ∆x)
1−cos(iπ∆x)

) =
λ1

λ2
=: δ.

(4.16)

From the results obtained in (4.15) and (4.16) we can observe that strong jumps in the
physical properties of the materials placed in Ω1 and Ω2 will imply fast convergence. This
is the case when modelling thermal fluid-structure interaction, where often a fluid with
low thermal conductivity and density is coupled with a structure having higher thermal
conductivity and density.

On the other hand, in the domain decomposition context, the coupling iteration will
be slow because the coefficients αm and λm, m = 1, 2 are typically continuous across
subdomains.

Finally, note that the space continuous analysis presented in section 3.5 coincides
when c→∞. In that case, the semidiscrete result (3.25) agrees with the result obtained
in (4.16). However, the semidiscrete analysis was performed in 2D and the discrete
analysis in 1D.

4.2 Discrete analysis in 2D

In this section we extend the analysis presented in the previous section to the 2D case.
The subdomains are here Ω1 = [−1, 0]× [0, 1] and Ω2 = [0, 1]× [0, 1]. An equidistant
grid is chosen i.e, ∆x = ∆y = 1/(N+1). For the FEM discretization, we use triangular
elements distributed as sketched in figure 4.2 and the following pyramidal test functions
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φk(x, y) =





x+y
∆x − 1, if x = (x, y) ∈ Region 1,

y
∆x , if x ∈ Region 2,

∆x−x
∆x , if x ∈ Region 3,

1− x+y
∆x , if x ∈ Region 4,

∆x−y
∆x , if x ∈ Region 5,
x

∆x , if x ∈ Region 6,
0, otherwise.

(4.17)
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Figure 4.2: Sketch of the regions for the pyramidal test functions defined in (4.17).

The discretization matrices are given in this case by

Am =
λm
∆x2




B −I 0

−I B
. . .

. . .
. . . −I

0 −I B




where B =




4 −1 0

−1 4
. . .

. . .
. . . −1

0 −1 4




and I ∈ RN×N is an identity matrix. Note that each block of the matrices Am ∈
RN 2×N 2

has size N ×N .
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Mm = αm




N N2 0

N1 N
. . .

. . .
. . . N2

0 N1 N



, N =




5/6 −1/12 0

−1/12 5/6
. . .

. . .
. . . −1/12

0 −1/12 5/6



,

N1 =




−1/12 0 0

1/4 −1/12
. . .

. . .
. . . 0

0 1/4 −1/12



, N2 =




−1/12 1/4 0

0 −1/12
. . .

. . .
. . . 1/4

0 0 −1/12



.

Each block of the matrices Mm ∈ RN 2×N 2
has size N × N as well. As before,

we consider here Ej =
(

0 · · · 0 I 0 · · · 0
)T ∈ RN 2×N where the only

nonzero block is the j-th block of size N ×N . Thus,

A(1)
ΓI = − λ1

∆x2
ETN , A(2)

ΓI = − λ2

∆x2
ET1 , A(1)

IΓ = − λ1

∆x2
EN , A(2)

IΓ = − λ2

∆x2
E1,

M(1)
ΓI = α1ETNN1, M(2)

ΓI = α2ET1 N2, M(1)
IΓ = α1ENN1, M(2)

IΓ = α2E1N2,

M(m)
ΓΓ = αm




5/12 −1/24 0

−1/24 5/12
. . .

. . .
. . . −1/24

0 −1/24 5/12



,

A(m)
ΓΓ =

λm
∆x2




2 −1/2 0

−1/2 2
. . .

. . .
. . . −1/2

0 −1/2 2



,

where M(m)
ΓΓ , A(m)

ΓΓ ∈ RN×N for m = 1, 2.
In the two-dimensional case, the iteration matrix Σ is a matrix of size N ×N . As in

the 1D case, one computes S(1) and S(2) by inserting the corresponding matrices specified
above in (3.22) obtaining
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S(1) =M(1)
ΓΓ + ∆tA(1)

ΓΓ − (M(1)
ΓI + ∆tA(1)

ΓI )(M1 + ∆tA1)−1(M(1)
IΓ + ∆tA(1)

IΓ )

=

(
α1tridiag

(
− 1

24
,

5
12
,− 1

24

)
+
λ1∆t

∆x2
tridiag

(
−1

2
, 2,−1

2

))

−
(
α1N1 −

λ1∆t

∆x2
I
)

ETN (M1 + ∆tA1)
−1 EN

(
α1N1 −

λ1∆t

∆x2
I
)

(4.18)

S(2) =M(2)
ΓΓ + ∆tA(2)

ΓΓ − (M(2)
ΓI + ∆tA(2)

ΓI )(M2 + ∆tA2)−1(M(2)
IΓ + ∆tA(2)

IΓ )

=

(
α2tridiag

(
− 1

24
,

5
12
,− 1

24

)
+
λ2∆t

∆x2
tridiag

(
−1

2
, 2,−1

2

))

−
(
α2N2 −

λ2∆t

∆x2
I
)

ET1 (M2 + ∆tA2)
−1 E1

(
α2N2 −

λ2∆t

∆x2
I
)

(4.19)

In this case the iteration matrix Σ is not easy to compute for several reasons. First
of all, the matrices M1 + ∆tA1 and M2 + ∆tA2 are sparse block tridiagonal matrices,
and consequently, their inverses are not straight forward to compute. A block-by-block
algorithm for inverting a block tridiagonal matrix is explained in [70]. However, the
algorithm is based on the iterative application of the Schur complement [99], and it
results in a sequence of block matrices and inverses of block matrices that we did not find
possible to compute exactly. Moreover, the diagonal blocks of M1+∆tA1 and M2+∆tA2

are tridiagonal but their inverses are full matrices [30].
Due to these difficulties, we propose here to approximate Σ. One can observe that

M1 + ∆tA1 and M2 + ∆tA2 are strictly diagonally dominant matrices, and therefore,
we propose to approximate them by their block diagonal. The same reasoning is used
to approximate the diagonal block matrices of M1 + ∆tA1 and M2 + ∆tA2 by their
diagonal. Thus,

S(1) ≈
(

5α1

12
+

2λ1∆t

∆x2

)
I−

(
α1

12
+
λ1∆t

∆x2

)2(5α1

6
+

4λ1∆t

∆x2

)−1

I

=

(
2(5α1∆x2 + 24λ1∆t)2 − (α1∆x2 + 12λ1∆t)2

24∆x2(5α1∆x2 + 24λ1∆t)

)
I,

(4.20)

S(2) ≈
(

5α2

12
+

2λ2∆t

∆x2

)
I−

(
α2

12
+
λ2∆t

∆x2

)2(5α2

6
+

4λ2∆t

∆x2

)−1

I

=

(
2(5α2∆x2 + 24λ2∆t)2 − (α2∆x2 + 12λ2∆t)2

24∆x2(5α2∆x2 + 24λ2∆t)

)
I.

(4.21)
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Thus, we obtain an estimate of the spectral radius of the iteration matrix Σ:

ρ(Σ) ≈ (5α2∆x2 + 24λ2∆t)(2(5α1∆x2 + 24λ1∆t)2 − (α1∆x2 + 12λ1∆t)2)

(5α1∆x2 + 24λ1∆t)(2(5α2∆x2 + 24λ2∆t)2 − (α2∆x2 + 12λ2∆t)2)
=: σ.

(4.22)

Furthermore, computing the limits of (4.22) when ∆t→ 0 and ∆x→ 0 we get

lim
∆t→0

ρ(Σ) ≈ lim
∆t→0

5α2∆x2(2(5α1∆x2)2 − (α1∆x2)2)

5α1∆x2(2(5α2∆x2)2 − (α2∆x2)2)
=
α1

α2
=: γ, (4.23)

lim
∆x→0

ρ(Σ) ≈ lim
∆x→0

24λ2∆t(2 · 242λ2
1∆t2 − 122λ2

1∆t2)

24λ1∆t(2 · 242λ2
2∆t2 − 122λ2

2∆t2)
=
λ1

λ2
=: δ. (4.24)

Thus, the asymptotic behavior of the convergence rates for the 2D case is consistent
with the 1D case.

As already observed in the 1D case, when c→∞ (3.25) matches with the asymptotic
computed in (4.24).

4.3 Numerical results

In this section we present numerical experiments that show how the theoretical formula
|Σ| in (4.12) predicts the convergence rates in the 1D case and the validity of the ap-
proximation of ρ(Σ) in (4.22) as an estimator for the rates in the 2D case of the coupled
problem formulated above. We also show that the theoretical asymptotics deduced in
(4.15), (4.16), (4.23) and (4.24) match with the numerical results.

We first compare the semidiscrete estimator β in (3.23) with the discrete formula |Σ|
in 1D in (4.12) and experimental convergence rates. The latter are obtained from imple-
menting the Dirichlet-Neumann method (3.17)-(3.18). The results are then compared
to a reference solution uref over the whole domain Ω, obtained by choosing a tolerance
of 1e − 10 as a termination criterion. More specifically, the experimental convergence
rates CR are computed using the formula

CR =
‖u3 − uref‖2

‖u2 − uref‖2
, (4.25)

where u2 and u3 are the second and third iterates of the Dirichlet-Neumann iteration.
Figure 4.3 shows a comparison between β and |Σ| for ∆x = 1/20 and ∆x = 1/500

and varying ∆t. As can be seen, the experimental convergence rate matches exactly with
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Figure 4.3: Semidiscrete estimator β, exact rate |Σ| and numerical rates over ∆t in 1D.
D1 = 1, D2 = 0.5, λ1 = 0.3, λ2 = 1, ∆x = 1/20 or ∆x = 1/500 and ∆t =
5e− 8, 5e− 7, ..., 5e10.

the formula (4.12). Observe that β is almost constant, except for a short dynamic tran-
sition between (λ1/λ2)

√
D2/D1 and λ1/λ2. We can conclude that the formula for the

convergence rates in 1D presented in this chapter match the semidiscrete one proposed
in [44] when ∆t/∆x2 � 1. In the, less relevant case, ∆t/∆x2 � 1 our formula also
predicts the rates accurately, while the semidiscrete estimator deviates according to (3.24).

The difference to the semidiscrete analysis in [44] stems from different limits taking
place. The semidiscrete analysis implicitly assumes that first a limit ∆x to zero has taken
place for ∆t fixed. Thus, a limit first ∆t, then ∆x to zero is not addressed by it. This can
be seen in figure 4.3 in the following way: for fixed ∆x, letting ∆t become very small
causes the convergence rate to move into the direction predicted by the fully discrete
analysis. However, then keeping this very small ∆t fixed and decreasing ∆x moves that
rate back in the vicinity of β.

We now want to illustrate how |Σ| in (4.12) and σ in (4.22) predict the convergence
rates and tend to the limits computed previously in (4.15)-(4.16) and (4.23)-(4.24) re-
spectively. As test cases we consider here the thermal interaction between air at 273K
with steel at 900K, water at 283K with steel at 900K and air at 273K with water at
283K. Physical properties of the materials and resulting asymptotics for these three cases
are shown in table 4.1 and 4.2 respectively.

Figures 4.4, 4.5 and 4.6 show the convergence rates of the three cases specified in
table 4.2 for 1D and 2D. The circles correspond to our estimates (|Σ| in 1D and σ
in 2D), the crosses to the experimental convergence rates, the continuous line to the
spatial limit δ and the dashed line to the temporal limit γ. In 4.4, 4.5 and 4.6 we have
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Table 4.1: Physical properties of the materials. λ is the thermal conductivity, ρ the
density, cp the specific heat capacity and α = ρcp.

Material λ (W/mK) ρ (kg/m3) cp (J/kgK) α (J/K m3)

Air 0.0243 1.293 1005 1299.5
Water 0.58 999.7 4192.1 4.1908e6
Steel 48.9 7836 443 3471348

Table 4.2: The limits of the convergence rates when ∆t→ 0 (γ) and ∆x→ 0 (δ).

Case γ δ

Air-Steel 3.7434e-4 4.9693e-4
Water-Steel 1.2073 0.0119
Air-Water 3.1008e-4 0.0419

chosen a fixed ∆x = 1/20 and we have varied ∆t = 5e− 4, 5e− 3, ..., 5e10 obtaining
c = 5e− 4/2.5e− 3, 5e− 3/2.5e− 3, ..., 5e10/2.5e− 3.

Note that both the 1D and 2D cases have a similar behavior. However, the conver-
gence rates are computed exactly in the 1D case and estimated in the 2D case. We observe
from the 2D plots that the approximation predicts the convergence rates quite well be-
cause the difference with respect to the experimental rates is really small. Furthermore,
one can observe that the convergence rates tend to δ when c→∞ and to γ when c→ 0
both in 1D and 2D as computed previously in (4.15)-(4.16) and (4.23)-(4.24).

From figures 4.4 and 4.5 we can observe that the convergence rates are really fast
(factor of ∼ 1e − 4) when there exist strong jumps in the coefficient of the materials.
For instance, when performing the thermal coupling between air and steel the Dirichlet-
Neumann iteration only needs two iterations to achieve a tolerance of 1e− 10.

Finally, the thermal coupling between water and steel illustrated in 4.6 shows us the
importance of choosing carefully the spatial resolution (∆x) and the time step (∆t) when
one of the asymptotics predicts divergence and the other convergence. Here, for the
water-steel coupling we have γ > 1 and δ < 1 (check table 4.2). Thus, if we choose a
pair ∆t, ∆x such that ∆t/∆x2 ∼ 0, the rate will be γ = 1.2073 and the numerical
method will be divergent. However, if we choose a pair ∆t, ∆x such that ∆t/∆x2 ∼ ∞,
the rate will be δ = 0.0119 and the numerical method will converge fast.
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Figure 4.4: Air-steel thermal interaction convergence rates with respect to c := ∆t/∆x2.
Here c = 5e− 4/2.5e− 3, 5e− 3/2.5e− 3, ..., 5e10/2.5e− 3.
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Figure 4.5: Air-water thermal interaction convergence rates with respect to c :=
∆t/∆x2. Here c = 5e− 4/2.5e− 3, 5e− 3/2.5e− 3, ..., 5e10/2.5e− 3.
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Figure 4.6: Water-steel thermal interaction convergence rates with respect to c :=
∆t/∆x2. Here c = 5e− 4/2.5e− 3, 5e− 3/2.5e− 3, ..., 5e10/2.5e− 3.



Chapter 5

Convergence analysis for mixed
discretizations

As mentioned before, the finite volume method (FVM) is generally a better choice than
the finite element method (FEM) for the discretization of fluids. Consequently, the model
problem (3.4) will become a more realistic model for thermal fluid-structure interaction
if we use finite volumes on one subdomain and finite elements on the other.

For this reason, we present in this chapter a modified 1D analysis of the model prob-
lem in (3.4). The novelty is that here we consider two different space discretizations
on the subdomains. An FVM is used on Ω1 and an FEM is used on Ω2. In particu-
lar, we propose two alternative FVM discretizations for the approximation of the normal
derivatives. A first order and a second order approximation are presented and compared.
Finally, a summary of the extension to 2D and the generalization to non equidistant grids
included in papers I and II respectively is presented in the last section of this chapter. A
previous work in mixed discretizations where we used finite differences on one domain
and finite elements on the other can be found in [60, pp. 1530-1544].

5.1 Two alternative FVM formulations

We will focus on the FVM formulation on Ω1 of problem (3.4) because the FEM formu-
lation on Ω2 was already presented in chapter 3. For this, we consider a primal grid, i.e,
we discretize Ω1 into N + 1 equal sized grid cells of size ∆x = 1/(N + 1), and define
xi = i∆x, so that xi is the center of the cell i, see figure 5.1. The edges of cell i are then
xi−1/2 and xi+1/2 and they form the corresponding dual grid.

Integrating the first equation for m = 1 in (3.4) over cell i we get

43
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Figure 5.1: Grid cells over Ω1 for the finite volume discretization.

α1
d

dt

∫ xi+1/2

xi−1/2
u1(x, t)dx = λ1

∫ xi+1/2

xi−1/2
∆u1(x, t)dx

= λ1(u1x(xi+1/2, t)− u1x(xi−1/2, t)).

(5.1)

Thus, introducing the cell average

u1,i(t) =
1

∆x

∫ xi+1/2

xi−1/2
u1(x, t)dx,

into (5.1) with the flux

Fi(t) = −λ1u1,ix(t),

we get the formula

α1∆x
du1,i(t)

dt
= −(Fi+1/2(t)− Fi−1/2(t)).

Finally, dividing the previous expression by ∆x and approximating the flux by

Fi−1/2(t) = − λ1

∆x
(u1,i(t)− u1,i−1(t)) +O(∆x2),

we get the second order update formula

α1
du1,1(t)

dt
− λ1

∆x2
(u1,2(t)− 2u1,1(t)) = 0, i = 1,

α1
du1,i(t)

dt
− λ1

∆x2
(u1,i+1(t)− 2u1,i(t) + u1,i−1(t)) = 0, i = 2..N − 1,

α1
du1,N (t)

dt
− λ1

∆x2
(uΓ − 2u1,N (t) + u1,N−1(t)) = 0, i = N.

(5.2)
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Now, letting u(1)
I = (u1,1(t), u1,2(t), ..., u1,N (t))T correspond to the unknowns on

Ω1 and uΓ to the unknown at the interface Γ, we can rewrite (5.2) in a compact form:

α1u̇(1)
I − A1u(1)

I − A(1)
IΓ uΓ = 0. (5.3)

where A1 corresponds to the discretization of the Laplacian operator on Ω1 and the pre-
scribed Dirichlet boundary condition at the interface is inserted in the equation by the

matrix A(1)
IΓ . These matrices are given by

A1 =
λ1

∆x2




−2 1 0

1 −2
. . .

. . .
. . . 1

0 1 −2



, A(1)

IΓ =
λ1

∆x2
eN .

On the other hand, the discretization of the problem on Ω2 using finite elements
was already presented in chapter 3 resulting in equation (3.10). However, the system
(5.3)-(3.10) is not enough to describe (3.4). Extending the approach (5.3)-(3.10) for
the unsteady transmission problem, we will look for an approximation of the normal
derivatives at Γ.

We have decided to use two possibilities to approximate the normal derivative with
respect to u1 for comparison reasons. Those are the first order forward finite differences
and the second order one-sided finite differences.

The first choice will be

−λ1
∂u1

∂n1
≈ λ1

∆x
(u1,N (t)− uΓ), (5.4)

and the second one will be

−λ1
∂u1

∂n1
≈ λ1

2∆x
(4u1,N (t)− u1,N−1(t)− 3uΓ). (5.5)

These two possibilities lead to the following compact expressions:

−µ1st
FVM = A(1),1st

ΓI u(1)
I − A(1),1st

ΓΓ uΓ. (5.6)

−µ2nd
FVM = A(1),2nd

ΓI u(1)
I − A(1),2nd

ΓΓ uΓ. (5.7)
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Here, the matrices A(1),1st
ΓI , A(1),2nd

ΓI , A(1),1st
ΓΓ and A(1),2nd

ΓΓ are given by

A(1),1st
ΓI =

λ1

∆x2
eTN , A(1),2nd

ΓI =
λ1

2∆x2
(4eTN − eTN−1),

A(1),1st
ΓΓ =

λ1

∆x2
, A(1),2nd

ΓΓ =
3λ1

2∆x2
.

On the other hand, the normal derivative with respect to u2 is approximated as ex-
plained in (3.13) resulting in the following expression:

µFEM = M(2)
ΓΓu̇Γ + M(2)

ΓI u̇(2)
I + A(2)

ΓΓuΓ + A(2)
ΓI u(2)

I . (5.8)

Consequently, the equation

µFEM = −µ1st
FVM , or µFEM = −µ2nd

FVM , (5.9)

completes the system (5.3)-(3.10). We now reformulate the coupled equations (5.3),

(3.10) and (5.9) into an ODE for the vector of unknowns u =
(

u(1)
I , u(2)

I , uΓ

)T

M̂u̇ + Âu = 0, (5.10)

where

M̂ =




α1I 0 0
0 M2 M(2)

IΓ

0 M(2)
ΓI M(2)

ΓΓ


 , Â =




−A1 0 −A(1)
IΓ

0 A2 A(2)
IΓ

−A(1),1st/2nd
ΓI A(2)

ΓI A(1),1st/2nd
ΓΓ + A(2)

ΓΓ


 .

Although the mixed discretizations FVM-FEM explained in this chapter and the
FEM-FEM discretizations explained in chapter 3 are used to solve the same model prob-
lem (3.4), we already observe here some differences in their structure. The first obser-
vation is that matrices Â and Ã in (3.15) have the same construction but when using

second order one-sided differences, A(1)
ΓI 6= −A(1),2nd

ΓI and A(1)
ΓΓ 6= A(1),2nd

ΓΓ . On the other
hand, the matrices M̂ and M̃ in (3.15) do not have the same structure. The tridiagonal
matrix M1 in M̃ corresponds to the diagonal matrix α1I in M̂. Moreover, the matrices

M(1)
IΓ and M(1)

ΓI in M̃ are not existing for the mixed discretizations case. Therefore, we can
already intuit here that the convergence analysis of the FVM-FEM discretizations might
give different results than the ones presented for FEM-FEM discretizations.
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Finally, proceeding as before in chapter 3 we can derive the corresponding iteration
matrices:

Σ1st = −S(2)−1
S(1)

1st, Σ2nd = −S(2)−1
S(1)

2nd, (5.11)

where

S(1)
1st = ∆tA(1),1st

ΓΓ −∆t2A(1),1st
ΓI (α1I−∆tA1)−1A(1)

IΓ , (5.12)

S(1)
2nd = ∆tA(1),2nd

ΓΓ −∆t2A(1),2nd
ΓI (α1I−∆tA1)−1A(1)

IΓ , (5.13)

and S(2) is given by (3.22). Here, Σ1st and S(1)
1st correspond to first order forward differ-

ences for the normal derivative and Σ2nd and S(1)
2nd to second order one-sided differences.

Note that (5.12) and (5.13) are different than S(1) in (3.22). In particular, the mass

matrices in (3.22) do not appear in S(1)
1st and S(1)

2nd.

5.1.1 Numerical order comparison

We now compare the accuracy obtained in the numerical solution of the coupled prob-
lem using first order forward differences and second order one-sided differences to ap-
proximate the normal derivative with respect to Ω1. The order plot in figure 5.2 was
produced comparing the numerical solution obtained after the Dirichlet-Neumann iter-
ation has achieved an accuracy below 1e − 8 on Ω to a reference solution using the root
mean square norm. One observes that using forward differences a first order solution is
achieved and using one-sided differences we get a second order solution. Note that the
order of the global solution is affected by the order of the scheme used at one point of
the mesh. In addition, the error of the numerical solution is roughly two orders of mag-
nitude smaller using one-sided differences than using forward differences. Therefore, we
strongly recommend to use a second order scheme to approximate the normal derivative.

5.2 Discrete analyses in 1D and 2D

The analyses presented in the previous chapter for FE discretizations in 1D and 2D are
the basis for the analyses and results contained in papers I and II for mixed discretizations
(meaning the FVM-FEM framework).

In paper I, a 2D convergence analysis applying the methodology explained in chapter
4, but using FVM on Ω1 = [−1, 0]× [0, 1], FEM on Ω2 = [0, 1]× [0, 1] and a second
order approximation for the normal derivative as presented in the previous section is
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Figure 5.2: Order comparison between using forward differences or one-sided differences
for the approximation of the normal derivative.

performed. These results assume that Ω1 and Ω2 are discretized with identical equidistant
grids, i.e, ∆x := ∆x1 = ∆x2.

In paper II, we generalize the analysis introduced in paper I to the case of non identical
meshes on the subdomains Ω1 and Ω2 meaning ∆x1 6= ∆x2. The scenario we consider
in this work is illustrated in figure 5.3 (a), where r := ∆x2/∆x1 is a fixed aspect ratio for
both 1D and 2D cases. Thus, the resolution on Ω1 in direction tangential to the wall is
the same as the resolution on Ω2. This means that the aspect ratio of the left subdomain
cells in 2D corresponds to the ratio of grid spacings between the two subdomains in 1D.
This is illustrated in figure 5.3 (b). This situation is interesting because the spatial grid of
the fluid for the two nonlinear FSI test cases has this property. The fluid cells are highly
non equidistant as can be seen in figures 2.8 and 2.10. Additionally, we assume that we
have matching nodes at the interface as we already did in the FEM-FEM case.

Note that paper II is a follow-up of paper I because the analysis in paper I is a par-
ticular case of the analysis in paper II. More specifically, if the aspect ratio r = 1, then
the grids on Ω1 and Ω2 are identical and equidistant recovering the scenario presented
in paper I. For that reason, we are going to summarize here only the results presented in
paper II.

There, performing a similar one-dimensional analysis as the one above in section 4.1
for this new setting of the spatial discretization, we got the following exact formula for
the convergence rates:
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(a) (b)

Figure 5.3: (a): Splitting of Ω into non equidistant subdomains. (b): Relation between
the aspect ratio of the left subdomain cells in 2D and the ratio of grid spacings between
both subdomains in 1D.

|Σ| = 3∆x2
2(3λ1∆t− 2λ2

1∆x1∆t2(4s1 − s0))

∆x2
1(2(α2∆x2

2 + 3λ2∆t)−∆x2(α2∆x2
2 − 6λ2∆t)2s2)

, (5.14)

where s0, s1 and s2 are given by

s0 =

N1∑

i=1

sin(iπ∆x1) sin(2iπ∆x1)

α1∆x2
1 + 2λ1∆t(1− cos(iπ∆x1))

, (5.15)

s1 =

N1∑

i=1

sin2(iπ∆x1)

α1∆x2
1 + 2λ1∆t(1− cos(iπ∆x1))

, (5.16)

s2 =

N2∑

i=1

sin2(iπ∆x2)

2α2∆x2
2 + 6λ2∆t+ (α2∆x2

2 − 6λ2∆t) cos(iπ∆x2)
. (5.17)

Then, the asymptotics of (5.14) for ∆t→ 0 and ∆x1 → 0 with ∆x2 = r ·∆x1 are
given by

lim
∆t→0

|Σ| = 3∆x2
2 · 0

∆x2
1

(
2α2∆x2

2 − α2∆x3
2

∑N2

i=1
3 sin2(iπ∆x2)
2+cos(iπ∆x2)

) = 0, (5.18)
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(a) Flow over a plate.
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(b) Cooling of a flanged shaft.

Figure 5.4: Convergence behavior of the cooling systems with respect to ∆t.

lim
∆x1→0

|Σ| = λ1

λ2
lim

∆x1→0

3r2 − 2r2∆x1

(
2(1−∆x1)

∆x1
− 1−2∆x1

2∆x1

)

2− 2r∆x1

(
1−r∆x1
r∆x1

)

=
λ1

λ2
lim

∆x1→0

2r2∆x1

2r∆x1
=
λ1

λ2
r =: δr.

(5.19)

From the result obtained in (5.19) we can conclude that the aspect ratio r also influ-
ences the behavior of the fixed point iteration, i.e, the rates will become smaller the higher
the aspect ratio, e.g. the higher the Reynolds number in the fluid. This phenomenon is
not unknown for PDE discretizations and is referred to as geometric stiffness. As is the
case here, refining the mesh to reduce the aspect ratio would lead to faster convergence of
the iterative method.

Furthermore, in paper II, we also showed numerical results where the 1D formula
(5.14) also estimates the convergence rates of 2D linear examples and even of 2D nonlin-
ear thermal FSI test cases on highly unstructured meshes. In particular, the two cooling
systems introduced earlier in section 2.3.1: the cooling of a flat plate and of a flanged
shaft.

In figure 5.4 (a) one observes how (5.14) predicts the rates accurately for the cooling
of a flat plate. Note that the semidiscrete estimator β in (3.23) does not show any change
with ∆t. Remember that β is almost always constant, except for a short dynamic transi-
tion between (λ1/λ2)

√
D2/D1 and λ1/λ2. Here, we would have to choose a ∆t larger

than 1e6 to see the transition.
Finally, in figure 5.4 (b) one can see that (5.14) predicts the convergence rates for the

cooling of a flanged shaft to be only slightly smaller compared to the actual performance.
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This could be due to either the unstructured grids used in this case or to the non constant
temperature in the structure, which varies from room temperature to 1145K. Again, β
is almost constant.





Chapter 6

Partitioned multirate approach

In this chapter we summarize the partitioned multirate approach that we have introduced
in paper III for the coupling of two heterogeneous heat equations. This multirate ap-
proach was motivated because in spite of the efficient behavior of the Dirichlet-Neumann
iteration in the thermal FSI framework, it has two main disadvantages. Firstly, the sub-
solvers wait for each other, and therefore, they perform sequentially. Secondly, in the
time-dependent case the Dirichlet-Neumann iteration is used at each time step and con-
sequently, both fields are solved with a common time resolution. Using instead a multi-
rate scheme that allows for different time resolutions on each subdomain would be more
efficient.

The aim of this chapter is to present a high order, parallel, multirate method for two
heterogeneous coupled heat equations which could be applied to FSI problems. We use
the Neumann-Neumann waveform relaxation (NNWR) method which is a waveform
relaxation (WR) methods based on the classical Neumann-Neumann iteration [50, 34].

6.1 The Neumann-Neumann Waveform Relaxation algo-
rithm

We now describe the Neumann-Neumann waveform relaxation (NNWR) algorithm [50].
The NNWR algorithm starts with an initial guess g0(x, t) on the space-time interface
Γ× (T0, Tf ], and then performs a three-step iteration.

More specifically, imposing continuity of the solution across the interface (i.e, given a
common initial guess g0(x, t) on Γ×(T0, Tf )), one can find the local solutions uk+1

m (x, t)
on Ωm, m = 1, 2 through the following Dirichlet problems:

53
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αm
∂uk+1

m (x,t)
∂t −∇ · (λm∇uk+1

m (x, t)) = 0, x ∈ Ωm,

uk+1
m (x, t) = 0, x ∈ ∂Ωm\Γ,
uk+1
m (x, t) = gk(x, t), x ∈ Γ,

uk+1
m (x, 0) = u0

m(x), x ∈ Ωm.

(6.1)

We now add into the framework the second coupling condition which is the conti-
nuity of the heat fluxes. To this end, one solves two simultaneous Neumann problems to
get the correction functions ψk+1

m (x, t) on Ωm, m = 1, 2 where the Neumann boundary
condition at the interface Γ × (T0, Tf ) is prescribed by the continuity of the heat fluxes
of the solutions uk+1

m (x, t) given by the Dirichlet problems:





αm
∂ψk+1

m (x,t)
∂t −∇ · (λm∇ψk+1

m (x, t)) = 0, x ∈ Ωm,

ψk+1
m (x, t) = 0, x ∈ ∂Ωm\Γ,

λm
∂ψk+1

m (x,t)
∂nm

= λ1
∂uk+1

1 (x,t)
∂n1

+ λ2
∂uk+1

2 (x,t)
∂n2

, x ∈ Γ,

ψk+1
m (x, 0) = 0, x ∈ Ωm.

(6.2)

Finally, the interface values are updated with

gk+1(x, t) = gk(x, t)−Θ(ψk+1
1 (x, t) + ψk+1

2 (x, t)), x ∈ Γ, (6.3)

where Θ ∈ (0, 1] is the relaxation parameter.
The NNWR iterative method converges to the solution of the model problem (3.4)

(proven in [46, chapt. 2]). Note that choosing an appropriate relaxation parameter is
crucial for the good performance of the NNWR algorithm [34]. If one uses the optimal
relaxation parameter, two iterations are enough.

6.2 Space-time interface interpolation

The NNWR algorithm allows the use of independent time discretization on each of the
subdomains. Therefore, in the case of mismatched time grids, there exists the need to
define an interface interpolation.

To this end, we consider a discrete problem in time with nonconforming time grids.
Let τ1 = {t1, t2, .., tN1} and τ2 = {t1, t2, .., tN2} be two possibly different partitions of
the time interval [T0, Tf ] as shown in figure 6.1. We denote by ∆t1 = (Tf − T0)/N1

and ∆t2 = (Tf −T0)/N2 the two possibly different constant step sizes corresponding to
Ω1 and Ω2 respectively.



6.2. SPACE-TIME INTERFACE INTERPOLATION 55

Figure 6.1: Nonconfoming time grids in the two-dimensional subdomains.

In order to exchange data at the space-time interface between the different time grids,
we use a linear interpolation. Given the local discrete solutions F ∈ Rs×N1 and F ∈
Rs×N2 at the space-time interface Γ × [T0, Tf ], with s being the number of grid points
at Γ, we use the following procedure: For each k = 1, 2, .., s and for each ti ∈ τ2,
find the subinterval in τ1 such that ti ∈ [tj , tj+1]. Linear interpolation through the
points (tj , F (xk, tj)) givesG(xk, tj). We denote this by the interpolation functionG =
I(τ2, τ1, F ) summarized in algorithm 1. Conversely, we also have F = I(τ1, τ2, G).

Algorithm 1 Interpolation to transfer data at the space-time interface.

1: procedure I(τ2,τ1,F )
2: for k = 1, 2, .., s do
3: for ti ∈ τ2 do
4: for tj ∈ τ1 do
5: if ti ∈ [tj , tj+1] then
6: Gk,i ← Fk,j + (ti − tj) · (Fk,j+1 − Fk,j)/(tj+1 − tj)

return G
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6.3 Optimal relaxation parameter

Discretizing the problem (6.1)-(6.3) in space and applying the implicit Euler to the re-
maining time derivatives one gets a fully discretized purely algebraic iterative procedure.
This is explained in details in paper III.

We are interested in the performance of the NNWR algorithm and therefore, it is
crucial to choose an appropriate relaxation parameter Θ. If Θ is optimal, two iterations
of the NNWR algorithm will be enough. In [50], a one-dimensional semidiscrete analysis
is performed with constant coefficients showing that Θopt = 1/4 when the two subdo-
mains Ω1 and Ω2 are identical. However, the case of jumping coefficients is not covered
by that analysis. For that reason, we proposed in paper III a more general fully discrete
analysis for the coupling of two heterogeneous heat equations.

To that end, we derived the iteration matrix of the fully discrete NNWR algorithm
with respect to the interface unknowns for one single nonmultirate time step (using im-
plicit Euler for the time integration). We got

Σ = I−Θ
(

2I + S(1)−1
S(2) + S(2)−1

S(1)
)
, (6.4)

where S(m), m = 1, 2 are the Schur complements in (3.22).
In the one-dimensional case, the iteration matrix Σ is just a real number and thus

its spectral radius is its modulus. Then, the optimal relaxation parameter Θopt in 1D is
given by

Θopt =
1

2 + S(1)−1
S(2) + S(2)−1

S(1)
. (6.5)

And finally, we studied the iteration matrix (6.4) for the specific 1D FE discretization
in section 4.1. obtaining the following optimal relaxation parameter Θopt in terms of
c := ∆t/∆x2:

Θopt =

(
2 +

6∆t(α2 + 3λ2c)−∆x(α2 − 6λ2c)
2s′2

6∆t(α1 + 3λ1c)−∆x(α1 − 6λ1c)2s′1)

+
6∆t(α1 + 3λ1c)−∆x(α1 − 6λ1c)

2s′1
6∆t(α2 + 3λ2c)−∆x(α2 − 6λ2c)2s′2

)−1

.

(6.6)

where

s′m =

N∑

i=1

3∆t sin2(iπ∆x)

2αm + 6λmc+ (αm − 6λmc) cos(iπ∆x)
, (6.7)
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for m = 1, 2.
Consequently, the temporal and spatial limits of Θopt in (6.6) are

Θ{c→0} =
α1α2

(α1 + α2)2
, (6.8)

Θ{c→∞} =
λ1λ2

(λ1 + λ2)2
. (6.9)

The semidiscrete result in [50] is recovered by our analysis when approaching the
continuous case in space in (6.9) for constant coefficients, i.e, λ1 = λ2. In that case, one
gets

Θopt =
λ1λ2

(λ1 + λ2)2
=

λ2
1

4λ2
1

=
1
4
. (6.10)

6.4 Multirate SDIRK2-NNWR algorithm

The NNWR algorithm using implicit Euler mentioned in the previous section provides a
first order solution. Instead we want to provide a high order solution and for that reason
we also presented in paper III an alternative algorithm using as a time integration method
a second order singly diagonally implicit Runge-Kutta (SDIRK2).

Consider the autonomous initial value problem

u̇(t) = f(u(t)), u(0) = u0. (6.11)

An SDIRK method is then defined as

Ui = un + ∆tn

i∑

k=1

aikf(Uk), i = 1, .., j

un+1 = un + ∆tn

j∑

i=1

bif(Ui)

(6.12)

with given coefficients aik and bi. The two-stage method SDIRK2 is defined by the
coefficients in table 6.4. As the coefficients a2i and bi for i = 1, 2 are identical, the
second equation in (6.12) is superfluous because un+1 = U2.

The vectors ki = f(Ui) are called stage derivatives and j is the number of stages.
Since the starting vector
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Table 6.1: Butcher-tableau of SDIRK2 with a = 1− 1
2

√
2 and â = 2− 5

4

√
2.

a a 0
1 1− a a

1− a a
1− â â

si = un + ∆tn

i−1∑

k=1

aikkk, i = 1, .., j − 1, (6.13)

is known, (6.12) is just a sequence of implicit Euler steps.
After discretizing equations (6.1) and (6.2) in space, we can rewrite the resulting

systems into a fully discrete form by applying SDIRK2 with time step ∆t1 on Ω1 and
∆t2 on Ω2. From now on, the local approximations and the solutions at the space-time

interface are given by the discrete vectors u(m),k,nm

I ∈ RSm and uk,nm

Γ ∈ Rs respectively.
Here Sm is the number of spatial grid points on Ωm and s is the number of spatial grid
points at the interface Γ. Moreover, k indicates the iterate and nm := 1, 2, .., Nm are the
time integration indeces with respect to Ωm, m = 1, 2. Similarly, the corrections both in

the subdomains and at the interface are given by the discrete vectors ψ(m),k,nm

I ∈ RSm

and ψ(m),k,nm

Γ ∈ Rs respectively.

Therefore, at each fixed point iteration k, let s(m)
1 = u(m),k+1,nm

I and s(m)
2 =

u(m),k+1,nm

I + ∆tm(1 − a)k(m)
1 be the starting vectors. Then, one can solve a fully

discretized version of the two Dirichlet problems from (6.1) for nm = 1, 2, .., Nm, with

the initial conditions u(m),k+1,0
I , m = 1, 2, uk+1,0

Γ simultaneously:

(
M(m)
II

a∆tm
+ A(m)

II

)
U(m)
j =

M(m)
II

a∆tm
s(m)
j −M(m)

IΓ u̇k,nm+j−1+(2−j)a
Γ

− A(m)
IΓ uk,nm+j−1+(2−j)a

Γ , j = 1, 2.

u(m),k+1,nm+1
I = U(m)

2 ,

(6.14)

where U(m)
j , s(m)

j , k(m)
j ∈ RSm and M(m)

II , M(m)
IΓ , A(m)

II and A(m)
IΓ are the discretization

matrices. Note that interpolation is not needed to solve the Dirichlet problems because

u(1),k+1,n1+1
I in (6.14) is only dependent on terms related to Ω1. In the same way,

u(2),k+1,n2+1
I in (6.14) only depends on n2. The stage derivatives are given by k(m)

j =
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1
a∆tm

(U(m)
j − s(m)

j ). Remember that the index m = 1, 2, denotes the subdomain and
the index j = 1, 2, denotes the stage.

The fluxes are fully discrete versions of the normal derivatives in the third equation of

(6.2). These are given by F(1),k,τ1
j := f(1),k,τ1

j +I(τ1, τ2, f
(2),k,τ2
j ), F(2),k,τ2

j := f(2),k,τ2
j +

I(τ2, τ1, f
(1),k,τ1
j ) with

f(m),k,nm

j = M(m)
ΓΓ u̇k,nm+j−1+(2−j)a

Γ + M(m)
ΓI k(m)

j

+A(m)
ΓΓ uk,nm+j−1+(2−j)a

Γ + A(m)
ΓI U(m)

j ,
(6.15)

for m = 1, 2. Note that interpolation here is needed because the components of F(1),k,τ1
j

and F(2),k,τ2
j for the two stages j = 1, 2 correspond to different time integrations.

Finally, one can solve a fully discretized version of the two Neumann problems in (6.2)

in terms of the vector of unknownsψk+1,nm+1
m :=

(
ψ

(m),k+1,nm+1
I

T
ψ

(m),k+1,nm+1
Γ

T
)T

.

Let s(m)
1 = ψk+1,nm

m and s(m)
2 = ψk+1,nm

m + ∆tm(1 − a)k(m)
1 be the starting vectors.

One then solves the two Neumann problems for nm = 1, 2, .., Nm, with the initial
conditions ψk+1,0

m = ψk+1
m (T0), m = 1, 2 in parallel:

(
Mm

a∆tm
+ Am

)
Y(m)
j =

Mm

a∆tm
s(m)
j + b(m),k,nm

j , j = 1, 2,

ψk+1,nm+1
m = Y(m)

2 ,

(6.16)

Then, the interfaces values are updated respectively by

uk+1,τ1
Γ = uk,τ1

Γ −Θ
(
ψ

(1),k+1,τ1

Γ + I
(
τ1, τ2, ψ

(2),k+1,τ2

Γ

))
, (6.17)

uk+1,τ2
Γ = uk,τ2

Γ −Θ
(
ψ

(2),k+1,τ2

Γ + I
(
τ2, τ1, ψ

(1),k+1,τ1

Γ

))
. (6.18)

Here, interpolation is needed because ψ(1),k+1,τ1

Γ and ψ(2),k+1,τ2

Γ are nonconforming.

Finally, if the termination criteria ‖uk+1,Nm

Γ −uk,Nm

Γ ‖ is not small enough, one starts
the process from (6.14) once more.

Algorithm 2 and 3 summarize the discrete Dirichlet solver in (6.14) and the discrete
Neumann solver in (6.16) respectively. Furthermore, the complete multirate SDIRK2-
NNWR algorithm is summarized in algorithm 4.
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In conclusion, in paper III we suggested a new high order parallel NNWR method
with nonconforming time grids for two heterogeneous coupled heat equations and stud-
ied the optimal relaxation parameter in terms of the material coefficients and the tempo-
ral and spatial resolutions ∆t and ∆x. The method using Θopt converges extremely fast,
typically within two iterations. This is confirmed in paper III by numerical results, where
we also demonstrated that the nonmultirate 1D case gives excellent estimates for the mul-
tirate 1D case and even for multirate and nonmultirate 2D examples using both implicit
Euler and SDIRK2. In addition, we also showed that the NNWR method is a more ef-
ficient choice than the Dirichlet-Neumann waveform relaxation (DNWR) algorithm in
the multirate case.

Algorithm 2 Solver for the Dirichlet problems in (6.14).

1: procedure TA-D(uk+1,n
I , uk,nΓ , uk,n+1

Γ )

2: uk,n+a
Γ ← uk,nΓ + a

(
uk,n+1

Γ − uk,nΓ

)
# linear interp. for intermediate stage

3: u̇k,n+a
Γ , u̇k,n+1

Γ ←
(

uk,n+1
Γ − uk,nΓ

)
/∆t # forward diff. for derivatives

4: for j = 1, 2 do # loop over stages
5: sj ← uk+1,n

I + ∆t
∑j−1
l=1 (1− a)kl

6: Uj ← SOLVELINEARSYSTEM(sj , u̇
k,n+j−1+(2−j)a
Γ , uk,n+j−1+(2−j)a

Γ )
# 1st eq in (6.14)

7: kj ← 1
a∆t (Uj − sj)

8: uk+1,n+1
I ← U2

9: for j = 1, 2 do # compute fluxes in (6.15)

10: fk,nj ← MΓΓu̇k,n+j−1+(2−j)a
Γ + MΓIkj + AΓΓuk,n+j−1+(2−j)a

Γ + AΓIUj

return uk+1,n+1
I , fk,nj

Algorithm 3 Solver for the Neumann problems in (6.16).

1: procedure SDIRK2NEUMANN(ψk+1,n
I , ψk+1,n

Γ , Fk,nj )
2: for j = 1, 2 do # loop over stages
3: sj ← ψk+1,n + ∆t

∑j−1
l=1 (1− a)kl

4: Yj ← SOLVELINEARSYSTEM(sj , ψ
k+1,n
I , ψk+1,n

Γ , Fk,nj ), # 1st eq in (6.16)
5: kj ← 1

a∆t (Yj − sj)

6: ψk+1,n+1
I , ψk+1,n+1

Γ ← Y2

return ψk+1,n+1
I , ψk+1,n+1

Γ
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Algorithm 4 Multirate SDIRK2-NNWR algorithm.

1: procedure NNWR2(τ1, τ2, α1, α2, λ1, λ2, Θ, TOL)

2: u(m),k+1,0
I , u0

Γ(τm), ψ
(m),k+1,nm+1
I , ψ

(m),k+1,nm+1
Γ ← INITIALIZATION

3: while ‖uk+1,Nm

Γ − uk,Nm

Γ ‖ ≤ TOL do
4: for j = 1, 2 do # loop over stages
5: for tn1 ∈ τ1 do
6: u(1),k+1,n1+1

I , f(1),k,n1
j ← SDIRK2DIRICHLET(u(1),k+1,n1

I , uk,n1
Γ , uk,n1+1

Γ )

7: for tn2 ∈ τ2 do (in parallel to 5)

8: u(2),k+1,n2+1
I , f(2),k,n2

j ← SDIRK2DIRICHLET(u(2),k+1,n2

I , uk,n2
Γ , uk,n2+1

Γ )

9: F(1),k,τ1
j ← f(1),k,τ1

j + I(τ1, τ2, f
(2),k,τ2
j )

10: F(2),k,τ2
j ← f(2),k,τ2

j + I(τ2, τ1, f
(1),k,τ1
j ) (in parallel to 9)

11: for tn1 ∈ τ1 do
12: ψk+1,n1+1

I , ψk+1,n1+1
Γ ← SDIRK2NEUMANN(ψk+1,n1

I , ψk+1,n1
Γ , F(1),k,n1

j )

13: for tn2 ∈ τ2 do (in parallel to 11)

14: ψk+1,n2+1
I , ψk+1,n2+1

Γ ← SDIRK2NEUMANN(ψk+1,n2
I , ψk+1,n2

Γ , F(2),k,n2
j )

15: uk+1,τ1
Γ ← uk,τ1

Γ −Θ
(
ψ

(1),k+1,τ1

Γ + I(τ1, τ2, ψ
(2),k+1,τ2

Γ )
)

16: uk+1,τ2
Γ ← uk,τ2

Γ −Θ
(
ψ

(2),k+1,τ2

Γ + I(τ2, τ1, ψ
(1),k+1,τ1

Γ )
)

(p. to 15)





Chapter 7

Partitioned time adaptive
approach

The total number of time steps for each subsolver in the multirate NNWR algorithm
presented above and in paper III has to be chosen beforehand. For that reason, a time
adaptive version of the multirate NNWR algorithm would be a more efficient method.
In this chapter we introduce a new adaptive scheme that optimizes the total number of
time steps for each subsolver allowing big step sizes without increasing the error of the
numerical solution. Building a variable step size multirate scheme allows each of the
subsolvers to construct its own time grid independently of each other. This algorithm
could be further applied to thermal FSI simulations increasing the efficiency of the cou-
pling procedure. A time adaptive method for thermal FSI was introduced in [11]. There,
the same variable time integration was used for both subsolvers performing a Dirichlet-
Neumann iteration with respect to the interface unknowns at each time step. Here, we
present an alternative method where each subsolver performs in parallel an independent
time adaptive integration that are synchronized at the end point through a fixed point
iteration.

7.1 Time adaptive method

We are going to build our partitioned time adaptive approach on the SDIRK2-NNWR
algorithm introduced in the previous chapter and in paper III. To that end, an error
estimate at each time step is needed to be able to choose a new step size.

In order to get an error estimate for the autonomous initial value problem (6.11)
using SDIRK2, we use an embedded technique [42, chap. IV.8], i.e. the coefficients in
the Butcher-array aik (see table 6.4) are the same for a lower order method, which yields

63
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the result

ûn+1 = un + ∆tn

j∑

i=1

b̂if(Ui). (7.1)

Then, an approximation to the local error of the low order method is given by the
difference of both solutions

rn+1 := un+1 − ûn+1 = ∆tn

j∑

i=1

(bi − b̂i)f(Ui). (7.2)

Taking the Euclidean norm throughout we consider the error estimate at each time
step given by ‖rn+1‖2. We use a proportional-integral controller (PI controller) [76, 77],

∆tn+1 = ∆tn
(

TOL

‖rn+1‖2

)1/12(
TOL

‖rn‖2

)1/12

. (7.3)

Here we use the current error estimate, as well as the previous error estimate. However,
on the first step r0 is not available and for that reason, we put r0 = TOL. Afterwards,
the recursion will start operating as intended.

In order to start the integration, one also needs to pick an initial step size. Instead of
using the classic result in [41, pp. 169], we use the following formula suggested by Gustaf
Söderlind and inspired by [1, pp. 682-683]

∆t0 =
|Tf − T0| · TOL1/2

100 · (1 + ‖f(u0)‖2)
. (7.4)

So far, we have described the time adaptive methodology for the autonomous initial
value problem in (6.11) using the time integration method SDIRK2. However, we are
interested in constructing a time adaptive version of the SDIRK2-NNWR algorithm
using (7.3) as controller and (7.4) as starter as we will explain below.

In our approach, we have decided to introduce time adaptive processes for the time
integration of the two Dirichlet problems (6.1) which build two independent time grids
τ1 and τ2. The Neumann problems (6.2) and the update step (6.3) use the same time
grids τ1 and τ2 in a multirate manner as illustrated in figure 7.1. We have chosen to
have only the Dirichlet problems adaptive in this first approach because it is there where
the solutions of the problem u1(x, t) and u2(x, t) are found. The Neumann problems
instead only find the corrections ψ1(x, t) and ψ2(x, t). Other time adaptive strategies are
possible and intended to be investigated in future research. Those could be to introduce
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Figure 7.1: Illustration of the time adaptive SDIRK2-NNWR algorithm. The process
starts with the space-time interface functions ukΓ and the initial step sizes ∆t0m for m =
1, 2. Those are needed to run the time adaptive Dirichlet solvers in parallel getting the

time grids τm and u(m),k+1,τm
I , m = 1, 2. In order to run the multirate Neumann

solvers for the corrections of the solution, one needs to provide the fluxes f̃
k,τ1

1 , f̃
k,τ2

2

and their corresponding interpolations I(τ2, τ1, f̃
k,τ1

1 ), I(τ1, τ2, f̃
k,τ2

2 ). One can then run

the Neumann problems in parallel getting the corrections ψ(1),k+1,τ1

Γ and ψ(2),k+1,τ2

Γ at

the space-time interface. Finally, those and their interpolations I(τ1, τ2, ψ
(2),k+1,τ2

Γ ) and

I(τ2, τ1, ψ
(1),k+1,τ1

Γ ) are used to update the space-time interface values. If needed, the
process is restarted.
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time adaptive processes on the Neumann problems instead or to build both the Dirichlet
and the Neumann problems with variable step sizes.

As our time adaptive SDIRK2-NNWR algorithm contains two time adaptive Dirich-
let solvers, we define the corresponding local errors as

rn+1
m = u(m),n+1

I − û(m),n+1
I , (7.5)

where û(m),n+1
I corresponds to the lower order solution of SDIRK2 and ‖rn+1

m ‖2 are the
corresponding error estimates for m = 1, 2.

Consequently, taking (7.3) and (7.4) as references

∆tn+1
m = ∆tnm

(
TOLm

‖rn+1
m ‖2

)1/12(
TOLm
‖rnm‖2

)1/12

, (7.6)

with r0
m = TOLm are the step size controllers with initial step sizes

∆t0m =
|Tf − T0| · TOL1/2

m

100 ·
(

1 + ‖M(m)
II

−1
A(m)
II u(m),0

I ‖2

) , (7.7)

for the Dirichlet problem on the subdomain Ωm for m = 1, 2 respectively.
Figure 7.1 also sketches the communication needed for the time adaptive SDIRK2-

NNWR scheme just explained and summarized in algorithm 5. Note that the functions
TA-D() and SDIRK2NEUMANN() were already introduced in the previous chapter,
algorithm 2 and 3 respectively. The function UPDATERELAXATION() is explained in
details in the next section. Furthermore, as we typically have mismatched time grids on
the two space-time subdomains Ω1 × [T0, Tf ] and Ω2 × [T0, Tf ], the linear interpola-
tion represented by the function I() and explained in details in section 6 of paper III
is employed. Finally, we have chosen the inner time adaptive tolerances finer than the
outer tolerance used to terminate the iteration. Specifically, we take TOLm = TOL/5
for m = 1, 2. This choice is motivated by [78] and already used in a similar context in
section 6 of paper I.

7.2 Time adaptive relaxation parameter

In paper III we introduced a multirate SDIRK2-NNWR algorithm. There, we show that
the choice of the relaxation parameter Θ was crucial to get a convergent iterative method.
If the parameter is optimal, the algorithm will terminate after two iterations. However, if
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Algorithm 5 Time adaptive SDIRK2-NNWR algorithm.

1: procedure TA-NNWR2(τ1, τ2, α1, α2, λ1, λ2, ∆x, TOL)

2: u(m),k+1,0
I , u0

Γ(τm), ψ
(m),k+1,nm+1
I , ψ

(m),k+1,nm+1
Γ ← INITIALIZATION

3: Θ←
(
Θ{c→0} + Θ{c→∞}

)
/2 # initial guess relaxation parameter

4: TOLm ← TOL/5

5: ∆t0m ← (|Tf − T0| · TOL1/2
m )/(100 · (1 + ‖M(m)

II

−1
A(m)
II u(m),0

I ‖2))

6: while ‖uk+1,Nm

Γ − uk,Nm

Γ ‖ ≤ TOL do
7: for j = 1, 2 do # loop over stages
8: tnm ← ∆t0m, r0

m ← TOLm, τm ← {∆t0m}
9: while tn1 < Tf do

10: u(1),k+1,n1

I , f(1),k,n1
j , rn1

1 ← TA-D(u(1),k+1,n1−1
I , uk,n1−1

Γ , uk,n1
Γ )

11: ∆tn1
1 ← ∆tn1

1 (TOL1/‖rn1
1 ‖2)

1/12 (
TOL1/‖rn1−1

1 ‖2
)1/12

12: tn1 ← tn1 + ∆tn1
1 , τ1 = {τ1, tn1}

13: while tn2 < Tf do (in parallel to 8)

14: u(2),k+1,n2

I , f(2),k,n2
j , rn2

2 ← TA-D(u(2),k+1,n2−1
I , uk,n2−1

Γ , uk,n2
Γ )

15: ∆tn2
2 ← ∆tn2

2 (TOL2/‖rn2
2 ‖2)

1/12 (
TOL2/‖rn2−1

2 ‖2
)1/12

16: tn2 ← tn2 + ∆tn2
2 , τ2 = {τ2, tn2}

17: tNm
← Tf # overwrite last element time grid τm

18: u(m),k+1,Nm

I , f(m),k,Nm

j ← TA-D(u(m),k+1,Nm−1
I , uk,Nm−1

Γ , uk,Nm

Γ )

19: F(1),k,τ1
j ← f(1),k,τ1

j + I(τ1, τ2, f
(2),k,τ2
j )

20: F(2),k,τ2
j ← f(2),k,τ2

j + I(τ2, τ1, f
(1),k,τ1
j ) (in parallel to 19)

21: for tn1 ∈ τ1 do
22: ψk+1,n1

I , ψk+1,n1
Γ ← SDIRK2NEUMANN(ψk+1,n1−1

I , ψk+1,n1−1
Γ , F(1),k,n1−1

j )

23: for tn2 ∈ τ2 do (in parallel to 21)

24: ψk+1,n2
I , ψk+1,n2

Γ ← SDIRK2NEUMANN(ψk+1,n2−1
I , ψk+1,n2−1

Γ , F(2),k,n2−1
j )

25: uk+1,τ1
Γ ← uk,τ1

Γ −Θ
(
ψ

(1),k+1,τ1

Γ + I(τ1, τ2, ψ
(2),k+1,τ2

Γ )
)

26: uk+1,τ2
Γ ← uk,τ2

Γ −Θ
(
ψ

(2),k+1,τ2

Γ + I(τ2, τ1, ψ
(1),k+1,τ1

Γ )
)

(p. to 25)

27: Θ← UPDATERELAXATION(τ1, τ2, α1, α2, λ1, λ2,∆x)
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Figure 7.2: Air-water convergence rates as a function of the relaxation parameter Θ in
1D.

one deviates slightly from it, the method easily gets worse and it could even be divergent
because the optimum is a singularity as illustrated in figure 7.2.

The aim here is to adapt the formula derived for Θopt in the SDIRK2-NNWR algo-
rithm (check equation (6.6)) to the variable step size context. Θopt in (6.6) is dependent
on the coupled material coefficients α1, α2, λ1, λ2, the spatial resolution ∆x and the
time resolution ∆t through the parameter c := ∆t/∆x2. The main issues in the time
adaptive approach is that we do not have a fixed value for ∆t and we do not know be-
forehand how the time grids τ1 and τ2 look like. We propose to start the algorithm with
an initial guess for Θ and update the value at each iteration once the time grids τ1 and
τ2 have already been computed. Both the initial guess and the update to be presented are
motivated by the numerical experiments shown in paper III.

Firstly, the initial guess for the relaxation parameter Θ0 is chosen as

Θ0 :=
Θ{c→0} + Θ{c→∞}

2
, (7.8)

the arithmetic mean between the spatial and the temporal limits of Θopt. It has been
observed in the non adaptive SDIRK2-NNWR scheme that the optimal relaxation pa-
rameter moves from one limit to the other in terms of the relation between ∆t and ∆x2

as illustrated in figure 7.3. Initially, as ∆t is unknown because there is not fixed time step
in the time adaptive framework, we suggest to take an intermediate value between the two
limits. Although other options were tried as the geometric mean between Θ{c→0} and
Θ{c→∞}, min(Θ{c→0},Θ{c→∞}) or max(Θ{c→0},Θ{c→∞}), the arithmetic mean
was found to be the most efficient.
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Figure 7.3: Water-steel optimal relaxation parameter Θopt as a function of the parameter
c := ∆t/∆x2 for SDIRK2 in 1D. The constant lines Θ{c→∞} and Θ{c→0} represent
the spatial and temporal asymptotics of Θopt in (6.6). ∆t = 1e− 9, 1e− 8, ..., 1e8, 1e9
and ∆x = 1/100.

Secondly, in order to update the relaxation parameter after each iteration, we aver-
age the obtained variable step sizes getting the means ∆̄t1 and ∆̄t2 for each space-time
subdomain Ω1 × [T0, Tf ] and Ω2 × [T0, Tf ]. Once we have the values ∆̄t1 and ∆̄t2 we
choose Θ using the same strategy we presented in paper III for the multirate SDIRK2-
NNWR algorithm. Remember that we do not have a specific analysis for the optimal
relaxation parameter in the multirate case, but we showed numerically in paper III that
Θopt in (6.6) can be used as an estimate. This estimate was experimentally deduced from
plotting the convergence rates with respect to the temporal ratio ∆t1/∆t2 using the re-
laxation parameters Θopt(∆t1) and Θopt(∆t2), see figure 7.4. There, we observe that
one can use Θopt(∆t2) when ∆t1 < ∆t2 and Θopt(∆t1) when ∆t1 > ∆t2. This proce-
dure is summarized in algorithm 6 which completes the time adaptive SDIRK2-NNWR
approach in algorithm 5.

7.3 Numerical results

In this section we present numerical experiments to illustrate the behavior of the time
adaptive SDIRK2-NNWR algorithm introduced above. All the results in this section
have been produced by implementing algorithm 5 in Python using the one-dimensional
FE discretization specified in section 4.1 and using as a initial condition the smooth
function g(x) = 900(−x2 + 2x) at the interval Ω = Ω1 ∪ Ω2 = [0, 1] ∪ [1, 2].

Figure 7.5 shows the global error of the overall solution on Ω with respect to the
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Figure 7.4: Convergence rates as a function of the temporal ratio ∆t1/∆t2 for the
air-water coupling for SDIRK2 in 1D. We plot the convergence rates in the multirate
case (∆t1 6= ∆t2) using the relaxation parameters Θopt(∆t1) and Θopt(∆t2) in (6.6).
∆t1/∆t2 = 1e− 3/2e− 1, 2e− 3/2e− 1, 1e− 2/2e− 1, 2e− 2/2e− 1, 5e− 2/2e−
1, 1e− 1/2e− 1, 2e− 1/2e− 1, 2e− 1/1e− 1, 2e− 1/5e− 2, 2e− 1/2e− 2, 2e−
1/1e− 2, 2e− 1/2e− 3, 2e− 1/1e− 3 and ∆x = 1/100.

Algorithm 6 Algorithm to update the relaxation parameter for the time adaptive
SDIRK2-NNWR scheme.

1: procedure UPDATERELAXATION(τ1, τ2, α1, α2, λ1, λ2, ∆x)
2: Nm ← LENGTH(τm)
3: ¯∆tm ← (tNm

− t0)/Nm # arithmetic mean of the variable step sizes
4: if ∆̄t1 < ∆̄t2 then
5: Θ← Θopt

(
α1, α2, λ1, λ2,∆x, ∆̄t2

)
# use eq. (6.6)

6: else
7: Θ← Θopt

(
α1, α2, λ1, λ2,∆x, ∆̄t1

)
# use eq. (6.6)

return Θ
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Table 7.1: Physical properties of the materials. λ is the thermal conductivity, ρ the
density, cp the specific heat capacity and α = ρcp.

Material λ (W/mK) ρ (kg/m3) cp (J/kgK) α (J/K m3)

Air 0.0243 1.293 1005 1299.5
Water 0.58 999.7 4192.1 4.1908e6
Steel 48.9 7836 443 3471348

tolerance for the coupling of different materials. Physical properties of the materials
are shown in table 7.1. The global error has been calculated with respect to a reference
solution uref that has been computed using algorithm 5 for a very fine tolerance (TOL =
1e− 12 for the pairings air-steel and air-water and TOL = 1e− 9 for the pairing water-
steel). One observes in figure 7.5 how the error decreases proportionally to the tolerance
as expected in a time adaptive numerical method. Some deviations are observed for the
smallest tolerances in the coupling air-water and water-steel. This could happen because
the difference of the solution with respect to the reference at those points is not strong
enough.

To complement these results, we have also plotted the global error with respect to the
number of iterations in figure 7.6. One observes that the method does not need many
iterations to achieve a really accurate solution. More specifically, five iterations are needed
to get an accuracy of order 1e−12 for air-steel and 1e−9 for water-steel and ten iterations
are needed to get an accuracy of order 1e − 12 for the air-water coupling. But the most
interesting aspect in figure 7.6 is the strong jump that the method performs at the first
iteration. One can see that in the three material couplings presented here, the numerical
solution has an error of order 1e−5 after the first iteration and from the second iteration,
the error of the solution decreases slower. This illustrates the importance of choosing
properly the relaxation parameter Θ beforehand. Remember that we suggested to use an
arithmetic mean of both the spatial and temporal limits of the Θopt in (6.6). However,
in view of these results one could think of increasing or decreasing the spatial resolution
through ∆x in order to force the numerical method into one of the two limits and
use either Θ{c→0} or Θ{c→∞} as initial relaxation parameters. This alternative strategy
might decrease the error after the first iteration even more than using the arithmetic mean
of the limits.

Finally, we have included an illustration of the global error as a function of work in
figure 7.7. Here we measure work with respect to the total number of step sizes computed
a posteriori and as we have two space-time subdomains, Ω1× [T0, Tf ] and Ω2× [T0, Tf ],
we get a curve for each subdomain. In order to get the relation between the number of step
sizes and the global error, we measure those for a decreasing sequence of tolerances starting
with TOL = 1e − 4 and ending with TOL = 1e − 11 for the couplings air-steel and
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Figure 7.5: Global error as a function of the tolerance of the time adaptive SDIRK2-
NNWR algorithm for the coupling of different materials. ∆x = 1/50, [T0, Tf ] = [0, 1],
TOL = 1e− 11, 1e− 10, .., 1e− 4 for (a)-(b) and TOL = 1e− 8, 1e− 7, .., 1e− 4
for (c).
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Figure 7.6: Global error as a function of the fixed point iterations of the time adap-
tive SDIRK2-NNWR algorithm for the coupling of different materials. ∆x = 1/50,
[T0, Tf ] = [0, 1], TOL = 1e− 12 for (a)-(b) and TOL = 1e− 9 for (c).
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Figure 7.7: Work vs error. ∆x = 1/50

air-water and with TOL = 1e− 8 for the coupling water-steel. One observes that a very
accurate solution on both subdomains is achieved in quite few step sizes illustrating the
good performance of the time adaptive SDIRK2-NNWR method explained in previous
sections. In the pairings air-steel and water-steel which are the ones having stronger
jumps in the material coefficients across the interface we observe a good balance between
the work performed on Ω1 and Ω2. The example that shows a larger difference between
subdomains is the air-water pairing where the air needs more step sizes than the water to
achieve the same accuracy.

In conclusion, the numerical results just presented show that the time adaptive SDIRK2-
NNWR algorithm introduced in this chapter is a more efficient method for the one-
dimensional coupling of different combinations of materials than the multirate SDIRK2-
NNWR algorithm explained in the previous chapter. The main advantage over the mul-
tirate method is that the step size controllers acting on the Dirichlet solvers allow each of
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the fields to choose their own variable step sizes independent on each other. The aim of
the time adaptive models is always to increase the size of the step sizes without increasing
the error on the overall numerical solution. Therefore, a functional time adaptive method
uses less steps than a fixed step size model gaining efficiency. Additionally, the time adap-
tive SDIRK2-NNWR algorithm is constructed in parallel and its implementation over
the multirate SDIRK2-NNWR algorithm is very easy because only the Dirichlet solvers
need to be modified as sketched in figure 7.1. Moreover, this work motivates further
investigation like its natural extension to 2D or the search of alternatives for the initial
relaxation parameter or the step size controller.





Chapter 8

Conclusions and Outlook

8.1 Conclusions

We have described three different partitioned approaches for the unsteady transmission
problem with jumping coefficients that can be further extended for the simulation of
thermal fluid-structure interaction.

Firstly, we have analyzed the convergence rates of the Dirichlet-Neumann iteration
in terms of the material coefficients for the fully discrete coupled heat equations. There,
we have derived an exact formula in 1D and an estimate in 2D for the convergence
rates both in the FEM-FEM and FVM-FEM frameworks. Furthermore, the limits of
the convergence rates when approaching the continuous case either in space or time were
computed. On one hand, the spatial limit is δ := λ1/λ2 and the temporal limit is
γ := α1/α2 in the FEM-FEM case. On the other hand, in the FVM-FEM case, the rates
tend to δ in the spatial limit but to zero in the temporal limit. In addition, numerical
experiments show that the linear analysis is relevant for nonlinear thermal FSI problems
with high aspect ratio and unstructured grids.

All these theoretical results have been confirmed by numerical results concluding that
strong jumps in the coefficients of the coupled PDEs imply fast convergence. Conversely,
the coupling iteration will be slow when the material coefficients are continuous over all
the subdomains. For coupling of structures and compressible flows, the aspect ratio in
the fluid has to be taken into account, since the convergence is proportional to it. With
regards to the order comparison, we remark the importance of choosing a second order
scheme to approximate the normal derivatives to preserve a second order global solution.
The global error is much smaller using one-sided differences than forward differences to
approximate the normal derivative.

Secondly, we have introduced a new high order multirate NNWR algorithm to solve
two heterogeneous coupled heat equations in order to increase parallelization in time.
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Moreover, we have studied the optimal relaxation parameter in terms of the material coef-
ficients and the temporal and spatial resolutions ∆t and ∆x. To this end, we considered
the coupling of two heat equations on two identical domains. We assumed structured
spatial grids and conforming time grids on both subdomains to derive a formula for the
optimal relaxation parameter Θopt in 1D using implicit Euler. Furthermore, we deter-
mined the limits of the optimal relaxation parameter when approaching the continuous
case either in space (λ1λ2/(λ1 + λ2)2) or time (α1α2/(α1 + α2)2). The method using
Θopt converges extremely fast, typically within two iterations. This was confirmed by
numerical results, where we also demonstrated that the nonmultirate 1D case gives ex-
cellent estimates for the multirate 1D case and even for multirate and nonmultirate 2D
examples using both implicit Euler and SDIRK2. In addition, we have shown that the
NNWR method is a more efficient choice than the classical DNWR in the multirate case.

Thirdly, we have introduced a time adaptive version of the multirate NNWR method
mentioned above. We inserted two different controllers in the Dirichlet solvers to build
two independent time grids τ1 and τ2 increasing the efficiency of the algorithm. The
numerical results show the advantages of the time adaptive method over the previous
multirate approach.

8.2 Further work

There are a variety of future directions for this work. We present some of them here as
possible goals.

• One future direction would be to extend the convergence analysis of the Dirichlet-
Neumann iteration to higher dimensions (3D) or to generalize it to other time
integration methods.

• One could also be interested in the convergence analysis of another coupling method
like Robin-Neumann. However, after the highly efficient results obtained in the
coupling between air and steel using the Dirichlet-Neumann iteration not much ef-
ficiency could be gained by finding an alternative sequential method. Nevertheless,
this could be interesting in other FSI applications.

• One could also try to model a three-field problem where two different fluids are
coupled through a common structure with a time-dependent method and estimate
the convergence rates. A preliminary study of this problem was performed by Ivo
Dravins in his master thesis [25] for the coupling of three elliptic problems.

• The numerical comparison performed in paper III between the NNWR and the
DNWR algorithms hints that Θ = 1/2 might not be the optimal relaxation pa-
rameter for the DNWR method when having strong jumps in the material co-
efficients for the fully discrete problem. Thus, performing an specific analysis to
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find the optimal relaxation parameter of the DNWR algorithm is left for future
research and it will allow us to perform a more accurate comparison between the
two multirate methods.

• Another future direction would be to use both the multirate and time adaptive
approaches explained in this thesis to simulate nonlinear thermal FSI test cases.

• Finally, many aspects of the time adaptive approach are left for further research.
One could extend the approach to higher dimensions (2D and even 3D), investi-
gate alternatives adding time step controllers on the Neumann problems as well,
implement time adaptivity with respect to macrosteps or study the influence of the
initial condition on the performance of the method.
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Numerical Methods for Unsteady Thermal
Fluid Structure Interaction

Philipp Birken and Azahar Monge

Abstract. We discuss thermal fluid structure interaction processes, where a simulation of the
time dependent temperature field is of interest. Thereby, we consider partitioned coupling
schemes with a Dirichlet-Neumann method. We present an analysis of the method on a model
problem of discretized coupled linear heat equations. This shows that for large quotients in
the heat conductivities, the convergence rate will be very small. The time dependency makes
the use of time adaptive implicit methods imperative. This gives rise to the question, how
accurate the appearing nonlinear systems should be solved, which is discussed in detail for
both the nonlinear and linear case. The efficiency of the resulting method is demonstrated
using realistic test cases.

Keywords. Thermal Fluid Structure Interaction, Conjugate Heat Transfer, Dirichlet-Neumann
method, Time adaptivity, Termination criteria.

AMS classification. 65F10, 65L04, 65M22, 74F04, 74F10.

1 Introduction

Fluid structure interaction occurs when a deformable or moving structure interacts
with a surrounding or internal fluid flow. Our specific field of interest is thermal in-
teraction between fluids and structures, also called conjugate heat transfer. Examples
for thermal fluid structure interaction are cooling of gas-turbine blades, thermal anti-
icing systems of airplanes [12], supersonic reentry of vehicles from space [31, 25], gas
quenching, which is an industrial heat treatment of metal workpieces [23, 40] or the
cooling of rocket nozzles [27, 26]. These problems are usually too complex to solve
them analytically, and therefore, numerical simulations of conjugate heat transfer are
essential in many applications.

The efficient numerical simulation of fluid structure interaction (FSI) models is one
of the important current challenges in scientific computing as stated in [11]:

“The issue of coupling models of different events at different scales and
governed by different physical laws is largely wide open and represents an
enormously challenging area for future research.”

In this article, we focus on the coupling between air and an alloy. When being
cooled or heated, the alloy experiences thermomechanical effects that change its in-
ternal structure. A first example are steel forging processes. One possibility is to use
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(a) Inductive heating. (b) Thermo-mechanical
forming.

(c) Local air-cooling.

Figure 1. Gas quenching. Left and center picture: Institute of Mechanics and Dynamics,
University of Kassel. Right picture: Institute of Metal Forming Technology, University
of Kassel.

cold high pressured air as a cooling medium (see Figure 1). Knowledge about the
time dependent temperature field is imperative to predict where martensite will be in a
finished steel part. This allows to predict material properties generated by the forging
process.

Another example is the cooling of rocket thrust chambers. The temperature achieved
in the turbines has increased over the years due to progress in the building materials
and therefore, advanced cooling methods are needed. This is both to avoid critical
damage to the rocket nozzle when in use and to develop reusable rocket stages. An
important case is the Ariane 5, see Figure 2a, which is used to deliver payloads into the
geostationary transfer orbit (GTO) or the low Earth orbit (LEO). The first stage rocket
engine for the Ariane 5 is the Vulcain 2, see figure 2b.

The first stage rocket engine is only used during the launch of the rocket. Therefore,
recovering and reusing the first stage will reduce the cost of space access and the
environment impact. Related to this, the company SpaceX is developing a set of new
technologies for an orbital launch system that may be reused many times in a manner
similar to the reusability of aircraft. The first controlled vertical splashdown of an
orbital rocket stage on the ocean surface was achieved in April 2014. The next two
flights in January and April 2015 attempted to land the returning first stage on a floating
platform. Both of them were guided accurately to the target, but they did not succeed
in landing vertically on the floating platform and were destroyed [3]. Finally, the first
vertical landing was achieved on December 21, 2015, when the first stage of Falcon 9
Flight 20 successfully landed on solid ground [1]. On April 8, 2016, Flight 23 achieved
the first soft landing on a drone ship in the Atlantic Ocean [2], see Figure 3.

In view of these achievements, it is of interest to simulate several cycles of the
combustion-cooling process of the thrust chamber. This will tell how many times the
engine can be used without damaging the structure. More details about this can be
found in [27, 26].
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(a) Ariane 5 on the launch
pad.

(b) The Vulcain engine
in a museum.

(c) Sketch of the rocket
thurst chamber.

Figure 2. Cooling of rocket thrust chambers. Left picture: DLR German Aerospace
Center, CC BY 2.0. Center picture: Pline, CC BY-SA 3.0

(a) Unsuccessul vertical
landing attempt.

(b) First stage landing ver-
tically on solid ground in
December 2015.

(c) First stage landed on au-
tonomous droneship in April 2016.

Figure 3. SpaceX reusable launch system development program. SpaceX Photos, CC0
1.0.

Figure 2c shows a combustion chamber with the nozzle, through which hot gas can
escape. The nozzle is delimited by a structure that can be damaged due to the high
temperature of the gas flowing inside. In order to avoid this, a cooling fluid flows
through small channels contained inside the structure. This results in a system with
two thermal interactions between fluids and structures. On one hand, between the hot
gas coming out from the combustion chamber and the structure recovering the nozzle.
On the other hand, between the cooling fluid and the structure. A sketch of the coupling
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surfaces can be consulted in Figure 4 where Γs,cf corresponds to the interface between
the structure and the cooling fluid and Γs,hg to the interface between the structure and
the hot gas.

Figure 4. Sketch of the coupling surfaces. Figure taken from [27].

With regards to the space discretization, the use of the finite element method (FEM)
is ubiquitious for the structure. For the fluid, typically finite volume methods (FVM)
are used. However, there are some approaches to use finite elements for both problems,
in particular when using a monolithic method [4].

1.1 Partitioned Coupling Methods

To simulate FSI problems there exist two main methods: monolithic and partitioned
ones. In the monolithic method, a new code is tailored for the coupled equations,
whereas the partitioned approach allows to reuse existing software for each sub-problem.
The coupling is done by a master program which calls interface functions of the other
codes [16]. If the data transfer between the subsolvers is done only once per time step,
we are using a loosely coupled scheme [17]. However, for stability reasons, often a
strongly coupled scheme needs to be used [28]. In this case the data exchange at ev-
ery time step is repeated until a convergence criterion is satisfied. Here, we focus on
partitioned methods.

At the boundary, one imposes that the temperature and the heat flux have to be con-
tinuous accross the interface. To obtain such a solution, a Dirichlet-Neumann iteration
can be employed. This consists of solving the fluid problem with Dirichlet boundary
conditions at the interface and then the structure problem with Neumann boundary
conditions at the interface, resulting in a fixed point iteration. Figure 5 illustrates this.
This iteration is a basic method in both domain decomposition and fluid structure in-
teraction.

In the domain decomposition context, it has two main problems, namely slow con-
vergence and the need for an implementation using a red-black colouring. The slow
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Figure 5. Illustration of the FSI solver.

convergence can be improved using a relaxation procedure [34]. In fluid structure
interaction, there are only two domains, coupled along an interface, making the appli-
cation straight forward. However, the convergence rate is not great for the coupling
between a compressible fluid and a structure [14], which is why a lot of effort goes
into convergence acceleration. On the other hand, the Dirichlet-Neumann iteration
was reported to be a very fast solver for thermal fluid structure interaction [8].

As mentioned before, we study transient processes and therefore a numerical method
needs to be chosen for the time discretization. In [29], the implicit midpoint rule is used
in a monolithic scheme to analyze energy conservation of an aeroelasticity problem.
Already in [5, 13], it is suggested to use an explicit high order Runge-Kutta scheme
for both subproblems with data exchange at each stage. However, the resulting scheme
has limited time steps due to the explicit nature of the method. The order of coupling
schemes on moving meshes is analyzed in [22], but only first order convergence is
proved for p-th order schemes. Moreover, higher order implicit Runge-Kutta schemes
on moving meshes are analyzed in [43] (in 1D) and in [44] (in 3D). There, so called
explicit first stage, singly diagonally implicit Runge-Kutta schemes (ESDIRK) are em-
ployed and higher order in time is proved by numerical results. The master program
of the FSI procedure can be extended to SDIRK methods and furthermore, time adap-
tivity can be added into this framework as explained in [9, 10]. Another interesting
alternative is subcycling, where in the subsolvers, different time step sizes are chosen
[21, 37]. So far, this has not been brought together with time adaptive methods.

Summarizing, a partitioned method for unsteady thermal FSI involves two sub-
solvers (fluid and structure) and two embedded iterations. There exists an outer loop
corresponding to the time integration. Then, at each timestep, a subiteration (the
Dirichlet-Neumann method) couples the subsolvers, which have another nonlinear it-
eration so provide solutions to the subproblems.

An outline of the article now follows. In section 2, we describe the model and
discretization, as well as the coupling conditions and the partitioned solution method,
the Dirichlet-Neumann iteration. A model problem, namely two coupled discretized
heat equations, is presented in section 3. Our analysis to determine the convergence
rate of the Dirichlet-Neumann method for the model problem can be found in section
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4. Numerical results are included to illustrate the theoretical analysis. In section 5,
we describe how a fast solver is obtained using time adaptivity, followed by an in
depth analysis of how tolerances in the various nested iterations should be chosen to
avoid oversolving while giving the desired accuracy in section 6. Numerical results to
demonstrate the efficiency of the obtained method are presented in section 7.

2 Treating Thermal FSI Problems
The basic setting we are in is that on a domain Ω1 ⊂ Rd where d corresponds to the
spatial dimension, the physics is described by a fluid model, whereas on a domain
Ω2 ⊂ Rd, a different model describing the structure is used. The two domains are
almost disjoint in that they are connected via an interface. The part of the interface
where the fluid and the structure are supposed to interact is called the coupling inter-
face Γ ⊂ ∂Ω1 ∪ ∂Ω2. Note that Γ might be a true subset of the intersection, because
the structure could be insulated. At the interface Γ, coupling conditions are prescribed
that model the interaction between fluid and structure. For the thermal coupling prob-
lem, these conditions are that temperature and the normal component of the heat flux
are continuous across the interface.

2.1 Fluid Model

We model the fluid using the time dependent Reynolds Averaged Navier-Stokes equa-
tions (URANS), which are a second order system of conservation laws (mass, momen-
tum, energy) modeling turbulent compressible flow. We consider the two dimensional
case, written in conservative variables density ρ, momentum m = ρv and energy per
unit volume ρE, where a ˜ denotes the Favre average and the overbar the ensemble
average [6]:

∂tρ+∇ · ρṽ = 0,

∂tρṽ +
2∑

j=1

∂xj (ρṽiṽj) = −∂xjpδij +
1
Re

2∑

j=1

∂xj
(
S̃ij + SRij

)
, i = 1, 2 (2.1)

∂tρẼ +∇ · (ρH̃ṽj) =
2∑

j=1

∂xj

(
(

1
Re

Sij − SRij)vi − ρṽ
′′
j + S̃ijv

′′
i − ρṽ

′′
j k +

W j

RePr

)
.

The Reynolds stresses

SRij = −ρṽ
′′
i v

′′
j

and the turbulent energy

k =
1
2

d∑

j=1

v
′
jv

′
j
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are modelled using the Spallart-Allmaras model [39]. Furthermore, qf = (q1, q2)
T

represents the heat flux and S = (Sij)i,j=1,2 the viscous shear stress tensor. As the
equations are dimensionless, the Reynolds number Re and the Prandtl number Pr
appear. The system is closed by the equation of state for the pressure p = (γ − 1)ρe,
the Sutherland law representing the correlation between temperature and viscosity,
as well as the Stokes hypothesis. Additionally, we prescribe appropriate boundary
conditions at the boundary of Ω1 except for Γ, where we have the coupling conditions.
In the Dirichlet-Neumann coupling, a temperature value is enforced at Γ.

2.2 Structure Model

Regarding the structure model, we will consider heat conduction only. Thus, we have
the nonlinear heat equation for the structure temperature Θ

ρ(x)cp(Θ)
d

dt
Θ(x, t) = −∇ · q(x, t), (2.2)

where
qs(x, t) = −λ(Θ)∇Θ(x, t)

denotes the heat flux vector. For alloys, the specific heat capacity cp and heat conduc-
tivity λ are temperature-dependent and highly nonlinear. How to model thermome-
chanical effects is subject of a lot of current research with important questions being
how to relate the microstructure to macroscopical models.

As an example, an empirical model for the steel 51CrV4 was suggested in [35]. This
was obtained simply by doing measurements and then a least squares fit to a chosen
curve. The coefficient functions are then

λ(Θ) = 40.1 + 0.05Θ− 0.0001Θ2 + 4.9 · 10−8Θ3 (2.3)

and

cp(Θ) = −10 ln

(
e−cp1(Θ)/10 + e−cp2(Θ)/10

2

)
(2.4)

with

cp1(Θ) = 34.2e0.0026Θ + 421.15 (2.5)

and

cp2(Θ) = 956.5e−0.012(Θ−900) + 0.45Θ. (2.6)

For the mass density one has ρ = 7836 kg/m3.
Finally, on the boundary, we have Neumann conditions qs(x, t) · n(x) = qb(x, t).
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2.3 Coupling Conditions

As mentioned before at the beginning of this section, the coupling conditions are that
temperature and the normal component of the heat flux are continuous across the in-
terface, i.e;

T (x, t) = Θ(x, t), x ∈ Γ, (2.7)

where T is the fluid temperature and Θ the structure temperature and

qf (x, t) · n(x) = qs(x, t) · n(x), x ∈ Γ. (2.8)

2.4 Discretization in Space

Following the partitioned coupling approach, we discretize the two models separately
in space. For the fluid, we use a finite volume method, leading to

d

dt
u + h(u,ΘΓ) = 0, (2.9)

where h(u,ΘΓ) represents the spatial discretization and its dependence on the tem-
peratures on the discrete interface to the structure, here denoted by ΘΓ.

Regarding structural mechanics, the use of finite element methods is ubiquitious.
Therefore, we will also follow that approach here, leading to the nonlinear equation
for all unknowns on Ω2:

M(Θ)
d

dt
Θ + A(Θ)Θ = qfb + qΓ

b (u). (2.10)

Here, M is the mass matrix, also called heat capacity matrix for this problem and
A is the heat conductivity matrix. The vector Θ consists of all discrete temperature
unknowns and qΓ

b (u) is the discrete heat flux vector on the coupling interface to the
fluid, whereas qfb corresponds to boundary heat fluxes independent of the fluid, for
example at insulated boundaries.

2.5 Time Discretization

For sake of completeness, we now write down a discretization using the implicit Euler
method. More advanced time integration schemes are discussed in Section 5. For the
coupled system (2.9)-(2.10) we obtain

un+1 − un + ∆tnh(un+1,Θn+1
Γ ) = 0, (2.11)
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M(Θn+1)(Θn+1 −Θn) + ∆tnA(Θn+1)Θn+1 = ∆tn(qfb + qΓ
b (u

k+1)). (2.12)

2.6 The Dirichlet-Neumann Method

The Dirichlet-Neumann method is a basic iterative substructuring method in domain
decomposition and it is a common choice for treating FSI problems. Therefore, we
now employ it to solve the system (2.11)-(2.12). This corresponds to alternately solv-
ing equation (2.11) on Ω1 with Dirichlet data on Γ and (2.12) on Ω2 with Neumann
data on Γ.

Thus, one gets for the k-th iteration the two decoupled equation systems

uk+1 − un + ∆tnh(uk+1,Θk
Γ) = 0, (2.13)

M(Θk+1)(Θk+1 −Θn) + ∆tnA(Θk+1)Θk+1 = ∆tn(qfb + qΓ
b (u

k+1)), (2.14)

with some initial condition Θ0
Γ. The iteration is terminated according to the standard

criterion
‖Θk+1

Γ −Θk
Γ‖ ≤ τ (2.15)

where τ is a user defined tolerance.
The convergence rate of the Dirichlet-Neumann iteration is not great for the cou-

pling between a compressible fluid and a structure [14], which is why a lot of effort
goes into convergence acceleration. On the other hand, the Dirichlet-Neumann itera-
tion was reported to be very fast solver for thermal fluid structure interaction. More
specifically, in [8] the iteration is extremely efficient and achieves a very accurate so-
lution with at most two iterations per timestep. To analyze the convergence behaviour
of the Dirichlet-Neumann iteration will explain why this coupling method is very effi-
cient in some FSI models and very inefficient in some others.

In principle, the convergence rate of the Dirichlet-Neumann method is analyzed
in any standard book on domain decomposition methods, e.g. [34, 41]. There, the
iteration matrix of the discretized equations is derived with respect to the interface
unknowns and the convergence rate is the spectral radius of that. However, due to the
nonlinearity of the thermal fluid structure interaction model explained previously, it is
not possible to compute the spectral radius of the iteration matrix in this case. For this
reason, we perform in the next section a convergence analysis of the coupling of two
linear heat equations. We chose this model because it is a basic building block in fluid
structure interaction.
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3 A Model Problem: Coupled Heat Equations
In FSI models, the solid is typically discretized using finite elements. On the other
hand, although the finite element method (FEM) is applicable to computational fluid
dynamics, the finite volume method (FVM) is generally a better choice for the dis-
cretization of the fluid. This method guarantees the conservation of fluxes through a
particular control volume. Therefore, we present here a convergence analysis of the
unsteady transmission problem with mixed discretizations (FVM-FEM).

For this model problem, Henshaw and Chand provided in [24] a method to analyze
stability and convergence speed of the Dirichlet-Neumann iteration in 2D based on ap-
plying the continuous Fourier transform to the semi-discretized equations. Their result
depends on ratios of thermal conductivities and diffusivities of the materials. How-
ever, in the fully discrete case we have observed that the iteration behaves differently
in some cases. Therefore, we propose a complementary analysis for the fully discrete
case here.

3.1 Model Problem

The unsteady transmission problem is as follows, where we consider a domain Ω ⊂ Rd
which is cut into two subdomains Ω1 ∪ Ω2 = Ω with transmission conditions at the
interface Γ = Ω1 ∩Ω2:

αm
∂um(x, t)

∂t
−∇ · (λm∇um(x, t)) = 0, t ∈ [t0, tf ], x ∈ Ωm ⊂ R2, m = 1, 2,

um(x, t) = 0, t ∈ [t0, tf ], x ∈ ∂Ωm\Γ,
u1(x, t) = u2(x, t), x ∈ Γ,

λ2
∂u2(x, t)
∂n2

= −λ1
∂u1(x, t)
∂n1

, x ∈ Γ,

um(x, 0) = u0
m(x), x ∈ Ωm,

(3.1)

where nm is the outward normal to Ωm for m = 1, 2.
The constants λ1 and λ2 describe the thermal conductivities of the materials on Ω1

and Ω2 respectively. D1 andD2 represent the thermal diffusivities of the materials and
they are defined by

Dm =
λm
αm

, with αm = ρmcpm (3.2)

where ρm represents the density and cpm the specific heat capacity of the material
placed in Ωm, m = 1, 2.
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We discretize this problem with a constant mesh width with respect to both spatial
components (∆y := ∆x = 1/(N + 1)) resulting in N2 interior space discretization
points in both Ω1 and Ω2. We use the implicit Euler method for the time discretization.

3.2 Semidiscrete Analysis

Before we present in the next section an analysis for the fully discrete equations,
we want to describe previous results which analyze the behaviour of the Dirichlet-
Neumann iteration for the transmission problem in the semi discrete case.

On one hand, a one dimensional stability analysis was presented by Giles [20].
There, while using the implicit Euler method in the subsolvers, an explicit time inte-
gration method was chosen with respect to the interface unknowns.

On the other hand, Henshaw and Chand provided in [24] a method to analyze con-
vergence speed of the Dirichlet-Neumann iteration. There, one applies the implicit
Euler method for the time discretization on both equations in (3.1) but keeps the space
continuous. Then, they applied the Fourier transform in space in order to transform the
second order derivatives into algebraic expressions. This converts the partial differen-
tial equations into a system of purely algebraic equations. Once we have a coupled
system of algebraic equations, we can insert one into the other and obtain the conver-
gence rate, called amplification factor β in [24]. They then derive the formula

β =

∣∣∣∣∣∣
−λ1

λ2

√
D2

D1

tanh
(
− 1√

D2∆t

)

tanh
(

1√
D1∆t

)

∣∣∣∣∣∣
. (3.3)

For ∆t big enough, we have tanh
(
−1/
√
D2∆t

)
≈ −1/

√
D2∆t and tanh

(
1/
√
D1∆t

)
≈

1/
√
D1∆t and therefore:

β ≈ λ1

λ2

√
D2

D1

√
D1∆t√
D2∆t

=
λ1

λ2
. (3.4)

One observes in (3.4) that the rates of the iteration behave as the quotient of thermal
conductivities when ∆t → 0. This suggests that strong jumps in the thermal conduc-
tivities of the materials cause fast convergence.

3.3 Space Discretization

We now describe a rather general space discretization of the model problem. The core
property that we need is that the meshes of Ω1 and Ω2 are compatible on Γ (they share
the same nodes on Γ) as shown in Figure 6. Furthermore, we need that there is a
specific set of unknowns associated with the interface nodes.
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Figure 6. Splitting of Ω between finite volumes and finite elements.

Then, letting u(1)
I correspond to the unknowns on Ω1 and uΓ to the unknowns at

the interface Γ, we can write a general discretization of the first equation in (3.1) in a
compact form as:

M1u̇(1)
I + M(1)

IΓ u̇Γ + A1u(1)
I + A(1)

IΓ uΓ = 0. (3.5)

On the other hand, a general discretization of the first equation in (3.1) on Ω2 can
be written as:

M2u̇(2)
I + M(2)

IΓ u̇Γ + A2u(2)
I + A(2)

IΓ uΓ = 0. (3.6)

where u(2)
I correspond to the unknowns on Ω2.

However, the system (3.5)-(3.6) is not enough to describe (3.1). Additionally, we
need an approximation of the normal derivatives at Γ. If an FVM is used over Ω1,
we approximate the normal derivative with respect to u1 using second order one-sided
finite differences:

−λ1
∂u1

∂n1
≈ λ1

2∆x
(4u1,N (t)− u1,N−1(t)− 3uΓ). (3.7)

On the other hand, if an FEM is used over Ω1 and φj is a nodal basis function for a
node on Γ we observe that the normal derivative with respect to u2 can be written as
linear functionals using Green’s formula [41, pp. 3]. Thus, the approximation of the
normal derivative is given by

λ2

∫

Γ

∂u2

∂n2
φjdS = λ2

∫

Ω2

(∆u2φj +∇u2∇φj)dx

= α2

∫

Ω2

d

dt
u2φj + λ2

∫

Ω2

∇u2∇φjdx.
(3.8)
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Consequently, the equation

M(2)
ΓΓ u̇Γ + M(2)

ΓI u̇(2)
I + A(2)

ΓΓuΓ + A(2)
ΓI u(2)

I = −M(1)
ΓΓ u̇Γ −M(1)

ΓI u̇(1)
I − A(1)

ΓΓuΓ − A(1)
ΓI u(1)

I ,
(3.9)

is a discrete version of the fourth equation in (3.1) and completes the system (3.5)-
(3.6). We now reformulate the coupled equations (3.5), (3.6) and (3.9) into an ODE

for the vector of unknowns u =
(

u(1)
I ,u(2)

I ,uΓ

)T

M̃u̇ + Ãu = 0, (3.10)

where

M̃ =




M1 0 M(1)
IΓ

0 M2 M(2)
IΓ

M(1)
ΓI M(2)

ΓI M(1)
ΓΓ + M(2)

ΓΓ


 , Ã =




A1 0 A(1)
IΓ

0 A2 A(2)
IΓ

A(1)
ΓI A(2)

ΓI A(1)
ΓΓ + A(2)

ΓΓ


 .

3.4 Time Discretization

Applying the implicit Euler method with time step ∆t to the system (3.9), we get for
the vector of unknowns un+1 = (u(1),n+1

I ,u(2),n+1
I ,un+1

Γ )T

Aun+1 = M̃un, (3.11)

where

A = M̃ + ∆tÃ =




M1 + ∆tA1 0 M(1)
IΓ + ∆tA(1)

IΓ

0 M2 + ∆tA2 M(2)
IΓ + ∆tA(2)

IΓ

M(1)
ΓI + ∆tA(1)

ΓI M(2)
ΓI + ∆tA(2)

ΓI MΓΓ + ∆tAΓΓ


 ,

with MΓΓ = M(1)
ΓΓ + M(2)

ΓΓ and AΓΓ = A(1)
ΓΓ + A(2)

ΓΓ .

3.5 Fixed Point Iteration

We now employ a Dirichlet-Neumann iteration to solve the discrete system (3.11).
This corresponds to alternately solving the discretized equations of the transmission
problem (3.1) on Ω1 with Dirichlet data on Γ and the discretization of (3.1) on Ω2 with
Neumann data on Γ.



14 P. Birken and A. Monge

Therefore, from (3.11) one gets for the k-th iteration the two equation systems

(M1 + ∆tA1)u
(1),n+1,k+1
I = −(M(1)

IΓ + ∆tA(1)
IΓ )u

n+1,k
Γ + M1u(1),n

I + M(1)
IΓ unΓ, (3.12)

Âûk+1 = M̂un − bk, (3.13)

to be solved in succession. Here,

Â =

(
M2 + ∆tA2 M(2)

IΓ + ∆tA(2)
IΓ

M(2)
ΓI + ∆tA(2)

ΓI M(2)
ΓΓ + ∆tA(2)

ΓΓ

)
, M̂ =

(
0 M2 M(2)

IΓ

M(1)
ΓI M(2)

ΓI MΓΓ

)
,

and

bk =

(
0

(M(1)
ΓI + ∆tA(1)

ΓI )u
(1),n+1,k+1
I + (M(1)

ΓΓ + ∆tA(1)
ΓΓ)u

n+1,k
Γ

)
, (3.14)

ûk+1 =

(
u(2),n+1,k+1
I

un+1,k+1
Γ

)
,

with some initial condition, here un+1,0
Γ = unΓ . The iteration is terminated according

to the standard criterion ‖uk+1
Γ − ukΓ‖ ≤ τ where τ is a user defined tolerance [7].

One way to analyze this method is to write it as a splitting method for (3.11) and
try to estimate the spectral radius of that iteration. However, the results obtained in
this way are much too inaccurate. For that reason, we now rewrite (3.12)-(3.13) as
an iteration for un+1

Γ to restrict the size of the space to the dimension of uΓ. To this
end, we isolate the term u(1),n+1,k+1

I in (3.12) and u(2),n+1,k+1
I in the first equation

in (3.13) and we insert the resulting expressions into the second equation in (3.13).
Consequently, the iteration un+1,k+1

Γ = Σun+1,k
Γ +ψn is obtained with iteration matrix

Σ = −S(2)−1
S(1), (3.15)

where

S(m) = (M(m)
ΓΓ + ∆tA(m)

ΓΓ )− (M(m)
ΓI + ∆tA(m)

ΓI )(Mm + ∆tAm)
−1(M(m)

IΓ + ∆tA(m)
IΓ ),
(3.16)

for m = 1, 2 and ψn contains terms that depend only on the solutions at the previous
time step. Notice that Σ is a discrete version of the Steklov-Poincaré operator.

Thus, the Dirichlet-Neumann iteration is a linear iteration and the rate of conver-
gence is described by the spectral radius of the iteration matrix Σ.
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4 Convergence Analysis

The derivation so far was for a rather general discretization. It is now possible to look
at specific discretizations. In this section, we study the iteration matrix Σ for a specific
FVM-FEM discretization.

The subdomains are here Ω1 = [−1, 0] × [0, 1], Ω2 = [0, 1] × [0, 1]. An equidis-
tant grid is chosen i.e, ∆x = ∆y = 1/(N + 1). At each discrete point of the fi-
nite volume discretization xi,j , we integrate over the cell Ii,j = [xi−1/2,j , xi+1/2,j ] ×
[xi,j−1/2, xi,j+1/2] and use the flux function

F (uL, uR) = −
λ1

∆x
(uR − uL), (4.1)

to approximate the flux, which results in a second order scheme. For the FEM dis-
cretization, we use triangular elements distributed as sketched in Figure 7 and the
following pyramidal test functions

φk(x, y) =





x+y
∆x − 1, if x = (x, y) ∈ Region 1,

y
∆x , if x ∈ Region 2,

∆x−x
∆x , if x ∈ Region 3,

1− x+y
∆x , if x ∈ Region 4,

∆x−y
∆x , if x ∈ Region 5,
x

∆x , if x ∈ Region 6,
0, otherwise.

(4.2)
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Figure 7. Sketch of the regions for the pyramidal test functions defined in (4.2).

The discretization matrices are given in this case by
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A1 =
λ1

∆x2




−B I 0

I −B . . .
. . . . . . I

0 I −B



, A2 =

λ2

∆x2




B −I 0

−I B . . .
. . . . . . −I

0 −I B



,

where

B =




4 −1 0

−1 4
. . .

. . . . . . −1
0 −1 4



,

and I ∈ RN×N is an identity matrix. Note that each block of the matrices Am ∈
RN2×N2

has size N ×N .

M2 = α2




N Ñ 0

ÑT N . . .
. . . . . . Ñ

0 ÑT N



,

where

N =




5/6 −1/12 0

−1/12 5/6
. . .

. . . . . . −1/12
0 −1/12 5/6



, Ñ =




−1/12 1/4 0

0 −1/12
. . .

. . . . . . 1/4
0 0 −1/12



.

Each block of the matrix M2 ∈ RN2×N2
has size N ×N as well. We consider here

Ej =
(

0 · · · 0 I 0 · · · 0
)T
∈ RN2×N where the only nonzero block is the

j-th block of size N ×N . Thus,

A(1)
IΓ =

λ1

∆x2 EN , A(2)
IΓ = − λ2

∆x2 E1, M(2)
IΓ = α2E1Ñ,
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M(2)
ΓΓ = α2




5/12 −1/24 0

−1/24 5/12
. . .

. . . . . . −1/24
0 −1/24 5/12



,

A(1)
ΓΓ =

3λ1

2∆x2 I, A(2)
ΓΓ =

λ2

∆x2




2 −1/2 0

−1/2 2
. . .

. . . . . . −1/2
0 −1/2 2



,

where M(2)
ΓΓ and A(m)

ΓΓ ∈ RN×N for m = 1, 2.

A(1)
ΓI =

λ1

2∆x2 (4ETN − ETN−1), A(2)
ΓI = − λ2

∆x2 ET1 , M(2)
ΓI = α2ET1 Ñ.

In this specific case, M1 = α1I, M(1)
IΓ = M(1)

ΓΓ = M(1)
ΓI = 0. In particular,

S(1) = ∆tA(1)
ΓΓ − ∆t2A(1)

ΓI (α1I− ∆tA1)
−1A(1)

IΓ , (4.3)

S(2) = (M(2)
ΓΓ + ∆tA(2)

ΓΓ)− (M(2)
ΓI + ∆tA(2)

ΓI )(M2 + ∆tA2)
−1(M(2)

IΓ + ∆tA(2)
IΓ ). (4.4)

One computes S(1) and S(2) by inserting the corresponding matrices specified above
in (4.3) and (4.4) obtaining

S(1) =
3λ1∆t
2∆x2 I− λ2

1∆t2

2∆x4 (4ETN − ETN−1)(α1I− ∆tA1)
−1EN , (4.5)

S(2) =

(
α2tridiag

(
− 1

24
,

5
12
,− 1

24

)
+
λ2∆t
∆x2 tridiag

(
−1

2
, 2,−1

2

))

−
(
α2N2 −

λ2∆t
∆x2 I

)
ET1 (M2 + ∆tA2)

−1 E1

(
α2N2 −

λ2∆t
∆x2 I

)
.

(4.6)

In the two-dimensional case, the iteration matrix Σ is a matrix of size N × N .
This makes the iteration matrix Σ difficult to compute for several reasons. First of all,
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the matrices α1I − ∆tA1 and M2 + ∆tA2 are sparse block tridiagonal matrices, and
consequently, their inverses are not straight forward to compute. A block-by-block
algorithm for inverting a block tridiagonal matrix is explained in [36]. However, the
algorithm is based on the iterative application of the Schur complement [46], and it
results in a sequence of block matrices and inverses of block matrices that we did not
find possible to compute exactly. Moreover, the diagonal blocks of α1I − ∆tA1 and
M2 + ∆tA2 are tridiagonal but their inverses are full matrices [18].

Due to these difficulties, we propose here to approximate Σ. One can observe that
α1I − ∆tA1 and M2 + ∆tA2 are strictly diagonally dominant matrices, and therefore,
we propose to approximate them by their block diagonal. Thus,

S(1) ≈ 3λ1∆t
2∆x2 I− 2λ2

1∆t2

∆x4

(
tridiag

(
−λ1∆t

∆x2 ,
α1∆x2 + 4λ1∆t

∆x2 ,−λ1∆t
∆x2

)−1
)
, (4.7)

S(2) ≈
(
α2tridiag

(
− 1

24
,

5
12
,− 1

24

)
+
λ2∆t
∆x2 tridiag

(
−1

2
, 2,−1

2

))

−
(
α2∆x2 + 12λ2∆t

12∆x2

)2 (
tridiag (b, a, b)−1

)
,

(4.8)

with

a =
5α2∆x2 + 24λ2∆t

6∆x2 , b = −
(
α2∆x2 + 12λ2∆t

12∆x2

)
.

Now, we compute the eigenvalues of the proposed approximations of S(1) and S(2).
The eigenvalues of a tridiagonal Toeplitz matrix are known and given e.g. in [32, pp.
514-516]:

µ1
j =

3λ1∆t(α1∆x2 + 2λ1∆t(2− cos(jπ∆x)))− 4λ2
1∆t2

2∆x2(α1∆x2 + 2λ1∆t(2− cos(jπ∆x)))
, (4.9)

µ2
j =

2(α2∆x2(5− cos(jπ∆x)) + 12λ2∆t(2− cos(jπ∆x)))2 − (α2∆x2 + 12λ2∆t)2

24∆x2(α2∆x2(5− cos(jπ∆x)) + 12λ2∆t(2− cos(jπ∆x)))
,

(4.10)

for j = 1, .., N . Here µ1
j are the eigenvalues of the approximation of S(1) and µ2

j the
eigenvalues of the approximation of S(2). Note that the eigenvectors are common for
symmetric tridiagonal Toeplitz matrices, i.e, the eigenvectors do not depend on the
specific entries.
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Thus, we obtain an estimate of the spectral radius of the iteration matrix Σ:

ρ(Σ) = ρ
(

S(2)−1
S(1)
)
= µmax

(
S(2)−1

S(1)
)
≈ µ1

1

µ2
1

=

(
12(α2∆x2(5− cos(π∆x)) + 12λ2∆t(2− cos(π∆x)))

α1∆x2 + 2λ1∆t(2− cos(π∆x))

)

·
(

3λ1∆t(α1∆x2 + 2λ1∆t(2− cos(π∆x)))− 4λ2
1∆t2

2(α2∆x2(5− cos(π∆x)) + 12λ2∆t(2− cos(π∆x)))2 − (α2∆x2 + 12λ2∆t)2

)
:= σ.

(4.11)

Furthermore, computing the limits of (4.11) when ∆t→ 0 and ∆x→ 0 we get

lim
∆t→0

ρ(Σ) ≈ lim
∆t→0

σ =
(12α2∆x2(5− cos(π∆x))) · 0

α1∆x2(2α2
2∆x4(5− cos(π∆x))2 − α2

2∆x4)
= 0, (4.12)

lim
∆x→0

ρ(Σ) ≈ lim
∆x→0

σ =
122λ2∆t(6λ2

1∆t2 − 4λ2
1∆t2)

2λ1∆t(2 · 122λ2
2∆t2 − 122λ2

2∆t2)
=
λ1

λ2
=: δ. (4.13)

Therefore, from the result obtained in (4.13) we expect that strong jumps in the
physical properties of the materials placed in Ω1 and Ω2 will imply fast convergence.
This is the case when modelling thermal fluid structure interaction, where often a fluid
with low thermal conductivity and density is coupled with a structure having higher
thermal conductivity and density.

When c → ∞, ∆t � ∆x2 and (3.4) matches with the asymptotic computed in
(4.13). However, when c < 1, the semicontinuous analysis fails and the discrete
analysis just presented fills the gap.

4.1 Numerical Results

In this section we present a set of numerical experiments designed to show how the va-
lidity of the approximation of ρ(Σ) as an estimator for the rates of the coupled problem
formulated above. We also show that the theoretical asymptotics deduced in (4.12) and
(4.13) match with the numerical experiments.

We first compare the semidiscrete estimator β with the discrete estimator σ and the
experimental convergences rates. The experimental convergence rates CR are com-
puted with respect to a reference solution uref over the whole domain Ω using the
formula

CR =
‖u3 − uref‖2

‖u2 − uref‖2
,
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where u2 and u3 are the second and third iterates of the Dirichlet-Neumann iteration.
Figure 8 shows a comparison between β and σ. On the left we plot β, σ and the

experimental convergence rates with c � 1 and on the right we plot the same but
with c � 1. We can conclude that the estimator for the convergence rates presented
in the previous section is minimally better than the one proposed by the semidiscrete
analysis in [24] when c � 1. Moreover, when c � 1 our estimator also predicts the
rates accurately and the semidiscrete estimator deviates.
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(a) c � 1
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Conv. Rate
-

(b) c � 1

Figure 8. Here,D1 = 1,D2 = 0.5, λ1 = 0.3 and λ2 = 1. The circles correspond to σ, the
crosses to the experimental convergence rates and the continuous line to β. ∆x = 1/20
and on the left the curves are restricted to the discrete values ∆t = 1e − 2/50, 2 · 1e −
2/50, ..., 50 · 1e−2/50 and on the right to the values ∆t = 1e−2, 2 · 1e−2, ..., 50 · 1e−2.

We now want to illustrate how the formula (4.11) predicts the convergence rates
and tends to the limits computed previously. To this end, we present two real data
examples. We consider here the thermal interaction between air at 273K with steel at
900K and water at 283K with steel at 900K. Physical properties of the materials and
resulting asymptotics for these two cases are shown in table 1 and 2 respectively.

Table 1. Physical properties of the materials. λ is the thermal conductivity, ρ the density,
C the specific heat capacity and α = ρC.

Material λ (W/mK) ρ (kg/m3) C (J/kgK) α (J/K m3)

Air 0.0243 1.293 1005 1299.5
Water 0.58 999.7 4192.1 4.1908e6
Steel 48.9 7836 443 3471348

Figures 9 and 10 show the convergence rates for the interactions between air-steel
and water-steel respectively. On the left we always plot the rates with respect to the
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Table 2. The limits of the convergence rates when ∆t→ 0 and ∆x→ 0.

Case ∆t→ 0 ∆x→ 0

Air-Steel 0 4.9693e-4
Water-Steel 0 0.0119

variation of ∆t and for a fixed ∆x. On the right we plot the behaviour of the rates for a
fixed ∆t and varying ∆x.

We observe from figures 9 and 10 that the approximation σ predicts the convergence
rates quite well because the difference with respect to the experimental rates is really
small. Moreover, the rates in 9a and 10a tend to 0 as predicted in (4.12) and the rates
in 9b and 10b tend to δ as predicted in (4.13).
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(a) The curves are restricted to the discrete values
∆t = 10/40, 2 · 10/40, ..., 40 · 10/40 and ∆x =
1/20.
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(b) The curves are restricted to the discrete values
∆x = 1/3, 1/4, ..., 1/60 and ∆t = 10.

Figure 9. Air-Steel thermal interaction with respect ∆t on the left and ∆x on the right.

From figure 9 we can observe that the convergence rates are really fast (factor of
∼ 1e−4) when there exist strong jumps in the coefficient of the materials. For instance,
when performing the thermal coupling between air and steel the Dirichlet-Neumann
iteration only needs two iterations to achieve a tolerance of 1e− 10.

5 Time Adaptive Methods

The standard in FSI is to use fixed time step sizes. We find that it is much more efficient
to use time adaptive methods. Thus the question arises how such a method can be
implemented in a partitioned way. The method described here has been suggested in
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∆x = 1/3, 1/4, ..., 1/60 and ∆t = 10.

Figure 10. Water-Steel thermal interaction with respect ∆t on the left and ∆x on the right.

α α 0
1 1− α α

bi 1− α α

b̂i 1− α̂ α̂

bi − b̂i α̂− α α− α̂

α = 1−
√

2/2
α̂ = 2− 5

4

√
2

α− α̂ = −1 + 3
4

√
2

Table 3. Butcher array for SDIRK2.

[10, 9]. Basis is a master program that does the global time stepping and calls functions
available in the subsolvers.

Here, an A-stable singly diagonally implicit Runge-Kutta method (SDIRK) is used.
Consider an autonomous initial value problem

u̇(t) = f(u(t)), u(0) = u0.

An SDIRK method is then defined as

Ui = un + ∆tn
i∑

j=1

aijf(U
j), i = 1, ..., s (5.1)

un+1 = un + ∆tn
s∑

i=1

bif(U
k)

with given coefficients aij , bj , cj . Here, we use the two stage method SDIRK2, which
is defined by the coefficients in the Butcher array in Table 3. For this method, asi = bi,



Numerical Methods for Unsteady Thermal Fluid Structure Interaction 23

which implies that the last line is superfluous (first-is-last-property). Besides saving
computational effort, this guarantees L-stability. The vectors

ki = f(Ui)

are called stage derivates and s is the number of stages. Since the starting vector

si = un + ∆tn
i−1∑

j=1

aijkj , i = 1, ..., s− 1

is known, (5.1) is just a sequence of implicit Euler steps.
In the following it is assumed that at time tn, the step size ∆tn is prescribed globally.

Applying a DIRK method to equations (2.9)-(2.10) results in the coupled system of
equations to be solved at Runge-Kutta stage i:

ui − sui − ∆tn aiih(ui,ΘΓ
i ) = 0, (5.2)

[M + ∆tn aiiA(Θ)]Θi −MsΘ
i − qfb − qΓ

b (ui) = 0. (5.3)

Here, sui and sΘ
i are the given starting vectors in the subproblems.

The coupled equations (5.2)-(5.3) are then solved using a Dirichlet-Neumann cou-
pling, as would be done for the implicit Euler method. Following the analysis just
presented, temperature is prescribed for the equation with smaller heat conductivity,
here the fluid, and heat flux is given on Γ for the structure. Choosing these conditions
the other way around leads to an unstable scheme. The canonical starting guess for the
Dirichlet-Neumann iteration at stage i is the starting vector si.

Regarding implementation, it is a safe assumption that both the fluid and the solid
solver are able to carry out time steps of implicit Euler type. Then the master program
of the FSI procedure can be extended to SDIRK methods very easily. The master
program just has to call at stage i in iteration k the backward Euler routines with time
step size aii∆tn and starting vectors si and with the boundary data appropriate for
iteration k.

To obtain time adaptivity, the technique of embedded Runge-Kutta methods is used.
Thereby, the local error l̂ is estimated by the solvers separately:

l̂(i) ≈ l(i) =
2∑

j=1

(bj − b̂j)k(i)
j , i = 1, 2, (5.4)

where k
(i)
j are the stage derivatives on the subdomains for each Runge-Kutta stage.

The computation of (5.4) will typically not be implemented in the subsolvers and has
to be added to both codes, as well as that all stage derivatives have to be stored by the
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subsolvers. These error estimates are then reported back to the master program and
aggregated in the form of a weighted scaled norm [9]:

‖l‖WSN =

√√√√ 1
n

n∑

j=1

li
TOLuj + TOL

=

√
1
n
(n1‖l(1)‖2

WSN + n2‖l(2)‖2
WSN ).

(5.5)
Thus, the master solver either needs to know the number of unknowns n1 and n2 in the
subsolvers, or instead the quantities ni‖l(i)‖2

WSN have to be provided to it. Based on
this, the new time step is chosen to comply with a user defined error tolerance TOL
for the time integration:

∆tn+1 = ∆tn · ‖l‖−1/k
WSN (5.6)

Finally, if the possibility of rejected time steps is taken into account, the current
solution pair (u,Θ) has to be stored as well.

5.1 Extrapolation from Time Integration

To find better starting values for iterative processes in implicit time integration schemes,
it is common to use extrapolation based on knowledge about the trajectory of the so-
lution of the initial value problem [15, 33]. In the spirit of partitioned solvers, it was
suggested in [8] to use extrapolation of the interface temperatures only. On top, this
strategy could be used as well within the subsolvers, which we will not consider here
and leave that to the discretion of the developers of those codes. We now present
extrapolation methods for SDIRK2 from [8].

At the first stage, we have the old time step size ∆tn−1 with value Θn−1 and the
current time step size ∆tn with value Θn. We are looking for the value Θ1

n at the next
stage time tn + c1∆tn. Linear extrapolation results in

Θ1
n ≈ Θn + c1∆tn(Θn −Θn−1)/∆tn−1 =

(
1 +

c1∆tn
∆tn−1

)
Θn −

c1∆tn
∆tn−1

Θn−1. (5.7)

At the second stage, we linearly extrapolate Θn at tn and Θ1
n at tn + c1∆t to obtain

Θn+1 ≈ Θn + ∆tn(Θ1
n −Θn)/(c1∆tn) =

(
1− 1

c1

)
Θn +

1
c1

Θ1
n. (5.8)

6 Choosing Tolerances
In the time adaptive setting, a core input parameter is a tolerance TOL. This, based on
the error estimate, steers the time step size according to (5.5)-(5.6). For this to work,
it is imperative that the iteration error is smaller than the time integration error, so as
not to destroy the error estimate of the latter. The Dirichlet-Neumann iteration is for-
mulated as a fixed point iteration in the interface unknowns with termination criterion
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(2.15). The tolerance there thus has to be chosen that the iteration error not only on the
interface, but on the whole domain is smaller than the time integration error. At the
same time, oversolving should be avoided to prevent unnecessary computational cost.
A good rule of thumb is to divide the tolerance for the time integration procedure by
five [38], ending up with

τ = TOL/5. (6.1)

On the assumption of exact solves in the subsolvers, errors in the interface will
nevertheless be translated into errors in the subproblems. The boundary condition from
the interface enters the right hand side of the nonlinear equations on the subproblem.
Thus, by way of the inverse operator, errors in the interface values are translated into
errors in the subdomains. For parabolic problems as in heat transfer, these are bounded
operators and thus the error transfer can be controlled. Right now, we assume that it is
of order one and do not adjust (6.1) further. However, a more careful analysis of this
point to get better estimates is required, for example using discrete trace inequalities.

Actually, it is common to use iterative solvers for the subproblems as well, typically
Newton or Multigrid methods (compare [6] for an overview on the state of the art). So
the question needs to be raised again, what type of termination criteria to choose and
what kind of tolerance. For a nonlinear subproblem of the form

F(u) = 0,

the standard would be to use a relative termination criterion

‖F(uk)‖ ≤ τr‖F(u0)‖

with relative tolerance τr. The errors introduced from these systems into the fixed
point iteration will be on the order of the residual. Thus, it makes sense to use (6.1)
for the tolerances in the subsolvers as well.

In the linear case, the same reasoning applies when we use the relative termination
criterion

‖A(xk)xk+1 − b‖ ≤ τr‖b‖. (6.2)

However, it turns out that this has some pitfalls and that in fact the use of the nonstan-
dard relative criterion

‖A(xk)xk+1 − b‖ ≤ τr‖A(xk)xk − b‖ (6.3)

can speed up the iteration significantly. In the following analysis, taken from [7], an
absolute criterion

‖A(xk)xk+1 − b‖ ≤ τa, (6.4)

with an absolute tolerance τa is possible as well. The first criterion, in case of conver-
gence of the iteration, leads to an automatic tightening of the tolerance over the course
of the iteration.

To determine good tolerances, we will now analyze the errors arising from these
more careful.
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6.1 Perturbed Nested Fixed Point Iteration

Consider two functions F : Ω1 → Ω2 and S : Ω2 → Ω1 with Ω1,Ω2 ⊂ Rn closed
and the fixed point equation

x = S(F(x)) (6.5)

which we assume to have a unique solution x∗. Let then both the evaluation of F and
of S be perturbed, namely S by δk and F by εk, and consider the iteration:

xk+1 = S(F(xk) + εk) + δk. (6.6)

We assume that this iteration is well defined and that this sequence has the limit xε.
Then, we have the following theorem [7].

Theorem 6.1. Let F and S be Lipschitz continuous with Lipschitz constants LF and
LS , respectively. Assume that LFLS < 1. Then we have, if εk = δk = ε for all k, that

‖xε − x∗‖ ≤ ε 1 + LS
1− LSLF

. (6.7)

In the case εk = ε and δk = δ, we obtain

‖xε − x∗‖ ≤ εLS + δ

1− LSLF
. (6.8)

Finally, xε = x∗ if and only if both δk and εk converge to zero.

Proof: We have due to the Lipschitz continuity

‖xk+1 − x∗‖ = ‖S(F(xk) + εk) + δk − x∗‖ = ‖S(F(xk) + εk) + δk − S(F(x∗))‖
≤ LS‖F(xk)− F(x∗) + εk‖+ δk ≤ LSLF ‖xk − x∗‖+ LSεk + δk

≤ (LSLF )
2‖xk−1 − x∗‖+ L2

SLF εk−1 + LSLF δk−1 + LSεk + δk

≤ (LSLF )
k+1‖x0 − x∗‖+




k∑

j=0

Lj+1
S LjF εk−j


+




k∑

j=0

LjSL
j
F δk−j




and thus in the limit xk+1 → xε,

‖xε − x∗‖ ≤ LS lim
k→∞

k∑

j=0

(LSLF )
jεk−j + lim

k→∞

k∑

j=0

(LSLF )
jδk−j (6.9)

For a constant perturbation overall, e.g. εk = δk = ε for all k, we obtain in the limit

‖xε − x∗‖ ≤ ε(1 + LS) lim
k→∞

k∑

j=0

(LSLF )
j = ε

1 + LS
1− LSLF

,



Numerical Methods for Unsteady Thermal Fluid Structure Interaction 27

which proves the inequality (6.7). If we have constant but separate perturbations ε and
δ of S and F, we obtain (6.8) from

‖xε − x∗‖ ≤ εLS lim
k→∞

k∑

j=0

(LSLF )
j + δ lim

k→∞

k∑

j=0

(LSLF )
j =

εLS + δ

1− LSLF
.

In the general case, due to positivity, the right hand side of (6.9) is zero if and only
if both εk and δk are such that for φk = εk or φk = δk,

lim
k→∞

k∑

j=0

(LSLF )
jφk−j = 0.

This is the case if and only if both εk and δk converge to zero.

6.2 Application: Dirichlet-Neumann Coupling for Transmission
Problem

As an application of the theory just presented, we consider the steady transmission
problem, where the Laplace equation with right hand side f(x, y) on a domain Ω is
cut into two domains Ω = Ω1 ∪ Ω2 using transmission conditions at the interface
Γ = Ω1 ∩Ω2:

∆um(x, y) = f(x, y), (x, y) ∈ Ωm ⊂ R2, m = 1, 2,

um(x, y) = 0, (x, y) ∈ ∂ΩmΓ, (6.10)

u1(x, y) = u2(x, y), (x, y) ∈ Γ,

∂u2(x, y)

n2
= −∂u1(x, y)

n1
, (x, y) ∈ Γ.

We now employ a standard Dirichlet-Neumann iteration to solve it. This corre-
sponds to alternately solving the problems

A1u
k+1
1 = b1(u

k
2) (6.11)

and
A2u

k+1
2 = b2(u

k+1
1 ), (6.12)

where problem (6.11) originates from a linear discretization of the transmission prob-
lem (6.10) on Ω1 only with Dirichlet data on Γ given by uk2 on the coupling interface
and problem (6.12) corresponds to a linear discretization of (6.10) on Ω2 only with
Neumann data on Γ given by the discrete normal derivative of u1 on Γ.

By considering (6.11)-(6.12) as a nested iteration, we obtain a fixed point formula-
tion

uΓ = S(F(uΓ))
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where uΓ = u2|Γ, F = DnΓA
−1
1 b1(uΓ) and S = PΓA−1

2 b2(u1). Hereby DnΓ is the
matrix that computes the discrete normal derivatives in Ω1 on Γ and PΓ is the discrete
trace operator with respect to Γ.

In practice, the linear equation systems are solved iteratively, typically using the
conjugate gradient method (CG) up to a relative tolerance of τ . Thus, we obtain a
perturbed nested fixed point iteration of the form (6.6) and the question is now again
if we can quantify this perturbation. We have

uk+1
1ε = A−1

1 b1(u
k
Γ) + εk (6.13)

and
uk+1

2ε = A−1
2 b2(u

k+1
1ε ) + δk. (6.14)

For the iteration (6.13) we obtain

‖εk‖ = ‖uk+1
1ε −A−1

1 b1(u
k
Γ)‖ ≤ ‖A−1

1 ‖‖A1u
k+1
1ε − b1(u

k
Γ)‖.

Again, the second factor is what is tested in the termination criterion. In the case of
the relative criterion (6.3), this results in

‖A1u
k+1
1ε − b1(u

k
Γ)‖ ≤ τr‖A1u

k
1ε − b1(u

k
Γ)‖.

We thus have managed to shift the index in A1u
k
1ε , but not in b1(u

k
Γ). For this we add

zero and use the triangle inequality:

τr‖A1u
k
1ε − b1(u

k
Γ)‖ ≤ τr(‖A1u

k
1ε − b1(u

k−1
Γ )‖+ ‖b1(u

k−1
Γ )− b1(u

k
Γ)‖).

We can now repeat this argument on ‖A1u
k
1ε − b1(u

k
Γ)‖, thereby multiplying again

with τr and adding a difference of right hand sides:

‖εk‖ ≤ ‖A−1
1 ‖


τkr ‖A1u

1
1ε − b1(u

0
Γ)‖+

k∑

j=1

τ jr ‖b1(u
k−j
Γ )− b1(u

k−j+1
Γ )‖


 .

The right hand sides are equal except at the boundary and we have

‖b1(u
k−j
Γ )− b1(u

k−j+1
Γ )‖ = 1/∆x2‖uk−jΓ − uk−j+1

Γ ‖.

Furthermore, the last system is tested against the unperturbed initial data leading to

‖εk‖ ≤ ‖A−1
1 ‖


τk+1

r ‖A1u
0
1 − b1(u

0
Γ)‖+

k∑

j=1

τ jr /∆x2‖uk−jΓ − uk−j+1
Γ ‖


 .

For k to infinity, the first term on the right converges to zero if and only if τr < 1 and
from Lemma 1 we know that the second term on the right converges to zero if and
only if ‖uk−jΓ − uk−j+1

Γ ‖ converges to zero, which is the case if τr < 1 and if ukΓ is
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a convergent sequence. Note that these are the perturbed iterates of the twin iteration.
Thus, we have to assume that that iteration converges.

If we choose the absolute termination criterion (6.4) or the relative one based on the
right hand side (6.2), we obtain a bound of the form

‖εk‖ ≤ ‖A−1
1 ‖τr‖b(ukΓ)‖,

respectively
‖εk‖ ≤ ‖A−1

1 ‖τa.
Here, we cannot make a statement on the limit of εk.

In the second case, meaning the iteration with Neumann data (6.14), we obtain

‖δk‖ = ‖uk+1
2ε −A−1

2 b2(u
k+1
1ε )‖ ≤ ‖A−1

2 ‖‖A2u
k+1
2ε − b2(u

k+1
1ε )‖

and analogous arguments produce the same results for δk, meaning that we obtain
convergence to zero under the assumptions that τr < 1 and that the perturbations εk
are convergent. By theorem 6.1, we then have that when using the relative criterion we
obtain convergence to the exact solution for any τr < 1.

6.3 Testcase: Transmission Problem

We now consider the transmission problem (6.10). Specifically, we use Ω1 = [0, 1]×
[0, 1], Ω2 = [1, 2]× [0, 1] and

f(x, y) = sinπy2(π cos
π

2
x2 − π2x2 sin

π

2
x2) (6.15)

+ sin
π

2
x2(2π cosπy2 − 4π2y2 sinπy2).

This was chosen such that the solution is

u(x, y) = sinπy2 sin
π

2
x2, (6.16)

which satisfies the boundary conditions.
We discretize this problem using central differences with a constant mesh width of

∆x = ∆y. As initial guess for the Dirichlet-Neumann procedure, we employ a vector
of all zeros. All linear systems are solved using a multigrid method. Specifically, we
use a V cycle with exact solves for systems of dimension smaller than 16. Restriction
and prolongation are standard full weighting, respectively bilinear interpolation [42],
appropriately extended for the Neumann problem. The smoother is a damped Jacobi
method with ω = 2/3, which is applied thrice both as a pre- and a postsmoother. The
exact solution and the discrete solution with ∆x = 1/64 can be seen in Figure 11.

We now look at the convergence properties of the fixed point schemes for different
termination criteria. Thus we choose TOL = 1e−10 and ∆x = 1/64 and then run the
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Figure 11. Exact and discrete solution with ∆x = 1/64

iteration for different tolerances in multigrid. In the case of the termination criterion
(6.3), the iteration recovers the reference solution for any tolerance τr, as predicted
by the theory. For the relative termination criterion (6.2) and the absolute termination
criterion (6.4) the situation is more complicated. We observe that for a given tolerance,
‖uk+1

Γ − ukΓ‖ does not converge to zero, but instead oscillates around a value that is
proportional to the tolerance in multigrid. The error ‖uΓ−u∗Γ‖2 is then about half that
value. This means that in practice, these schemes behave as if there were a constant
perturbation and that the error can be controlled by choosing an appropriately small
tolerance in the linear solver. Note that (6.2) is implemented in the MATLAB version
of CG and that thus, a native implementation of the Dirichlet-Neumann iteration with
CG in MATLAB will produce questionable results if not used with care.
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Figure 12. Total multigrid iterations over tolerance for different termination criteria for
the transmission problem with rhs (6.15) and ∆x = 1/128 (left) and ∆x = 1/256 (right).

We now compare the different termination criteria with regards to efficiency for
values of TOL more relevant in practice. Hereby, we assume that the user wants to
have a solution that is TOL close to the exact one. Based on the theory discussed here,



Numerical Methods for Unsteady Thermal Fluid Structure Interaction 31

there are three choices: Using (6.3) with τr = 1e − 1 independent of TOL, using
(6.4) with τa = TOL or (6.2) with τr = TOL, meaning that for the latter ones, we
have to solve the inner iteration more accurately the more accurate we want the outer
one. Hereby, we choose ∆x = 1/128 and ∆x = 1/256. As turns out, the error is
in all cases about 0.4 ·TOL. Since costs in the fixed point iterations not arising from
solving the linear systems is negligible and the cost of one multigrid iteration is fixed,
we compare the total number of multigrid iterations needed until termination. The
results are depicted in Figure 12. As we can see, the scheme corresponding to (6.2) is
the slowest. This is more pronounced on the finer grid, where it is about a factor of
two slower than the other schemes. The only scheme where the computational effort
has a linear behavior with regards to tolerance is that corresponding to (6.3). Thus,
while slower for large tolerances, it beats the scheme with (6.4) at some point.
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Figure 13. Total multigrid iterations over tolerance for different termination criteria for
the transmission problem with rhs (6.15) multiplied by 100 and ∆x = 1/128 (left) and
∆x = 1/256 (right).

An absolute termination criterion can lead to oversolving. This is illustrated in the
next test, where we just multiply the right hand side (6.15) with 100. The results are
shown in Figure 13. Again, criterion (6.2) leads the slowest scheme. However, the
scheme corresponding to (6.3) is now faster than that with criterion (6.4) for TOL <
1e− 1.

7 Numerical Results

The following results illustrate the performance of the complete solver described so
far for realistic test cases of a steel-air coupling. Thus, the models from Section 2 are
employed and discretized using FEM in the structure and FVM in the fluid. In partic-
ular, the DLR TAU-Code is employed [19], which is a cell-vertex-type finite volume
method with AUSMDV as flux function and a linear reconstruction to increase the or-
der of accuracy. The finite element code uses quadratic finite elements [47] and is the
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inhouse code Native of the Institute for Static and Dynamic at the University of Kas-
sel. The coupling between the solvers is done using the Component Template Library
(CTL) of the University of Braunschweig [30]. The following numerical results are
taken from [8].

7.1 Flow over a Plate

As a first test case, the cooling of a flat plate resembling a simple work piece is consid-
ered. The work piece is initially at a much higher temperature than the fluid and then
cooled by a constant air stream, see Figure 14.

Figure 14. Test case for the coupling method

The inlet is given on the left, where air enters the domain with an initial velocity of
Ma∞ = 0.8 in horizontal direction and a temperature of 273 K. Then, there are two
succeeding regularization regions of 50 mm to obtain an unperturbed boundary layer.
In the first region, 0 ≤ x ≤ 50, symmetry boundary conditions, vy = 0, q = 0, are
applied. In the second region, 50 ≤ x ≤ 100, a constant wall temperature of 300 K is
specified. Within this region the velocity boundary layer fully develops. The third part
is the solid (work piece) of length 200 mm, which exchanges heat with the fluid, but is
assumed insulated otherwise, thus qb = 0. Therefore, Neumann boundary conditions
are applied throughout. Finally, the fluid domain is closed by a second regularization
region of 100 mm with symmetry boundary conditions and the outlet.

Regarding the initial conditions in the structure, a constant temperature of 900 K
at t = 0 s is chosen throughout. To specify reasonable initial conditions within the
fluid, a steady state solution of the fluid with a constant wall temperature Θ = 900 K
is computed.

The grid is chosen cartesian and equidistant in the structural part, where in the fluid
region the thinnest cells are on the boundary and then become coarser in y-direction
(see Figure 15). To avoid additional difficulties from interpolation, the points of the
primary fluid grid, where the heat flux is located in the fluid solver, and the nodes of
the structural grid are chosen to match on the interface Γ.

We now compare the different schemes for a whole simulation of 100 seconds real
time. If not mentioned otherwise, the initial time step size is ∆t = 0.5s. To first give
an impression on the effect of the time adaptive method, we look at fixed time step
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(a) Entire mesh (b) Mesh zoom

Figure 15. Full grid (left) and zoom into coupling region (right)

TOL Fixed time step size Time adapt. Time adapt. with lin. extr.

10−2 ∆t = 5s 64 31 19
10−3 ∆t = 5s 82 39 31
10−4 ∆t = 0.5s 802 106 73
10−5 ∆t = 0.5s 1014 857 415

Table 4. Total number of iterations for 100 secs of real time. Fixed time step sizes versus
adaptive steering. For time adaptive calculations, the initial time step is ∆t0 = 0.5s.

versus adaptive computations in Table 4. Thus, the different tolerances for the time
adaptive case lead to different time step sizes and tolerances for the nonlinear system
over the course of the algorithm, whereas in the fixed time step size, they steer only
how accurate the nonlinear systems are solved. For the fixed time step case, we chose
∆t = 0.5s and ∆t = 5s, which roughly corresponds to an error of 10−2 and 10−3,
respectively 10−4. Thus, computations in one line of table 4 correspond to similar
errors. As it can be seen, the time adaptive method is in the worst case a factor two
faster and in the best case a factor of eight. Thus the time adaptive computation serves
from now on as the base method for the construction of a fast solver.

Finally, we consider extrapolation based on the time integration scheme. As can
be seen in Table 4, linear extrapolation speeds up the computations between 20% and
50%. Overall, we are thus able to simulate 100 seconds of real time for this problem
for an engineering tolerance using only 19 calls to fluid and the structure solver each.

7.2 Cooling of a Flanged Shaft

To illustrate a realistic example of gas quenching, the cooling of a flanged shaft by
cold high pressured air is used as a second test case. The complete process consists of
the inductive heating of a steel rod, the forming of the hot rod into a flanged shaft, a
transport to a cooling unit and the cooling process. Here, we consider only the cooling,
meaning that we have a hot flanged shaft that is cooled by cold high pressured air com-
ing out of small tubes [45]. We perform a two dimensional cut through the domain and
assume symmetry along the vertical axis, resulting in one half of the flanged shaft and
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two tubes blowing air at it, see figure 16. Since the air nozzles are evenly distributed
around the flanged shaft, we use an axisymmetric model in the structure. The heat flux
from the two-dimensional simulation of the fluid at the boundary of the flanged shaft
is impressed axially symmetrical on the structure.

Figure 16. Sketch of the flanged shaft

We assume that the air leaves the tube in a straight and uniform way at a Mach
number of 1.2. Furthermore, we assume a freestream in x-direction of Mach 0.005.
This is mainly to avoid numerical difficulties at Mach 0, but could model a draft in the
workshop. The Reynolds number is Re = 2500 and the Prandtl number Pr = 0.72.

The grid consists of 279212 cells in the fluid, which is the dual grid of an unstruc-
tured grid of quadrilaterals in the boundary layer and triangles in the rest of the domain,
and 1997 quadrilateral elements in the structure. It is illustrated in Figure 17.

To obtain initial conditions for the subsequent tests, we use the following procedure:
We define a first set of initial conditions by setting the flow velocity to zero throughout
and choose the structure temperatures at the boundary points to be equal to tempera-
tures that have been measured by a thermographic camera. Then, setting the y-axis on
the axis of revolution of the flange, we set the temperature at each horizontal slice to
the temperature at the corresponding boundary point. Finally, to determine the actual
initial conditions, we compute 10−5 seconds of real time using the coupling solver
with a fixed time step size of ∆t = 10−6s. This means, that the high pressured air
is coming out of the tubes and the first front has already hit the flanged shaft. This
solution is illustrated in Figure 18 (left).

Now, we compute 1 second of real time using the time adaptive algorithm with
different tolerances and an initial time step size of ∆t = 10−6s. This small initial step
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(a) Entire mesh (b) Mesh zoom

Figure 17. Full grid (left) and zoom into shaft region (right)

size is necessary to prevent instabilities in the fluid solver. During the course of the
computation, the time step size is increased until it is on the order of ∆t = 0.1s, which
demonstrates the advantages of the time adaptive algorithm and reaffirms that it is this
algorithm that we need to compare to. In total, the time adaptive method needs 22,
41, 130 and 850 time steps to reach t = 1s for the different tolerances, compared to
the 106 steps the fixed time step method would need. The solution at the final time is
depicted in Figure 18 (right). As can be seen, the stream of cold air is deflected by the
shaft.

Finally, we consider extrapolation based on the time integration scheme. In Table 5,
the total number of iterations for 1 second of real time is shown. As before, the extrap-
olation causes a noticable decrease in the total number of fixed point iterations. The
speedup from linear extrapolation is between 18% and 34%, compared to the results
obtained without extrapolation.

TOL none lin.

10−2 51 42
10−3 126 97
10−4 414 309
10−5 2768 1805

Table 5. Total number of iterations for 1 sec of real time for different extrapolation
methods in time.
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Figure 18. Temperature distribution in fluid and structure at t = 0s (left) and t = 1s
(right)

8 Summary and Conclusions
We considered numerical methods for unsteady thermal fluid structure iteraction. As
a basic paradigm, we employed a partitioned method with the use of the Dirichlet-
Neumann iteration. In this framework, a time adaptive SDIRK2 method with linear
extrapolation of initial values is a fast solver. We cite three reasons for this: the time
adaptivity, the very fast convergence rate of the Dirichlet-Neumann iteration for this
problem and a smart choice of tolerances in the various nested solvers.

The fast convergence rate can be explained by estimating the spectral radius of the
iteration matrix based on a model problem. This shows that the quotients of material
properties play a crucial role. An analysis of the tolerances to be chosen shows that
in the linear case, a nonstandard relative termination criterion based on the current
residual leads to better performance compared to a standard termination criterion and
to avoid pitfalls with possible wrong limits.
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Abstract
We consider the Dirichlet–Neumann iteration for partitioned simulation of thermal fluid–structure interaction, also called
conjugate heat transfer. We analyze its convergence rate for two coupled fully discretized 1D linear heat equations with jumps
in the material coefficients across the interface. The heat equations are discretized using an implicit Euler scheme in time,
whereas a finite element method on one domain and a finite volume method with variable aspect ratio on the other one are
used in space. We provide an exact formula for the spectral radius of the iteration matrix. The formula indicates that for
large time steps, the convergence rate is the aspect ratio times the quotient of heat conductivities and that decreasing the time
step will improve the convergence rate. Numerical results confirm the analysis and show that the 1D formula is a very good
estimator in 2D and even for nonlinear thermal FSI applications.

Keywords Solid–fluid interaction · Finite element · Stability · Converging · Numerical methods

1 Introduction

The Dirichlet–Neumann iteration is a basic method in
both domain decomposition and fluid–structure interaction
(FSI). In the latter case, the iteration arises in a partitioned
approach [11],where different codes for the sub-problems are
reused and the coupling is done by a master program which
calls interface functions of the segregated codes. This allows
to reuse existing software for each sub-problem, in contrast
to a monolithic approach, where a new code is tailored for
the coupled equations. To satisfy coupling conditions at the
interface, the subsolvers are iterated by providing Dirichlet
andNeumann data for the other solver in a sequentialmanner,
giving rise to its name.

In the domain decomposition context, the iteration has two
main problems, namely slow convergence and the need for
an implementation using a red-black colouring. The slow
convergence can be slightly improved using a relaxation
procedure. In fluid–structure interaction, there are typically
only two domains, coupled along an interface, making the
application straight forward. The convergence rate for the

B Azahar Monge
azahar.monge@na.lu.se

1 Centre for Mathematical Sciences, Lund University, Box 118,
22100 Lund, Sweden

interaction of a flexible structure with a fluid has been ana-
lyzed in [35]. There, the added mass effect is proven to be
dependent on the step size for compressible flows and inde-
pendent for incompressible flows. However, the convergence
rate is not great for some FSI couplings, which is why a lot
of effort goes into convergence acceleration [10]. An alter-
native are optimized Schwarz methods [13,15,29] and the
CHAMP scheme (Conjugate Heat transfer Advanced Multi-
domain Partitioned) which uses a generalized Robin (mixed)
condition at the interface to accelerate the iteration [24], but
overlapping domains. Furthermore, for incompressible flu-
ids it is known that the ratio of densities of the materials
plays an important role [1,9]. Finally, theDirichlet–Neumann
iteration was reported to be a very fast solver for thermal
fluid–structure interaction between air and steel [4].

Our prime motivation here is thermal interaction between
fluids and structures, also called conjugate heat transfer. In
particular, we consider two domains with jumps in the mate-
rial coefficients across the connecting interface. Conjugate
heat transfer plays an important role inmany applications and
its simulation has proved essential [2]. Examples for thermal
fluid–structure interaction are cooling of gas-turbine blades,
thermal anti-icing systems of airplanes [8], supersonic reen-
try of vehicles from space [19,23], gas quenching, which is
an industrial heat treatment of metal workpieces [17,33] or
the cooling of rocket nozzles [20,21].
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A convergence analysis of the Dirichlet–Neumann iter-
ation for an FE–FE discretization of a steady heat transfer
problemcanbe found in [32].Asymptotically, it is found to be
the quotient of heat conductivities. In this paper, we present
a convergence analysis of the unsteady heat transfer prob-
lem. For this model, a 1D stability analysis was presented
by Giles [16]. There, an explicit time integration method
was chosen with respect to the interface unknowns. On the
other hand, Henshaw and Chand provided in [18] a method
to analyze stability and convergence speed of the Dirichlet–
Neumann iteration in 2D based on applying the continuous
Fourier transform to the semi-discretized equations. They
show that the ratios of thermal conductivities and diffusivi-
ties of the materials play an important role. This is similar to
the behavior mentioned above for classical FSI with incom-
pressible fluidswhere the performance is affected by the ratio
of densities of the materials [1,9].

However, in the fully discrete case we observe in some
cases that the iteration behaves differently, because some
aspects of the problem are not taken into account by the
semidiscrete analysis: the effect of Δt is not accurately rep-
resented and neither are possibly different mesh widths in
the two problems. This matters particularly for compressible
fluids where a high aspect ratio grid is needed to accurately
represent the boundary layer. This leads to geometric stiff-
ness that significantly influences the convergence rate, as we
will show.

For the fully discrete case, the convergence rate is in
principle analyzed in any standard book on domain decom-
position methods, e.g. [30,34]. There, the iteration matrix
is derived in terms of the stiffness and mass matrices of
finite element discretizations and the convergence rate is
the spectral radius of that. However, this does not provide
a quantitative answer, since the spectral radius is unknown.
Computing it is in general a nontrivial task. In our context,
the material properties are discontinuous across the interface
and as a consequence, computing the spectral radius of the
iteration matrix is even more difficult.

In [26,28], a convergence analysis of the Dirichlet–
Neumann iteration for the unsteady transmission problem
using finite element methods (FEM) on both subdomains is
presented. A similar analysis using finite differences (FDM)
ononedomain andFEMon the other one canbe found in [27].
In addition, the corresponding analysis when coupling finite
volumes (FVM) with FEM is described in [5,26]. All these
results assume equal mesh sizes on both subdomains, i.e, the
aspect ratio is equal to one.

Thus,we present here a complete discretization of the cou-
pledproblemusingFVMin space ononedomain andFEMon
the other one with variable aspect ratio r . We consider this to
be a relevant case, because these are the standard discretiza-
tions for the subproblems. The implicit Euler method is used
for the temporal discretization. Then, we derive the spectral

radius of the iteration matrix exactly in terms of the eigende-
composition of the resultingmatrices for the one dimensional
case. The asymptotic convergence rates when approaching
the continuous case in either time or space are also deter-
mined. In the spatial limit, the convergence rate turns out to
be proportional to the aspect ratio r , whereas in the temporal
limit, we obtain 0. Note that the temporal limit turns out to
be the ratio of the product of densities and heat capacities of
the materials for FEM–FEM couplings instead. Moreover,
we also include numerical results where it is shown that the
one dimensional formula is a very good estimator for a 2D
version of the coupled heat equations and for two nonlinear
FSI models, namely the cooling of a flat plate and the cooling
of a flanged shaft.

An outline of the paper now follows. In Sect. 2, we
describe the model and discretization, as well as the cou-
pling conditions and the Dirichlet–Neumann iteration. Two
thermal FSI test cases are introduced in Sect. 3: the cooling
of a flat plate and of a flanged shaft. For these, we present
numerical convergence rates, motivating further analysis. A
model problem, consisting of two coupled discretized heat
equations, is presented in Sect. 4 and then analyzed in 1D
in Sect. 5. In Sect. 6, an extension of the analysis to 2D and
different discretizations are discussed. In Sect. 7, the analyt-
ical results are compared to linear and nonlinear numerical
results.

2 Thermal FSI methodology

We consider the basic setting where on a domain Ω1 ⊂ Rd

where d corresponds to the spatial dimension, the physics
is described by a fluid model, whereas on a domain Ω2 ⊂
Rd , a different model describing the structure is used. The
two domains are connected via an interface. The part of the
interface where the fluid and the structure are supposed to
interact is called the coupling interface Γ ⊂ ∂Ω1 ∩ ∂Ω2.
Note thatΓ might be a true subset of the intersection, because
the structure could be insulated. At the interface Γ , coupling
conditions are prescribed that model the interaction between
fluid and structure. For the thermal coupling problem, these
conditions are that temperature and the normal component
of the heat flux are continuous across the interface.

2.1 Fluidmodel

We model the fluid using the time dependent compressible
Navier–Stokes equations, which are a second order system
of conservation laws (mass, momentum, energy) modeling
compressible flow. We consider the two dimensional case,
written in conservative variables density ρ, momentumm =
ρv and energy per unit volume ρE as:
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∂tρ + ∇ · ρv = 0,

∂tρvi +
2∑

j=1

∂x j (ρviv j + pδi j ) = 1

Re

2∑

j=1

∂x j Si j , i = 1, 2,

∂tρE + ∇ · (ρHv j ) = 1

Re

2∑

j=1

∂x j

(
Si jvi + q j

Pr

)
. (1)

Here, enthalpy is given by H = E + p/ρ with p =
(γ − 1)ρ(E − 1/2|v|2) being the pressure and γ = 1.4 the
adiabatic index for an ideal gas. Furthermore,q f = (q1, q2)T

represents the heat flux andS = (Si j )i , j=1,2 the viscous shear
stress tensor with Si j = μ((∂x j vi + ∂xi v j ) − 2

3δi j∇ · v). The
nondimensional dynamic viscosity μ is given by the Suther-
land law

μ = T
3
2

(
1 + Su

T + Su

)

with the Sutherland constant Su = 110K
273K . As the equations

are dimensionless, the Reynolds number Re and the Prandtl
number Pr appear. The system is closed by the equation
of state for the pressure p = (γ − 1)ρe, the Sutherland
law representing the correlation between temperature and
viscosity, as well as the Stokes hypothesis. Additionally, we
prescribe appropriate boundary conditions at the boundary
of Ω1 except for Γ , where we have the coupling conditions.
In the Dirichlet–Neumann coupling, a temperature value is
enforced at Γ .

2.2 Structure model

Regarding the structure model, we will consider heat con-
duction only. Thus, we have the nonlinear heat equation for
the structure temperature Θ

ρ(x)cp(Θ)
d

dt
Θ(x, t) = −∇ · q(x, t), (2)

where

qs(x, t) = −λ(Θ)∇Θ(x, t)

denotes the heat flux vector. For alloys, the specific heat
capacity cp and heat conductivity λ are temperature-dep-
endent and highly nonlinear.

As an example, we will consider the empirical model for
the steel 51CrV4 suggested in [31]. This was obtained from
measurements and a least squares fit. The coefficient func-
tions are then

λ(Θ) = 40.1 + 0.05Θ − 0.0001Θ2 + 4.9 · 10−8Θ3 (3)

and

cp(Θ) = −10 ln

(
e−cp1(Θ)/10 + e−cp2(Θ)/10

2

)
(4)

with

cp1(Θ) = 34.2e0.0026Θ + 421.15 (5)

and

cp2(Θ) = 956.5e−0.012(Θ−900) + 0.45Θ. (6)

For the mass density, one obtains ρ = 7836 kg/m3.
Finally, on the boundary, we have Neumann conditions

qs(x, t) · n(x) = qb(x, t).

2.3 Coupling conditions

As mentioned before, the coupling conditions are that tem-
perature and the normal component of the heat flux are
continuous across the interface, i.e;

T (x, t) = �(x, t), x ∈ Γ , (7)

where T is the fluid temperature and � the structure temper-
ature and

q f (x, t) · n(x) = qs(x, t) · n(x), x ∈ Γ . (8)

2.4 Discretization in space

Following the partitioned coupling approach, we discretize
the two models separately in space. For the fluid model (1),
we use a finite volumemethod, leading to the following equa-
tion for all unknowns onΩ1, collected in the vectoru ∈ RN f :

d

dt
u + h(u,ΘΓ ) = 0, (9)

where h(u,ΘΓ ) represents the nonlinear finite element spa-
tial discretization and its dependence on the temperatures on
the discrete interface to the structure, here denoted by ΘΓ .

In structural mechanics, the use of finite element methods
is ubiquitious. Therefore, we will also follow that approach
here. Using quadratic finite element, one obtains the follow-
ing nonlinear equation for all unknowns on Ω2:

M(�)
d

dt
� + A(�)� = q f

b + qΓ
b (u). (10)

Here,M is the mass matrix, also called heat capacity matrix
for this problem and A is the heat conductivity and stiffness
matrix, respectively. The vector � ∈ RNs consists of all
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discrete temperature unknowns andqΓ
b (u) is the discrete heat

flux vector on the coupling interface to the fluid, whereas q f
b

corresponds to boundary heat fluxes independent of the fluid,
for example at insulated boundaries.

2.5 Time discretization

In time, we use the implicit Euler method with constant time
step Δt . For the system (9)–(10) we obtain

un+1 − un + Δth(un+1,�n+1
Γ ) = 0, (11)

M(�n+1)(�n+1 − �n) + ΔtA(�n+1)�n+1

= Δt
(
q f
b + qΓ

b (un+1)
)

. (12)

2.6 The Dirichlet–Neumannmethod

The Dirichlet–Neumann method is a basic iterative substruc-
turing method in domain decomposition and it is a common
choice for treating FSI problems. Therefore, we now employ
it to solve the system (11)–(12). This corresponds to alter-
nately solving equation (11) on Ω1 with Dirichlet data on Γ

and (12) on Ω2 with Neumann data on Γ .
Thus, one gets for the kth iteration the two decoupled

equation systems

un+1,k+1 − un + Δth(un+1,k+1,�n+1,k
Γ ) = 0, (13)

M(�n+1,k+1)(�n+1,k+1−�n)+ΔtA(�n+1,k+1)�n+1,k+1

= Δt
(
q f
b + qΓ

b (un+1,k+1)
)
, (14)

with some initial condition�(t = 0)|Γ = �0
Γ . The iteration

is terminated according to the standard criterion

‖�k+1
Γ − �k

Γ ‖ ≤ τ (15)

where τ is a user defined tolerance.

3 Thermal FSI test cases

In this section we present two thermal FSI test cases that are
solved using the methodology explained in the previous sec-
tion. The aim of this paper is to estimate the convergence rate

of the Dirichlet–Neumann iteration used as a solver for ther-
mal FSI problems. Therefore, we first want to illustrate the
behavior for two examples before proceeding to the conver-
gence analysis in the next section. We consider the cooling
of a flat plate and the cooling of a flanged shaft. For the
first problem, structured grids are used and for the second,
unstructured grids.

For the coupling, the Dirichlet–Neumann method as pre-
sented in (13)–(14) is used. A fixed tolerance of 1e−8 is
chosen for all involved equation solvers. The coupling code
used has been developed in a series of papers [4,6,7]. It’s
main feature is time adaptivity, which is not employed here.
The coupling between the solvers is done using the Com-
ponent Template Library (CTL) [22]. In the fluid, the DLR
TAU-Code in its 2014.2 version is employed [14], which is
a cell-vertex-type finite volume method with AUSMDV as
flux function and a linear reconstruction to increase the order
of accuracy. The finite element code uses quadratic finite ele-
ments and is the inhouse codeNative of the Institute for Static
and Dynamic at the University of Kassel.

3.1 Flow over a plate

The first test case is the cooling of a flat steel plate resembling
a simple work piece [7]. It is initially at a much higher tem-
perature than the fluid and then cooled by a constant laminar
air stream, see Fig. 1.

The inlet is located on the left, where air enters the domain
with an initial velocity of Ma∞ = 0.8 in horizontal direction
and a temperature of 273K. Regarding the initial condition
in the structure, a constant temperature of 900K at t = 0
is chosen throughout. To determine the Reynolds number, a
reference length of x̂re f = 0.2m is chosen.

The grid is chosen Cartesian and equidistant in the struc-
tural part. In the fluid region the thinnest cells touch the
boundary and then get coarser in y-direction with a maxi-
mal aspect ratio of r = 1.7780e5. The points of the primary
fluid grid and the nodes of the structural grid match on the
interface Γ and there are 9660 cells in the fluid region and
nx × ny = 120× 9 = 1080 elements with 121× 10 = 1210
nodes in the region of the structure.

The left plot in Fig. 4 shows the convergence behaviour
of the Dirichlet–Neumann iteration against the time step Δt .
One observes that the convergence rates is roughly propor-

Fig. 1 Sketch of the cooling of
a flat plate
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Fig. 2 Sketch of the cooling of the flanged shaft

tional to the time step Δt . Furthermore, even for Δt = 1
a reduction of the error by a factor of ten per iteration is
achieved.

3.2 Cooling of a flanged shaft

The second test case is the cooling of a flanged steel shaft
by cold high pressured air (this process is also known as gas
quenching) [36]. Here, we have a hot flanged shaft that is
cooled by cold high pressured air coming out of small tubes,
see Fig. 2. We assume symmetry along the vertical axis in
order to consider one half of the flanged shaft and two tubes
blowing air at it.We also assume that the air leaves the tube in
a straight and uniform way at a Mach number of 1.2, as well
as a freestream in x-direction of Mach 0.005. The Reynolds
number, based on a reference length of x̂re f = 0.02m is
Re = 2500 and the Prandtl number Pr = 0.72.

The grid, see Fig. 3, consists of 279,212 cells in the fluid,
which is the dual grid of an unstructured grid of quadrilaterals
in the boundary layer and triangles in the rest of the domain,
and 1997 quadrilateral elements in the structure. Regarding
the initial conditions, we use the procedure from [4]: first
freestream values are set overall in the fluid and temperatures
from a thermographic camera in the structure. Then 10−5 s
of real time are computed using a time step of Δt = 10−6 s.

The right plot in Fig. 4 shows the convergence behaviour
of the Dirichlet–Neumann iteration against the time step Δt .
The convergence rate is again about proportional to the time
step size and the iteration is again convergent even for very
large time steps. Ifwe compare the rates for the twoproblems,
we observe that for a given Δt , the iteration is about a factor
ten faster for the plate.

Summarizing, the Dirichlet–Neumann iteration is a very
fast solver for thermal FSI cases with strong jumps in the
material coefficients, as the ones presented here. To under-
stand this better,we perform in the next section a convergence
analysis for the case of two coupled linear heat equations.

4 Amodel problem: coupled heat equations

Wepresent here a convergence analysis of the unsteady trans-
mission problemwithmixed discretizations. In particular, we
choose a finite volumemethod (FVM) on the first subdomain
and a finite elementmethod (FEM) on the second subdomain.

4.1 Model problem

The unsteady transmission problem reads as follows, where
we consider a domain Ω ⊂ Rd which is cut into two sub-
domains Ω1 ∪ Ω2 = Ω with transmission conditions at the
interface Γ = ∂Ω1 ∩ ∂Ω2:

αm
∂um(x, t)

∂t
− ∇ · (λm∇um(x, t)) = 0,

x ∈ Ωm ⊂ Rd , m = 1, 2,

um(x, t) = 0, x ∈ ∂Ωm\Γ ,

u1(x, t) = u2(x, t), x ∈ Γ ,

λ2
∂u2(x, t)

∂n2
= −λ1

∂u1(x, t)
∂n1

, x ∈ Γ ,

um(x, 0) = u0m(x), x ∈ Ωm , (16)

where t ∈ [t0, t f ] and nm is the outward normal to Ωm for
m = 1, 2.

The constants λ1 and λ2 describe the thermal conductivi-
ties of the materials on Ω1 and Ω2, respectively. D1 and D2

represent the thermal diffusivities of the materials and they
are defined by

Dm = λm

αm
, with αm = ρmcpm (17)

where ρm represents the density and cpm the specific heat
capacity of the material placed in Ωm , m = 1, 2.
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Fig. 3 Full grid (left) and zoom
into shaft region (right)
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Fig. 4 Convergence behavior of the cooling systems with respect to Δt . Left: Test case 1: flow over a plate. Right: Test case 2: cooling of a flanged
shaft

4.2 Semidiscrete analysis

Before we present in the next section an analysis for the
fully discrete equations, we want to describe previous results
about the behaviour of the Dirichlet–Neumann iteration for
the transmission problem in the semidiscrete case.

Henshaw and Chand applied in [18] the implicit Euler
method for the time discretization on both equations in (16)
but kept the space continuous. Then, they applied the Fourier
transform in space (with dual variable k) in order to trans-
form the second order derivatives into algebraic expressions.
Once they have a coupled system of algebraic equations, they
insert one into the other and obtain the Dirichlet–Neumann
convergence rate β:

β =
∣∣∣∣∣∣
−λ1

λ2

√
1/(D1Δt) + k2

1/(D2Δt) + k2

tanh
(
−√

1/(D2Δt) + k2
)

tanh
(√

1/(D1Δt) + k2
)

∣∣∣∣∣∣
.

(18)

In the one dimensional case, the transverse Fourier
mode k is zero. Then, for Δt small enough, we have
tanh

(−1/
√
D2Δt

) ≈ −1 and tanh
(
1/

√
D1Δt

) ≈ 1 and
therefore:

β ≈ λ1

λ2

√
D2

D1
. (19)
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Fig. 5 Semidiscrete estimator β in (18) against Δt in 1D

Fig. 6 Splitting of Ω between finite volumes and finite elements

On the other hand, for Δt big enough, we have
tanh

(−1/
√
D2Δt

) ≈ −1/
√
D2Δt and tanh

(
1/

√
D1Δt

) ≈
1/

√
D1Δt and therefore:

β ≈ λ1

λ2

√
D2

D1

√
D1Δt√
D2Δt

= λ1

λ2
. (20)

Figure 5 shows β as a function of Δt for k = 0. It
is almost constant, except for a short dynamic transition
between (λ1/λ2)

√
D2/D1 and λ1/λ2.

Finally, one observes in (20) that the convergence rates of
the Dirichlet–Neumann iteration are given by the quotient of
thermal conductivities forΔt large. This suggests that strong
jumps in the thermal conductivities of the materials give fast
convergence.

4.3 Space discretization

We now describe a rather general space discretization of
the model problem. The core property we need is that the
meshes of Ω1 and Ω2 share the same nodes on Γ as shown
in Fig. 6. Furthermore, we assume that there is a specific set
of unknowns associated with the interface nodes. Otherwise,
we allow at this point for arbitrary meshes on both sides.

Then, letting u(m)
I correspond to the unknowns on Ωm ,

m = 1, 2, and uΓ to the unknowns at the interface Γ , we can
write a general discretization of the first equation in (16) in
a compact form as:

Mm u̇
(m)
I + M(m)

IΓ u̇Γ + Amu
(m)
I + A(m)

IΓ uΓ = 0. (21)

To close the system, we need an approximation of the nor-
mal derivatives on Γ . For the FVM on Ω1, we approximate
the normal derivative of u1 with respect to the interface using
second order one-sided finite differences:

−λ1
∂u1
∂n1

≈ λ1

2Δx

(
4u1,N (t) − u1,N−1(t) − 3uΓ

)
. (22)

Now, let φ j be a nodal FE basis function on Ω2 for a
node on Γ we observe that the normal derivative of u2 with
respect to the interface can be written as a linear functional
using Green’s formula [34, pp. 3]. Thus, the approximation
of the normal derivative is given by

λ2

∫

Γ

∂u2
∂n2

φ j dS = λ2

∫

Ω2

(Δu2φ j + ∇u2∇φ j )dx

= α2

∫

Ω2

d

dt
u2φ j + λ2

∫

Ω2

∇u2∇φ j dx. (23)

Consequently, the equation

M(2)
Γ Γ u̇Γ + M(2)

Γ I u̇
(2)
I + A(2)

Γ Γ uΓ + A(2)
Γ Iu

(2)
I

= −M(1)
Γ Γ u̇Γ − M(1)

Γ I u̇
(1)
I − A(1)

Γ Γ uΓ − A(1)
Γ Iu

(1)
I (24)

is a discrete version of the fourth equation in (16) and com-
pletes the system (21). Notice that the left hand side of (24)
comes from (23) and the right hand side from (22). We can
now write the coupled equations (21) and (24) as an ODE

for the vector of unknowns u =
(
u(1)
I ,u(2)

I ,uΓ

)T

M̃u̇ + Ãu = 0, (25)

where

M̃ =
⎛

⎜⎝
M1 0 M(1)

IΓ

0 M2 M(2)
IΓ

M(1)
Γ I M(2)

Γ I M(1)
Γ Γ + M(2)

Γ Γ

⎞

⎟⎠ ,

Ã =
⎛

⎜⎝
A1 0 A(1)

IΓ

0 A2 A(2)
IΓ

A(1)
Γ I A(2)

Γ I A(1)
Γ Γ + A(2)

Γ Γ

⎞

⎟⎠ .

4.4 Time discretization

Applying the implicit Euler method with time step Δt to
the system (24), we get for the vector of unknowns un+1 =
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(u(1),n+1
I ,u(2),n+1

I ,un+1
Γ )T

Aun+1 = M̃un , (26)

where

A = M̃ + ΔtÃ

=
⎛

⎜⎝
M1 + ΔtA1 0 M(1)

IΓ + ΔtA(1)
IΓ

0 M2 + ΔtA2 M(2)
IΓ + ΔtA(2)

IΓ
M(1)

Γ I + ΔtA(1)
Γ I M(2)

Γ I + ΔtA(2)
Γ I MΓ Γ + ΔtAΓ Γ

⎞

⎟⎠ ,

withMΓ Γ = M(1)
Γ Γ + M(2)

Γ Γ and AΓ Γ = A(1)
Γ Γ + A(2)

Γ Γ .

4.5 Dirichlet–Neumann iteration

We now employ a Dirichlet–Neumann iteration to solve the
discrete system (26). This corresponds to alternately solving
the discretized equations of the transmission problem (16)
onΩ1 with Dirichlet data on Γ and the discretization of (16)
on Ω2 with Neumann data on Γ .

Therefore, from (26) one obtains for the kth iteration the
two equation systems

(M1 + ΔtA1)u
(1),n+1,k+1
I = −(M(1)

IΓ + ΔtA(1)
IΓ )un+1,k

Γ

+ M1u
(1),n
I + M(1)

IΓ u
n
Γ , (27)

Âûk+1 = M̂un − bk , (28)

to be solved in succession. Here,

Â =
(

M2 + ΔtA2 M(2)
IΓ + ΔtA(2)

IΓ

M(2)
Γ I + ΔtA(2)

Γ I M(2)
Γ Γ + ΔtA(2)

Γ Γ

)
,

M̂ =
(

0 M2 M(2)
IΓ

M(1)
Γ I M(2)

Γ I MΓ Γ

)
,

and

bk =
(

0

(M(1)
Γ I + ΔtA(1)

Γ I )u
(1),n+1,k+1
I + (M(1)

Γ Γ + ΔtA(1)
Γ Γ )un+1,k

Γ

)
,

ûk+1 =
(
u(2),n+1,k+1
I
un+1,k+1
Γ

)
,

with some initial condition, here un+1,0
Γ = unΓ . The iteration

is terminated according to the standard criterion ‖uk+1
Γ −

ukΓ ‖ ≤ τ where τ is a user defined tolerance [3].
One way to analyze this method is to write it as a split-

ting method for (26) and try to estimate the spectral radius
of that iteration by a norm. However, the results obtained
in this way are much too inaccurate. For that reason, we
now rewrite (27)–(28) as an iteration for un+1

Γ to restrict the
size of the space to the dimension of uΓ which is much
smaller. To this end, we isolate the term u(1),n+1,k+1

I in (27)

and u(2),n+1,k+1
I in the first equation in (28) and we insert

the resulting expressions into the second equation in (28).
Consequently, the iteration un+1,k+1

Γ = Σun+1,k
Γ + ψn is

obtained with iteration matrix

Σ = −S(2)−1
S(1), (29)

where

S(m) = (M(m)
Γ Γ + ΔtA(m)

Γ Γ )

− (M(m)
Γ I + ΔtA(m)

Γ I )(Mm + ΔtAm)−1(M(m)
IΓ + ΔtA(m)

IΓ ),
(30)

for m = 1, 2 and ψn contains terms that depend only on the
solutions at the previous time step. Notice thatΣ is a discrete
version of the Steklov–Poincaré operator.

Thus, the Dirichlet–Neumann iteration is a linear iteration
and the rate of convergence is described by the spectral radius
of the iteration matrix Σ .

5 One-dimensional convergence analysis

So far, the derivation was performed for a rather general dis-
cretization. In this section, we study the iteration matrix Σ

for a specific FVM–FEM discretization in 1D. We will give
an exact formula for the convergence rates. The behaviour of
the rates when approaching both the continuous case in time
and space is also given.

Specifically, we use Ω1 = [−1, 0], Ω2 = [0, 1]. For
the FVM discretization, we consider a primal grid, i.e, we
discretize Ω1 into N1 + 1 equal sized grid cells of size
Δx1 = 1/(N1 + 1), and define xi = iΔx1, so that xi is
the center of the cell i , see Fig. 7. The edges of cell i are then
xi−1/2 and xi+1/2 and they form the corresponding dual grid.
Moreover, we use the flux function

F(uL , uR) = − λ1

Δx1
(u1,i − u1,i−1), (31)

to approximate the flux, which results in a second order
scheme. For the FEM discretization, we use the standard
piecewise-linear polynomials as test functions. Here we dis-
cretize Ω2 into N2 + 1 equal sized cells of size Δx2 =
1/(N2 + 1).

For the coupling between a compressible fluid and a struc-
ture, there would typically be a boundary layer in the fluid,
meaning that themeshwould be very fine in direction normal
to the boundary, implying Δx1 � Δx2.

With em, j = (
0 . . . 0 1 0 . . . 0

)T ∈ RNm

where the only nonzero entry is located at the j th position,
the discretization matrices are given by
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Fig. 7 Grid cells over Ω1 and Ω2 for the finite volume discretization and the finite element discretization respectively

A1 = λ1

Δx21

⎛

⎜⎜⎜⎜⎝

−2 1 0

1 −2
. . .

. . .
. . . 1

0 1 −2

⎞

⎟⎟⎟⎟⎠
,

A2 = λ2

Δx22

⎛

⎜⎜⎜⎜⎝

2 −1 0

−1 2
. . .

. . .
. . . −1

0 −1 2

⎞

⎟⎟⎟⎟⎠
,

M2 = α2

6

⎛

⎜⎜⎜⎜⎝

4 1 0

1 4
. . .

. . .
. . . 1

0 1 4

⎞

⎟⎟⎟⎟⎠
,

A(1)
Γ Γ = 3λ1

2Δx21
, A(2)

Γ Γ = λ2

Δx22
, M(2)

Γ Γ = 2α2

6
,

A(1)
IΓ = λ1

Δx21
e1,N1 , A(2)

IΓ = − λ2

Δx22
e2,1, M(2)

IΓ = α2

6
e2,1,

A(1)
Γ I = λ1

2Δx21
(4eT1,N1

− eT1,N1−1),

A(2)
Γ I = − λ2

Δx22
eT2,1, M(2)

Γ I = α2

6
eT2,1.

where Am , Mm ∈ RNm×Nm , A(m)
IΓ , M(2)

IΓ ∈ RNm×1 and

A(m)
Γ I , M

(2)
Γ I ∈ R1×Nm for m = 1, 2.

In this case, M1 = α1I, M
(1)
IΓ = M(1)

Γ Γ = M(1)
Γ I = 0.

Thus,

S(1) = ΔtA(1)
Γ Γ − Δt2A(1)

Γ I (α1I − ΔtA1)
−1A(1)

IΓ , (32)

S(2) = (M(2)
Γ Γ + ΔtA(2)

Γ Γ )

− (M(2)
Γ I+ΔtA(2)

Γ I )(M2+ΔtA2)
−1(M(2)

IΓ + ΔtA(2)
IΓ ).

(33)

Note that the iteration matrix Σ is just a real number in
this case and thus its spectral radius is its modulus. One com-
putes S(1) and S(2) by inserting the corresponding matrices
specified above in (32) and (33) obtaining

S(1) = Δt
3λ1
2Δx21

− Δt2
λ21

2Δx41
(4eT1,N1

−eT1,N1−1)(α1I−ΔtA1)
−1e1,N1

= Δt
3λ1
2Δx21

− Δt2
λ21

2Δx41
(4α1

N1N1
− α1

N1−1N1
), (34)

S(2) =
(

α2

3
+ Δt

λ2

Δx22

)
−

(
α2

6
−Δt

λ2

Δx22

)2

eT2,1(M2+ΔtA2)
−1e2,1

=
(

α2

3
+ Δt

λ2

Δx22

)
−

(
α2

6
− Δt

λ2

Δx22

)2

α2
11, (35)

whereα1
i j represents the entries of thematrix (α1I−ΔtA1)

−1

and α2
i j the entries of (M2 + ΔtA2)

−1 for i , j = 1, . . . , N1

and i , j = 1, . . . , N2 respectively. Observe that the matri-
ces (α1I−ΔtA1) and (M2 +ΔtA2) are tridiagonal Toeplitz
matrices but their inverses are full matrices. The computation
of the exact inverses could be performed based on the recur-
sive formula presented in [12] which runs over the entries
of the matrix and consequently, it is non trivial to compute
α1
N1N1

, α1
N1−1N1

and α2
11 this way.

Due to these difficulties, we propose to rewrite the matri-
ces (α1I − ΔtA1)

−1 and (M2 + ΔtA2)
−1 in terms of their

eigendecomposition:

(α1I − ΔtA1)
−1 =

[
tridiag

(
−λ1Δt

Δx21
,
α1Δx21 + 2λ1Δt

Δx21
,−λ1Δt

Δx21

)]−1

= VN1Λ
−1
1 VN1 , (36)

(M2 + ΔtA2)
−1

=
[
tridiag

(
α2Δx22 − 6λ2Δt

6Δx22
,
2α2Δx22 + 6λ2Δt

3Δx22
,
α2Δx22 − 6λ2Δt

6Δx22

)]−1

= VN2Λ
−1
2 VN2 , (37)

where the matrix VN has the eigenvectors of any symmetric
tridiagonal Toeplitz matrix of dimension N as columns. The
entries of VN1 and VN2 are not dependent on the entries of
α1I − ΔtA1 or M2 + ΔtA2 due to their symmetry. More-
over, thematricesΛ1 andΛ2 are diagonalmatrices having the
eigenvalues of α1I− ΔtA1 orM2 + ΔtA2 as entries respec-
tively. These are known and given e.g. in [25, pp. 514–516]:

vmi j = 1
√

∑Nm
k=1 sin

2
(

kπ
Nm+1

) sin

(
i jπ

Nm + 1

)

for i , j = 1, . . . , Nm , m = 1, 2,

μ1, j = 1

Δx21

(
α1Δx21 + 2λ1Δt − 2λ1Δt cos

(
jπ

N1 + 1

))

for j = 1, . . . , N1,

μ2, j = 1

3Δx22

(
2α2Δx22 + 6λ2Δt + (α2Δx22

−6λ2Δt) cos

(
jπ

N2 + 1

))
for j = 1, . . . , N2. (38)
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The entries α1
N1N1

, α1
N1−1N1

and α2
11 of the matrices

(α1I− ΔtA1)
−1 and (M2 + ΔtA2)

−1, respectively, are now
computed through their eigendecomposition resulting in

α1
N1−1N1

= Δx21s0∑N1
i=1 sin

2 (iπΔx1)
, (39)

α1
N1N1

= Δx21s1∑N1
i=1 sin

2 (iπΔx1)
, (40)

α2
11 = 3Δx22s2∑N2

i=1 sin
2 (iπΔx2)

, (41)

with

s0 =
N1∑

i=1

sin (iπΔx1) sin (2iπΔx1)

α1Δx21 + 2λ1Δt(1 − cos (iπΔx1))
, (42)

s1 =
N1∑

i=1

sin2 (iπΔx1)

α1Δx21 + 2λ1Δt(1 − cos (iπΔx1))
, (43)

s2 =
N2∑

i=1

sin2 (iπΔx2)

2α2Δx22 + 6λ2Δt + (α2Δx22 − 6λ2Δt) cos (iπΔx2)
.

(44)

Now, inserting (39), (40) and (41) into (34) and (35) we
get for S(1) and S(2):

S(1) = 3λ1Δt

2Δx21
− λ21Δt2

2Δx21

4s1 − s0
∑N1

i=1 sin
2 (iπΔx1)

, (45)

S(2) =
(

α2Δx22 + 3λ2Δt

3Δx22

)

− (α2Δx22 − 6λ2Δt)2

12Δx22

s2
∑N2

i=1 sin
2 (iπΔx2)

. (46)

With this we obtain an explicit formula for the spectral
radius of the iteration matrix Σ as a function of Δx1, Δx2
and Δt :

ρ(Σ) = |Σ | = |S(2)−1
S(1)|

=
(

α2Δx22 + 3λ2Δt

3Δx22
− (α2Δx22 − 6λ2Δt)2

12Δx22

s2
∑N2

i=1 sin
2 (iπΔx2)

)−1

·
(
3λ1Δt

2Δx21
− λ21Δt2

2Δx21

4s1 − s0
∑N1

i=1 sin
2 (iπΔx1)

)
. (47)

To simplify this, the finite sums
∑N1

i=1 sin
2 (iπΔx1) and∑N2

i=1 sin
2 (iπΔx2) can be computed. We first rewrite the

sum of squared sine terms into a sum of cosine terms using
the identity sin2 (x/2) = (1−cos (x))/2. Then, the resulting

sum can be converted into a geometric sum using Euler’s
formula. We thus obtain after some calculations:

N1∑

j=1

sin2 ( jπΔx1) = 1 − Δx1
2Δx1

− 1

2

N1∑

j=1

cos (2 jπΔx1) = 1

2Δx1
, (48)

N2∑

j=1

sin2 ( jπΔx2) = 1

2Δx2
. (49)

Inserting (48) and (49) into (47) we get after some manip-
ulations

|Σ | =
3Δx22

(
3λ1Δt − 2λ21Δx1Δt2(4s1 − s0)

)

Δx21

(
2(α2Δx22 + 3λ2Δt) − Δx2(α2Δx22 − 6λ2Δt)2s2

) .

(50)

We could not find a way of simplifying the finite sum
(44) because Δx2 depends on N2 (i.e., Δx2 = 1/(N2 +
1)). However, (50) is a computable expression that gives the
exact convergence rates of the Dirichlet–Neumann iteration
for given Δt , Δxm , αm and λm , m = 1, 2.

We are now interested in the asymptotics of (50) with
respect to both spatial and temporal resolutions. This corre-
sponds to the computation of two different limits: Δt → 0
for a fixed Δx1 and Δx1 → 0 for a fixed Δt . As an alter-
native, one could reformulate (50) in terms of c := Δt/Δx21
and compute the limits c → 0 and c → ∞. Both choices
give the same results because for a fixed Δx1, if Δt → 0,
then c → 0 and for a fixed Δt , if Δx1 → 0, then c →
∞.

For simplicity, we compute the asymptotics of (50) for
Δt → 0 and Δx1 → 0 with Δx2 = r · Δx1 where
r := Δx2/Δx1 is a fixed aspect ratio. This is motivated
by the assumption that we have matching nodes at the inter-
face. Thus, the resolution in the fluid in direction tangential
to the wall is the same as the resolution in the structure.
This means that the aspect ratio of the left subdomain cells
in 2D corresponds to the ratio of grid spacings between
the two subdomains in 1D. This is illustrated in Fig. 8. We
obtain:

lim
Δt→0

|Σ | = 3Δx22 · 0
Δx21

(
2α2Δx22 − α2Δx32

∑N2
i=1

3 sin2 (iπΔx2)
2+cos (iπΔx2)

) = 0.

(51)
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Fig. 8 Relation between the aspect ratio of the left subdomain cells in
2D and the ratio of grid spacings between both subdomains in 1D

lim
Δx1→0

|Σ | = lim
Δx1→0

9λ1r2Δt − 6λ1r2Δx1Δt

(∑N1
i=1

sin2 (iπΔx1)(2−cos (iπΔx1))
1−cos (iπΔx1)

)

6λ2Δt − 6λ2rΔtΔx1

(∑N2
i=1

sin2 (iπrΔx1)
1−cos (iπrΔx1)

)

= λ1

λ2
lim

Δx1→0

3r2 − 2r2Δx1
(∑N1

i=1 2 + ∑N1
i=1 cos (iπΔx1) − ∑N1

i=1 cos
2 (iπΔx1)

)

2 − 2rΔx1
(∑N2

i=1 1 + ∑N2
i=1 cos(iπrΔx1)

) .

(52)

To simplify (52), it is well known that the finite sums∑N1
i=1 cos (iπΔx1),

∑N2
i=1 cos (iπrΔx1) and

∑N1
i=1

cos2 (iπΔx1) can be computed by using Euler’s formula to
convert them into geometric sums.We thus obtain after some
calculations:

N2∑

j=1

cos ( jπrΔx1) = Re

⎛

⎝
N2∑

j=1

ei jπrΔx1

⎞

⎠

= Re

(
eiπrΔx1(1 − eiN2πrΔx1)

1 − eiπrΔx1

)
= 0.

(53)

In order to compute the third sum, we rewrite the sum
of squared cosine terms into a sum of sine terms using the
identity cos2 (x/2) = (1 + cos (x))/2 and then apply the
same technique:

N1∑

j=1

cos2 ( jπΔx1) = 1 − Δx1
2Δx1

+ 1

2

N1∑

j=1

cos (2 jπΔx1)

= 1 − 2Δx1
2Δx1

. (54)

Inserting (53) and (54) into (52) we get

lim
Δx1→0

|Σ | = λ1

λ2
lim

Δx1→0

3r2 − 2r2Δx1
(
2(1−Δx1)

Δx1
− 1−2Δx1

2Δx1

)

2 − 2rΔx1
(
1−rΔx1
rΔx1

)

= λ1

λ2
lim

Δx1→0

2r2Δx1
2rΔx1

= λ1

λ2
r =: δr . (55)

From the result obtained in (51) we can conclude that the
convergence rate goes to zero when the time step decreases
and therefore, the iteration will be fast for Δt small and can
always be made to converge by decreasing Δt . This is con-
sistent with the behavior of the cooling of a flat plat and the
flanged shaft presented earlier in Fig. 4.

On the other hand, from the spatial asymptotics (55) we
can observe that strong jumps in the thermal conductivities
of the materials placed in Ω1 and Ω2 will imply fast con-
vergence. This is often the case when modelling thermal
fluid–structure interaction, since fluids typically have lower
thermal conductivities than structures.

Finally, the aspect ratio r also influences the behavior of
the fixed point iteration, i.e, the rates will become smaller
the higher the aspect ratio, e.g. the higher the Reynolds num-
ber in the fluid. This phenomenon is not unknown for PDE
discretizations and is referred to as geometric stiffness. As
is the case here, refining the mesh to reduce the aspect ratio
would lead to faster convergence of the iterative method.

Before presenting numerical results we want to show the
results obtained for different space discretization combina-
tionswith the same constantmeshwidth on both subdomains.

6 Extension of the analysis

In this section we want to extend the results presented in
the previous section by reviewing similar analysis for other
choices of space discretizations. In particular, FEM–FEM
coupling and 2D FVM–FEM with r = 1.

Firstly, when one uses a linear FEM discretization for the
fluid in 1D and the same mesh width on both subdomains
(i.e, r = 1) and applies the same analysis as in the previous
section, the corresponding limits for the spectral radius of
the iteration matrix Σ are given by [26,28]:

lim
Δt→0

ρ(Σ) = α1

α2
, (56)

lim
Δx→0

ρ(Σ) = λ1

λ2
. (57)

When we compare these with the asymptotics obtained
with FVM–FEM discretizations (51)–(55), we observe that
while the spatial limit is the same, the temporal limit does not
match. This arises from differences in the matrix S(1) in (30).
In the FEM–FEM context, the matrices S(1) and S(2) lead to
the same expression with only different material coefficients
(α1, α2, λ1, λ2). Because of this, the limits of ρ(Σ) are quo-
tients of those coefficients. However, the situation is different
in the FVM–FEM context. There, the matrix S(1) in (32) is
missing several mass matrices if we compare it with S(2) in
(33). This unsymmetry between S(1) and S(2) causes that the
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Fig. 9 Semidiscrete estimator β, exact rate Σ and numerical rates over Δt in 1D. D1 = 1, D2 = 0.5, λ1 = 0.3, λ2 = 1, Δx = 1/20 and
Δt = 5e−8, 5e−7, …, 5e10. Left: FVM–FEM. Right: FEM–FEM

limit of ρ(Σ) when Δt → 0 is not balanced between the
numerator and the denominator, resulting in 0.

This implies that, opposed to the FVM–FEM case, where
convergence can always be achieved by decreasing the time
step, for an FEM–FEM coupling, a situation can occur where
α1/α2 > λ1/λ2 and therefore, a decrease in time step can
even cause divergence. This is for example the case for an
air–water coupling [26].

Secondly, for an aspect ratio of r = 1, we were able to
extend the 1D results for both FVM–FEM and FEM–FEM
to 2D in the following sense (see [5,26]). In 2D, the iteration
matrix Σ is not easy to compute for several reasons. First
of all, the matrices M1 + ΔtA1 and M2 + ΔtA2 are sparse
block tridiagonal matrices, and consequently their inverses
are not straight forward to compute. Moreover, the diagonal
blocks of the same matrices are tridiagonal but their inverses
are full matrices.

Due to these difficulties, we approximated the strictly
diagonally dominant matricesM1 + ΔtA1 andM2 + ΔtA2

by their diagonal. Thus, we obtained an estimate of the spec-
tral radius of the iteration matrix Σ . This estimator tends to
the exact same limits as for the 1D case for both combination
of discretizations.

We did not find a way to further extend these results to
the high aspect ratio case. However, we will show now by
numerical experiments that already the 1D formula (50) is a
good estimator for convergence rates in 2D.

7 Numerical results

We now present numerical experiments designed to illustrate
the validity of the theoretical results of the previous sections.
Firstly, wewill confirm that the theoretical formula for |Σ | in
(50) predicts the convergence rates in the 1D case. Secondly,
we will show the validity of (50) as an estimator for the rates
in the 2D case, we will also show that the theoretical asymp-

totics deduced in (51) and (55) match with the numerical
experiments. Finally, we illustrate the validity of (50) as an
estimator for the nonlinear thermal FSI test cases introduced
in Sect. 3.

7.1 Results in 1D

We first compare the semidiscrete estimator β in (18) with
the discrete formula |Σ | in 1D in (50) and experimental con-
vergences rates. The latter are obtained from implementing
the Dirichlet–Neumann method (27)–(28). The results are
then compared to a reference solution ure f over the whole
domain Ω , obtained by choosing a tolerance of 1e−10 as a
termination criterion.

Figure 9 shows a comparison between β and |Σ | for
r = 1, Δx = 1/20 andΔx = 1/500 and varyingΔt . On the
leftweplotβ, |Σ | and the experimental convergence rates for
the FVM–FEMapproach described in Sect. 5 and on the right
for the FEM–FEM approach mentioned in Sect. 6. As can
be seen, the experimental convergence rate matches exactly
with the exact formula (50). Observe thatβ is almost constant
and presents the same behavior as in Fig. 5. We can conclude
that the formulas for the convergence rates in 1D presented
in Sect. 5 match the semidiscrete one proposed in [18] when
Δt/Δx2 � 1. In the, less relevant case, Δt/Δx2 � 1 our
formula also predicts the rates accurately, while the semidis-
crete estimator deviates according to (19). Finally, Fig. 9
also illustrates the differences in the temporal limit when
employing different combinations of spatial discretizations
as explained in previous section. In the FVM–FEM case the
limit is 0 [see (51)] and in the FEM–FEM case it is α1/α2

[see (56)].
The difference to the semidiscrete analysis in [18] stems

from different limits taking place. The semidiscrete analy-
sis implicitly assumes that first a limit Δx to zero has taken
place for Δt fixed. Thus, a limit first Δt , then Δx to zero is
not addressed by it. This can be seen in Fig. 9 in the follow-
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Table 1 Physical properties of the materials. λ is the thermal conduc-
tivity, ρ the density, cp the specific heat capacity and α = ρcp

Material λ (W/mK) ρ (kg/m3) cp (J/kgK) α (J/Km3)

Air 0.0243 1.293 1005 1299.5

Water 0.58 999.7 4192.1 4.1908e6

Steel 48.9 7836 443 3471348

Table 2 Temporal and spatial asymptotics of (50) for the thermal inter-
action of air at 273K with steel at 900K, water at 283K with steel and
air with water

Case Δt → 0 Δx → 0

Air–steel 0 4.9693e−4 · r
Water–steel 0 0.0119 · r
Air–water 0 0.0419 · r

ing way: for fixed Δx , letting Δt become very small causes
the convergence rate to move into the direction predicted by

the fully discrete analysis. However, then keeping this very
small Δt fixed and decreasing Δx moves that rate back in
the vicinity of β.

We now want to illustrate how |Σ | in (50) gives the con-
vergence rates and tends to the limits computed previously
in (51) and (55). To this end, we present two real data exam-
ples. We consider here the thermal interaction between air
at 273K with steel at 900K and water at 283K with steel
at 900K. Physical properties of the materials and resulting
asymptotics for these two cases are shown in Tables 1 and 2
respectively.

Figures 10 and 11 show the convergence rates for the inter-
actions between air and steel and between water and steel,
respectively. On the left we have always fixed Δx1 and r and
vary Δt , whereas on the right we have fixed Δt and r , and
vary Δx1. Each plot includes graphs for two different values
of r . In Fig. 10 we choose r = 1 and r = 100 to illustrate
the effect of a neutral or a high aspect ratio. In Fig. 11 we use
r = 0.01 and r = 1 to illustrate how the rates are affected
by a small or a neutral aspect ratio.

Fig. 10 Air–steel thermal interaction with respect Δt on the left
and Δx1 on the right in 1D. Left: Δt = 40/39, 2 · 40/39, . . . , 39 ·
40/39, Δx1 = 1/1100 and r = 100 (top curves) or r = 1 (bottom

curves). Right: Δx1 = 1/3, 1/4, . . . , 1/50, Δt = 10 and r = 100 (top
curves) or r = 1 (bottom curves)

Fig. 11 Water–steel thermal interaction with respect Δt on the left and
Δx1 on the right in 1D. Left:Δt = 1/39, 2 ·1/39, . . . , 39 ·1/39, Δx1 =
1/1100 and r = 1 (top curves) or r = 0.01 (bottom curves). Right:

Δx1 = 1/3, 1/4, . . . , 1/50, Δt = 10 and r = 1 (top curves) or
r = 0.01 (bottom curves)
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Fig. 12 Air–steel thermal interaction with respect to the aspect ratio r in 1D. r = 5/50, 2 · 5/50, . . . , 50 · 5/50 and Δt = 10. Left: Δx1 = 1/50.
Right: Δx1 = 1/200

Fig. 13 2D Air–steel thermal interaction. Observed and estimated con-
vergence rates over Δt (left) and Δx1 (right). Left: Δt = 40/39, 2 ·
40/39, . . . , 39 · 40/39, Δx1 = 1/1100 and r = 100 (top curves) or

r = 1 (bottom curves). Right: Δx1 = 1/3, 1/4, . . . , 1/50, Δt = 10
and r = 100 (top curves) or r = 1 (bottom curves)

Again, |Σ | gives the exact convergence rates. Moreover,
one observes that the rates on the left plots in Figs. 10 and 11
tend to 0 as predicted in (51) and on the right plots in Figs. 10
and 11 to δr as predicted in (55).

Before ending this subsection, we want to illustrate the
relation between the convergence rates and the aspect ratio r .
To this end, Fig. 12 shows the convergence rates for the inter-
action between air and steel. In the left plot we have chosen
Δx1 to be coarse and on the right one to be fine. This explains
why the convergence rates on the right plot are closer to the
spatial limit δr . Furthermore, there is a roughly proportional
relation between the convergence rate and the aspect ratio.
For coupling with compressible flows, we typically have a
high aspect ratio and therefore, the Dirichlet–Neumann iter-
ation will be slowed down. Furthermore, this shows that it is
very important to take the aspect ratio into account to make
a reasonable prediction of the convergence rate at all.

7.2 2D FVM–FEM results

We now want to demonstrate that the 1D formula (50) is a
good estimator for the convergence rates in 2D. Thus, we

now consider a 2D version of (16) consisting of two coupled
linear heat equations on two identical unit squares, e.g,Ω1 =
[−1, 0] × [0, 1] and Ω2 = [0, 1] × [0, 1]. We use a non
equidistant cartesian grid with aspect ratio r on Ω1 and an
equidistant grid on Ω2. In order to use (50) as an estimator
we decided to take the equidistant mesh width on Ω2 as Δx2
and the mesh width in x-direction on Ω1 as Δx1.

As before, we present two real data examples described in
Tables 1 and 2, namely the thermal interaction between air
at 273K with steel at 900K and air at 273K with water at
283K.

Figures 13 and 14 show the convergence rates for the inter-
actions between air and steel and between air and water in
2D respectively. On the left we always plot the rates for fixed
Δx1 and r with variable Δt , whereas on the right we have
fixedΔt and r and varyingΔx1. As before, each plot includes
two different values of r . In Fig. 13 we choose r = 1 and
r = 100 as in the 1D case (see Fig. 10) and in Fig. 14 we
use r = 1 and r = 1000 to illustrate the effect of a neutral
or a high aspect ratio. To compute β we use the transverse
Fouriermode k = iΔy, i = 0, 1, 2, . . . , Ny thatmaximizes it
[see (18)]. One observes that the convergence rates predicted
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Fig. 14 2DAir–water thermal interaction.Observed and estimated con-
vergence rates over Δt (left) and Δx1 (right). Left: Δt = 40/39, 2 ·
40/39, . . . , 39 · 40/39, Δx1 = 1/1100 and r = 1000 (top curves) or

r = 1 (bottom curves). Right: Δx1 = 1/3, 1/4, . . . , 1/35, Δt = 10
and r = 1000 (top curves) or r = 1 (bottom curves)

by the one-dimensional formula (50) are almost exactly the
ones observed in 2D. Thus, the 1D case gives a very good
estimator for the 2D model problem.

7.3 Thermal FSI test cases

Finally, we want to relate the results for the two nonlinear
applications (the two cooling systems introduced inSects. 3.1
and 3.2: the cooling of a flat plate and of a flanged shaft) to
our analysis. The left plot in Fig. 15 shows the convergence
behaviour for the flat plate and the right one for the flanged
shaft. We plot the experimental convergence rates, the one-
dimensional formula (50), the semidiscrete estimator (18)
for the maximizing Fourier mode and the spatial limit δr
specified in (55).

In order to apply the 1D formula (50) here, some assump-
tions need to be made, since we partly have unstructured
meshes and nonuniform temperatures. Thus, we assume air
at 273K on the first subdomain with steel at 900K on the
second subdomain for the cooling of a flat plate and air at
273K with steel at 1145K for the cooling of a flanged shaft.
The density, heat capacity and heat conductivity of air and
the density of steel are given in Table 1. In addition, the heat
conductivities and heat capacities of steel at 900 and 1145K
are obtained from the nonlinear coefficient functions (3) and
(4) by inserting Θ = 900K or Θ = 1145K respectively.
This gives λ = 39.82 and cp = 1.3684e3 for steel at 900K
and λ = 39.8 and cp = 572.75 for steel at 1145K.

Furthermore, for the cooling of a flat plate, we take
Δx1 = 9.3736e−5 which is the width of the fluid cells
touching the interface in the y-direction and Δx2 = 1.6667
which is the width of the structure cells in both directions.
Thus, we have an aspect ratio of r = 1.7780e4. On the other
hand, choosing Δx1 and Δx2 for the cooling of a flanged
shaft is more difficult due to the unstructured grids. In order
to get an upper bound for the aspect ratio r , we choose

Δx1 = 1.6538e−4 which is the minimum width of all the
fluid cells touching the interface in direction normal to the
wall and Δx2 = 1.1364 which is the maximum width of
all the structure cells touching the interface tangential to the
wall. This gives r = 6.8713e3.

From the left plot in Fig. 15 one observes with these
choices that (50) predicts the rates accurately for the cool-
ing of a flat plate. Note that the semidiscrete estimator β

does not show any change with Δt . Remember that β is
almost always constant, except for a short dynamic transi-
tion between (λ1/λ2)

√
D2/D1 and λ1/λ2 as shown in Fig. 5.

Here, we would have to choose a Δt larger than 1e6 to see
the transition.

Finally, on the right plot in Fig. 15 one can see that (50)
predicts the convergence rates for the cooling of a flanged
shaft to be only slightly smaller compared to the actual per-
formance. This could be due to either the unstructured grids
used or to the nonconstant temperature in the structure, which
varies from room temperature to 1145K. Again, β is almost
constant.

8 Summary and conclusions

We considered the Dirichlet–Neumann iteration for thermal
FSI and studied the convergence rates. To this end, we con-
sidered the coupling of two heat equations on two identical
domains. We assumed structured grids on both subdomains,
but allowed for high aspect ratio grids in one domain. An
exact formula for the convergence rates was derived for the
1D case. Furthermore, we determined the limits of the con-
vergence rates when approaching the continuous case either
in space (rλ1/λ2) or time (0). This was confirmed by numer-
ical results, where we also demonstrated that the 1D case
gives excellent estimates for the 2D case. In addition, numer-
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Fig. 15 Convergence behavior of the cooling systems with respect to Δt . Left: Test case 1: flow over a plate. Right: Test case 2: Cooling of a
flanged shaft

ical experiments show that the linear analysis is relevant for
nonlinear thermal FSI problems.

All in all, strong jumps in the coefficients of the coupled
PDEs imply fast convergence. On the other hand, the cou-
pling iteration will be slowwhen the material coefficients are
continuous over all the subdomains, i.e, λ1 = λ2, and there-
fore δ1 ∼ 1. For coupling of structures and compressible
flows, the aspect ratio in the fluid has to be taken into account,
since the convergence rate is proportional to it. For the non-
linear cooling problems considered here, the convergence
rate was still around 0.1 for large Δt . When encountering
divergence anyhow, this can be solved by reducing the time
step. Note that in a time adaptive setting, it is standard to
allow for a feedback loop between the nonlinear solver and
the time stepper.
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Abstract

An important challenge when coupling two different time dependent problems is to increase parallelization in
time. We suggest a multirate Neumann-Neumann waveform relaxation algorithm to solve two heterogeneous
coupled heat equations. In order to fix the mismatch produced by the multirate feature at the space-time
interface a linear interpolation is constructed. The heat equations are discretized using a finite element method
in space, whereas two alternative time integration methods are used: implicit Euler and SDIRK2. We perform a
one-dimensional convergence analysis for the nonmultirate fully discretized heat equations using implicit Euler to
find the optimal relaxation parameter in terms of the material coefficients, the stepsize and the mesh resolution.
This gives a very efficient method which needs only two iterations. Numerical results confirm the analysis and
show that the 1D nonmultirate optimal relaxation parameter is a very good estimator for the multirate 1D case
and even for multirate and nonmultirate 2D examples using both implicit Euler and SDIRK2.

Keywords: Fluid-Structure Interaction, Coupled Problems, Transmission Problem, Domain Decomposition,
Neumann-Neumann Method, Multirate, Thermal

1 Introduction

The main goal of this work is to describe a partitioned algorithm to solve two heterogeneous coupled heat equations
allowing parallelization in time. In a partitioned approach different codes for the sub-problems are reused and the
coupling is done by a master program which calls interface functions of the segregated codes [6, 7]. These algorithms
are currently an active research topic driven by certain multiphysics applications where multiple physical models or
multiple simultaneous physical phenomena involve solving coupled systems of partial differential equations (PDEs).
An example of this is fluid structure interaction (FSI) [30, 4]. Moreover, we want that the time parallelization
performed at the subsolvers works for different time grids. This is handled through multirate methods which are a
classical field of research, see [10].

Our prime motivation here is thermal interaction between fluids and structures, also called conjugate heat
transfer. There are two domains with jumps in the material coefficients across the connecting interface. Conjugate
heat transfer plays an important role in many applications and its simulation has proved essential [1]. Examples
for thermal fluid structure interaction are cooling of gas-turbine blades, thermal anti-icing systems of airplanes [5],
supersonic reentry of vehicles from space [24, 17], gas quenching, which is an industrial heat treatment of metal
workpieces [16, 28] or the cooling of rocket nozzles [19, 20].

The classical way of parallelizing the numerical solution of PDEs is to use domain decomposition (DD) methods.
These split the computational domain into subdomains and coordinate the coupling between the subdomains in
an iterative manner. For an introduction to DD methods and their basic convergence results see [27, 29]. The
Dirichlet-Neumann iteration is a standard DD method to find solutions of the coupled problem. The PDEs are
solved sequentially using Dirichlet-, respectively Neumann boundary with data given from the solution of the other

∗e-mail: azahar.monge@na.lu.se; web page: http://www.maths.lu.se/staff/azahar-monge
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problem. Previous numerical experiments [2] showed that this iteration is fast for thermal FSI, and a convergence
analysis of two heterogeneous linear heat equations showed that the fast behavior was a consequence of the strong
jumps in the material coefficients [26].

In spite of the efficient behavior of the Dirichlet-Neumann iteration in the thermal FSI framework, it has two
main disadvantages. Firstly, the subsolvers wait for each other, and therefore, they perform sequentially. Secondly,
in the time dependent case the Dirichlet-Neumann iteration is used at each time step and consequently, both fields
are solved with a common time resolution. Using instead a multirate scheme that allows for different time resolutions
on each subdomain would be more efficient.

The aim of this work is to present a high order, parallel, multirate method for two heterogeneous coupled
heat equations which could be applied to FSI problems. We use the Neumann-Neumann waveform relaxation
(NNWR) method which is a waveform relaxation (WR) methods based on the classical Neumann-Neumann iteration
[21, 13]. For time discretization we consider two alternatives, the implicit Euler method and a second order singly
diagonally implicit Runge-Kutta method (SDIRK2). The WR methods were originally introduced by [22] for
ordinary differential equation (ODE) systems, and they were used for the first time to solve time dependent PDEs
in [14, 15]. They allow the use of different spatial and time discretizations for each subdomain which is specially
useful in problems with strong jumps in the material coefficients [12] or the coupling of different models for the
subdomains [11]. A time adaptive partitioned approach for thermal FSI was presented in [3]. In [23], two new
iterative partitioned coupling methods that allow for the simultaneous execution of flow and structure solvers were
introduced. However, parallelization in time for the coupling of heterogeneous materials was not considered.

Our algorithm has to take care of two aspects. On one hand, an interpolation procedure needs to be chosen
to communicate data between the subdomains through the space-time interface in the multirate case. We want
that the interpolation preserves a second order numerical solution of the coupled problem when using SDIRK2. On
the other hand, the choice of the relaxation parameter for the NNWR method is crucial because when choosing
the relaxation parameter right, two iterations are sufficient. In [21], a one-dimensional semidiscrete analysis shows
that Θ = 1/4 is the optimal relaxation parameter for two homogeneous coupled heat equations on two identical
subdomains.

In this paper, we perform a fully discrete analysis of the NNWR algorithm for two heterogeneous coupled one-
dimensional heat equations to find the optimal relaxation parameter in terms of the material coefficients. More
specifically, we choose finite element methods (FEM) in space for both subdomains and implicit Euler method
for the temporal discretization. Then, we derive the iteration matrix of the fully discrete NNWR algorithm with
respect to the interface unknowns. In addition, we calculate the spectral radius of the iteration matrix through its
eigendecomposition in order to estimate the optimal relaxation parameter Θopt which is dependent on the material
coefficients, the time and space resolutions. In the case of homogeneous materials, Θopt = 1/4 recovering the result
in [21]. Furthermore, the asymptotic optimal relaxation parameters when approaching the continuous case in either
time or space are also determined. In the spatial limit, the relaxation parameter turns out to be dependent on the
heat conductivities, whereas in the temporal limit, we obtain dependency of the densities and the heat capacities.

In addition, we include numerical results where it is shown that the parallel, multirate method for two heteroge-
neous coupled heat equations introduced in this paper is extremely fast when choosing the right relaxation paramter.
Moreover, we also show that the one-dimensional formula is a very good estimate for the multirate 1D case and
even for multirate and nonmultirate 2D examples using both implicit Euler and SDIRK2. Finally, we also include
a numerical comparison that shows that the NNWR method is a more efficient choice than the Dirichlet-Neumann
waveform relaxation (DNWR) in the multirate case.

An outline of the paper now follows. In section 2, 3 and 4, we describe the model problem, the DNWR and
the NNWR methods respectively. The FE space discretization is specified in section 5. In section 6, we describe
the linear interpolation that needs to be performed at the space-time interface to get a multirate algorithm. Both
time integration methods used in this paper are explained in section 7, these are implicit Euler and SDIRK2. In
section 8, we present a derivation of the iteration matrix for a rather general discretization which is then applied to
a specific 1D case in section 9. Numerical results are presented in section 10 and conclusions can be found in the
last section.

2 Model problem

The unsteady transmission problem reads as follows, where we consider a domain Ω ⊂ Rd which is cut into two
subdomains Ω = Ω1 ∪ Ω2 with transmission conditions at the interface Γ = ∂Ω1 ∩ ∂Ω2:
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αm
∂um(x,t)

∂t −∇ · (λm∇um(x, t)) = 0, x ∈ Ωm ⊂ Rd, m = 1, 2,

um(x, t) = 0, x ∈ ∂Ωm\Γ,
u1(x, t) = u2(x, t), x ∈ Γ,

λ2
∂u2(x,t)
∂n2

= −λ1
∂u1(x,t)
∂n1

, x ∈ Γ,

um(x, 0) = u0
m(x), x ∈ Ωm,

(1)

where t ∈ [T0, Tf ] and nm is the outward normal to Ωm for m = 1, 2.
The constants λ1 and λ2 describe the thermal conductivities of the materials on Ω1 and Ω2 respectively. D1

and D2 represent the thermal diffusivities of the materials and they are defined by

Dm =
λm
αm

, with αm = ρmcpm (2)

where ρm represents the density and cpm the specific heat capacity of the material placed in Ωm, m = 1, 2.

3 The Dirichlet-Neumann Waveform Relaxation algorithm

The Dirichlet-Neumann waveform relaxation (DNWR) method is a basic iterative substructuring method in domain
decomposition. The PDEs are solved sequentially using Dirichlet-, respectively Neumann boundary with data given
from the solution of the other problem introduced in [13].

It starts with an initial guess g0(x, t) on the interface Γ× (T0, Tf ], and then performs a three-step iteration. At
each iteration k, imposing continuity of the solution across the interface, one first finds the local solution uk+1

1 (x, t)
on Ω1 by solving the Dirichlet problem:





α1
∂uk+1

1 (x,t)
∂t −∇ · (λ1∇uk+1

1 (x, t)) = 0, x ∈ Ω1,

uk+1
1 (x, t) = 0, x ∈ ∂Ω1\Γ,
uk+1

1 (x, t) = gk(x, t), x ∈ Γ,

uk+1
1 (x, 0) = u0

1(x), x ∈ Ω1.

(3)

Then, imposing continuity of the heat fluxes across the interface, one finds the local solution uk+1
2 (x, t) on Ω2

by solving the Neumann problem:





α2
∂uk+1

2 (x,t)
∂t −∇ · (λ2∇uk+1

2 (x, t)) = 0, x ∈ Ω2,

uk+1
2 (x, t) = 0, x ∈ ∂Ω2\Γ,
λ2

∂uk+1
2 (x,t)
∂n2

= −λ1
∂uk+1

1 (x,t)
∂n1

, x ∈ Γ,

uk+1
2 (x, 0) = u0

2(x), x ∈ Ω2.

(4)

Finally, the interface values are updated with

gk+1(x, t) = Θuk+1
2 (x, t) + (1−Θ)gk(x, t), x ∈ Γ, (5)

where Θ ∈ (0, 1] is the relaxation parameter. The optimal relaxation parameter for the DNWR algorithm has been
proved to be Θ = 1/2 in [13] for the choice λ1 = λ2 = α1 = α2 = 1.

4 The Neumann-Neumann Waveform Relaxation algorithm

We now describe the Neumann-Neumann waveform relaxation (NNWR) algorithm [21]. The solution given by
the NNWR method corresponds to the solution of the model problem (1) (proved in [18, chapt. 2]). The main
advantage of the NNWR method is that it allows to find the solution on the subdomains in parallel.
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The NNWR algorithm starts with an initial guess g0(x, t) on the space-time interface Γ × (T0, Tf ], and then
performs a three-step iteration. At each iteration k, one first solves two Dirichlet problems on Ω1 and Ω2 simul-
taneously, then two Neumann problems are solved simultaneously again on Ω1 and Ω2, and finally, an update is
performed to get a new guess gk+1(x, t) on the interface Γ× (T0, Tf ].

More specifically, imposing continuity of the solution across the interface (i.e, given a common initial guess
g0(x, t) on Γ× (T0, Tf )), one can find the local solutions uk+1

m (x, t) on Ωm, m = 1, 2 through the following Dirichlet
problems:





αm
∂uk+1

m (x,t)
∂t −∇ · (λm∇uk+1

m (x, t)) = 0, x ∈ Ωm,

uk+1
m (x, t) = 0, x ∈ ∂Ωm\Γ,
uk+1
m (x, t) = gk(x, t), x ∈ Γ,

uk+1
m (x, 0) = u0

m(x), x ∈ Ωm.

(6)

We now add into the framework the second coupling condition which is the continuity of the heat fluxes. To this
end, one solves two simultaneous Neumann problems to get the correction functions ψk+1

m (x, t) on Ωm, m = 1, 2
where the Neumann boundary condition at the interface Γ × (T0, Tf ) is prescribed by the continuity of the heat
fluxes of the solutions uk+1

m (x, t) given by the Dirichlet problems:





αm
∂ψk+1

m (x,t)
∂t −∇ · (λm∇ψk+1

m (x, t)) = 0, x ∈ Ωm,

ψk+1
m (x, t) = 0, x ∈ ∂Ωm\Γ,

λm
∂ψk+1

m (x,t)
∂nm

= λ1
∂uk+1

1 (x,t)
∂n1

+ λ2
∂uk+1

2 (x,t)
∂n2

, x ∈ Γ,

ψk+1
m (x, 0) = 0, x ∈ Ωm.

(7)

Finally, the interface values are updated with

gk+1(x, t) = gk(x, t)−Θ(ψk+1
1 (x, t) + ψk+1

2 (x, t)), x ∈ Γ, (8)

where Θ ∈ (0, 1] is the relaxation parameter. Note that choosing an appropriate relaxation parameter is crucial for
the good performance of the NNWR algorithm [13]. If one uses the optimal relaxation parameter, two iterations
are enough.

5 Semidiscrete method

We now describe a rather general space discretization of the problem (6)-(8). The core property we need is that
the meshes of Ω1 and Ω2 share the same nodes on Γ as shown in figure 1. Furthermore, we assume that there is a
specific set of unknowns associated with the interface nodes. Otherwise, we allow at this point for arbitrary meshes
on both sides.

Then, letting u
(m)
I , ψ

(m)
I : [T0, Tf ] → RSm where Sm is the number of grid points on Ωm, m = 1, 2, and

uΓ, ψ
(1)
Γ , ψ

(2)
Γ : [T0, Tf ] → Rs, where s is the number of grid points at the interface Γ, we can write a general

discretization of the first equation in (6) and (7), respectively, in a compact form as:

M
(m)
II u̇

(m),k+1
I (t) + A

(m)
II u

(m),k+1
I (t) = −M

(m)
IΓ u̇kΓ(t)−A

(m)
IΓ ukΓ(t), (9)

M
(m)
II ψ̇

(m),k+1
I (t) + M

(m)
IΓ ψ̇

(m),k+1
Γ (t) + A

(m)
II ψ

(m),k+1
I (t) + A

(m)
IΓ ψ

(m),k+1
Γ (t) = 0, (10)

where the initial conditions u
(m)
I (T0), ψ

(m)
I (T0) ∈ RSm and uΓ(T0), ψ

(m)
Γ (T0) ∈ Rs for m = 1, 2 are known.

To close the system, we need an approximation of the normal derivatives on Γ. Letting φj be a nodal FE basis
function on Ωm for a node on Γ we observe that the normal derivative of um with respect to the interface can be
written as a linear functional using Green’s formula [29, pp. 3]. Thus, the approximation of the normal derivative
is given by
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Figure 1: Splitting of Ω and finite element triangulation.

λm

∫

Γ

∂um
∂nm

φjdS = λm

∫

Ωm

(∆umφj +∇um∇φj)dx

= αm

∫

Ωm

d

dt
umφj + λm

∫

Ωm

∇um∇φjdx, m = 1, 2.

(11)

Consequently, the equation

M
(m)
ΓΓ ψ̇

(m),k+1
Γ (t) + M

(m)
ΓI ψ̇

(m),k+1
I (t) + A

(m)
ΓΓ ψ

(m),k+1
Γ (t) + A

(m)
ΓI ψ

(m),k+1
I (t)

=

2∑

i=1

(
M

(i)
ΓΓu̇kΓ(t) + M

(i)
ΓI u̇

(i),k+1
I (t) + A

(i)
ΓΓukΓ(t) + A

(i)
ΓIu

(i),k+1
I (t)

)
, m = 1, 2,

(12)

is a discrete version of the third equation in (7) and completes the system (10).
We can now write a semidiscrete version of the NNWR algorithm using an ODE system. At each iteration

k, one first solves the two Dirichlet problems in (9) obtaining u
(m),k+1
I (t) for m = 1, 2. Then, for the vector of

unknowns ψk+1
m (t) =

(
ψ

(m),k+1
I (t)

T
ψ

(m),k+1
Γ (t)

T
)T

, one solves the following two Neumann problems in parallel

that correspond to equations (10)-(12):

Mmψ̇
k+1
m (t) + Amψ

k+1
m (t) = bk, m = 1, 2, (13)

where

Mm =

(
M

(m)
II M

(m)
IΓ

M
(m)
ΓI M

(m)
ΓΓ

)
, Am =

(
A

(m)
II A

(m)
IΓ

A
(m)
ΓI A

(m)
ΓΓ

)
, bk =

(
0

Fk

)
, (14)

with

Fk =
2∑

i=1

(
M

(i)
ΓΓu̇kΓ(t) + M

(i)
ΓI u̇

(i),k+1
I (t) + A

(i)
ΓΓukΓ(t) + A

(i)
ΓIu

(i),k+1
I (t)

)
. (15)

Finally, the interfaces values are updated by

uk+1
Γ (t) = ukΓ(t)−Θ

(
ψ

(1),k+1
Γ (t) + ψ

(2),k+1
Γ (t)

)
. (16)
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Figure 2: Nonconfoming time grids in the two-dimensional subdomains.

The iteration starts with some initial condition u0
Γ(t) and a termination criterion must be chosen. One option

would be ‖uk+1
Γ (t) − ukΓ(t)‖ ≤ TOL where TOL is a user defined tolerance. However, this option is memory

consuming because it saves the solutions for all t ∈ [T0, Tf ]. Moreover, an extra interpolation step is needed in the
multirate case, i.e, when having two nonconforming time grids. As we expect the error to be largest at the end
point Tf and because it simplifies the analysis to be presented for finding the optimal relaxation parameter, we
propose the criterion ‖uk+1

Γ (Tf )− ukΓ(Tf )‖ ≤ TOL where Tf is the synchronization endpoint of the macrostep.

6 Space-time interface interpolation

The NNWR algorithm for parabolic problems was first introduced in [21, 13], but they do not consider the possibility
of using two different step sizes on the two subdomains. In addition, their analysis does not include the coupling of
two different materials. For those reasons, the goal of this paper is to introduce a parallel multirate method for the
coupling of two heterogeneous heat equations and analyze its performance in the fully discrete case. This would
be especially useful when coupling two different materials, where typically the field with higher heat conductivity
needs a finer resolution than the other and therefore, efficiency will be gained by using a multirate method.

Note that both the Dirichlet and the Neumann problems in (9) and (13) allow the use of independent time
discretization on each of the subdomains. Therefore, in the case of mismatched time grids, there exists the need to
define an interface interpolation.

To this end, we consider a discrete problem in time with nonconforming time grids. Let τ1 = {t1, t2, .., tN1
} and

τ2 = {t1, t2, .., tN2
} be two possibly different partitions of the time interval [T0, Tf ] as shown in figure 2. We denote

by ∆t1 = (Tf − T0)/N1 and ∆t2 = (Tf − T0)/N2 the two possibly different constant stepsizes corresponding to Ω1

and Ω2 respectively.
In order to exchange data at the space-time interface between the different time grids, we use a linear inter-

polation. For instance, if we want to interpolate the local discrete solution G := (G1, G2, .., Gs) ∈ Rs×N2 from
a given local discrete solution F := (F1, F2, .., Fs) ∈ Rs×N1 at the space-time interface Γ × [T0, Tf ], with s being
the number of grid points at Γ, we use the following procedure: for each k = 1, 2, .., s we consider the discrete
vector Fk := (Fk,1, Fk,2, .., Fk,N1) ∈ RN1 . Then, for each ti ∈ τ2, i = 1, .., N2, we find the subinterval [tj , tj+1],
j = 0, .., N1−1 such that ti ∈ [tj , tj+1]. We then define the linear interpolation polynomial pj(t) through the points
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(tj , Fk,j) and (tj+1, Fk,j+1), i.e, pj(t) = Fk,j + (t − tj) · (Fk,j+1 − Fk,j)/(tj+1 − tj). Finally, we evaluate pj at ti.
Repeating the procedure for all the elements of τ2 we get the discrete vector Gk whose components are given by,

Gk,i = {pj(ti) | pj : [tj , tj+1]→ R,∀t ∈ [tj , tj+1], j = 0, .., N1 − 1}, (17)

for i = 1, .., N2.
Thus, to interpolateG from F we use the interpolation functionG = I(τ2, τ1, F ) explained above and summarized

in algorithm 1. The same procedure can be applied to interpolate the discrete solution F from a given discrete
solution G.

Algorithm 1 Interpolation to transfer data at the space-time interface.

1: procedure I(τ2,τ1,F )
2: for k = 1, 2, .., s do
3: for ti ∈ τ2 do
4: for tj ∈ τ1 do
5: if ti ∈ [tj , tj+1] then
6: Gk,i ← Fk,j + (ti − tj) · (Fk,j+1 − Fk,j)/(tj+1 − tj)

return G

7 Time integration

In this section we present a time discretized version of the NNWR method presented in equations (9), (13) and (16).
In order to get a multirate algorithm we use a certain time integration method with time step ∆t1 := (Tf −T0)/N1

on Ω1 and with time step ∆t2 := (Tf − T0)/N2 on Ω2 and the interpolation presented in the previous section will
be used to transfer data from one domain to the other. We let nm := 1, 2, .., Nm be the time integration indeces
with respect to Ωm and tnm defines any time point of the grid for m = 1, 2. We have chosen two alternative time
integration schemes as a basis to construct the multirate algorithm: the implicit Euler method and a second order
singly diagonally implicit Runge-Kutta method (SDIRK2).

7.1 Implicit Euler

Applying the implicit Euler method with time step ∆t1 on Ω1 and with time step ∆t2 on Ω2 we can write the
systems (9), (13) and (16) in a fully discrete form. At each fixed point iteration k, one first performs the time
integration of the Dirichlet problems in parallel. Secondly, the interpolation explained in the previous section is
used for the boundary conditions in order to solve the Neumann problems in parallel. Once the Neumann problems
are solved, interpolation is again used to match the components of the update step. Finally, if the termination
criterion is not fulfilled, one starts the process once more.

The local approximations and the solutions at the space-time interface are given by the vectors u
(m),k,nm

I ≈
u

(m),k
I (tnm) ∈ RSm and uk,nm

Γ ≈ ukΓ(tnm) ∈ Rs respectively. Remember that Sm is the number of spatial grid points
on Ωm and s is the number of spatial grid points at the interface Γ. Similarly, the corrections both in the subdomains

and at the interface are given by the vectors ψ
(m),k,nm

I ≈ ψ
(m),k
I (tnm) ∈ RSm and ψ

(m),k,nm

Γ ≈ ψ
(m),k
Γ (tnm) ∈ Rs,

respectively.

At each iteration k, one first solves the two Dirichlet problems from (9) for nm = 1, 2, .., Nm, with u
(m),k+1,0
I ≈

u
(m)
I (T0), m = 1, 2 and uk+1,0

Γ ≈ uΓ(T0) simultaneously:

(
M

(m)
II

∆tm
+ A

(m)
II

)
u

(m),k+1,nm+1
I =−

(
M

(m)
IΓ

∆tm
+ A

(m)
IΓ

)
uk,nm+1

Γ

+
M

(m)
II

∆tm
u

(m),k+1,nm

I +
M

(m)
IΓ

∆tm
uk,nm

Γ ,

(18)

for m = 1, 2. Note that interpolation is not needed to solve the Dirichlet problems because u
(1),k+1,n1+1
I in (18) is

only dependent on terms related to Ω1. In the same way, u
(2),k+1,n2+1
I in (18) only depends on n2.
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We compute now the fluxes F̃
k,τ1
1 := f̃

k,τ1
1 + I(τ1, τ2, f̃

k,τ2
2 ) and F̃

k,τ2
2 := f̃

k,τ2
2 + I(τ2, τ1, f̃

k,τ1
1 ) in (15) with

f̃
k,nm

m =

(
M

(m)
ΓΓ

∆tm
+ A

(m)
ΓΓ

)
uk,nm+1

Γ +

(
M

(m)
ΓI

∆tm
+ A

(m)
ΓI

)
u

(m),k+1,nm+1
I

−M
(m)
ΓΓ

∆tm
uk,nm

Γ − M
(m)
ΓI

∆tm
u

(m),k+1,nm

I ,

(19)

where nm = 1, .., Nm and τm = {t1, t2, .., tNm} are the corresponding time grids on Ωm for m = 1, 2. Note that
unlike in the Dirichlet problems, we need to use the interpolation described in the previous section. We use it to

calculate F̃
k,τ1
1 and F̃

k,τ2
2 because their components run over different time integrations (one indicated by n1 and

the other by n2).

One can now rewrite the Neumann problems in (13) in terms of the vector of unknowns ψk+1,nm+1
m :=

(
ψ

(m),k+1,nm+1
I

T

ψ
(m),k+1,nm+1
Γ

T
)T

. One then solves the two Neumann problems for nm = 1, 2, .., Nm, with ψk+1,0
m ≈ ψm(T0),

m = 1, 2 in parallel:

(
Mm

∆tm
+ Am

)
ψk+1,nm+1
m =

Mm

∆tm
ψk+1,nm
m + b̃

k,nm
, (20)

where b̃
k,nm

=
(
0T F̃

k,nmT

m

)T
.

Then, the interfaces values are updated respectively by

uk+1,τ1
Γ = uk,τ1Γ −Θ

(
ψ

(1),k+1,τ1
Γ + I

(
τ1, τ2, ψ

(2),k+1,τ2
Γ

))
, (21)

uk+1,τ2
Γ = uk,τ2Γ −Θ

(
ψ

(2),k+1,τ2
Γ + I

(
τ2, τ1, ψ

(1),k+1,τ1
Γ

))
. (22)

Here, interpolation is needed to perform the additions because ψ
(1),k+1,τ1
Γ and ψ

(2),k+1,τ2
Γ correspond to different

time integrations.
Finally, if the termination criteria ‖uk+1,Nm

Γ − uk,Nm

Γ ‖ ≈ ‖uk+1
Γ (Tf ) − ukΓ(Tf )‖ is not small enough, one starts

the process from (18) once more.
Summarizing, figure 3 sketches the communication needed for the NNWR algorithm just explained. Algorithm

2 and 3 summarize the discrete Dirichlet solver in (18) and the discrete Neumann solver in (20) respectively.
Furthermore, the complete NNWR algorithm is summarized in algorithm 4.

Algorithm 2 Solver for the Dirichlet problems in (18).

1: procedure SolveDirichlet(uk+1,n
I , uk,nΓ , uk,n+1

Γ )

2: uk+1,n+1
I ← SolveLinearSystem(uk+1,n

I ,uk,nΓ ,uk,n+1
Γ ), # solve (18)

3: f̃
k,n ←

(
MΓΓ

∆t + AΓΓ

)
uk,n+1

Γ +
(
MΓI

∆t + AΓI

)
uk+1,n+1
I − MΓΓ

∆t uk,nΓ − MΓI

∆t uk+1,n
I , # compute (19)

return uk+1,n+1
I , f̃

k,n

Algorithm 3 Solver for the Neumann problems in (20).

1: procedure SolveNeumann(ψk+1,n
I ,ψk+1,n

Γ ,F̃
k,n

)

2: ψk+1,n+1
I , ψk+1,n+1

Γ ← SolveLinearSystem(ψk+1,n
I , ψk+1,n

Γ , F̃
k,n

), # solve (20)

return ψk+1,n+1
I , ψk+1,n+1

Γ

8



Figure 3: Illustration of the NNWR algorithm using implicit Euler. The process starts with the space-time interface
functions uk,τmΓ , τm = {t1, t2, .., tNm

} for m = 1, 2 corresponding to the two nonconforming time grids. Those are

needed to run the Dirichlet solvers in parallel getting u
(m),k+1,τm
I , m = 1, 2. In order to run the Neumann solvers

for the corrections of the solution, one needs to provide the fluxes f̃
k,τ1
1 , f̃

k,τ2
2 and their corresponding interpola-

tions I(τ2, τ1, f̃
k,τ1
1 ), I(τ1, τ2, f̃

k,τ2
2 ). One can then run the Neumann problems in parallel getting the corrections

ψ
(1),k+1,τ1
Γ and ψ

(2),k+1,τ2
Γ at the space-time interface. Finally, those and their interpolations I(τ1, τ2, ψ

(2),k+1,τ2
Γ )

and I(τ2, τ1, ψ
(1),k+1,τ1
Γ ) are used to update the space-time interface values. If needed, the process is restarted.
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Algorithm 4 NNWR algorithm using implicit Euler.

1: procedure NNWR(τ1, τ2, α1, α2, λ1, λ2, Θ, TOL)

2: u
(m),k+1,0
I ,u0

Γ(τm), ψ
(m),k+1,nm+1
I , ψ

(m),k+1,nm+1
Γ ← Initialization

3: while ‖uk+1,Nm

Γ − uk,Nm

Γ ‖ ≤ TOL do
4: for tn1 ∈ τ1 do

5: u
(1),k+1,n1+1
I , f̃

k,n1

1 ← SolveDirichlet(u
(1),k+1,n1

I ,uk,n1

Γ ,uk,n1+1
Γ )

6: for tn2
∈ τ2 do (in parallel to 4)

7: u
(2),k+1,n2+1
I , f̃

k,n2

2 ← SolveDirichlet(u
(2),k+1,n2

I ,uk,n2

Γ ,uk,n2+1
Γ )

8: F̃
k,τ1
1 ← f̃

k,τ1
1 + I(τ1, τ2, f̃

k,τ2
2 )

9: F̃
k,τ2
2 ← f̃

k,τ2
2 + I(τ2, τ1, f̃

k,τ1
1 ) (in parallel to 8)

10: for tn1
∈ τ1 do

11: ψ
(1),k+1,n1+1
I , ψ

(1),k+1,n1+1
Γ ← SolveNeumann(ψ

(1),k+1,n1

I , ψ
(1),k+1,n1

Γ , F̃
k,n1

1 )

12: for tn2
∈ τ2 do (in parallel to 10)

13: ψ
(2),k+1,n2+1
I , ψ

(2),k+1,n2+1
Γ ← SolveNeumann(ψ

(2),k+1,n2

I , ψ
(2),k+1,n2

Γ , F̃
k,n2

2 )

14: uk+1,τ1
Γ ← uk,τ1Γ −Θ

(
ψ

(1),k+1,τ1
Γ + I(τ1, τ2, ψ

(2),k+1,τ2
Γ )

)

15: uk+1,τ2
Γ ← uk,τ2Γ −Θ

(
ψ

(2),k+1,τ2
Γ + I(τ2, τ1, ψ

(1),k+1,τ1
Γ )

)
(in p. to 14)

7.2 SDIRK2

As an alternative, we introduce here a higher order version of the multirate algorithm presented above. Specifically,
we consider the second order singly diagonally implicit Runge-Kutta (SDIRK2) as a basis to discretize the systems
(9), (13) and (16) in time. Consider an autonomous initial value problem

u̇(t) = f(u(t)), u(0) = u0. (23)

An SDIRK method is then defined as

Ui = un + ∆tn

i∑

k=1

aikf(U
k), i = 1, .., j

un+1 = un + ∆tn

j∑

i=1

bif(U
i)

(24)

with given coefficients aik and bi. The two-stage method SDIRK2 is defined by the coefficients in the following
Butcher array:

a a 0
1 1− a a

1− a a

with a = 1− 1
2

√
2. As the coefficients a2i and bi for i = 1, 2 are identical, the second equation in (24) is superfluous

because un+1 = U2.
The vectors ki = f(Ui) are called stage derivatives and j is the number of stages. Since the starting vector

si = un + ∆tn

i−1∑

k=1

aikkk, i = 1, .., j − 1, (25)

is known, (24) is just a sequence of implicit Euler steps.
Applying SDIRK2 with time step ∆t1 on Ω1 and with time step ∆t2 on Ω2 we can write the systems (9), (13)

and (16) in a fully discrete form. This algorithm preserves more or less the same structure as the one presented
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above for implicit Euler. The main difference lies in the fact that now both the Dirichlet and the Neumann solvers
have to take into account the two stages of SDIRK2 as well as the interpolation has to be applied for each stage.

Therefore, at each fixed point iteration k, let s
(m)
1 = u

(m),k+1,nm

I and s
(m)
2 = u

(m),k+1,nm

I + ∆tm(1 − a)k
(m)
1

be the starting vectors. Then, one first solves the two Dirichlet problems for nm = 1, 2, .., Nm, with u
(m),k+1,0
I ,

m = 1, 2, uk+1,0
Γ simultaneously:

(
M

(m)
II

a∆tm
+ A

(m)
II

)
U

(m)
j =

M
(m)
II

a∆tm
s

(m)
j −M

(m)
IΓ u̇

k,nm+j−1+(2−j)a
Γ

−A
(m)
IΓ u

k,nm+j−1+(2−j)a
Γ , j = 1, 2.

u
(m),k+1,nm+1
I = U

(m)
2 ,

(26)

where u
(m),k,nm

I , U
(m)
j , s

(m)
j , k

(m)
j ∈ RSm and uk,nm

Γ ∈ Rs. The stage derivatives are given by k
(m)
j = 1

a∆tm
(U

(m)
j −

s
(m)
j ). Note that the index m = 1, 2, denotes the subdomain and the index j = 1, 2, denotes the stage.

We compute now the fluxes F
(1),k,τ1
j := f

(1),k,τ1
j + I(τ1, τ2, f

(2),k,τ2
j ), F

(2),k,τ2
j := f

(2),k,τ2
j + I(τ2, τ1, f

(1),k,τ1
j ) in (15)

with

f
(m),k,nm

j = M
(m)
ΓΓ u̇

k,nm+j−1+(2−j)a
Γ + M

(m)
ΓI k

(m)
j

+A
(m)
ΓΓ u

k,nm+j−1+(2−j)a
Γ + A

(m)
ΓI U

(m)
j ,

(27)

for m = 1, 2. Note that interpolation here is needed because the components of F
(1),k,τ1
j and F

(2),k,τ2
j for the two

stages j = 1, 2 correspond to different time integrations.

One can now rewrite the Neumann problems in (13) in terms of the vector of unknowns ψk+1,nm+1
m :=

(
ψ

(m),k+1,nm+1
I

T

ψ
(m),k+1,nm+1
Γ

T
)T

where ψ
(m),k+1,nm+1
I ∈ RSm and ψ

(m),k+1,nm+1
Γ ∈ Rs. Let s

(m)
1 = ψk+1,nm

m and s
(m)
2 =

ψk+1,nm
m +∆tm(1−a)k

(m)
1 be the starting vectors. One then solves the two Neumann problems for nm = 1, 2, .., Nm,

with ψk+1,0
m = ψk+1

m (T0), m = 1, 2 in parallel:

(
Mm

a∆tm
+ Am

)
Y

(m)
j =

Mm

a∆tm
s

(m)
j + b

(m),k,nm

j , j = 1, 2,

ψk+1,nm+1
m = Y

(m)
2 ,

(28)

where Y
(m)
j , s

(m)
j , b

(m),k,nm

j , k
(m)
j ∈ RSm+s, k

(m)
j = 1

a∆tm
(Y

(m)
j − s

(m)
j ) and b

(m),k,nm

j =
(
0T F

(m),k,nmT
j

)T
.

Then, the interfaces values are updated respectively by

uk+1,τ1
Γ = uk,τ1Γ −Θ

(
ψ

(1),k+1,τ1
Γ + I

(
τ1, τ2, ψ

(2),k+1,τ2
Γ

))
, (29)

uk+1,τ2
Γ = uk,τ2Γ −Θ

(
ψ

(2),k+1,τ2
Γ + I

(
τ2, τ1, ψ

(1),k+1,τ1
Γ

))
. (30)

Here, interpolation is needed because ψ
(1),k+1,τ1
Γ and ψ

(2),k+1,τ2
Γ are nonconforming.

Finally, if the termination criteria ‖uk+1,Nm

Γ −uk,Nm

Γ ‖ is not small enough, one starts the process from (26) once
more.

We use a linear interpolation through the points (tnm ,u
k,nm

Γ ) and (tnm +∆tm,u
k,nm+1
Γ ) in order to approximate

uk,nm+a
Γ in the first equation of (26) and in the fluxes (27), i.e:

uk,nm+a
Γ ≈ uk,nm

Γ + a
(
uk,nm+1

Γ − uk,nm

Γ

)
. (31)
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Furthermore, there are first order time derivatives in the first equation of (26) and in (27). We use forward
differences to approximate all the remaining first order derivatives:

u̇
k,nm+j−1+(2−j)a
Γ ≈ uk,nm+1

Γ − uk,nm

Γ

∆tm
, (32)

for j = 1, 2 and m = 1, 2.
Summarizing, the SDIRK2-NNWR algorithm just presented has the same structure as the implicit Euler NNWR

algorithm described previously and sketched in figure 3. The main difference is that the whole procedure is repeated
twice, once for each stage.

Algorithm 5 and 6 summarize the discrete Dirichlet solver in (26) and the discrete Neumann solver in (28)
respectively. Furthermore, the complete SDIRK2-NNWR algorithm is summarized in algorithm 7.

Algorithm 5 Solver for the Dirichlet problems in (26).

1: procedure SDIRK2Dirichlet(uk+1,n
I , uk,nΓ , uk,n+1

Γ )

2: uk,n+a
Γ ← uk,nΓ + a

(
uk,n+1

Γ − uk,nΓ

)

3: u̇k,n+a
Γ , u̇k,n+1

Γ ←
(
uk,n+1

Γ − uk,nΓ

)
/∆t

4: for j = 1, 2 do # loop over stages
5: sj ← uk+1,n

I + ∆t
∑j−1
l=1 (1− a)kl

6: Uj ← SolveLinearSystem(sj , u̇
k,n+j−1+(2−j)a
Γ ,u

k,n+j−1+(2−j)a
Γ ), # solve 1st eq in (26)

7: kj ← 1
a∆t (Uj − sj)

8: uk+1,n+1
I ← U2

9: for j = 1, 2 do # compute fluxes in (27)

10: fk,nj ←MΓΓu̇
k,n+j−1+(2−j)a
Γ + MΓIkj + AΓΓu

k,n+j−1+(2−j)a
Γ + AΓIUj

return uk+1,n+1
I , fk,nj

Algorithm 6 Solver for the Neumann problems in (28).

1: procedure SDIRK2Neumann(ψk+1,n
I , ψk+1,n

Γ , Fk,nj )
2: for j = 1, 2 do # loop over stages
3: sj ← ψk+1,n + ∆t

∑j−1
l=1 (1− a)kl

4: Yj ← SolveLinearSystem(sj , ψ
k+1,n
I , ψk+1,n

Γ ,Fk,nj ), # solve 1st eq in (28)

5: kj ← 1
a∆t (Yj − sj)

6: ψk+1,n+1
I , ψk+1,n+1

Γ ← Y2

return ψk+1,n+1
I , ψk+1,n+1

Γ

8 Derivation of the iteration matrix

We are interested in the performance of the NNWR algorithm. As the rate of convergence of a linear iteration is
given by the spectral radius of its iteration matrix, we derive in this section the iteration matrix with respect to
the set of unknowns at the space-time interface for implicit Euler. A similar analysis to find the convergence rates
of the Dirichlet-Neumann iteration for the unsteady transmission problem can be found in [26]. We intentionally
avoid a derivation for SDIRK2 and we will show in the numerical results section that NNWR-SDIRK2 behaves
as predicted by the analysis of implicit Euler. From now on we assume that we have conforming time grids, i.e,
∆t := ∆t1 = ∆t2. We will see later in how far the analysis performed for the nonmultirate case is applicable to the
multirate case.

The goal now is to find the iteration matrix Σ with respect to the final synchronization point uNm

Γ ≈ uΓ(Tf )
because the global error over the time window [T0, Tf ] is assumed to be increasing, having its maximum at the final
time Tf . Thus, we will find Σ such that

12



Algorithm 7 NNWR algorithm using SDIRK2.

1: procedure NNWR2(τ1, τ2, α1, α2, λ1, λ2, Θ, TOL)

2: u
(m),k+1,0
I ,u0

Γ(τm), ψ
(m),k+1,nm+1
I , ψ

(m),k+1,nm+1
Γ ← Initialization

3: while ‖uk+1,Nm

Γ − uk,Nm

Γ ‖ ≤ TOL do
4: for j = 1, 2 do # loop over stages
5: for tn1

∈ τ1 do

6: u
(1),k+1,n1+1
I , f

(1),k,n1

j ← SDIRK2Dirichlet(u
(1),k+1,n1

I ,uk,n1

Γ ,uk,n1+1
Γ )

7: for tn2
∈ τ2 do (in parallel to 5)

8: u
(2),k+1,n2+1
I , f

(2),k,n2

j ← SDIRK2Dirichlet(u
(2),k+1,n2

I ,uk,n2

Γ ,uk,n2+1
Γ )

9: F
(1),k,τ1
j ← f

(1),k,τ1
j + I(τ1, τ2, f

(2),k,τ2
j )

10: F
(2),k,τ2
j ← f

(2),k,τ2
j + I(τ2, τ1, f

(1),k,τ1
j ) (in parallel to 9)

11: for tn1
∈ τ1 do

12: ψk+1,n1+1
I , ψk+1,n1+1

Γ ← SDIRK2Neumann(ψk+1,n1

I , ψk+1,n1

Γ ,F
(1),k,n1

j )

13: for tn2
∈ τ2 do (in parallel to 11)

14: ψk+1,n2+1
I , ψk+1,n2+1

Γ ← SDIRK2Neumann(ψk+1,n2

I , ψk+1,n2

Γ ,F
(2),k,n2

j )

15: uk+1,τ1
Γ ← uk,τ1Γ −Θ

(
ψ

(1),k+1,τ1
Γ + I(τ1, τ2, ψ

(2),k+1,τ2
Γ )

)

16: uk+1,τ2
Γ ← uk,τ2Γ −Θ

(
ψ

(2),k+1,τ2
Γ + I(τ2, τ1, ψ

(1),k+1,τ1
Γ )

)
(p. to 15)

uk+1,Nm

Γ = Σuk,Nm

Γ +
2∑

i=1

(
ϕk+1,τ̃i + ϕk,τi

)
, (33)

where ϕk,τm are terms dependent on solutions at the previous fixed point iteration k for the time grids τm =
{t1, t2, .., tNm

}, m = 1, 2 and ϕk+1,τ̃m are terms dependent on solutions at the current iteration k + 1 but for the
time grids τ̃m = {t1, t2, .., tNm−1} ⊂ τm, m = 1, 2. To perform the analysis, we neglect all the solutions at previous
time steps (indicated by ϕk+1,τ̃m). Thus, we do not to find the exact rate of convergence when having more than
one single time step, but instead a good estimate.

We now rewrite (18), (20) and (21)-(22) as an iteration for uk+1,Nm

Γ . As we chose above, we omit all the terms

in (33) except for the first two. We isolate the term u
(m),k+1,Nm

I from (18) and ψ
(m),k+1,Nm

I from the first equation
in (20) leading to

u
(m),k+1,Nm

I = −
(

M
(m)
II

∆t
+ A

(m)
II

)−1(
M

(m)
IΓ

∆t
+ A

(m)
IΓ

)
uk,Nm

Γ , (34)

ψ
(m),k+1,Nm

I = −
(

M
(m)
II

∆t
+ A

(m)
II

)−1(
M

(m)
IΓ

∆t
+ A

(m)
IΓ

)
ψ

(m),k+1,Nm

Γ . (35)

Inserting (34) and (35) into the second equation of (20) we get

ψ
(m),k+1,Nm

Γ = S(m)−1
2∑

i=1

S(i)uk,Nm

Γ , (36)

with

S(m) :=

(
M

(m)
ΓΓ

∆t
+ A

(m)
ΓΓ

)
−
(

M
(m)
ΓI

∆t
+ A

(m)
ΓI

)(
M

(m)
II

∆t
+ A

(m)
II

)−1(
M

(m)
IΓ

∆t
+ A

(m)
IΓ

)
. (37)
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Finally, inserting (36) into (21) or (22) one gets uk+1,Nm

Γ = Σuk,Nm

Γ with

Σ = I−Θ
(

2I + S(1)−1
S(2) + S(2)−1

S(1)
)
. (38)

In the one-dimensional case, the iteration matrix Σ is just a real number and thus its spectral radius is its
modulus. Then, the optimal relaxation parameter Θopt in 1D is given by

Θopt =
1

2 + S(1)−1
S(2) + S(2)−1

S(1)
. (39)

9 One-dimensional convergence analysis

So far, the derivation was performed for a rather general discretization. In this section, we study the iteration
matrix Σ for a specific FE discretization in 1D. We will give a formula for the convergence rates. The behaviour of
the rates when approaching both the continuous case in time and space is also given.

Specifically, we use Ω1 = [−1, 0], Ω2 = [0, 1]. For the FE discretization, we use the standard piecewise-linear
polynomials as test functions. Here we discretize Ωm into N+1 equal sized cells of size ∆x = 1/(N+1) for m = 1, 2.

With ej =
(

0 · · · 0 1 0 · · · 0
)T ∈ RN where the only nonzero entry is located at the j-th position,

the discretization matrices are given by

A
(m)
II =

λm
∆x2




2 −1 0

−1 2
. . .

. . .
. . . −1

0 −1 2



, M

(m)
II =

αm
6




4 1 0

1 4
. . .

. . .
. . . 1

0 1 4



,

A
(m)
ΓΓ =

λm
∆x2

, A
(1)
IΓ = − λ1

∆x2
eN , A

(2)
IΓ = − λ2

∆x2
e1, A

(1)
ΓI = − λ1

∆x2
eTN , A

(2)
ΓI = − λ2

∆x2
eT1 ,

M
(m)
ΓΓ =

2αm
6

, M
(1)
IΓ =

α1

6
eN , M

(2)
IΓ =

α2

6
e1, M

(1)
ΓI =

α1

6
eTN , M

(2)
ΓI =

α2

6
eT1 .

where A
(m)
II , M

(m)
II ∈ RN×N , A

(m)
IΓ , M

(m)
IΓ ∈ RN×1 and A

(m)
ΓI , M

(m)
ΓI ∈ R1×N for m = 1, 2.

One computes S(m) for m = 1, 2, by inserting the corresponding matrices specified above in (37) obtaining

S(1) =

(
α1

3∆t
+

λ1

∆x2

)
−
(
α1

6∆t
− λ1

∆x2

)2

eTN

(
M

(1)
II

∆t
+ A

(1)
II

)−1

eN

=

(
α1

3∆t
+

λ1

∆x2

)
−
(
α1

6∆t
− λ1

∆x2

)2

α1
NN ,

(40)

S(2) =

(
α2

3∆t
+

λ2

∆x2

)
−
(
α2

6∆t
− λ2

∆x2

)2

eT1

(
M

(2)
II

∆t
+ A

(2)
II

)−1

e1

=

(
α2

3∆t
+

λ2

∆x2

)
−
(
α2

6∆t
− λ2

∆x2

)2

α2
11,

(41)

where αmij represent the entries of the matrices

(
M

(m)
II

∆t + A
(m)
II

)−1

for i, j = 1, ..., N , m = 1, 2. Observe that the

matrices

(
M

(1)
II

∆t + A
(1)
II

)
and

(
M

(2)
II

∆t + A
(2)
II

)
are tridiagonal Toeplitz matrices but their inverses are full matrices.

The computation of the exact inverses could be performed based on the recursive formula presented in [9] which
runs over the entries of the matrix and consequently, it is non trivial to compute α1

NN and α2
11 this way.
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Due to these difficulties, we rewrite them in terms of their eigendecomposition:

(
M

(m)
II

∆t
+ A

(m)
II

)−1

=

[
tridiag

(
αm∆x2 − 6λm∆t

6∆t∆x2
,

2αm∆x2 + 6λm∆t

3∆t∆x2
,
αm∆x2 − 6λm∆t

6∆t∆x2

)]−1

= VΛ−1
m V,

for m = 1, 2 where the matrix V has the eigenvectors of any symmetric tridiagonal Toeplitz matrix of dimension N

as columns. The entries of V are not dependent on the entries of
M

(m)
II

∆t + A
(m)
II due to their symmetry. Moreover,

the matrices Λm are diagonal matrices having the eigenvalues of
M

(m)
II

∆t + A
(m)
II as entries. These are known and

given e.g. in [25, pp. 514-516]:

vij =
1√∑N

k=1 sin2
(

kπ
N+1

) sin

(
ijπ

N + 1

)
,

λmj =
1

3∆t∆x2

(
2αm∆x2 + 6λm∆t+ (αm∆x2 − 6λm∆t) cos

(
jπ

N + 1

))
,

for i, j = 1, ..., N and m = 1, 2.

The entries α1
NN and α2

11 of the matrices

(
M

(1)
II

∆t + A
(1)
II

)−1

and

(
M

(2)
II

∆t + A
(2)
II

)−1

, respectively, are now com-

puted through their eigendecomposition resulting in

α1
NN =

∑N
i=1

1
λ1
i

sin2
(
iπN
N+1

)

∑N
i=1 sin2

(
iπ
N+1

) =
s1∑N

i=1 sin2(iπ∆x)
, (42)

α2
11 =

∑N
i=1

1
λ2
i

sin2
(

iπ
N+1

)

∑N
i=1 sin2

(
iπ
N+1

) =
s2∑N

i=1 sin2(iπ∆x)
, (43)

with

sm =
N∑

i=1

3∆t∆x2 sin2(iπ∆x)

2αm∆x2 + 6λm∆t+ (αm∆x2 − 6λm∆t) cos(iπ∆x)
, (44)

for m = 1, 2.
To simplify this, the finite sum

∑N
i=1 sin2(iπ∆x) can be computed. We first rewrite the sum of squared sinus

terms into a sum of cosinus terms using the identity sin2(x/2) = (1 − cos(x))/2. Then, the resulting sum can be
converted into a geometric sum using Euler’s formula:

N∑

i=1

sin2(iπ∆x) =
1−∆x

2∆x
− 1

2

N∑

i=1

cos(2iπ∆x) =
1

2∆x
. (45)

Now, inserting (45) into (42) and (43) and these two into (40) and (41) we get for S(m) for m = 1, 2,

S(m) =
6∆t∆x(αm∆x2 + 3λm∆t)− (αm∆x2 − 6λm∆t)2sm

18∆t2∆x3
, (46)

With this we obtain an explicit formula for the optimal relaxation parameter Θopt in (39):
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Θopt =

(
2 +

6∆t∆x(α2∆x2 + 3λ2∆t)− (α2∆x2 − 6λ2∆t)2s2

6∆t∆x(α1∆x2 + 3λ1∆t)− (α1∆x2 − 6λ1∆t)2s1

+
6∆t∆x(α1∆x2 + 3λ1∆t)− (α1∆x2 − 6λ1∆t)2s1

6∆t∆x(α2∆x2 + 3λ2∆t)− (α2∆x2 − 6λ2∆t)2s2

)−1

.

(47)

We could not find a way of simplifying the finite sum (44) because ∆x depends on N (i.e., ∆x = 1/(N + 1)).
However, (47) is a computable expression that gives the optimal relaxation parameter Θopt of the NNWR algorithm
using implicit Euler for given ∆x, ∆t, αm and λm, m = 1, 2.

We are now interested in the asymptotics of (47) with respect to both spatial and temporal resolutions. To this
end, we rewrite (47) in terms of c := ∆t/∆x2:

Θopt =

(
2 +

6∆t(α2 + 3λ2c)−∆x(α2 − 6λ2c)
2s′2

6∆t(α1 + 3λ1c)−∆x(α1 − 6λ1c)2s′1)
+

6∆t(α1 + 3λ1c)−∆x(α1 − 6λ1c)
2s′1

6∆t(α2 + 3λ2c)−∆x(α2 − 6λ2c)2s′2

)−1

, (48)

where

s′m =
N∑

i=1

3∆t sin2(iπ∆x)

2αm + 6λmc+ (αm − 6λmc) cos(iπ∆x)
, (49)

for m = 1, 2.
Finally, we compute the limits c→ 0 and c→∞ of the iteration matrix Σ:

lim
c→0

Σ = lim
c→0


1−Θ


2 +

6α2∆t− α2∆t∆x
∑N
i=1

3 sin(iπ∆x)2

2+cos(iπ∆x)

6α1∆t− α1∆t∆x
∑N
i=1

3 sin(iπ∆x)2

2+cos(iπ∆x)

+
6α1∆t− α1∆t∆x

∑N
i=1

3 sin(iπ∆x)2

2+cos(iπ∆x)

6α2∆t− α2∆t∆x
∑N
i=1

3 sin(iπ∆x)2

2+cos(iπ∆x)






= 1−Θ

(
2 +

α2

α1
+
α1

α2

)
= 1−Θ

(
(α1 + α2)2

α1α2

)
,

and consequently

Θ{c1→0} =
α1α2

(α1 + α2)2
. (50)

lim
c→∞

Σ = lim
c→∞


1−Θ


2 +

18λ2∆tc− 18λ2∆t∆xc
∑N
i=1

sin(iπ∆x)2

1−cos(iπ∆x)

18λ1∆tc− 18λ1∆t∆xc
∑N
i=1

sin(iπ∆x)2

1−cos(iπ∆x)

+
18λ1∆tc− 18λ1∆t∆xc

∑N
i=1

sin(iπ∆x)2

1−cos(iπ∆x)

18λ2∆tc− 18λ2∆t∆xc
∑N
i=1

sin(iπ∆x)2

1−cos(iπ∆x)






= 1−Θ

(
2 +

λ2

λ1
+
λ1

λ2

)
= 1−Θ

(
(λ1 + λ2)2

λ1λ2

)
,

and consequently

Θ{c1→∞} =
λ1λ2

(λ1 + λ2)2
. (51)

The result obtained in (51) is consistent with the one-dimensional semidiscrete analysis performed in [21]. There,
a convergence analysis for the NNWR method in (6), (7) and (8) with constant coefficients using Laplace transforms
shows that Θopt = 1/4 when the two subdomains Ω1 and Ω2 are identical. Their result is recovered by our analysis
when one approaches the continuous case in space in (51) for constant coefficients, i.e, λ1 = λ2. In that case, one
gets

Θopt =
λ1λ2

(λ1 + λ2)2
=

λ2
1

4λ2
1

=
1

4
. (52)
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10 Numerical results

We now present numerical experiments to illustrate the validity of the theoretical results of the previous sections.
All the results in this section have been produced by implementing algorithms 4 and 7 in Python using the FE
discretization specified in the previous section. Firstly, we will show numerically that the NNWR algorithm using
implicit Euler preserves first order and using SDIRK2 second order. Secondly, we will show the validity of (47) as
estimator for the optimal relaxation parameter Θopt of the NNWR algorithm using implicit Euler. We will also
show that (47) is a good estimator for the multirate case both using implicit Euler and SDIRK2 and also for 2D
examples. Furthermore, we will also show that the theoretical asymptotics deduced both in (50) and (51) match
with the numerical experiments. Finally, a comparison between the Dirichlet-Neumann and the Neuman-Neumann
methods is included.

10.1 NNWR results

Figure 4 shows the error plots of the NNWR algorithm for the coupling of different materials using both implicit
Euler and SDIRK2. Physical properties of the materials are shown in table 1. We have considered two initial time
grids (for ∆tc = 1/10 and ∆tf = 1/100 given), which we then refine several times by a factor of 2:

• (C-C): Two coarse conforming time grids with ∆t1 = ∆t2 = ∆tc.

• (C-F): Nonconforming time grids with ∆t1 = ∆tc and ∆t2 = ∆tf .

Table 1: Physical properties of the materials. λ is the thermal conductivity, ρ the density, cp the specific heat
capacity and α = ρcp.

Material λ (W/mK) ρ (kg/m3) cp (J/kgK) α (J/K m3)

Air 0.0243 1.293 1005 1299.5
Water 0.58 999.7 4192.1 4.1908e6
Steel 48.9 7836 443 3471348

When coupling two different materials in the multirate case, we always assign the finer grid to the material
that has higher heat conductivity because it performs the heat changes faster. In space, we fix ∆x = 1/200 and
we compute a reference solution by solving problem (1) directly on a very fine time grid, with ∆t = 1/1000. One
observes in figure 4 that first and second order convergence is obtained in the nonconforming case for implicit Euler
and SDIRK2 respectively. Moreover, the errors obtained in the multirate case (C-F) are nearly the same as in the
coarser nonmultirate case (C-C). Thus, the accuracy of the multirate case is determined by its coarser rate. This is
consistent with [31, 8] where the convergence of the discrete multirate WR algorithm is independent of the ratio of
timesteps.

Figure 5 compares the behavior of the algorithm described in this paper using implicit Euler (left plot) and
SDIRK2 (right plot). It shows the convergence rates in terms of the relaxation parameter Θ for the one-dimensional
thermal coupling between air and water. We have plotted Σ(Θ) in (38) with the 1D space discretization specified in
section 9 and the experimental convergence rates for both the multirate and nonmultirate cases. The relevance of
the analysis presented above is illustrated in figure 5 because the algorithm is extremely fast at Θopt (converging in
2 iterations), but if one deviates slightly from Θopt, we get a divergent method. As can be seen in the left plot, the
experimental convergence rates for the nonmultirate case (C-C) are exactly predicted by the theory. Moreover, our
formula also predicts where the convergence rate of the NNWR algorithm in the multirate case (C-F) is minimal.
They are not identical because the linear interpolation performed at the space-time interface in the multirate case
is neglected in (33) to simplify the theoretical analysis. One can also observe in the right plot that Σ(Θ) using
implicit Euler estimates quite well the optimal relaxation parameter of the NNWR algorithm using SDIRK2 for
both the multirate and nonmultirate cases.

In order to illustrate the behavior of the NNWR method in the multirate case (∆t1 6= ∆t2), we have plotted in
figure 6 the convergence rates using the relaxation parameters Θopt(∆t1) and Θopt(∆t2) in (47) with respect to the
variation of ∆t1/∆t2 for the air-water coupling. In 6 we have chosen ∆t1/∆t2 = 1e− 3/2e− 1, 2e− 3/2e− 1, 1e−
2/2e− 1, 2e− 2/2e− 1, 5e− 2/2e− 1, 1e− 1/2e− 1, 2e− 1/2e− 1, 2e− 1/1e− 1, 2e− 1/5e− 2, 2e− 1/2e− 2, 2e−
1/1e−2, 2e−1/2e−3, 2e−1/1e−3 and ∆x = 1/100. One observes that the multirate method converges fast using
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TOL = 1e−15. Air-steel thermal interaction using implicit Euler and air-water thermal interaction using SDIRK2.
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Figure 5: Air-water convergence rates as a function of the relaxation parameter Θ in 1D. ∆x = 1/100, ∆tc = 100 and
∆tf = 1. Left : Σ(Θ) in (38) and the experimental convergence rates both for the multirate (C-F) and nonmultirate
(C-C) cases using implicit Euler. Right : Σ(Θ) in (38) using implicit Euler and the experimental convergence rates
both for the multirate (C-F) and nonmultirate (C-C) cases using SDIRK2.

any of the two relaxation parameters for both implicit Euler and SDIRK2. Nevertheless, one can also see in figure
6 that even though we have not performed a specific analysis for the optimal relaxation parameter in the multirate
case, the Θopt in (47) can be used as an estimator. More specifically, we conclude from figure 6 that one can use
Θopt(∆t2) when ∆t1 < ∆t2 and Θopt(∆t1) when ∆t1 > ∆t2.

Figure 7 shows the optimal relaxation parameter Θopt with respect to the parameter c := ∆t/∆x2 using both
implicit Euler and SDIRK2. We have chosen ∆t = 1e−9, 1e−8, ..., 1e8, 1e9 and ∆x = 1/100. For implicit Euler, we
have plotted the function Θopt(c) in (48). For SDIRK2, we have plotted a sister function Θopt(c) that can be found
applying exactly the derivation presented in sections 8 and 9 to the discretized SDIRK2-NNWR method introduced
in section 7.2. One can see that the two time discretization methods have a similar behavior when varying c. This
illustrates why the optimal relaxation parameter Θopt computed in (47) for implicit Euler is also valid for SDIRK2
as observed in figure 5. Furthermore, in 7 we observe that the optimal relaxation parameter for any given ∆t and
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Figure 6: Convergence rates as a function of the temporal ratio ∆t1/∆t2 for the air-water coupling in 1D. We plot
the convergence rates in the multirate case (∆t1 6= ∆t2) using the relaxation parameters Θopt(∆t1) and Θopt(∆t2)
in (47). ∆t1/∆t2 = 1e − 3/2e − 1, 2e − 3/2e − 1, 1e − 2/2e − 1, 2e − 2/2e − 1, 5e − 2/2e − 1, 1e − 1/2e − 1, 2e −
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Left : Implicit Euler. Right : SDIRK2.

∆x is always between the bounds of the theoretical asymptotics deduced both in (50) and (51), tending to them in
the temporal and spatial limits respectively.
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Figure 7: Optimal relaxation parameter Θopt as a function of the parameter c := ∆t/∆x2 for both implicit Euler
and SDIRK2 in 1D. The constant lines Θ{c→∞} and Θ{c→0} represent the spatial and temporal asymptotics of Θopt

in (48). ∆t = 1e− 9, 1e− 8, ..., 1e8, 1e9 and ∆x = 1/100. Left : Water-steel coupling. Right : Air-Water coupling.

We now want to demonstrate that the 1D formula (47) is a good estimator for the optimal relaxation parameter
Θopt in 2D. Thus, we now consider a 2D version of the model problem consisting of two coupled linear heat equations
on two identical unit squares, e.g, Ω1 = [−1, 0]× [0, 1] and Ω2 = [0, 1]× [0, 1].

Figure 8 shows the convergence rates in terms of the relaxation parameter Θ for 2D examples. On the left we
have the thermal coupling between air and steel and on the right between air and water. One can observe that the
convergence rates of the NNWR method using Θopt from (47) in the 2D examples are worse than in 1D, but still
optimal. Hence, we suggest to use Θopt in 2D as well, otherwise the method is divergent.
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Figure 8: Convergence rates as a function of the relaxation parameter Θ in 2D. Σ(Θ) in (47) using implicit Euler and
the experimental convergence rates both for the multirate (C-F) and the nonmultirate (C-C) cases using implicit
Euler and SDIRK2. ∆x = 1/10, ∆tc = 1/10 and ∆tf = 1/50. Left : Air-steel coupling. Right : Air-water coupling.

10.2 NNWR - DNWR Comparison

Finally, we compare the Dirichlet-Neumann and the Neumann-Neumann couplings. We consider the FE discretiza-
tion specified in section 9 and the implicit Euler as a time integration method for both DNWR and NNWR with
∆x = 1/500. In addition, we will use Θ = 1/2 as the optimal relaxation parameter for the DNWR algorithm as
suggested in [13] for constant material coefficients. Note that the optimal relaxation parameter for the NNWR
method is Θopt = 1/4 (see (47)) in the case of constant coefficients because λ1 = λ2 and α1 = α2.

Table 2 shows the time needed to solve the 1D steel-steel coupling in the nonmultirate case. The number of
fixed point iterations needed to achieve a chosen tolerance of 1e − 8 is also given. One can see that the DNWR
method is sightly more efficient than the NNWR method. Moreover, the NNWR algorithm runs in parallel on two
different processors using double the amount of computational power than the DNWR. Thus, the DNWR method
is a better option for this case because it is cheaper and faster.

Table 2: Computational effort of DNWR and NNWR for the 1D steel-steel coupling in the nonmultirate case.
∆x = 1/500 and TOL = 1e− 8. Number of fixed point iterations in brackets.

∆t Comp. Time - NNWR (s) Comp. Time - DNWR (s)

1 0.07 (2 iterations) 0.05 (2 iterations)
1/10 0.42 (2 iterations) 0.3 (2 iterations)
1/50 1.86 (2 iterations) 1.25 (2 iterations)
1/100 3.74 (2 iterations) 2.47 (2 iterations)

However, the NNWR algorithm beats the DNWR algorithm by far when we move to the multirate environment.
This is illustrated in table 3 where the computational effort used to solve the 1D steel-steel coupling in the multirate
case is shown. There, one can see how the number of fixed point iterations needed to achieve a tolerance of 1e− 8
using DNWR grows exponentially when the difference between ∆t1 and ∆t2 increases. On the contrary, the NNWR
method is very efficient even when there is a huge difference between ∆t1 and ∆t2. Thus, we recommend the NNWR
algorithm when coupling two fields with nonconforming time grids.

Finally, we have included a comparison for the 1D air-steel coupling in the multirate case. This interaction
between air and steel has the particularity of strong jumps in the material coefficients across the space interface. In
this case, we have chosen Θ = 1/2 for DNWR because even though in [13] it is only proved optimal for the case of
constant coefficients, they show in the numerical results section that also applies to an example where the diffusion
coefficient varies spatially. Moreover, Θopt in (47) is chosen for the NNWR method. Table 4 shows a comparison
of the computational time employed to solve the 1D air-steel coupling in the multirate case. One can see that
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Table 3: Computational effort comparison of DNWR and NNWR for the 1D steel-steel coupling in the multirate
case. ∆x = 1/500 and TOL = 1e− 8. Number of fixed point iterations in brackets.

∆t1 −∆t2 Comp. Time - NNWR (s) Comp. Time - DNWR (s)

1/5 - 1/10 0.48 (3 iterations) 0.70 (6 iterations)
1/5 - 1/50 1.5 (3 iterations) 26.98 (71 iterations)
1/5 - 1/100 2.74 (3 iterations) Not convergent

Table 4: Computational effort comparison of DNWR and NNWR for the 1D air-steel coupling in the multirate
case. ∆x = 1/500 and TOL = 1e− 8. Number of fixed point iterations in brackets.

∆t1 −∆t2 Comp. Time - NNWR (s) Comp. Time - DNWR (s)

1/5 - 1/10 0.47 (3 iterations) 1.24 (12 iterations)
1/5 - 1/50 2.20 (4 iterations) 4.65 (12 iterations)
1/5 - 1/100 3.95 (4 iterations) 8.77 (12 iterations)

the NNWR method is more efficient than the DNWR method because it needs way less fixed point iterations to
achieve the same tolerance. Note that the number of iterations increases when the time resolution decreases for
the NNWR method. This happens because the analysis performed in section 8 to find the optimal relaxation
parameter takes into account only one single time step (see (33)). Therefore, in the case of multiple time steps,
Θopt in (47) is a very good choice, but it is not optimal. Besides that, the large amount of iterations performed
by the DNWR algorithm hints that Θ = 1/2 might not be the optimal relaxation parameter when having strong
jumps in the material coefficients for the fully discrete problem. Thus, performing an specific analysis to find the
optimal relaxation parameter of the DNWR algorithm is left for future research.

11 Summary and conclusions

We suggested a new high order parallel NNWR method with nonconforming time grids for two heterogeneous
coupled heat equations and studied the optimal relaxation parameter in terms of the material coefficients and the
temporal and spatial resolutions ∆t and ∆x. To this end, we considered the coupling of two heat equations on two
identical domains. We assumed structured spatial grids and conforming time grids on both subdomains to derive
a formula for the optimal relaxation parameter Θopt in 1D using implicit Euler. Furthermore, we determined the
limits of the optimal relaxation parameter when approaching the continuous case either in space (λ1λ2/(λ1 + λ2)2)
or time (α1α2/(α1 + α2)2). The method using Θopt converges extremely fast, typically within two iterations. This
was confirmed by numerical results, where we also demonstrated that the nonmultirate 1D case gives excellent
estimates for the multirate 1D case and even for multirate and nonmultirate 2D examples using both implicit Euler
and SDIRK2. In addition, we have shown that the NNWR method is a more efficient choice than the classical
DNWR in the multirate case.
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