LUND UNIVERSITY

An Empirically Based Theory for Open Software Engineering Tools

Munir, Hussan

2018

Document Version:
Publisher's PDF, also known as Version of record

Link to publication

Citation for published version (APA):
Munir, H. (2018). An Empirically Based Theory for Open Software Engineering Tools. Department of Computer
Science, Lund University.

Total number of authors:
1

General rights

Unless other specific re-use rights are stated the following general rights apply:

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors
and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the
legal requirements associated with these rights.

» Users may download and print one copy of any publication from the public portal for the purpose of private study
or research.

* You may not further distribute the material or use it for any profit-making activity or commercial gain

* You may freely distribute the URL identifying the publication in the public portal

Read more about Creative commons licenses: https://creativecommons.org/licenses/

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove
access to the work immediately and investigate your claim.

LUND UNIVERSITY

PO Box 117
221 00 Lund
+46 46-222 00 00

https://portal.research.lu.se/en/publications/7d68bd26-9b9b-4a0b-90a5-fd4a9d85bae3

An Empirically Based Theory for Open
Software Engineering Tools

Hussan Munir

Doctoral Dissertation, 2018
Department of Computer Science
Lund University

ii

LU-CS-DISS 2018-2
Doctoral Dissertation 59, 2018

ISBN: 978-91-7753-738-0 (Printed)
ISBN: 978-91-7753-739-7 (Electronic)
ISSN: 1404-1219

Department of Computer Science
Lund University

Box 118

SE-221 00 Lund

Sweden

Email: hussan.munir@cs.Ith.se
WWW: http://cs.lth.se/hussan_munir

Printed in Sweden by Tryckeriet i E-huset, Lund, 2018

(© 2018 Hussan Munir

ABSTRACT

Many companies and developers from OSS communities create open tools col-
laboratively in which software developers improve upon the code and share the
changes within the community. Open tools (e.g., Jenkins, Gerrit, and Git) of-
fer features or performance benefits that surpass their commercial counterparts in
the core product development. Participation in OSS tools communities greatly
dismantled the closed innovation model and lured organizations towards Open In-
novation (OI). Harnessing the external knowledge that OI offers, requires better
understanding regarding what to develop internally and what to acquire from out-
side the organization, how to cooperate with potential competitors, and when to
conceal or reveal code while working with OSS communities.

The aim of this thesis is to investigate how software-intensive organizations
utilize the external and internal knowledge from OSS tools communities using
Open Innovation to improve their core product development. First, this aim was
achieved by exploring and reporting the existing evidence of OI in software en-
gineering. Second, by providing a solution for software-intensive organizations
regarding how to choose the right level of openness while working with OSS tools
communities. Finally, we validated the proposed solution in multiple organiza-
tions.

The thesis followed an empirical approach by conducting a systematic map-
ping study, case study, design science based contribution acceptance model, theory
creation and validation of the theory. First, we conducted a systematic mapping
study to synthesize the existing evidence on Ol in software engineering and iden-
tified the research gaps. Second, we conducted an exploratory case study at Sony
Mobile to explore how a software organization uses OSS tools communities to fa-
cilitate its core product development. Third, we proposed a theory of openness for
organizations which provides guidelines regarding how to work with OSS tools
communities. Fourth, we presented a contribution acceptance model and meta-
model to assist strategic product planning in what to develop internally and what
to share as OSS in the proprietary products.. Finally, we validated the proposed
theory of openness for tools in two automotive companies by conducting focus
groups.

iv

The main conclusion of the thesis is that software-intensive organizations need
to acquire external knowledge from OSS tools communities to accelerate their
internal innovation process. Improved and flexible development tools provide op-
portunities to shorten the development time, improves new product releases and
upgrades, frees up developers time, increased quality assurance, sharing the main-
tenance cost and steer communities to facilitate organization’s business models.
However, it can only be achieved if there are well-defined guidelines for devel-
opers and managers to operationalize working with OSS tools communities. This
thesis presents a theory of openness to facilitate managers on how to works with
OSS tools communities. The theory suggests that the top management needs to de-
velop new roles and legal procedures to educate developers regarding how to use
and contribute to OSS tools communities for a faster development environment.
This openness provides opportunities for the organizations to reduced develop-
ment cost, shorten development time and process and product innovation.

POPULAR SUMMARY

IT IS MORE BLESSED TO GIVE
THAN TO RECEIVE

HussAN MUNIR, DEPARTMENT OF COMPUTER SCIENCE

Open Innovation (OI) allows knowledge flow both inside-out and outside-in
the company, and may or may not be attached to monetary transactions.

OI penetrates several industries, as many companies discover that their busi-
ness may benefit from sharing knowledge with other companies. The use of pro-
prietary tools for software development has several drawbacks, e.g. expensive
licensing costs, lack of customizability, delayed implementation of requirements,
the inability of fixing things in-house, and difficulty in finding solutions that meet
current needs. On the other hand, the use of open tools for software development
in the companies is an area which companies apply OI principles to. By using open
tools for software development companies share the innovation cost and rewards
and also risks.

Why should companies open up?

Software companies cannot afford to work in a closed way due to the continuous
need for automation and increased speed. Developing tools internally for software
development may entail significant costs and companies may miss the latest trends
in OSS tools ecosystem. Therefore, companies need to tag along with open tools
communities to extract the external knowledge in a timely manner. From two re-
search studies, we distilled a set of triggers that drive companies towards applying
Ol strategies in sharing their tools openly. The triggers include aspects of access to
workforce, development speed, reduced license costs, work-flow flexibility, main-
tenance costs and increased quality assurance.

The key findings of this research entail how software companies may choose
the right level of openness in their proprietary products and open tools used for the
development of company’s internal products. First, the contribution acceptance

viii

model is presented for companies, which assists in what to develop internally and
what to share and take from open source software. Second, the theory of openness
helps organizations how to develop and use open tools communities. We have
presented different strategies for companies to choose the right level of openness.
While working with open tools, it is paramount to share the source code in order to
avoid getting trapped into internal maintenance and integration cost. Companies
should strive for standard solutions and reduce the number of variants of open tools
by contributing their source code towards open source communities.

Implications for companies

Software companies use OSS tools communities as an implementation of OI to
create business value for their core products. Therefore, they may achieve OI by
choosing the right level of openness. Companies may assign dedicated resources to
work with open tools communities, with the goal to acquire and assimilate know-
ledge in the company’s core product development.

In order to create new open tools communities and steer them towards the
company’s business model, companies need to invest more of their employees’
time in open source communities. Then they may gain advantages, such as ac-
cess to skilled resources, better continuous integration integration process, faster
upgrades and releases, reduced development time, and share the maintenance cost
with other developers in the open source communities.

ix

to my father, the most honest man I know,

to my mother, the most patient and selfless lady I know,

to my sister, for all the support, guidance and love,

to my brother, for his insights and humor in growing up together

“There is no beauty better than intellect” - Prophet Muhammad (PBUH)

ACKNOWLEDGEMENTS

This work was funded by Synergies project, grant 621-2012-5354 from the Swedish
Research Council and partly funded by the EASE industrial excellence center.

First praise is to Allah, the Almighty, on whom ultimately I depend for suste-
nance and guidance. You have given me the power to believe in my passion and
pursue my dreams. I could never have done this without the faith I have in you,
the Almighty.

My sincerest thanks are extended to my supervisors Prof. Dr. Per Runeson
and Dr. Krzysztof Wnuk for the continuous support of my Ph.D. study and related
research, for their patience, motivation, and immense knowledge. Their guidance
helped me in all the time of research and writing of this thesis. I could not have
imagined having better advisors and mentors for my Ph.D. study.

The research presented in this thesis was conducted in close cooperation be-
tween academia and industry. Therefore, I am particularly grateful to Sony Mobile
and two anonymous case companies. I am also thankful to all of the Department of
Computer Science faculty members and the Software Engineering Research Group
for their support and research collaborations.

Finally, this journey would not have been possible without the support of my
family. I am eternally grateful for encouraging me in all of my pursuits and inspir-
ing me to follow my dreams. I always knew that you believed in me and wanted
the best for me. Thank you for teaching me that my job in life was to learn, to be
happy, and to know and understand myself; only then could I know and understand
others. You are indispensable. Heartfelt thank you.

Hussan Munir

LIST OF PUBLICATIONS

In the introduction chapter of this thesis, the included and related publications
listed below are referred to by Roman numerals.

Publications included in the thesis

I

II

III

v

Open Innovation in Software Engineering: A Systematic Mapping Study
Hussan Munir, Krzysztof Wnuk and Per Runeson
Empirical Software Engineering, (2016) 21: 684-723.

Open Innovation using Open Source Tools: A Case Study at Sony Mo-
bile

Hussan Munir, Johan Linédker, Krzystof Wnuk, Per Runeson and Bjorn Reg-
nell, Empirical Software Engineering, (2018) 23: 186-223.

A Theory of Openness for Software Engineering Tools in Software Or-
ganizations

Munir, Hussan, Per Runeson, and Krzysztof Wnuk.

Information and Software Technology,(2018) 97: 26-45.

Motivating the Contributions: An Open Innovation perspective on What
to Share as Open Source Software

Linaker, Johan, Hussan Munir, Krzysztof Wnuk, and Carl Eric Mols.
Journal of Systems and Software, (2018) 135: 17-36.

Open Tools for Software Engineering using the Theory of Openness : A
Validation Study in the Automotive Industry

Hussan Munir, Per Runeson, Krzystof Wnuk and Johan Linéker, Submitted
to ESEM 2018.

Xiv

Related Publications

VI A Survey on the Perception of Innovation in a Large Product-

VIl

focused Software Organization

Johan Linaker, Hussan Munir, Per Runeson, Bjorn Regnell, Claes Schrewelius
6th International Conference on Software Business-ICSOB, 2015, pp
66-80.

Software Testing in Open Innovation: An Exploratory Case study
of Acceptance Test Harness for Jenkins

Hussan Munir, Per Runeson

International Conference on Software and System Process (ICSSP),
2015, pp 187-191.

XV

Contribution statement

All papers included in this thesis have been co-authored with other researchers.
The authors’ individual contributions to Papers I-V are as follows:

Paper 1

Hussan Munir is the lead author responsible for the designing the research plan and
executing the study followed by a validation and paper review from Dr. Krzysztof
Wnuk and Prof. Per Runeson. Hussan Munir was responsible for data collection,
analysis and writing the paper.

Paper 11

Hussan Munir is the first author with the main responsibility for the research effort
together with Johan Lindker. Hussan Munir and Johan Lindker wrote a majority
of the text after performing the data mining and data analysis, and the co-authors
contributed with constructive reviews. Dr. Krzysztof Wnuk was also involved in
conducting the interviews with industry professionals.

Paper III

Hussan Munir is the lead author responsible for the research design and literature
analysis process in the creation of theory. Prof. Per Runeson and Dr. Krzysztof
Wnuk were involved in giving the feedback in all phases of the paper.

Paper IV

Johan Linaker is the lead author together with Hussan Munir and Dr. Krzysztof
Wnuk. I was responsible for designing, executing, validating and writing the re-
search work with other authors.

Paper V

Hussan Munir proposed the idea of using repertory grid analysis and designed the
validation study to conduct the workshops at the case companies. Prof. Per Rune-
son and Dr. Krzysztof Wnuk were involved in giving feedback in designing and
writing this paper. However, the workshops were conducted by Hussan Munir and
Prof. Per Runeson at the case companies.

CONTENTS

Introduction 1
1 Introduction L 1
2 Related work and terminology 4
3 Researchgoals 6
4 Research methodology 7
5 Results and synthesis 10
6 Ethical aspects and threats to validity 15
7 Futurework 17
8 Conclusion and main contributions 17
Included papers 19
I Open Innovation in Software Engineering: A Systematic Mapping
Study 21
1 Introduction 22
2 Relatedwork 23
3 Research methodology 29
4 Resultsand analysis 35
5 Discussion. L o 56
6 Implications for research and practice 59
7 Conclusions e 61
Appendix A Rigor and Relevance Criteria 63
1 Rigor 63
2 Relevance 64
Appendix B Database search strings 67
II Open Innovation through the Lens of Open Source Tools: An ex-
ploratory case study at Sony Mobile 69
1 Introduction 70

xviii CONTENTS
2 Relatedwork, 72
3 Casestudydesign L. 74
4 Quantitative analysis Lo 83
5 Qualitative analysis 88
6 Results and discussion 98
7 Conclusions 105
Appendix C Supplementary interview questionnaire 107

IIT A Theory of Openness for Software Engineering Tools in Software Or-

ganizations 111
1 Introduction oL 112
2 Background studies and related work L. 114
3 Researchdesign 116
4 Narrative synthesis 119
5 Theory formulation 130
6 Conclusion and futurework 140
Appendix D Survey design 141
1 Demographics 142
Appendix E Why get organizations involved in OI using OSS? 145
1 Operationalization of Open Innovation in software engineering . . 147
2 Quality assuranceo 148
Appendix F ' Who - Organizations involved in Open Innovation 149
1 Example of raw data collected from S1,S2andS3 155
2 Rigor and relevance criteria 157

IV Motivating the Contributions: An Open Innovation Perspective on

What to Share as Open Source Software 159
Introduction L 160
Relatedwork 161
Research methodology 169
The Contribution Acceptance Process (CAP) Model (RQ1) 177
Operationalization of the CAP model (RQ2) 187
Combining the CAP Model and the Information Meta-model . . . 190
Casestudies i 193
Discussion 201
Conclusion 204

O 00 9 N L AW

CONTENTS Xix

V Open Tools for Software Engineering using the Theory of Openness:

A Validation Study in the Automotive Industry. 207
1 Introduction 208
2 Relatedwork 210
3 Research methodology 211
4 Results and discussion 218
5 Conclusions e e 224

References 225

INTRODUCTION

1 Introduction

The rising cost and the increased demand for delivering products with the faster
time to market have put extensive pressure on many organizations [27]. Software-
intensive organizations (SIO) are constantly reconsidering which strategies are
successful in generating ideas and bringing them to market. These strategies entail
harnessing external ideas while leveraging their in-house R&D outside their cur-
rent operations [31]. Organizations struggle to remain competitive using the ex-
isting models of innovation and need a shift in the ways of working by combining
the internal ideas with external ideas. One possible way to reduce the develop-
ment cost and shorter time to market is to use Open Innovation (OI) to harvest the
external ideas.

OI is an emerging management paradigm which originated from high tech-
nology industry practices in the US and Japan [30]. OI can be traced back to
Allen’s [6] collective invention in 1980’s. Two decades after Allen’s paper from
1983, Henry Chesbrough [30] coined the term Open Innovation as “a distributed
innovation process based on purposively managed knowledge flows across organi-
zational boundaries, using pecuniary and non-pecuniary mechanisms in line with
the organization’s business model”. This phenomenon is explained with the help
of Fig.1. The dotted line in the funnel shows the boundary of the company where
ideas can seep in and out. The bubbles represent the research projects and arrows
highlight the flow of ideas in and out of the companies. Furthermore, the vertical
line in Fig.1 separates the research phase from the development phase of the com-
pany. Ideas can originate from inside the company’s research process, but some
of the ideas may seep out of the companies, either in the research phase or later in
the development phase. These innovative ideas are utilized by companies to create
a new market or make use of the existing market. One typical example of idea
leakage is a start-up company, often initiated by some of the company’s own per-
sonnel. Ideas can also start outside the firm’s own labs and move inside. Google’s
Android was taken in by companies like Sony and Samsung to adapt it in a way

2 INTRODUCTION

which was more in line with their business model and thus a clear case of utilizing
an external project to access the existing Android market.

OI initiated an unabated interest among researchers in innovation manage-
ment [83], economics, psychology, sociology, and also Software Engineering [182].
The work initiated by Chesbrough inspired both scholars and practitioners to re-
think the design of the innovation strategies in a networked environment [83].
OI encompasses various forms of knowledge transfer such as inbound (outside-
in knowledge), outbound (inside-out knowledge), and coupled process (outside-in
and inside-out knowledge) [66].

Figure 1: Open Innovation

Research —» Development ——»
~
\\
\\
\‘\\ O 1> O —> O — New market
=

-

Research project \\‘

\ \ O O v O — Current market

© o 12

’/‘
oNe //‘/ -
-

Ppale
08

Firms boundaries Ref: Chesbrough 2003

The novelty of OI was questioned by an argument that closed innovation might
have been the exception in the history, characterized mostly by open innovation
practices [133]. In response, Chesbrough undercuts the logic of the Closed Inno-
vation model of R&D and developed the logic of the Open Innovation model due
to the changed conditions under which organizations innovate. For example, the
rise of the internet has made the knowledge access and sharing capabilities easier
using Open Source Software (OSS) [30].

In the field of software engineering, the success of Open Source Software
(OSS) indicates its existence before the term OI was coined [112]. The introduc-
tion of OSS in commerecial settings have opened up new possibilities for innovation
in software-intensive organizations. This shift towards openness indicates that the

1 Introduction 3

internal R&D is no longer the only strategic asset for the companies in creating
products and services. Access to, and interplay with, external sources and actors
provide not only new opportunities but also create new challenges. One specific
type of OSS is software engineering tools used in the development of software-
intensive products. The tools themselves are not the source of revenue for the
software-intensive organizations, but they rely heavily on them to improve the
software development process. Further, the costs of improving the tools and keep-
ing them up to date may be significant, and thus software-intensive organizations
may want to share the costs with other organizations [27].

However, it should be noted that OSS is not equivalent to OI. OSS is used as
an example of OI in the studies included in this thesis [29]. Both OSS and OI
tend to favor the use of external knowledge together with internal knowledge as
a mutually beneficial measure for organizations and communities, however, there
is a distinction between OI and OSS. First, OSS and OI may differ by using dif-
ferent intellectual property rights (IPR) strategies. For example, when IBM cre-
ated the Eclipse platform, they invited competing companies to cooperate in an Ol
ecosystem [187]. In OI, companies may retain the ownership of IPR as oppose to
OSS. Secondly, companies leading OI complement their internal closed innova-
tion process by acquiring external knowledge [137]. Thirdly, OI companies have
a business model influenced by the definition of OI, where differential assets are
kept secret to create value. Therefore, the degree of openness lies in the hands
of the companies in relation to OSS communities. Finally, companies try to gov-
ern and steer open tools platform to facilitate their internal product development by
co-developing development tools with other stakeholders in the ecosystem. There-
fore, OSS is a natural way of implementing Ol in software-intensive product de-
velopment organizations, where OSS communities act as innovation catalyst.

Another example of OI can be explained by Linux development when IBM
donated hundreds of patents and invested more than $100 million a year to sup-
port the Linux OS. One of the OI advantages is that the risks and costs of de-
velopment can be shared among the stakeholders. Although IBM invested a sig-
nificant amount of money in the Linux development, other firms such as Nokia,
Hitachi, and Intel also made substantial investments as well [110]. By supporting
the Linux, IBM was strengthening its own business model in selling proprietary
solutions for its clients running on top of Linux. Additionally, the openness of
Linux also gave IBM more freedom to co-develop products with its customer [30].

As OSS matured and became commercially viable to deliver high-quality prod-
ucts, software-intensive organizations started using them for the development of
their proprietary products in two possible scenarios. First, when an organization
decides to release proprietary code as OSS and create a community or ecosystem
to improve its internal product. Second, when an organization wants to use OSS
code for tools or for the code of the product. In this thesis, we proposed Contribu-
tion Acceptance Process (CAP) model and Theory of openness for tools to address
both scenarios.

4 INTRODUCTION

2 Related work and terminology

Despite the wide interest in several domains, Ol is far from thoroughly researched
in software engineering. OSS is often explored as one of the main examples of OI
in order to incorporate the external knowledge and innovation to internal product
innovation. However, Munir et al. [Paper I] recognized the lack of systematic
efforts to summarize and synthesize the state of the research on OI in software
engineering. The previously attempted reviews were either partly systematic [83,
186, 196] or focused on the metrics used to measure innovation in OSS [50].

Organization use different strategies to engage in OSS tools communities [41],
e.g. adopting selective revealing [76] or OI models [27]. West et al. [188] high-
lighted the strategies that organizations use to acquire, incorporate the external
knowledge into their internal innovation processes and exploiting the Intellectual
Property Rights (IPR) by a selective revealing strategy. Stuermer et al. [176] con-
ducted a study on applying the private collective model at Nokia to identify the
incentives for individuals investing in OSS and the firms. Nokia benefited from
the introduced private collective model in terms of learning effects, reputation
gain, reduced development effort and low knowledge protection costs. On the
other hand, the cost of implementing the private collective model entails diffi-
culty to differentiate, guard business secrets, reduce the community barriers and
give up organizational control. Bosch [23] claims that speed, data and ecosystems
are the main factors that impact software-intensive organizations in their software
engineering practices. At the same time, the size of software-intensive products
continues to grow. This growth incurs the need for faster and better adoption of
applications, technologies, components, services, and ecosystem partners. In or-
der to address this challenge, software-intensive organizations may utilize OSS
tools communities to increase the speed, reduce the development and maintenance
costs.

In addition, OI entails challenges on process and business levels. West et
al. [191] highlighted the business related challenges faced by the leading firms
in the development of Symbian: 1) balancing the interests of all stakeholders, 2)
knowing the requirements for a product that has yet to be created, and 3) priori-
tizing the conflicting needs of all stakeholders. Software-intensive organizations
intending to indulge themselves in OSS communities, need to adjust their software
development processes in their efforts to fix bugs and contribute new features to
the community. These efforts might reduce the maintenance cost compared to
in-house software development. Furthermore, OSS involvement may also entail
different modes of working in terms of dedicated resouces [108, 194] and OSS
governance mechanisms [110] to facilitate software development in an OI con-
text. Dahlander [42] concluded that initiating an OSS project is often a pragmatic
way of attracting the skilled workforce from communities. Moreover, having a
dedicated employee working close to the community seems to be an enabler for
not only building a good reputation of an organization in the community, but also

2 Related work and terminology 5

allow exercising the governance/control mechanism to steer the development to-
wards the organization’s business model. Van der Linden et al. [120] concluded
that when a software product loses its competitive value in terms of profitability,
customers, innovation and learning [97] with the passage of time due to improve-
ments and ever-growing size of the software, it becomes a good candidate for OSS
development.

Table 1: Definitions
Terms Definition

Jenkins Jenkins is the leading open source continuous in-
tegration server. It provides 1000+ plugins built in
Java to support building and testing [2].

Gerrit It is a web-based code review tool built on top of
the git version control system [3].

Product innovation Product innovation is the introduction of a good or
service that is new or significantly improved with
respect to its characteristics or intended uses [4].

Process innovation Process innovation is the implementation of a new
or significantly improved production or delivery
method [4].

Business innovation ~ Business innovation is the implementation of
a new marketing method involving significant
changes in product design or packaging, product
placement, product promotion or pricing [4].

Organizational inno- Organizational innovation is the implementation

vation of a new organizational method in the firm’s busi-
ness practices, workplace organization or external
relations [4].

Software-intensive It refers to organizations developing products or

product organization services with a substantial amount of software
defining the product/service behavior, mostly em-
bedded in physical products.

However, the shift from the Closed innovation to the Open innovation model
poses significant challenges to software-intensive organizations in terms of when
to conceal and when to reveal in relation to their competitors. The openness chal-
lenges software-intensive organizations on both operational and strategic levels.
This thesis focuses on investigating the OSS tools communities considered repre-

6 INTRODUCTION

sentative examples of OI to investigate the impacts of OI on firms core product
development. Particularly, the triggers for software-intensive organizations to uti-
lize the OSS tools communities and the innovation outcomes attached to it. Fur-
thermore, the thesis proposes a theory of openness which provides guidelines for
software-intensive organizations to make strategic decisions regarding OSS fools
(e.g., Jenkins and Gerrit), which are not the core business (non-pecuniary) for the
organization but are vital to support the internal product development. The defini-
tion of the terms used in the thesis can be seen in Table 1.

3 Research goals

The overall aim of the thesis is to better understand OI in software engineering,
thus the following Research Goals (RG) are formulated.

RG1: To synthesize the research knowledge on OI for software-intensive devel-
opment organizations.

RG2: To explore how software-intensive development organizations use OSS tools
as an enabler for OI and innovation outcomes.

RG3: To provide strategic guidelines for managers regarding when and how to be
open in relation to OSS tools and proprietary products.

RG4: To validate the strategic guidelines in relation to RG3 with practitioners
working in the software-intensive development organizations.

Figure 2 provides an overview of the research process. As can be seen in
Figure 2, RGI triggers Paper I to identify OI state of the research in software en-
gineering. OI has attracted a lot of researchers across different domains. However,
it remains unexplored in software engineering. Paper I systematically explores
the existing OI literature with the focus on software engineering. The outcome of
Paper I is the literature review.

RG?2 is relevant to investigate OI on the use of OSS tools in a sofwtare prod-
uct development and influenced by RGI. The literature lacks evidence about the
performance of OI on the fined grained product development level [30]. Paper II
is aimed at exploring why and how a software-intensive organization adopts OI
using OSS tools communities. In addition, Paper II also points out the innovation
outcomes gained by the case organization. The outcome of Paper II is the detailed
case study understanding of OI in a software-intensive company.

RG3 leads to two solution papers. Paper III aims to define support for strategic
decisions in software organizations in relation to OSS tools and their impact on
core product development. Paper IV investigates strategic decisions for software-
intensive organizations on the core product level. However, the focus of this thesis
remains on the use of OSS tools in organization’s internal product development.

4 Research methodology 7

The outcome of Paper III and Paper 1V is the theory of openness and contribution
acceptance process model respectively.

RGH4 leads to Paper V, which is a validation study for the theory of openness
in two automotive companies.

Figure 2: Research overview and mapping of RGs to papers

Research Research

Paper IDs Method Phases

RG1— | Paperl | — Mapping study §
s
o
3
- &
RG2 Paper |l > Case study '§
L~ |
| Surveystudy | I — |
— Paperll | —» | Theory bunrl‘dnfg
using synthesis :
RG3 g
3

Design science

L» —' based CAP

model

[<

<jlalidation |

Theory
RG4 — - validation

4 Research methodology

Several research methods were utilized to meet the research goals. The thesis
mainly consists of exploratory and evaluative empirical research [193], based on a

INTRODUCTION

systematic mapping study [147], survey [59] and case study [159] research method

(see Table 2).

Table 2: Research strategy used for each paper based on pp. 15 [159]

Paper Id Research Objec- Research Strat- Design Type
tive egy

Paper I Exploratory Systematic map- Flexible
ping study

Paper 11 Exploratory Case study Flexible

Paper 111 Solution Theory building Flexible + Fixed
and Survey

Paper IV Solution Case study us- Flexible
ing design sci-
ence principles

Paper V Validation Case study Flexible

Paper I presents a systematic mapping study designed to explore the OI liter-
ature on software engineering. Prior reviews were either not systematic [83, 196],
partly systematic [186] or, for example, focus on the history or evolution of OSS or
available innovation metrics [50]. Moreover, these reviews lack objective quality
criteria to support the interpretation of the results to evaluate OI performance. It is
to be noted that the main focus of Paper I was to explore OI in software-intensive
organizations and not the use of software to support OI. Furthermore, it was not
possible to start with the clear-cut research questions due to lack of evidence for
a systematic literature review [98]. Therefore, a systematic mapping study was
chosen over the systematic literature review in order to explore the OI notion in
software engineering.

Paper II presents a case study, which not only investigates OI in an exploratory
manner but also makes an attempt to evaluate OI performance in a software-
intensive organization. The research questions in Paper II are partly based on
the findings from Paper I. First, the study explores the top contributors to the de-
velopment of Gerrit and Jenkins (see Table 1). Second, it explains the transition
process from Closed Innovation to Open Innovation, and the key triggers for the
case company towards this transformation. Third, it maps the existing practices of
requirements engineering and testing with the identified OI challenges. The study
made an attempt to understand how the aforementioned software engineering pro-
cesses interact in OI. In order to achieve the aims, the study uses the flexible case
study design to explore Ol in software engineering since it is more suitable for
exploratory studies. The quantitative data extracted from the source code reposi-

4 Research methodology 9

tories is used as a basis for identifying the type of contributions made by the case
company and also the key interviewees in the studied units of analysis.

The case company used in the studies is Sony Mobile and the units of analysis
are Gerrit [3] and Jenkins [2]. Both Jenkins and Gerrit are OSS tools part of Sony’s
continuous integration tool chain. Sony Mobile is a multinational organization
with more than 5,000 employees globally, developing embedded devices. The
chosen branch in the case study is responsible for the development of Android
phones. Furthermore, Sony is becoming more and more open in terms of using
OSS communities. Jenkins and Gerrit are OSS examples studied in the paper seen
as an enabler for OI in software engineering.

Paper III aims at synthesizing a theory of openness for software engineer-
ing tools in software organizations, aimed to guide managers in defining more
efficient strategies towards open tools communities. We synthesize empirical ev-
idence from a systematic mapping study [Paper I], a case study [Paper II], and a
survey, using a narrative synthesis method [Paper III]. The survey questionnaire
was distributed among 500 employees working for software-intensive organiza-
tions using Gerrit, Jenkins or Git communities in their development or also, con-
tributing to those communities. We extracted the email list of Jenkins, Gerrit and
Git communities from GitHub and distributed the survey among all contributors
and non contributors having organizational affiliations in their email addresses.
The synthesis method entails four steps: (1) Developing a preliminary synthesis,
(2) Exploring the relationship between studies, (3) Assessing the validity of the
synthesis, and (4) Theory formation. The final step in the synthesis method pro-
posed theory of openness for software engineering tools, according to the theory-
building framework proposed by Sjgberg et al. [169]. The theory consists of 1)
constructs, 2) propositions, and 3) explanation in Paper III.

Paper 1V is a case study designed based on the design science approach [81].
The work was initiated by problem identification and analysis of its relevance at
Sony Mobile. This was followed by an artifact design process where the arti-
facts (the CAP model and information meta-model) were proposed and validated
at Sony Mobile. We conducted informal consultations with four experts at Sony
Mobile who is involved in the decision-making process of OSS contributions. Si-
multaneously, internal processes and policy documentation at Sony Mobile were
studied. Next, we accessed the additional data sources acquire the contribution
repositories. All these steps were performed in close academia-industry collabo-
ration between the researchers and Sony Mobile.

Paper V aims to validate the theory of openness by performing a repertory
grid analysis [95] using focus groups [159] in two companies from the automotive
industry. Kelly proposed the personal construct theory (PCT) and the associated
repertory grid technique to elicit and analyze these personal constructs [95][Paper
III]. The grid is comprised of following three basic concepts: 1) Elements Elici-
tation, 2) Constructs Elicitation and 3) Ratings. There are two essential ways to
select grid elements: a) elicit elements from participants, b) provide participants

10 INTRODUCTION

with elements. This study chooses to the provide elements participants since the
objective was to learn more about the specific set of elements derived from the
theory of openness [Paper III].

First, the participants in the focus group were given an introduction to con-
structs and elements to develop a common understanding in the whole group.
Second, participants from company A picked Jenkins and participants from com-
pany B selected an internal tool entitled Awesome framework for the focus group.
Third, a survey link was distributed among all the participants to rate each element
against the constructs based on the selected tools from their internal development
environment. Fourth, we held a discussion among participants based on the ratings
to further explore their ratings. The discussion part was recorded and transcribed
to further explore the rationales for the participant’s ratings. Finally, repertory grid
analysis and focus groups were used to validate the propositions derived from the
theory of openness [Paper III].

5 Results and synthesis

This section summarizes the results from the papers included in this thesis. For
each paper, we state the rationale, the methodology used (see table 2) and the key
findings.

RG1: To synthesize the research knowledge on Ol for software-
intensive organization

Paper I identifies 33 studies, divided into nine themes as a result of thematic anal-
ysis [38]. 17 out of 33 studies were conducted with high rigor and in an industrial
relevant context. The key themes identified in the study are as follow:

1. Intellectual properties strategies
2. OI toolkits

3. Degree of openness

4. OI models/frameworks

5. Managerial implications

6. Enabling OI communities

7. Benefits

8. Challenges

9. OI strategies

5 Results and synthesis 11

Each of the above-mentioned themes is defined in detail in Paper I with corre-
sponding empirical evidence associated with it. Furthermore, we classified papers
based on the research methodology [159] and paper type classification [193] fol-
lowed by the rigor and relevance analysis [85]. Twenty evaluation papers used case
study research methodology, seven were survey evaluation, two proposal papers
each with survey and framework followed by one framework validation and a tool
proposal paper.

In conclusion, the results indicate that start-ups have a higher tendency to opt
for OI compared to incumbents and firms assimilating external knowledge into
their R&D activity have a better chance of gaining financial advantage. Fur-
thermore, an important implication for an industry is that OSS and OI does not
come for free. Software-intensive organizations must invest in the OSS commu-
nities with a clear resource investment plan to leverage their key resources. The
large share of evaluation research alludes to researchers to produce more solution-
oriented papers followed by the validation.

RG2: To explore and evaluate how a software-intensive
organization uses OSS as an enabler for Ol and gains ben-
efits

Paper II investigated the OSS tool usage and involvement of Sony Mobile. The
units of analysis were Jenkins and Gerrit, the central tools in Sony Mobile’s con-
tinuous integration process. Moreover, the study also investigated how Sony Mo-
bile extract and assimilate external knowledge using OSS tools communities. We
started by extracting the Gerrit and Jenkins change log data to classify Sony Mo-
bile’s contributions, and to identify the key contributors for interviews.

The results of the study suggest that moving from Closed Innovation to the
Open Innovation model was a paradigm shift around 2010 when Sony Mobile
moved from the Symbian platform to Google’s open source Android platform
in its products. Jenkins and Gerrit are not seen as a competitive advantage or a
source of revenue, which indicates that Sony Mobile’s openness is limited to the
non-proprietary and non-competitive tools only. This transition from closeness to
openness is driven bottom-up from the engineers at Sony Mobile. Furthermore,
the requirements process in the Tools department was optimized to work towards
the Jenkins and Gerrit communities. The Tools department team works in an agile
manner with the influences from Kanban for simpler planning.

The Tools department was struggling to test Gerrit with the old manual test-
ing framework. The openness made the Tools department think of switching from
the manual to an automated testing process. Consequently, an Acceptance Test
Harness is created to contribute internal acceptance tests to the community and
have the community to execute what Sony Mobile tests when setting up a next
stable version and vice versa. More so, requirements prioritization and bug fixes
are prioritized based on the most pressing needs of Sony Mobile. Paper II further

12 INTRODUCTION

explores if there are any innovation outcomes attached to these tools and identi-
fied the following innovation outcomes as results of these tools in Sony Mobile’s
continuous integration process:

1. Free features

2. Free maintenance

3. Freed up time

4. Knowledge retention

5. Flexibility

6. Increased turnaround speed

7. Increased quality assurance

8. Improved new product releases and upgrades
9. Inner source initiative

Sony Mobile uses dedicated resources in the Tools department to work with the
Jenkins and Gerrit communities. Furthermore, we also discovered that Sony Mo-
bile lacks key performance indicators to measure its innovation capability before
and after the introduction of OI in the Tools department. However, the qualitative
data suggests that OI results in improved stability and flexibility in the develop-
ment environment. The findings of the study are limited to software-intensive
organizations with the similar domain, size and context as Sony Mobile.

RG3: To provide a theory for managers regarding when
and how to be open in relation to development outcomes
and development process

Paper III presents a theory of openness for software engineering tools in soft-
ware organizations that complement and expands our previous research efforts
[Paper I][Paper II] and provides the necessary organizational aspects that support
software-intensive organizations in their transformation towards OI. The increased
use of Open Source Software (OSS) affects how software-intensive product de-
velopment organizations innovate and compete, moving them towards Open In-
novation (OI). Specifically, software engineering tools have the potential for OI,
but require better understanding regarding what to develop internally and what to
acquire from outside the organization, and how to cooperate with potential com-
petitors.

However, we have found no guidelines for software-intensive organizations in
order to make strategic decisions regarding OSS fools, i.e. what role in Huizing’s

5 Results and synthesis 13

taxonomy to choose in the open innovation (i.e. open processes, open outcomes),
for OSS tools which are not the core business (non-pecuniary) for the organiza-
tion (e.g., OSS tools like Jenkins and Gerrit) but are vital to support the internal
product development. The scope of this study covers the use of non-pecuniary
OSS tools in organizations’ proprietary software development for outside-in and
inside-out innovation (i.e. coupled innovation). Furthermore, the study focuses
on the strategic role of OSS tools in an organization, where we use software build
tools as cases, due to their strategic role in the build chain [Paper II][Appendix D].

The theory of openness for OSS tools in software engineering presents four
constructs: (1) Strategy, (2) Triggers, (3) Outcomes, and (4) Level of openness. We
synthesize the theory from two previous empirical studies [Paper I][Paper I1] com-
plemented by a survey in the Git, Gerrit and Jenkins communities [Appendix D].
The theory presents four classes of openness in companies with their respective
focus:

1. Laggards — Routine business

2. Leverage — Resource optimization

3. Lucrativeness — Acting as a think-tank
4. Leaders — Growth through ecosystems

Each category has the different levels of openness, based on their strategies
(proactive or reactive) in relation to goals (cost saving or inspirational). First, lag-
gards respond to paradigm shifts and all strategies are reactive, aiming to reduce
the development cost (i.e. integration). Second, in leverage category, organiza-
tions use the external sources of innovation by inspiring their internal developers
to participate in various OSS tools communities, prior to internal R&D work. It
not only adds to product and process innovation but also inspires developers to
exchange ideas on discussion forums to develop competence. Third, Lucrative-
ness deals with investing in existing OSS communities to be able to influence and
steer these communities in the same direction as the organizational interests. The
objective is to support internal innovation and reduce costs by investing in OSS
tools communities. The use of OSS tools communities helps organizations to re-
duce time-to-market. Fourth, Leaders are organizations that focus on creating new
communities and ecosystems to strengthen their business model.

The theory provides strategic guidelines and helps software-intensive organi-
zations to adopt OI tools in relation to reduced development cost, shorter time-
to-market and process, and product innovation. The theory reasons that openness
provides opportunities to reduce the development cost and development time. Fur-
thermore, OI positively impacts on the process and product innovation, but it re-
quires investment by organizations in OSS communities. By betting on openness,
organizations may be able to significantly increase their competitiveness but it re-
quires management’s support.

14 INTRODUCTION

Paper 1V proposes a Contribution Acceptance Process (CAP) model and meta
model. The model helps software-intensive product development organizations
to classify artifacts, such as features, plug-ins, or complete projects, according
to business impact (low to high) and control complexity (low to high). Business
impact refers to the profit from the artifact, and control complexity refers to the
difficulty in acquiring and controlling the technology. An artifact is categorized
into the following four categories where each category represents a specific artifact
type with certain characteristics and contribution strategy.

e Strategic artifacts: high business impact and high control complexity.

e Platform/leverage artifacts: high business impact and low control complex-
ity.

e Products/bottlenecks artifacts: low business impact and high control com-
plexity.

e Standard artifacts: low business impact and low control complexity.

In turns, organizations may estimate and plan whether an artifact should be
contributed or not. Open Source Software (OSS) ecosystems have reshaped the
ways how software-intensive organizations develop products and deliver value to
customers. However, organizations still need support for strategic product plan-
ning in terms of what to develop internally and what to share as OSS. Existing
models accurately capture commoditization in the software business, but lack op-
erational support to decide what contribution strategy to employ in terms of what
and when to contribute. Further, an information meta-model is proposed that helps
operationalize the CAP model at the organization. In a design science influenced
case study executed at Sony Mobile, the CAP model was iteratively developed in
close collaboration with the experts from Sony Mobile. The CAP model provides
an operational OI perspective on what firms involved in OSS ecosystems should
share, by helping them motivate contributions through the creation of contribution
strategies. The goal is to help maximize return on investment and sustain needed
influence in OSS ecosystems.

Static validation was done through continuous consultations with experts at
Sony Mobile for the CAP-model and its related information meta-model. In these
consultations, the models were discussed and improvement ideas were collected
and used for iterative refinement and improvement. Experts from Sony Mobile
were asked to run the CAP model against examples of features in relation to the
four software artifact categories and related contribution strategies that CAP model
describes. The examples of how the CAP model and meta-model are used is fur-
ther presented in Paper IV. These examples help to evaluate functionality, com-
pleteness, and consistency of the CAP model and associated information meta-
model.

6 Ethical aspects and threats to validity 15

RG4: To validate the strategic guidelines in relation to
RQ3 with practitioners working in the software-intensive
development organizations

Paper V is a validation of the theory of openness presented in Paper I1I. We used
a repertory grid technique [95] to analyze and validate the theory of openness.
The results showed that both case companies qualify as laggards in relation to
the theory of openness and neither of them has internal procedures to facilitate
developers to contribute to OSS tools communities.

The lack of central tool coordination leads to multiple variants of the same
tools, causing additional costs to glue tools together. An important implication
for both companies is that they may learn from Sony Mobile’s transition from
closed tools to open OSS tools by innovating their process in terms of creating a
legal framework. Furthermore, both companies can create an internal champion
which serves as an interface between the legal department, software developers
and top management, to drive the open tools strategy. The framework will help
companies to engage their developers in OSS tools communities together with the
legal team to facilitate their core product development. Hence, both companies
need a centralized, proactive strategy to help software developers use open OSS
tools to reduce integration cost.

6 Ethical aspects and threats to validity

Ethical aspects must be taken into consideration in any empirical research activity
which involves human subjects or the data related to humans [159]. Singer and
Vinson [167] initiated the discussion on ethical issues in software engineering and
provide guidelines for the conduct of empirical studies. These guidelines include
informed consent, confidentiality of the data from human subjects and weighing
the risks, harms and benefits, not only for the individual subjects, but also for the
organizations.

OI research in this thesis involves software engineers working in the indus-
try. The investigation started from mining the OSS code repositories to identify
the key contributors and classify their contributions in terms of new features, bug
fixes, cosmetic issues or documentation. After identifying the key contributors,
interviews were conducted with them. It is worth mentioning that the case compa-
nies have shown a strong interest in investigating its OI activities to see whether or
not it is helping them to accelerate their internal innovation process. For example,
Sony Mobile gets recommendation whether or not opening up in their development
process gives them a cutting edge on their competitors. Moreover, the researchers
are able to publish research papers to carry forward OI state of the art in soft-
ware engineering. Therefore, it’s a collaboration that leads to a win-win situation
for both stakeholders. On the hind side, there are risks attached to the research

16 INTRODUCTION

process. Specifically, the case company fully understands the importance of col-
laboration with the research community and its positive impacts on their internal
processes of working. However, if a local newspaper correspondence decides to
pick up something (e.g. internal conflicts) randomly from the study out of the
context and place it on the front page of the local newspaper may lead to a mas-
sive dent on concerned organization’s reputation. Therefore, the confidentiality of
the data collected from the companies is ensured by signing the non disclosure
agreements.

Additionally, workshops were conducted in two automotive companies which
involves software engineering and managers. All participants were asked to sign a
consent document to ensure the voluntary participation of participants. Moreover,
the data gathered through these workshops are kept confidential.

Apart from ethical aspects, there are validity concerns worth mentioning about
the thesis. Internal validity is the confidence that we can place in the cause and
effect relationship in a scientific study [159]. In the thesis, review protocols were
created for all the studies and reviewed by all authors to be more objective and to
assure quality as well. The studies revealed that Sony Mobile does not have any
metrics to measure innovation thus, researchers had to rely on implications drawn
from qualitative data collected from interviews. The element of subjectivity was
addressed by performing the analysis independently by multiple researchers.

External validity refers to the ability to generalize the study findings [159].
In particular, all those software-intensive organizations using OSS tools in their
internal product development. This thesis used Sony Mobile, software companies
in the survey and the two case companies from the automotive industry to achieve
better external validity of the research work.

Construct validity refers to what extent the studied concepts really represent
what the researcher has in mind and what is investigated according to the research
questions [159]. Constructs and elements in the theory of openness are derived
from literature. However, neither of the case companies come from a software
background but they are becoming more and more software-intensive in the de-
velopment of their core products. Therefore, both companies do not have a well-
defined procedure to map all the constructs of the theory. This threat was partially
met by keeping the discussion on a higher level to the company’s specific con-
text. Furthermore, more software-intensive companies are required to validate the
theory of openness.

Reliability deals with the ability to replicate the same study with the same re-
sults [159]. To address the reliability concerns, review protocols, multiple data
sources, independent qualitative and quantitative data, and interview transcription
summary validation by interviewees were some of the techniques used in the stud-
ies to draw conclusions more reliably. Finally, the study design and findings of the
studies were kept transparent in terms of mentioning the context of case company
except for the anonymous interviewees names.

7 Future work 17

7 Future work

Future work may be the extension of RG4, which involves further validation in
more organizations to extend the generalization of the theory of openness. Fur-
thermore, develop a tool (a web survey), which helps companies conducting a
self-assessment with respect to the theory. The aim is to assess the current tool
chain of a software-intensive product development organizations. The survey is
based on the criteria defined in the theory, and the web tool collects that data and
feeds a summary back to the company for their internal use, about their perfor-
mance in relation to the theory and other companies.

8 Conclusion and main contributions

Even though software engineering tools are not the direct source of revenues,
software-intensive organizations rely on these tools for the development of core
products. OSS tools (e.g., Jenkins, Gerrit and Git) offer companies an alternate
solution to closed source proprietary tools. The OSS tools provide an organization
with several benefits as opposed to closed source tools. These benefits may en-
tail free-up developers time, faster development speed, reduced development cost,
increased flexibility in tool usage and adaption and govern the open tools ecosys-
tem. However, it must be mentioned that the usage of open tools is not entirely for
free if companies want to gain control and steer communities towards their own
business model.

Empirical-based insight were provided into this thesis by summarizing the
existing evidence on the use of OI by exploiting OSS tools communities. To further
strengthen the existing evidence, the case study at Sony mobile helped us under-
stand that software-intensive organizations need proactive management strategies
to achieve the standardization of open tools in the long run. Furthermore, the sur-
vey in OSS tools communities also helped us understand that software-intensive
organizations are keen on using and contributing to these OSS tools communities.
However, the empirical evidence suggests a clear lack of guidelines for managers
how to engage themselves in the OSS tools. This thesis presents the theory of
openness as a main contribution to address the identified research gap.

Theory of openness is an empirically developed theory intended to provide
guidelines and helps organizations to utilize OSS tools communities in relation to
reduced development cost, shorter time-to-market and process and product inno-
vation.

CAP model provides operational guidelines for software organizations regard-
ing what to conceal and what to share in OSS ecosystems. The model proposes
contribution strategies and meta-model to help organization operationalizing these
strategies. The goal is to help maximize return on investment and sustain the
needed influence on OSS ecosystems.

18 INTRODUCTION

Validation study validates the theory of openness for software engineering
tools in two automotive companies.

INCLUDED PAPERS

CHAPTER |

OPEN INNOVATION IN
SOFTWARE ENGINEERING: A
SYSTEMATIC MAPPING
STUDY

Abstract

Context: Open innovation (OI) means that innovation is fostered by using both
external and internal influences in the innovation process. In software engineering
(SE), OI has existed for decades, while we currently see a faster and broader move
towards OI in SE. We therefore survey research on how OI takes place and con-
tributes to innovation in SE.

Objective: This study aims to synthesize the research knowledge on OI in the SE
domain.

Method: We launched a systematic mapping study and conducted a thematic anal-
ysis of the results. Moreover, we analyzed the strength of the evidence in the light
of a rigor and relevance assessment of the research.

Results: We identified 33 publications, divided into 9 themes related to OI. 17/33
studies fall in the high-rigor/high-relevance category, suggesting the results are
highly industry relevant. The research indicates that start-ups have higher ten-
dency to opt for OI compared to incumbents. The evidence also suggests that
firms assimilating knowledge into their internal R&D activities, have higher like-
lihood of gaining financial advantages.

Conclusion: We concluded that OI should be adopted as a complementary ap-
proach to facilitate internal innovation and not to substitute it. Further research is
advised on situated Ol strategies and the interplay between OI and agile practices.

22 Open Innovation in Software Engineering: A Systematic Mapping Study

1 Introduction

Open innovation (OI) and associated free exchange of information about new tech-
nologies are recognized as one of the main drivers for collective inventions in the
19th century by Allen [6]. Two decades after Allen’s paper from 1983, Ches-
brough’s seminal book about OI [31] has initiated an unabated interest [67] among
researchers in innovation management [83], economics, psychology, sociology,
and also Software Engineering (SE) [181]. The work initiated by Chesbrough [31]
forced both practitioners and scholars to rethink the design of innovation strategies
in a networked environment [83]. The inherent flexibility of software, combined
with increase of software cost and value for new products and services, puts SE
into the hotspot of OI. Several trends, such as outsourcing, crowd-sourcing and
funding, global software development, open source software, agility, and flexibil-
ity, challenged the do it yourself mentality [65]. More courageous voices sug-
gested even that closed innovation might have been the exception in the history,
characterized mostly by open innovation practices [133].

Ol is a relatively new field of research and a collective theoretical foundation
is starting to emerge. Chesbrough [31] was the first to define OI as “a paradigm
that assumes that firms can and should use external ideas as well as internal ideas,
and internal and external paths to market, as they look to advance their technol-
ogy”. Ol encompasses various activities such as inbound, outbound and coupled
activities [66], and each of these activities can be more or less open. Open Source
Software (OSS) is the most straightforward application of OI to software devel-
opment [83], although not the only one [196]. The success of OSS in the last
twenty years have ignited and encouraged several new movements for collective
innovation such as: outsourcing, global software development, crowd-sourcing
and founding.

Despite the wide interest in several domains and the unquestionable potential
that OI can bring to the software industry, OI remains greatly unexplored in the SE
literature, while in the OI literature extensive interest is given to exploring OSS
as one of the ways to incorporate external knowledge and innovation to internal
product innovation [31]. Similarly in the early days of OSS, many interesting
Ol initiatives were performed, e.g. opening up software product organizations
and utilizing open configurations [88]. However, there is a lack of systematic
efforts that focus on summarizing the current state of the literature on the relation
between OI and SE. Previous reviews are either not systematic [83, 196], partly
systematic [186] or, for example, focus on the history or evolution of OSS or
available innovation metrics [50]. Moreover, these reviews lack quality criteria to
support the interpretation of the results in favor or against OI.

Therefore, we identified a need to systematically review OI research in SE
with a specific focus on assessing the strength of the empirical evidence in the
identified studies [85], highlighting the current themes and outlining implications
for research and practice. For instance, a study might have high relevance (e.g.

2 Related work 23

managerial implications for an industrial scale project), but at the same time have
low rigor (e.g. having validity threats and lacking descriptions of the units of
analysis). Consequently, these above mentioned needs lay the foundation for a
systematic mapping study [147] to explore the concept of OI in the context of SE.
Specifically, this mapping study makes the following contributions:

1. Identification of the existing themes and patterns in the literature for open
innovation in software engineering.

2. Assessment of trustworthiness of the results with respect to rigor and rele-
vance [85].

3. Based thereon, identification of knowledge that may inform industry prac-
tice on open innovation in software engineering

4. Identification of the research gaps for further exploration of open innovation
in software engineering [100].

The remainder of the paper is structured as follows: Section 2 presents related
work and Section 3 presents the research method (review protocol). Next, Section
4 highlights the results of the search and the analysis the synthesized research,
followed by a discussion in Section 6 which results in a research agenda and advice
for industry practice in Section 6. Section 7 concludes the paper.

2 Related work

Using the study by West and Bogers [186], we identified four secondary studies
(literature reviews) on OI [50, 83, 186, 196], relevant to this study. The studies are
summarized in Table 1.

Are the reviews systematic? Huizingh [83] and Wnuk and Runeson [196] con-
ducted reviews on OI, however neither of them is systematic according to the
guidelines stated by Kitchenham et al. [99]. The study conducted by West and
Bogers [186] could be considered partly systematic, since the relevance can be
seen in terms of data sources, inclusion/exclusion criteria and data extraction. On
the other hand, the review conducted by Edison et al. [5S0] adheres to guidelines by
Kitchenham et al. [99] and Petersen at al. [147]. In this paper, we report a review
conducted according to the guidelines by Kitchenham et al. [99].

What were the objectives behind conducting reviews? West and Bogers [186]
conducted a review on OI with the main objective to define an agenda for OI
research. They classified the studies into three main categories of OI, namely,
inbound (outside in), outbound (inside out) and coupled, as suggested by Enkel at
al. [54]. Wnuk and Runeson [196] performed a study with the goal to propose a
SE framework for OL.

24 Open Innovation in Software Engineering: A Systematic Mapping Study

Huizingh [83] also focused on exploring the notion of open innovation and
on the degree of OI adoption by the firms. The study concluded that the know-
ledge about how to apply OI and when to do it is still incomplete. Edison at
al. [50] centered their literature study around innovation measurement and inno-
vation management aspects, e.g. definitions, frameworks and metrics. Our study
limits its scope to SE and focuses on deriving existing OI themes and patterns us-
ing thematic analysis. Moreover, this study also focuses on exploring the strength
of evidence under the light of rigor and relevance, and states the further course of
action in terms of Ol in SE.

What were the data sources used in the reviews? Were the used search terms
appropriate? Huizingh [83] neither specified the database, nor the search terms
used. Likewise, West and Bogers [186] did not mention the search terms for their
study, but provided the time scope of the survey (between 2003 and 2010) and
the list of selected management journals, see Table 1. Conversely, the study con-
ducted by Wnuk and Runeson [196] used Inspec and Compendex and the follow-
ing search terms “Open innovation, requirements engineering, testing, software
and methodology”. However, the time span for the search is not reported. Edi-
son et al. [50] used multiple data sources namely, Inspec and Compendex, Sco-
pus, IEEE explore, ACM digital library, Science direct, Business Source Premier
(BSP) and performed the search between 1949 and 2010, see Table 1. Their search
terms aim at identifying innovation metrics, measurements, drivers and innovation
attributes. Inspired by the previous reviews, we organized our search string into
three main categories and employed the inclusion exclusion criteria after the search
process, with keywords: 1) related to O, ii) on SE in order to restrict the results to
the SE domain, and iii) pertaining to empirical evidence on OI (see Section 3.3).
Furthermore, we complemented our search string with backward snowball sam-
pling [86, 161] by scanning the reference list of all primary studies, see Section
3.2.

Did the reviews use any quality assessment criteria for primary studies before
analyzing their results ? Neither Wnuk and Runeson [196] nor Huizingh [83] used
explicit quality assessment criteria for the identified studies. On the other hand,
West and Bogers [186] included studies that focused on OI as per the definition
by Chesbrough [31] and excluded book reviews, commentaries and editorial intro-
ductions. Edison et al. [S0] used a set of questions for quality assessment and to
evaluate if a study explains the aims, methodology and validity threats. We used
a comprehensive set of guidelines that cover rigor and relevance of studies. We
slightly tailored the criteria from Ivarsson et al. [85] to fit into the scope of this
study, see Section 3.4.

How did the reviews extracted data from primary studies? Did they map data
extraction with research questions? The data extraction strategy was not reported
in three studies [83, 186, 196]. The information about the mapping between the
data extraction properties and the research questions was also absent. However,
Edison at al. [50] described the data extraction strategy which was piloted before

2 Related work 25

the execution to ensure a common understanding among all involved researchers.
We created a defined set of data extraction properties, and mapped them on re-
search questions to avoid redundant information, outlined in Table 3.

How did the reviews synthesize the data from primary studies? Neither of the
four studies followed an established procedure for the synthesis, such as thematic
or cross-case analysis [37,38]. Instead, West and Bogers [186] used a self created
four phase integrated model (i.e. obtaining, integrating, commercializing, interac-
tion with communities) to guide the literature review and classified studies based
on dimensions provided by Enkel at al. [54]. Similarly, Wnuk and Runeson [196]
presented the synthesis in a table where studies are categorized in terms of re-
search type (e.g. evaluation, proposal, opinion, solution, conceptual etc.) defined
by Wieringa et al. [193]. Moreover, studies were also classified in terms of soft-
ware techniques, process and methods, and presented a framework to foster OI
with technical and methodological dimensions stated above.

Edison et al. [50] presented their synthesis in terms of different types of inno-
vation definitions available in the literature, metrics used to measure innovation,
and challenges related to existing innovation measurements. They developed a
model to assist organizations to use the available measures to develop insights into
their innovation program. Finally, Huizingh [83] wrote a literature review without
synthesis.

In summary, this systematic study aims at exploring the OI in SE in a much
more rigorous manner according to guidelines of Kitchenham et al. and Petersen
et al. [99,147] and focusing on systematic synthesis of the findings.

Open Innovation in Software Engineering: A Systematic Mapping Study

26

UOT)BAOUYIRT, “/LT
[euInof juowageue]y 9139)eNS ‘9f
juowadeuRy A30[0UYI9]-YoIBIsAY ‘G
Kotjod yoreasay ‘4
Jjuowageue]N ¥ €1
Q0UQIDS uonezIue3i ‘7
MITAY JuwdTeURIA UBO[S ITIN ‘TT
Q0URIS JuswaSeue]y QT
Suruuelq o3uey Suo ‘6
"J3JA uoneAOUU] JONPOIJ JO [RUINO[°§
(dSg) o1waid
201n0g ssoursng 9 13N A3o10uyoay, Jo [euInof -/
JORIIAOUIOS G a3uey) 9jerodro) pue [ermsnpuy ‘9
£reiq 1B
TTESId NOV b SurroourSug uo suonoesuell AL 'S
oroidy qaAl € MITADY SsauIsng pIeAIRH “§
sndosg 7 MITADY JUSWOTRURIA BIUIOJI[RD '€
xapuaduwor) A[109118N() 90UAIOS QATRISIUTWPY 7
xapuad pue oadsuy 1 MITAJY JUSWIFRUBIA JO AWAPBIY |
V/N -wo) pue oodsuf $321n0s eje(q
(€102 (€102

(0107) [£8] ySurzgyg

[961] ‘Te 10 ynupp

[0s] ‘& 30 wuosipy

(€107) [981] s1a30g pue 3sop\

SERTE |

27

2 Related work

10
oy} Surpuejsiopun ur
SOTWIOPEOE pue SISUOT)

‘S[00) pue
spoylow HS arend
-o1dde Suriofre) pue
SuruSisop £q uon
-eaouul uado 13150f
0} pouSisop “YIom

donoed ur pasn
pue axmera)| ur pasod
-o1d u29q aaey Jey) SOU
-JoW pue SYIOMIUIETJ
JUSWIAINSBIW ~ ‘SUOTIIUL
-Jop woiy Surguel Juouwt
-2INSeAW UOT)EAOUUT O}

-noead Aq paoej soSugp -owely gS b sosod juead[ar syoadse snor [oIeas

-leyo oy arofdxe o, -oxd 1oded sy, -rea soro[dxo Apmissiyj, -o1 uoneaouur uado 10j epuade ue auyep Of, asodang
SISQUIUAS JO (adAy sy Sur

(uorsn[ouod A[uQ) ON peoisur uonelo[dxyg -UOHIUAW INOYIIM) SIX (2d4&y s31 Sutuonuaw JnoYIIM) ATred SISOYJUAS eye(

(enx s)ns

ON ON -9ILId 9y PAO[id) SIK ON -1 jJOo uoneplfeA

sanaadoad

ON ON SOX Apred uondeNXd Bl

BLIIJLID

ON ON SR ApIed uoISNPXd/uoISNPUL

JudW

ON ON SO ON -ssassy AypenQ)

ON ON SOX ON Anqeyeadoy

ON ON SOX Apreq dNeu)SAS
(€100 (€100

(0102) [€8] ysurzmyy [961] ‘& 19 dnupy [0s] e 30 uosipy (€102) [98T] s1930g pue 3o\ BERLE |

Open Innovation in Software Engineering: A Systematic Mapping Study

28

SMIIAQI 2INJBINI] SUNSIXS JO Arewrwing :] 9[qel,

-9191dwoour
pue pasiadsip urewar 11
Op 0} UaYym pue J1 op O}
Moy Noge 9FpIjmouy|
AY) “IOAIMOH “JuauI
-a8euew uonEAOUUI UI
SJX9JU0d Auew OS UI
pue suuy Auew Os 10j
1daouod d1qenyea & usaq
sey uoneaouur uddo
jeyl smoys Apmis QUL

‘uorjeAOUUT
uado uaaLIp Surredu
-13uo oremijos o)
Sutuonsuen; uayMm
POMIIAI 9q PNOYS
jey) seare a3uQ[
-[eyo sauIpIno pue
suorsuawiIp ssad01d
pue [eo130[0
-poyjow 9y} $AsSNd
-sip Apmis STyL

"MOTAQI JTJBUIR)ISAS
oy jo sSuipuy o
WoIj PoJONISu0d Sem
UuoneAOUUI JO SIUW[
J[qeinseowr KoY oy} Jo
[epowr emdoouod ®
‘s3urpuy oy) uo poseq
‘Ansnpur a1em)jos Ul
UOT)EAOUUT JO UONIUYIP
Y} AJIuUOpI 0} SONUIP
-eoe pue srouonnoeid
PIM SMITAIUT pue
a1reuuonsanb aur|
-uo ue Kq pomofoJ
MITAJI ONBWAISAS Y

UOIBAOUUI JO SOIINOS
[euIo)X2 SuISeIoA9] JO S)IWI] PUB SIOJRID
-pouw 93 Sulpnis pue ‘ssao01d uonezierd
-IQWIWOD UONBAOUUI PUL-01-pud oy) Surur
-WIBXa 9pNJoul JBY) [OIBASaI 2InnJ 10J suon
-EPUQWIWIONAI [JIM SOpPN[OU0d PUB [OIeds
-31 O 10J epuale o) pouyep toded oy,

awonnQo

(0102) [£8] ySurzmyy

(€102)
[961] '1& 30 ynupy

(€102)
los] & 30 uosipg

(€107) [981] s1a30q pue Isop\

SERTE |

3 Research methodology 29

3 Research methodology

In this section, we present the literature review methodology, based on the guide-
lines provided by Kitchenham et al. [99] and Petersen et al. [147]. The study was
conducted in six steps outlined in subsections below: I) identification of primary
studies, II) search string development and database search, III) performing includ-
ing and exclusion criteria, IV) data extraction, V) quality assessment through rigor
and relevance, and VI) synthesis and reporting.

3.1 Research questions
The research questions for the mapping study are defined as:
RQ1: Which themes and patterns of OI in SE exist in the literature?

RQ2: How strong is the evidence in favor of or against OI in SE?

3.2 Identification of primary studies

In order to identify the primary studies, following steps were performed, see Figure
1.

1. Identification of 15 control papers [45] from forward snowball sampling
[72,86].

2. Extraction of studies from databases using a search string: 2805 papers were
identified using a search string

3. Duplicate elimination at the database level: 305 studies were found to be
duplicates, and hence removed.

4. Selection of studies based on abstract, titles and keywords: 2279 papers
were not found relevant and excluded.

5. Filtering based on inclusion/exclusion criteria: 194 additional papers were
excluded after applying the inclusion/exclusion criteria and 27 papers were
found to be relevant and pertain to the scope of this study

6. Backward snowball sampling was applied to scan the reference list of 27
primary papers and enabled us to spot 6 more relevant papers.

We identified 33 studies that directly pertain to the scope of the study. The ad-
ditional studies found by the snowball sampling confirms the usefulness of snow-
balling for identification of potential studies missed by database searches.

Open Innovation in Software Engineering: A Systematic Mapping Study

Figure 1: Identification of primary studies

Forward

A

snowball
sampling

1. Control past (15 Papers)

Applying Search String

Refine search string

Inspec/Compendix
(1264 Paper)

|EEE Explore
(756 papers)

ACM
(31 papers)

Science Direct
(674 papers)

ISI Web of Science
(80 papers)

6. Backward
snhowball
sampling
(6 Paper)

33 Primary papers

2. Total studies extracted by Search string ———
(2805 papers) DB duplicates
< removed
A 4 (305 papers)
3. Duplication at Database level E
(2500 Papers)
Removed based on
< Title/abstract
A 4 (2279 papers)
4. Filtration based on abstract, tiles, keywords
(221 Papers) D
i: discarded based on
5. Filtration based on inclusion/exclusion criteria inclusion/exclusion
(27 Papers) 194 papers)

3 Research methodology 31

3.3 Search string strategy

In order to develop the search string, the keywords were aptly derived from 15
control papers, see Figure 1. The search terms are organized into three interven-
tions: T1 includes terms related to open innovation, T2 related to outcomes, T3
related to the research methods.

1. T1: Open Innovation OR Open-Innovation OR OI OR innovation OR inno-
vation management

2. T2: software OR software ecosystem OR product line OR requirement™®
engineer* OR requirement* management OR open source

3. T3: exploratory study OR lesson* learn* OR challenge* OR guideline*
OR Empirical investigation OR case study OR survey OR literature study
OR literature review OR interview* OR experiment* OR questionnaire OR
observation* OR quantitative study OR factor*

The interventions are combined using Boolean operators (T1 AND T2 AND
T3) to achieve the desired outcome. We searched the following databases, using
their command interfaces and utilizing expert or advanced search capabilities (the
search strings used per database are reported in Appendix B):

1. IST Web of Science

2. Inspec and Compendix (Engineering Village)
3. ACM Digital Library

4. IEEE Xplore

5. Science Direct (Elsevier)

The search string was refined, using the control papers as a benchmark, until
the average acceptable level of precision and recall was achieved. A study con-
ducted by Beyer and Wright [18] reported that the recall of the search strategies
ranged from 0% to 87%, and precision from 0% to 14.3%. The final search string
retrieved 13 out of 15 control papers which gives recall of 86.66%. The final
search string achieved precision of 0.52% (13 out of 2500 papers, excluding du-
plicates). Both precision and recall scores are in range with the findings of Beyer
and Wright [18]. The fact that two of the control papers were not captured by
the final search string confirms the observations by Wohlin et al. [197] that using
single search strategies leads to missing studies. Therefore, we combined database
searches with snowball sampling.

32 Open Innovation in Software Engineering: A Systematic Mapping Study

3.4 Inclusion/exclusion criteria

The inclusion/exclusion criteria were derived and piloted. These criteria were ap-
plied simultaneously on studies to make sure we only include studies that pertains
to SE domain and not, for example economics, management or psychology.

Table 2: Inclusion exclusion criteria
Inclusion Criteria (All must apply) Exclusion Criteria (Each apply sepa-

rately)

e Peer reviewed papers, and in e All gray and white literature
case of duplicate publications,
the priority follows the se-
quence: Journals, Conferences,

e Non-English articles

e Studies about OI in the manage-
ment and economics context

Workshops

e The study must be accessible in e Intellectual property rights pa-
full text. pers

o The study highlights the e Research on Ol not related to SE
research-focused concept of e All papers that mentioned only
OI in the context of software the use of software to bring in-

engineering.

The study that reports the bene-
fits, disadvantages, limiting fac-
tors, and challenges of OL.

The studies pertaining to the
scope of open source software
used as OI examples

Factors limiting the adoption of
Olin SE

Available tools used by the soft-
ware community to support OI
in SE

Studies that discusses the open-

ness of software producing orga-
nization(SPO)

All studies from 1969 to 2013

novation in the fields other than
SE.

All articles, which are not within
the field of SE in terms of how to
develop software

All duplicate studies

The selection of studies was accomplished independently by the two first au-
thors, applying the inclusion/exclusion criteria. In case of uncertainty, the authors
included the papers to next step in order to reduce the risk of excluding the relevant
papers as suggested by Petersen and Bin Ali [146]. Kappa statistics [105] was cal-
culated at multiple steps in order to check the agreement level between the authors.

3 Research methodology 33

First, the Kappa coefficient was calculated on a 10% randomly selected sample of
titles and abstracts and it was found to be 0.37. After discussing and resolving the
disagreements, the Kappa value increased to 0.91. Second, Kappa was calculated
on a sample of randomly selected 50% of papers included into the full text reading
phase while applying inclusion/exclusion criteria. Disagreements were identified
as the Kappa value (0.48) was found to be below the substantial agreement range.
Consequently, after discussing and resolving disagreements [146], the kappa value
increased to 0.95. It is to be noted that the inclusion/exclusion criteria was applied
simultaneously. However, for exclusion it is enough when one exclusion criterion
holds.

3.5 Data extraction and synthesis strategy

The data extraction properties outlined in Table 3 were discussed and finalized
beforehand. Moreover, a spreadsheet was created for the data extraction properties
and also mapped to research questions, see Table 3. The first author performed the
data extraction, supervised by the second and the third authors.

The extracted data was synthesized by performed thematic analysis based on
the guidelines by Cruzes et al. [38]. First, we identified patterns in the data and
then grouped those patterns into distinct themes. Second, in order to check the
trustworthiness of each paper, we used rigor and relevance criteria which helped
us identifying whether or not results are generalizable to the software industry, see
Section 3.6.

3.6 Quality assessment with respect to rigor and rele-
vance

We used the rigor and relevance assessment checklist by Ivarsson et al. [85]. Two
researchers reviewed the ratings and data extraction to ensure objectivity. Each
paper was assigned a score using objective criteria tailored for this mapping study,
see Appendices 2.1 and 2.2. The idea behind investigating rigor and relevance
resembles the use of a rubric based evaluation in education [85]. Previous stud-
ies [93,132] have shown that rubrics increase the reliability of assessments in terms
of inter-rater agreement between researchers.

Rigor can be defined as “the research methodology is carried out in accor-
dance with corresponding best practices” [85]. Ivarsson et al. [85] state that rigor
has two dimensions: following the complete reporting of the study, and best prac-
tices. Through aggregating of study presentation aspects from existing literature,
they defined rigor as the degree to which study context (C), design (D), and valid-
ity threats (V) are described. All facets are rated on a scale, i.e. weak, medium,
and strong description, see Appendix 2.1.

Relevance deals with the impact of a study on industry [85]. It consists of
manifold aspects, namely, relevance of the topic studied [170], ability to apply

34 Open Innovation in Software Engineering: A Systematic Mapping Study

Table 3: The data extraction properties explained and mapped to the research
question
Category Properties RQ Mapping
General informa- Authors, Title, Year of Publication, Ab- RQI1, RQ2
tion stract

Study Type Evaluation research, Solution research, RQI1, RQ2
Validation research, Proposal research

Research Meth- Case study, Tool proposal, Survey, RQI, RQ2
ods Framework

Research Prob- Description of research questions RQI1, RQ2
lem
Outcomes Benefits, limitation, strategies, patterns RQ1

related to OI

Context Subjects Type (Students/ professional- RQ2
s/researchers/mixed), number of sub-
jects, case description, validity threats
to context.

a solution in a real world industrial setting with degree of success [200], use of
research methods that facilitate industrial realism [171], and provision of a realistic
situation in terms of users, scale, and context [85]. We followed the suggestion of
Ivarsson et al. [85] to decompose rigor into: users/subjects (U), scale (S), research
methodology (RM), and context (C), see Appendix 2.2.

3.7 Validity threats

This section highlights the validity threats associated with the systematic mapping
and how they were addressed prior to the study in order to reduce their impact
[159].

Internal validity

The key idea behind conducting the systematic mapping study was to capture avail-
able literature as much as possible without introducing any researcher bias thereby,
internal validity seem to be a major challenge for the study. In order to address the
internal validity concerns, a review protocol was created beforehand and evaluated
by three researchers, which took on roles of quality assurance as well. The internal
validity is enhanced by following the systematic mapping guidelines [147] and the
guidelines for quality assessment criteria [85].

4 Results and analysis 35

Construct Validity

Construct validity refers to the presence of potential confounding factors and whether
or not a study was able to capture what was intended in terms of aims and objec-
tives. One important concern for this study was the multiple definitions of OI. In
order to minimize this threat and build on solid foundation, Chesbrough’s concept
of Ol is adopted [31].

External validity

External validity refers to the ability to generalize the results to different settings,
situation and groups. The majority of the studies fall into the case study cate-
gory with high rigor and relevance, see Figure 6. Moreover, many studies were
conducted in industrial contexts hence, the results are more general and industry
relevant.

Reliability

Reliability is concerned with to what extent the data and the analysis are depen-
dent on a specific researcher. Multiple strategies were taken into account in order
to enhance reliability. First, there is always a risk of missing out on primary stud-
ies with a single search string for all selected databases. Therefore, 15 control
papers were identified through forward snowball sampling to verify the precision
and recall of the search string. However, this only minimizes the selection bias that
may impact further research steps. We believe that the potential effect of this bias
have a lesser importance in mapping studies than in SLRs. To further substantiate
the search process, backward snowball sampling was applied and resulted in addi-
tional studies pertaining to the context of Ol in software engineering (see Figure
D).

Second, quality assessment of the identified studies is sensitive on interpreta-
tion. Therefore, rigor and relevance criteria were applied to increase the objectivity
of this step. The evaluation was performed by the first author and reviewed by the
remaining authors. Moreover, we created a data spread sheet and mapped research
questions with the data extraction properties in order to comply with the objectives
of this study. Besides, all studies were rated according to the rigor and relevance
criteria tailored from Ivarsson et al. [85] and data extraction properties from each
paper were reviewed by two researchers in the study.

4 Results and analysis

In this section, the results of the mapping study analysis are reported. We give
an overview of the time distribution and categorize the studies based on research

36 Open Innovation in Software Engineering: A Systematic Mapping Study

Figure 2: Distribution of studies over publication years

0 - T
2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013

methodology used. An analysis of the themes studied is reported, followed by a
detailed description of each theme.

4.1 Distribution of Ol studies

33 primary studies about OI in software engineering were found, distributed by
their publication year in Figure 2. The scholarly interest in OI seems to be growing
at a steady pace since its introduction in 2003 with a maximum annual rate of 8
studies published in 2009. However, the trend declines after that, and it it hard to
assess why, since the interest in OI seem to grow in general [83].

4.2 Categorization based on research methodology

Primary studies found are categorized into the research methodology (i.e. case
study, experiment, survey etc) and type of the study (i.e. evaluative, proposal,
solution, opinion etc) dimensions. The horizontal axis in Figure 3 represents re-
search methodologies defined by Runeson et al. [159] and vertical axis represents
the classification of studies established by Wieringa et al. [193]. Evaluations, us-
ing case study research methodology dominate among the identified papers with
20 papers, among which two were interview studies that we consider qualitative
case studies. Evaluations, using survey research methodology was found in 7 pa-
pers. We classified only 2 papers in each of the framework—proposal and case

4 Results and analysis 37

Figure 3: Research methodology classification based on Runeson et al. and
Wieringa et al. [159, 193]

Solution 1 -
Validation 1
Proposal Z 2
Evaluation = +----r--meemmeeees 20 7
Case s!tudy Suflvey Framework Tool proposal

study—proposal categories. Finally, the categories case study—validation and tool
proposal—solution received only 1 paper each and no papers were identified in the
case study solution category.

4.3 Thematic analysis

The main objective behind conducting this analysis is to find the recurring themes
in the identified primary studies. Based on the guidelines provided by Cruzes et
al. [37,38], we performed the following analysis steps:

1. Extract data from the primary studies
2. Identify the interesting themes from the data
3. Group the themes into the distinct categories

4. Assess the trustworthiness of the identified themes using rigor and relevance
criteria

The resulting 9 themes of OI in software engineering are depicted in Figure 4.
Figure 5 provides a more detailed view on the identified themes using the mind
map technique, where the 33 primary studies are referred to as S_1 to S_33. In
order to assess the trustworthiness of the identified themes, the rigor and relevance

38 Open Innovation in Software Engineering: A Systematic Mapping Study

Figure 4: Identified Open Innovation themes in Software Engineering

IP strategies

Ol toolkits

Degree of openness

Ol models/frameworks
Managerial implications

Enabling Ol communities

Benefits

Challenges

Ol strategies/instruments

[1 2 3 4 5 6 7 8 9 10
Number of studies

analysis is performed and its results are visualized in Figure 6. Details on the
primary studies and the rigor an relevance scores are reported in the appendix,
Table 1. The rigor and relevance scores are used to find the evidence in favor and
against Ol in SE (research question RQ2). The results from less relevant and less
rigorous studies have weaker empirical support than those stemming from highly
relevant and rigorously conducted primary studies. There can also be promising
highly relevant studied that were conducted with low rigor.

Studies are organized into four quadrants (A, B, C and D) according to their
rigor and relevance scores. The procedure for classification was as follows:

1. Studies with the score from (0—1.5) are considered as low rigor, while high
rigor is defined for a score of 2 or above.

2. Studies with the score from (0-2) are considered as low relevance, while
high relevance covers scores from 2.5 or above.

We classified 17 studies as having the highest rigor and relevance, see area A
in Figure 6, and these results are the most trustworthy. Moreover, we classified
12 studies into C category of studies with high relevance but low rigor. On the
other hand, categories B and D contain two studies each and in for both categories
the relevance scores were higher than the rigor scores, see Table 1. The identified
themes are are presented in the subsections below, sorted according to the number
of categorized studies.

39

4 Results and analysis

(e s uonedpued Anunwwod ur seafoidwe BuiBeinosuz

@anos ued([91 8|

spaepuess uadQ [9)7S]
S

- swmeaLio <

N[00} UOIEAOUU 1357 [2€S 7 §]

/ XaAou] [gZ S|

[51sTdn Auep ey 5331 Busuad| 1depy

[z¢~s] s1sn pua o 1o abpajmouy) mei]

[£1s] suonedior; pue A2y 2y Buuy Ag sanunwwod Buiaoau)

UOREIUSISHIP 521|251 O} SIUaWS|dio

suonesijdwny | |
feuabeuy

[61"S] uonesogeyjoo uusy-buo pue

| Buiyjass 1o}

(18] saibalens uopenuasayip ssoding

[61~S] suoneyojdxa pue
uojjeacuu [eaipe Bupjaes Joj SaININNS s|qeus SHIOMIBU uopelojdx]

[87s 1 7S] ssmunwwod |0 ajqeua 03 MOH
SBRIUNLILIO)
10 Bunqeuy

LE S '9¢ S '€Z S 01 SIsoedwisapisod |

[0z s] uonnjos [emdaouod uoneAouL]

spuawNnsu| 1o

su ~— saibajens |0
uoneacuu; uado

|2PowW 2AR23]|02 3)eALd [T]
¥z STssauisng "
_ Y swousg
[vZ 5] ABojourpay
M—. m_mmﬂnvbh _ﬂ.m_u ino) |
Z1 S] ssesoid ino-episu| |

[z1-s] ssa301d ur-apising

[vZ § 12 S L SISSO \

[G1s] synsa1 Buneys g uopesbaju; ‘Buubye Buissassy

/9 sI Buueys uado pue §sO Buizinn

7S 'S 514w paweonpa Allediuiapede Buliiy

[s] endes uewny s uny uo Bursnoog

62 sluoneziprepue)s g pajdnod
‘Ino-apIsul ‘urapIsiNno

[Mewnisal

JuaWdo[sASp paulor

suuope|d jeiLisiu]

Z S| SIUAWNDSUTIO |,

SIRLD Pomopu3
S —
uopeIBajul JaWIoISN))
i\
.
| o anmaxg

sdousyiom TBisIo]

¥l S] 5522014 UslUabeuB)y SiusWwann|

urepIsIng

[6z S] suonesouu) eoipel sjqeus Jeyl

suoneAcuul Je[npow Bujis)so; Joj diysiequisw usdg

/Ty s]sse0.
No-apisu]

[6¢”s] suonesouuy [eaipes ajqeus 1oy
suoneAouul Jejnpow fuiialsoy Joy diysiaquaw usdo

[6"sTspomiau 10

€1 S] [9POUI BARIB[0D BIBAL] |

N |
[z1 s] @21nos souu) /

spom awey 350 [LL S1 Y
uonnjos ssasoud uoneaouu) [gz_s]

'/

[8poW 3AN8]|02 a1eAlLd [£1 S] 10 S19POW _m

A
epoN 3s0 Lz sI |
uoppadwod eap| [S| !

dS ur 1O jo depy purjy :g aan3ig

[517s ‘€1 s]@poo aaunos jo Buijeanal [enieg

“Tcv ST SvaN Aq palionuoa sabexoeal ueid aiming

[6™s] sino-uid *qgy pajood

. soifowens 4l 81 SIS0 pue jood uajed

40 Open Innovation in Software Engineering: A Systematic Mapping Study

Figure 6: Categorization of studies based on rigor and relevance

o o e R
Categéry B Category A

S (18,1047

A2 I I S 73,29,30)
5_[36,13,14,1
20 -@a -(;—D 5,.2427,31,32)

51 _ VAN
e

- ! N 7 =\
15 | CategaryD H : - Ca Eg.[.,ﬁ.(-:---. -------- @--- 5_(245,
: : ; : 5 :)

08 s_@o21) ; . (o) 5_19,25)

N -
A AN vy
o
0.5 1.0 15 2.0 25 3.0 35 4.0

Relevance >

Ol Strategies/Instruments

The software industry is characterized by frequent technological changes which
force large incumbent firms to more rapidly innovate their strategies in the pur-
suit to sustain their current revenue levels. Ol strategies focus on how innovation
networks and strategies can be used to participate, orchestrate or govern this tech-
nologically unstable environment.

Research and development (R&D) collaboration strategies seem to help or-
ganizations to attract and establish communities and to stay competitive. This
strategy is also visible among the firms that adopt OI to enhance their innovation
process in nine primary studies (S_3, S_5, S_6, S_13, S_15, S_19, S_25, S_26,
S_29). Six out of these studies (S_3, S_6, S_13, S_15, S_25, S_29) were con-
ducted with high rigor and relevance, see category A in Figure 6. The remaining
three studies (S_5, S_19, S_26) were classified into category C which indicate that
the studies have relatively low rigor but still their results are highly relevant.

Looking at the primary studies with high rigor and relevance scores, the results
of one study (S_3) indicated that firm’s human capital affects the adoption of OI
business strategy among the Finnish software companies. Consequently, the com-
panies that have larger academically educated staff more often apply OI business

4 Results and analysis 41

strategies. Harison and Koski (S_3) stated the reason for that is the ties between
the OSS communities and universities. Smaller companies (start-ups) tend to ap-
ply more open innovation strategies compared to large and older firms. This inter-
pretation seems reasonable since smaller companies often leverage OSS to acquire
knowledge and substitute of a comparable depth as for the in-house R&D capabil-
ities that they lack. Overall results suggest that a more positive attitude towards
openness enables firms to better share in the benefits of open innovation processes
(S_6).

In a study about implementing a private collective model at Nokia (S_13), a
number of mitigation strategies were adopted. Nokia had the evidence of their
competitors using their source code, therefore, they partially revealed their source
code to retain control and information, and future plans leakage was protected
through non-disclosure agreements. Moreover, the development control was com-
promised by involving communities, hiring key developers and upstream participa-
tion, which resulted in no single vendor being able to control the platform. Besides
that, Nokia opened up and communicated the structure of its internal processes.

Dahlander and Magnusson (S_15) highlight that in order to address the emerg-
ing challenges of the public-private development model, such as attracting out-
siders to work in their community, companies are releasing the code under open
source licenses and in this way are establishing new communities or using existing
communities. At the same time, companies often adopt licensing practices that
clarify ownership, devoting resources to evaluate source code and give feedback
on source code to communities.

One of the main conclusions of Grgtnes’ study (S_29) is that the open inno-
vation takes place in neutral arenas like standardization, and outside-in, inside-out
and coupled processes are used to create new technological platforms. A more re-
stricted membership gives a separate outside-in and inside-out process while open
membership leads to a coupled process. A key difference can be explained by the
example of Android that was available for invited firms only, while open member-
ship is open for all. Open membership creates a modular innovation that embeds
new radical innovations like mobile TV, while Android creates an architectural
innovation with possibilities for further radical innovations.

Similarly, Deutsche Telekom (S_25) used Foresight workshops, executive fo-
rums, Customer integration, Endowed chairs (opening doors to academia world),
Consortia projects (cost sharing of complex projects), Corporate Venture Capitalist
(window to innovation in the start-up community and technology sourcing through
co-investing), Internet platforms, Joined development, strategic alliances, spin-
outs (external commercialization of internal R&D results in technologies, products
or services) and test market (equipping a city with next generation infrastructure)
to take advantage of open innovation, see Figure 5.

Looking at the studies performed with less rigor, West and Gallagher (S_5)
argued that companies employing strategies such as pooled R&D/product devel-
opment (firms sharing the R&D), spin-outs and selling complement and attracting

42 Open Innovation in Software Engineering: A Systematic Mapping Study

donated complements, easier overcome the following challenges: 1) the generation
and contribution of external knowledge (motivating), 2) incorporating the external
innovation into firms resources and capabilities (incorporating), 3)diversifying the
exploitation of intellectual property (IP) resources (maximizing).

The most noted example of pooled R&D is the Mozilla project, initiated by
Netscape in response the competitive pressure from Microsoft Internet Explorer
(IE). Vendors such as IBM, HP and Sun needed a Unix based browser to increase
sales of Internet connected workstations and therefore donated some of their IPs
to the open source development lab (OSDL), while exploiting the common advan-
tages of all the contributors to expedites the sale of related products. Similarly,
spin-out (shared R&D between firms and a community) can also release the po-
tential IP from the firm that is not creating the value anymore. Thereby, the firms
transform internal development projects to externally visible open source projects.

Consequently, the donated IP generates demands for other products and ser-
vices that the (donor) firms continued to sell. An examples of a spin-out is when
IBM promotes the Java programming language, developed by Sun Microsystems,
to compete with Microsoft. IBM was still able to generate revenue from sales of
hardware and supporting services in the Java world. Selling complements is used
by firms to build upon the already existing products and succeed through differ-
entiation strategy and in contrast, donating complements are more feasible when
selling to technically professional buyers, capable of making modification and im-
provements, such as hobbyist programmers or corporate engineers.

In addition, Dittrich and Duysters (S_19) also addressed the difference be-
tween exploration (seeking radical innovation) and exploitation (seeking incre-
mental innovation) strategies adopted by firms to sustain their position in rapidly
changing technological environments. Exploration networks make use of flexible
legal organizational structures, whereas exploitation alliances are associated with
legal structures that enable long-term collaboration. Nokia followed an exploita-
tion (incremental innovation) strategy in the development of the first two gener-
ations of mobile telephony devices, and an exploration (radical) strategy in the
development of technologies for the third generation. Such inter-firm networks
seem to offer flexibility, speed, innovation, and the ability to adjust smoothly to
changing market conditions and new strategic opportunities.

While studying the case of embedded Linux (S_26) Henkel found that hob-
byists and developers in universities reveal nearly all of the code in contrast to
companies. In particular, the more important it is to obtain external development
support, the more code the respective firms reveal.

Challenges

This theme highlights business and process related challenges (S_4, S_9, S_12,
S_14, S_15, S_21, S_24, S_13) faced when firms try to adopt open innovation,
summarized in Table 4. Business related challenges refer to business strategy

4 Results and analysis

(S_9, S_13, S_14), entry barriers (S_15, S_21) and governance (S_12, S_24).
Governance refers to establishing measurement and control mechanisms to enable
project managers and software developers within the communities as well as others
within a software development organization, to carry out their roles and responsi-

bilities [33]. Process related challenges consider hinders in strategy realization.

Facets Challenges

Business

Business strategy

Unclear content and contribution strategy (S_14)
Contribution time-line unclear (S_14)
Minimize modifications to the open source code (S_14)

Unclear relationship between the benefits from contributions in
terms of strategy and business goals (S_14)

Be strategic when adopting innovative features (S_14)

Balancing the interests of those participants against those of the
ecosystem leader (S_9)

Difficulty to differentiate (S_13)
Guarding business secrets (S_13)
Definition of core competencies (S_21)

Legal and property rights issues concerning the external know-
ledge (S_21)

Strategic OI entry barrier

Accessing communities to extend the resource (S_15)
Reducing community entry barriers base (S_13)
Aligning firm strategies with the community (S_15)
Community build-up and management (S_21)
Achieving a common vision (S_12)

Finding staff/ Competencies (S_24)

Lack of expertise (S_24)

Governance

Expectation management of community (S_21)
Increasing knowledge sharing and exchange (S_12)
Achieving a high level of commitment (S_12)
Giving up control (S_13)

Lack of support (S_24)

Lack of ownership (S_24)

44 Open Innovation in Software Engineering: A Systematic Mapping Study

Facets Challenges
Agile processes

Process|

e The new approach caused significant problems in terms of trans-
ferring the ideas outside the team (S_4)

e Visibility as to what the new [agile] team were doing dropped
quickly. The introduction of agile coincided with a rapid drop
in the number of developers from that team attending the overall
R&D meetings. (S_4)

e The use of short iterations, a feature backlog and stand-up meet-
ings reduced the amount of time you can spend playing around
or sharing ideas outside your team (S_4)

e Motivating the generation and contribution of external know-
ledge (Motivating) (S_4)

e Incorporating external innovation into firms resources and capa-
bilities (Incorporating) (S_4)

e Diversifying the exploitation of intellectual property (IP) re-
sources (Maximizing)(S_4)

Relation between process and innovation
e Augmenting the requirements management process (S_14)
e Manage innovative features in a separate process (S_14)
e Top-down or bottom-up open innovation (S_14)
Release planning and prioritization
e Prioritization process needs modification (S_14)
e Challenging acceptance criteria kills innovative features (S_14)

e Need for special flow for innovative features to evolve to meet
acceptance criteria (S_14)

e Release planning even more challenging (S_14)

e Prioritizing the conflicting needs of heterogeneous ecosystem
participants (S_9)

o Assimilating communities in order to integrate and share results
(S_15)

o Efficient process management (S_21)
e Lack of Road-maps with OSS Products (S_24)
e Overcoming Not Invented Here (S_21)

Table 4: OI challenges categorized in business and process themes.

As can be seen in Table 4, business and process level challenges are considered
to be major hindering factors for the adoption of OI. Finding the right balance

4 Results and analysis 45

between contributing to community and reaping benefits is tough, and thus results
in unclear business strategies (S_14). One of the biggest concerns is the difficulty
in differentiation if a firm indulge itself in an OSS solution and guard its business
secrets because its competitors have the same solution available for their products
(S_14). Other challenges are: managing the conflicting needs (S_9) of all players
involved in the process, aligning the firm’s strategy with community (S_15) and
achieving a common vision (S_12). Even if a firm has a clear business strategy
to resolve the often conflicting stakeholders’ needs, the challenge of community
build up and survival remains (S_21). Therefore, firms and communities need to
find the right balance of governance(S_13).

On the other hand, process related challenges are negatively impacting OI. For
instance, Conboy and Morgan (S_4) suggest that agile and OI do not get along
well, especially when dealing with the management of innovative requirements
and release planning. Agile requirements backlogs do not have room for innova-
tive requirements since short iterations, a feature backlog and stand up meetings
make it extremely tough to play around or share ideas outside your team. The
lack of control over release planning was also pointed out as a challenge in a study
(S_11), for example, sometimes it is a better business decision to adopt the open
source code, perform minimum changes, and sell it instead of spending time on
developing differentiation features. This raises a question whether or not firms
should have a separate requirements management process for innovative features
(S_11), but nevertheless there is an inherent complexity in requirement manage-
ment process while managing innovative features. Further process challenges in-
clude the lack of clear roadmaps for product highly dependent on OSS platforms
and overcoming the “not invented here”” mentality.

The majority of the primary studies highlighting the challenges lie in categories
A (S_13,S_14, S_15, S_24) and C (S_4, S_9, S_12) suggesting that results are
highly relevant to industry Only one study (S_21) lie in category D.

Benefits

This category highlights the OI adoption benefits in terms of positive impacts as-
sociated with the inside-out, outside-in, coupled processes and the private collec-
tive model (S_10, S_12, S_13, S_20, S_23, S_24, S_26, S_31). The benefits are
summarized in Table 5. As far as the strength of evidence is concerned, five pa-
pers (S_10, S_13, S_23, S_24, S_31) lie in category A and two studies (S_12,
S_26) fall into category C. The fact that only one study (S_20) has low rigor and
relevance suggests that the identified OI adaption benefits are highly relevant for
industry.

46 Open Innovation in Software Engineering: A Systematic Mapping Study

Facets Benefits

Knowledge building and exchange

e Knowledge sharing and exchange (S_12)

Process

e [ow knowledge protection costs (S_13)
e Easy access to all information (S_12)
e Increases organizational learning (S_12)

e Improves collaboration with groups in Europe, USA, India
(S_12)

e Customer demand for source code has a significant (5%), posi-
tive effect on the decision to reveal at all (S_31)

Platform and reuse
e Improves platform use (S_12)
e Promotes software reuse (S_12)
e Increases trust in platform (S_12)
Communication
e Direct communications (S_12)

e Supporting OI in an existing social network site lowers the hur-
dles for expressing and communicating ideas (S_20)

Involvement and innovation support
e Improves involvement of product teams (S_12)
e Improves feedback by being open (S_12)
e Avoidance of duplicate work (S_12)
e Empowers developers and project leaders (S_12)

e Introduces diverse people to each other, adding more heteroge-
neous viewpoints to ideas (S_20)

e The process acts as a catalyst for ideas: while it does not help
with the initial conception of an idea, it makes all following steps
easier (S_20)

e Executing the OI might result in the realization of ideas and
broadening companies offering (S_20)

e Developer/Tester Base (S_24)
o Flexibility of use (S_24)

4 Results and analysis 47

Facets Benefits
% Time to market, cost, maintenance and efficiency
=

g e Reduces time to market (S_12)

/M

Cost savings (S_12)

Increases efficiency in development (S_12)
Reduced maintenance effort (S_26)

Bug fixes by others (S_26)

Small firms reveal significantly more due to resource scarcity
(S_26)

Further development by others (S_26)

Innovation

Increases innovative capacity and speed (S_12)
Adoption of innovation (S_13)

Increased innovation at lower costs (S_13)
Encourages innovation (S_24)

The OI technology scouting is positively associated to the SME’s
innovative performance (S_10)

Communities provide SME’s a rich of free-of-charge (S_23)

Increases collaboration (S_24)

Improved competitiveness and other business gains

Extra business functionality (S_24)
Improves adoption rate of the platform (S_12)

New competitive weapon for managers in non market leaders
firms (S_31)

Reputation gain (S_13)

Revealing good code improves our company technical reputation
(S_26)

Distribute ownership and control (S_12)
Learning effects (S_13)
De-facto standards (S_24)

Culture change

e Public success stories might create a culture of in