
LUND UNIVERSITY

PO Box 117
221 00 Lund
+46 46-222 00 00

Scandinavian Control Library -- Programming and Documentation Rules for Subroutine
Libraries
Designed for the SCL
Tyssø, Arne; Elmqvist, Hilding; Wieslander, Johan

1976

Document Version:
Publisher's PDF, also known as Version of record

Link to publication

Citation for published version (APA):
Tyssø, A., Elmqvist, H., & Wieslander, J. (1976). Scandinavian Control Library -- Programming and
Documentation Rules for Subroutine Libraries: Designed for the SCL. (Research Reports TFRT-3139).
Department of Automatic Control, Lund Institute of Technology (LTH).

Total number of authors:
3

General rights
Unless other specific re-use rights are stated the following general rights apply:
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors
and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the
legal requirements associated with these rights.
 • Users may download and print one copy of any publication from the public portal for the purpose of private study
or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal

Read more about Creative commons licenses: https://creativecommons.org/licenses/
Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove
access to the work immediately and investigate your claim.

https://portal.research.lu.se/en/publications/2a605fa6-50ba-4832-bc92-3725d1c6cdc7

c Õo€/v.' ¿ d rFD¿//(æF 3/J 2/þ7 (/7 %)

scL
Scandinavian Control L¡brary

Programming and documentation rules for subrutine
libraries - designed for the SCL

Edited by Elmqvist, Tyssø, Wieslander

NORDFORSK
The Scandinavian Council for Applied Research

First Edition 1976-06-01

Programming and documentation rules for subrutine libraries -
designed for the SGL

The NORDFORSK project-group on "Computer Aided Design of Dynamical

Systemsn'
First Edition 1976-06-01

CONTENTS

PREFACE

1. INTRODUCTION

.1 Matrix handling

.2 Communication with the subroutine

.3 Some rules for the program code

.4 Use of slmbols

2.4.L General use of slmbols

2.4.2 Special slanbol names to be used

3. RULES FOR DOCUMENTATION

Appendix Al . Example of d.ocumentation

Appendix 42. Computer dependent subroutines:
I4ADD, MULT, RMULT, M¡itOVE, RMACON and fl{ACON

Page

I

2. DESIGN OF PROGRAMS AND SUBROUTTNES 2

3

l0

11

L2

L2

L4

)

2

2

2

16

)'1.

28

Preface

NORDF1)RSK, the Scandinavian Cor¡ncil f,lr:: Ar¡piiecl P.esearch, ajms ai i-ni-t'å:rÈ-i¡'c

and orqanizínq Scandinavian cooperai.ion j-n scj-ettific and in<lus?rj"ai ::esearch

and in utiiization of research results. };[OF"DFO?-.SF :l-s a joini: bcd'¡ of th*,

nine technical research corrncils and aca,*emies i.n the five nordic cc¡:nÈries-

One of the objectives of this NOÊÐFf)e5?i-ilrcjeçt "CÊi¡:.p'.:ier aid.eê design cf

dynamical systemsil is to establish a Scandina¡¡i-an PrÐgraÍ¡ and silb':outine.

library "scandinavian Control Libraryin. This repori contains the co¡¡ûnon rìlles

for proqrarrmi¡g and docu¡nentation thaÈ wili be userl for the prograrns :ln this

library.

A report concerning the development and orEanization of the "scandinavian

Control Library" will be published later in 1976.

This work is a ::esult of a joinÈ effort
Leif Andersson, Ililding Elmqvisto Tornn¡r

iohan !'fieslander and Karl-.fohan Asirón,

and Arne Íyssd" Oddvar Flallingstado T}le

Ncrway.

by the folloq-inçr .persons:

Essebou C)-aes l(ällsÈrõrn. Toutas Schõc.f.hal ,

i,tind Ï:,sj:i.i:uie of Tectrnalagyn S¡.ieCen

lT<--rr¡egian f,netitute of Tec.:::icJ.ol5' n

-1-

1. TNTRODUCTTON

It is difficult to make general rules in the field of program design

because software and hardÌ^rare facilities differ quite a lot from one

computer system to another. Especially such things as d'ifferent prog:

ramming langiuages and peripherial equipment make it difficult to standardize?

gle will concentiate on the design part that is independent of the type of

computer system, General input/output handling such as use of graphical

display and files is depend.ent of the computer and will therefore not be

treated in the rules. However, regarding exchange of complete program sys-

tems it should be stressed that all computer-dependent subroutines are

strictly specified and well documented as proposed in this report'

[t is generally agreed that all programs and subroutines should. be written

in Standard Fortran lV as given in USA ANS X3 .9 L966. Fortran IV is chosen

because Fortran Compilers are available at most computer systemsr and

many of the already existing subroutines are written in Fortran. However,

one should be aware that there exists many different versions of ForÈran IV,

and some of the features that are accepted by one computer is not allowed

by another.

Special features will be accepted. to some extent if it is possible to modify

the subroutines with a reasonably good editor system. If possible these

special features should. be confined to special purpose subroutir:es. More

complicated programming features which are not mentioned in the standard

should be avoided- some of these thiqgs are dÍscussed in chapter 2'

This report deals especially with the problem of dynamical all-ocation of

matrices and how a su"broutine/program should. be documented.. AIso some

proposals to symbol use and communication with subroutines are presented.

As a basic rule the following could be set up:

The programs should be wel-l- structured and well documented, and they should

be written in Fortran IV.

The documentation and all comment statements in the program should be written

in English.

2

2. DESIGN OF PROGRAMS AND SUBROUTINES

This report does not discuss elernentary questions about program design. A

good introduction to the problems can be found in "Kerrighan-Plauger: The

elements of prograuuning style. Mc. Graw-HiLL L974". Some of the rules they

introduce are l-isted below.

l^lrite clearly - d.ontt be too clever.
Say whaÈ you mean, simply and directly.
I{rite clearly - donrt sacrifice elarity for "efficiency,.l ,,

Let the machine do the dirty work.

Replace repetetive expressions by calls to a common function.
Parenthesize to avoid ambiguity.
Chc¡ose variable names t].at won't be confused.
Avoid the Fortran arithmetic IF.
Avoid unnecessary branches.

Dontt use conditional branches as a substitute for a logical expression
rf a logical expression is hard to und.erstand, try transforming it.
Modul-arize. Use subroutines.
Don't patch bad code - rewrite it.
I¡ürite and test a big program i-n small pieces.
Make sure all variabl-es are initialized. before use.

Check some ansv/ers by hand..

Make it right before you make it faster.
Make it fail-safe before you make it faster.
Make it clear before you make j-t faster.
Let your compiler do the simple optimizations.
Donrt strain to re-use code; reorganize instead.
Make sure comments and code ag:ree.

Dontt just echo the cod.e with comments.

Ðonlt comment bad cod.e - rewri-te it.
Use variable names that mean something.

Format a program to help the reader und.erstand it.

-3-

2.1. Matrix handlinqi

Many results in automatic controi theory are formulated using matrix notation.
This fact implies that in a subroutine l-Íbrary for automatic control problems

there must be a v¡ay of handling matrices. When using FORTRAN this is a pro-

blem, mainly because of lack of dynamic allocation mechanism. This chapter

describes how matrices are stored, in FORTRAN, a v/av of handling work areas

and a set of subroutines for basic matrix operations.

Arrays in FORTRAN

Two basic rules for the librarY are:

.f ttre subroutines in the library should. be ind.ependent of problen size

(dimension).

Z ftre subroutines in the Iibrary should be constructed, in such a way that

it is possible to write a calling program which can handle different pro-

blem dimensions.

These rules imPlY that:

3 The actual dimensions of the arrays in the subroutine call must be trans-

ferred to ttre subroutine.

4 ¡.nfonnation about how the arrays in the sul¡routine call are dimensioned.

must be transferred to the subrouÈine.

In ord.er to calculate the memory location of an array element, the location

of the first element of the array arid. all except the last maximum dimensions

are needed. AI1 except the last maximum dimensions should thus be trans-

ferred to subroutines via so called dimensj-on parameters. Thus a vector

does not need any d.imension parameters. A matrix needs one and a three

dimensional array needs two d'imension parameters.

-4-

c

c

Example:

Consider the following main program and subroutine

MAÏN PROGRAM

DII,IENSION A(3r4)

DATA TA/3/

READ (51100) NIA,N2A

REAÐ (5rtr0) ((A(IrJ), J = lrN2A) rI = IINIA)

CALL SUBI (A,NlArN2A, rA, . . .)

B\¡D

suBRourINE suBl (A,N1A,I¡2A, rA,

DIMENSTON A(IA,1)

ÐO10I=lrNIA
DOl0J=lrN2A
X = 0 .5T4 (I rJ)

10 CO}TITNUE

ENÐ

The dimension parameter of A is rA = 3 since A is dimensioned. (3r4).
The actual dimension of. A is read into NIA and N2A. When the matrix A

is read, it is stored as illustrated in figure 1. The dimension parameter j-s

used. Ín the dimension statement in ttre subroutine, and impticitly when using
the element A(Ir,J) in the sr:broutine,

There is in fact a way of avoiding the dimension parameters. If a subroutine
with the dimension statement ÐIMENSION A(NlArl) reacls in the matrj-xrthen the
maÈrix would be stored using consecutive memory locations (compare figure t).
The subroutine SUBI then should have the same dimension statement.and. the
parameter IA could be dropped.

-5-

This met3¡od, however, has the serious draw back that all arrays must be packed

as aboverwhich mear¡s that the routines can not be used together with routines
from other libraries not using the same method. This method should thus not
be used.

A(l,l)

e(2,L)

e(3,1)

e(L,2)

a(2,2)

A (3,2)

a (1r 3)

s(2,3)

A (3,3)

A(L,4)

A(2,4)

A (3,4)

Fi 1. Illustrates how the matrix A is stored. The actual 2x3 matrix
is stored in tÌ.e shad.ed elements.

lvork areas

FORTRAN does not includ.e dynamic allocation of arrays. In order to make the

subroutines inclependent of probJ-em size it is thus required that

5 All work areas with problem d.ependent size should be transferred via
the subroutine calf.

3

3

4

3

3

////////////,

-6-

Tt¡e method of using a cOMMoN-block as allocation area has some serious
drawbacks and should not be used.

!{ork areas for a subroutine does not contain relevant information outside the
subroutine and will not be manipulated there. The work areas then do not need
any dimension parameters.

ó A work area should be dimensioned in the subroutine usingr actual dimen-
srons.

Example:

SUBROUIÏNE SUB2 (ArNlArN2A, I.ArV,l1 ,î¡12,)
DI¡4ENSION A(TA,I)
DÌMENSTON !vl- (NlA, L) | V12(N1A, I)

The work areas of subroutines at a low level in a subroutine hierarchy must
be included in the call to a subroutine at a high level. This mear¡s that the
number of work areas in a subroutine call can be large.

Two work areas which do not hold. information at the same time'in a subroutine
but have different shapesrmust both be includ.ed. in the call. They can, hovrever,
be equivalenced in the call, which means that the actual parameters are t¡e
same.

The equivalence structure can, however, be rather complicatedrand j-f the user
of the subroutine does not make equivalence, then the program will be unnecces-
sarily large.

one vìray of making the use of the subroutines easier j-n these cases/ is to
introduce an interface routine and allocation vectors. The allocation vector
is partioned, using índices, into a nu¡nber of work areas/and then the original
subroutine is.called using these indices.

-7-

Example:

c

c

c

c

c

c

c

c

suBRouTrNE suB3 (N, . . . !f1r.!f2 ,w3,vt4)

This subroutine does the real work

Vll - work area, size (N)

!'i2 - work area, size(Nr3)

913 - work area, size(Nr2)

ll4 - work area , si ze (N , 2)

WI ,Vl2 and I'f3rW4 can share space

SUBROIÍTTNE SUB3I (N, . . .,W)

This is the interface routine, which only allocates work space

W - allocation vector, size(4+l.T)

DIMENSION I^¡(l)

KWI=l
Klrl2=KWl+N
KVl3 = KIrII

K!V4=KId3+2*N

CALL SUB3 (N,. . . ,Vü(K!{l) ,W(KVü2) ,W(KV'13) ,W(Krn74))

RETURN

END

The user of the subroutine nov¡ only has to care about one work area. The

equivalence structure is also taken care cf in the i-nterface routine.

Using an allocation vector requires a certain programming feaÈure outsid.e

the Fortran IV Standard: The nu¡nber of ind.ices of a formal- parameter may

be greater than one even if the number of indices of the actual parameter

is one.

DIMENSION Vrl (f),W2 (N,1),W3 (N,I),f/Í4 (N,l)

TXVD

c

c

c

c

-8-

This straight forward method of handli,ng work areas has, one drawback. It
introd.uces a new small subroutine for all subroutines which are intended to

be called by usersrand which have many work areas. There are, however, two

ways of reducing the nurnber of work areas in a subroutine call.

1 Vtork areas to lower level subroutines can be allocated from an allo-
cation vector in the calling subroutine.

Example:

SUBROIJTINE SUB4 (N, . . .,!'IA,I^TB,W)

ÐTMENSTON VÍA(N, t),WB (1)

DIMENSTON Vü(I)

KÍ,tl = I
KÌV2=KV'II+N+N

cAN SUB41 (WA,WBrN,... rÌ{(KVül) rW(K!ù2))

END

VIA and VIB are work areas in t]re "subroutine SUB4 and Wl and VI2 are

work areas in the subroutine SUB41..

The other way of reducing the nu¡nber of hlork areas is:

8 If a work area is used only to transfer d.ata from one lower level
subroutine to anoÈher, Èhen this work area can be allocated in the

subroutinerand the poj-nter used. in the subroutine calls.

Example:

SUBROUTINE SUB5 (... ,N, :. .,W)

DTMENSTON Vü(I) ,. ..
KA=I
KB=KA+N+N
CALL SUBSI (. . .,Vf (KA) rVt(KB),N, . . .)

CALL SUB52 (lr(KA) ,lt(KB) , . . . ,N, .. .)

END

I

9

The subroutine SUBSI stores its results in the formal parameters A and

B which actually corresponds to the areas in I¡¡ which begin at KA resp.

KB. The subroutine SUB52 uses these results via its formal parameters.

The above discussion is suÍrmarized in the rule.

lf the number of work areas is large or there is a complicated equiva-
lence structure, then the subroutine should be rewritten according to
rules 7 and I or an interface routi-ne shourd. be consLructed.

The following rules are also introduced..

10 The allocation should be d.one expl.icitly by computing pointers (indices).

11 The allocation of a work area of a certairr Llpe sirould be done from an

allocation vector of the same type.

12 Only one allocation vector of each type should be used at each subroutine
level.

t3 If the required size of an allocation vector is. determined by a compli-
cated formula, the user should have the possibility to enter the actual
size of the allocation vector. The súbroutine should test if the actual
size is sufficiently large and use an error parameter if it. is too smal_1.

-Eåen'rpfe:

SUBRoUTINE SUB6 (N, . . - . IERR,I{,NI^t)

IERR = 0

KVùl = I
KW2=Khll +N
KüI3=Ki^12+2*N

KL=KW2+N
Kl^¡4 = K!V2

KW5=KlV4+N+N

K2=KW5+N
IF (MAXO (KI , K2) -f . GT . NI¡J) GOTO 900

900 IERR = I
RETURN

END

10

Basic matrix

The basic matrix operations, addition, subtraction and. multiplication tend

to be hard to read wlren implented using inline code with DO-loops. The

alternatj-ve is to use subroutines for these operations. The toÈal object

code then becomes smaller and the execution tìme can sometimes be reduced if

the subroutines are implemented in assembly language.

Four subroutines for basic matrix operations (MADDTMULT'RMULT and MMOVE) are

documented in the aPPend,ix,A2'

The subroutine MADD performes matrix addition and subtractj-on. There are

switches to determine if the operands should be transposed. The subroutine

MULT performes matrix multiplication. It has switches to determine if the

operands should be transposed or if the result should be made symmetric- The

subroutine RMULT muttiplies a scalar with a matrix and t'lMOVE moves a matrix.

14 The subroutines MADD, MULT' RMULT and MIÍOVE should be used -when this is

not unnatural.

2.2. Cor¡ntunication with the subroutine

î5 If possible the argument list should be ordered in the following way.

o operands (inPut data)

o results (output data)

o descript.ions of operands and results (for example actual dimensions
of matrices)

o other information (for example test quantity t error indicator)

o dinension Parameters

o work arrays and allocation vectors (and their sizes)

Common blocks should generally be avoid.ed. Hor^/ever, they can be used to

ret-urn informatíon which may be of interest to a user-
16

1-7

18

19

1t

Operands ought not to be destroyed in a subroutine'

The documentation should. tell when arguments may be equivalenced.

Subroutines on a basic level in the program library should have d.iffe-

rent dimension parameters for all matrices. Groups of matrices, in

the argument list of higher level subroutines, r"¡hich ah^rays have the

same actual dimension and which can be expected to have been cfirnensioned

equally, should have a conmon dimension parameter.

The user is allowed to put a test quantity equal to zero. A computer

dependent defaul-t value is then used. If Èhe subroutine uses more than

one test quantity they should be placed in a vector. It shall be

possible to individually d.etermine if defaultvalues should. be used by

setting resp elements of the vector equal to zero. The variables for

test quantities must not be altered in the subroutine. The computer

dependent defauttvalues should be computed using the functions RMACON

and IMACON (See appendix, A2).

2.3. Some rules for Lhe ram code

20 Input - Output should not be performed in a computational routine. Tf

L/O Ls desirable (as uÌight be e.g. in function minimazation routines)

it should be confined to special I/O subroutines, specified as external

routines in the subroutine call. lhey should be documented as a "User

supplied subroutine", but in many cases it worrld. be natural to expect

suitable f,/o routines to be part of the library.

21' Specification statements should appear before aII execut-able statements

and FORMAT statements and in the order:

o type statements

o dimension statements

o common statements

o equivalence and external statements

o data statements

This is actually required. by some FORTRAN compilers.

L2

22 Computer dependeni constants should be obtained through the functions

IMACON and RI"IACON (See appendix A2).

23 The numbers defining labels should appear in increasing order and be

Preceeded'bY one space.

24 Character strings and Hollerith data should be avoided in numerical sub-

Programs.

The internal representation of Hollerith daLa is dependent of the com-

puter word-length.

It is a good habiÈ to use comment statements in the programs. These can in

one way replace flow charts, and it becomes easier to read the programs and

if necessary, to modifY them.

How much of comment-statements to be used i.s dependent of the degree of

documentation required. These things are discussed. in next chapter.

25 Comment statements shoul-d. be written in Enqlish.

2.4. Use of symbols

It is of great importance that the use of symbol names Ís following a certain
stand.ard. This witl simplify the reading of program listings. It is well
known that almost every institute has its own standard more or l-ess, and it
is difficult to come to an agreement on this matter-

However, in the following we will give some recommendations with alternatives.

2.4.I. Genefal- use of symbols

Fortran has automatic type declaration: every symbolic name with a first

Ietter of I, J, K, L, M and. N implies type integer and any other letter

I3

implies type real. This should. be followed. as a general rule, but logical

variables should begin with leÈter L. Identifiers should have at most 6

characters.

Dimensíon of arraYs

There exist many proposals how to solve this standardizing problem. Here is

one exaJnple:

26 The names of variables for actual dimension should begin with the letter

N. If a vecÈor, matrix, etc. has an or¡/n single variable for the actual

dimension it shall be named Nx , where x is a sLring of characters

indicating the name of the vector, etc. If a matrix, etc. has more than

one own variables for actual dimensions they should. be named. Nlx, N2x, etc-

e

a(NA), B(NBTNB) r C(NIC,N2C)

27 The dimension parameter shoufd follow rule 2/o and' begin with the l.etter

IorM

Error índ.icator, warning indicator

28 An error- or warning-ind.icator should be named. IERR. Zero (0) in'Licates

"no errors" while small positive values (1, 2,3r...) indicales different

warninqs (smaller values) or different error cond.itj-ons (Iarger values).

The indication of one of several- possible successful calls

done wittr a strictly positive integer named IND. (1, 21 3'

Larger positive values can be used for error i-ndication'

should be

...).

!'Iork arrays allocation vectors

29 The name of allocation vector should. be W and if it is an integer, JW-

As an alternative could be used H and JH.

The name of work arrays should begin with ld or H

Example: HI ,H2 ,Wl ,VlC.

-L4-

30 The pointers to work areas should begin with the letter K

A sumnary of the general symbols is given in Table I'

Table l. General sYmbol table.

2.4.2- Spectgl-symþo! games !o-bg gsed

In Table 2 there is given a sunmary of proposed names to be used when making

programs and subroutines for design of control systems and parameter identifi-

cation.
As a general recommendation the following letters in the ending of a name'

indicate:

I

Ix, Mx

Nx

NW

NJ$¡

lVx, Hx

JÌ¡lx, JHx

KWx

W,H

J!V, JH

IERR

]ND

EPS

Í, J, K,

L

M,N

Description

dimension parameter for x (x is a string of characters)

actual dimension for x

size of real allocation vector

size of integer allocation vector

real work areas

integer work areas

index for work areas

real allocat,ion vector

integer allocation vector

error indication

indicator

test quantity

integers

logical

-15-

1î.

D.

I:

F:

e.

M:

estimated value

predicted value

initial value

final value

simulated value

mean value

As slmbols for time and time increment should be used T and DT

A

B

c

D,C

E,D

G,RL

RK

FI ,AD

DE,BD

oM,cD

PP,Q2

QQ,QI

PQ,QL2

V

!{, E

U

x

Y

xxrP, s

w,Rl
w!{, R2

v!ù,RI2

EP

RR

Proposed symbol

A,F

BrG

DrcrH

E,D

GrcrL

K

0

arf
Qr0

P tB rQ2

Q,A'QI

Qtz
v

9,e
g
x

Y,Z
ax,P,s

V,R
1

¡n]rR2

R
L2

E

R

Usually used in text-
books and literatu-re

System matrix
Control matrix
Process disturbance matri-x

Measurement matrix
Measu::ement-control matrix
Feedback Eain
Estimator gain

Discrete version of
ArBrC

Vfeighting matrix, control vector
üleighting matrix, state vector
Weighting matrix, mixed. tern
Process noise vector
Measurement noise vector
Control vector
State vector
Measurement vector
State vector, error covariance
matrix
Covariance matrix, process noise

Covariance matrix, measurement
noise

Covariance matrix, correlated
term

Innovation Brocess

Covariance matrix of the inno-

Description

Table 2. Special slanbol nâmes to be used.

-16-

Exa¡¡ples:

Using the special slzmbols mentioned above we then have:

XI x(t)o
Initial statevector

YE: I Estimated measurement vector

xxP Predicted error covariance matrix

3. RT'LES FOR DOCUMEMIATION

These rules on documentation are intended to facilitate the interchange of
programs. Because different groups of people may not use the sane standard

notations although they work in the same fj-el-d, documentation and definition
of the problem solved are important.

These rufes apply to two d.ifferent situations.

a) Documentation in a greSram liþrery bindsr

In this case the reader is interested in:

i) ease of finding a given routine.

ii) ease of readj-ng, especially mathematical formulae, and expresslons should

be in a easily readable form.

iii) Completeness.

Point i) implies that at least the first page of documentation cf a routi-ne

should have an easily recognized form.

Point ii) dictates typographical freedom including the possibility to use

figures.

Point iii) tell-s us not to impose size restrictions by specifying special
forms to be completed. (The conflict between i) and iii) is resolved later on) .

b) Documentation in the programlisting

It is highly recommended that the prograrn listing contains the same information

in the same order as the program library binder. This informat.ion is concen-

trated to the beginning of the program listing, called the program head.. This

ensures that a given library routine within itself always contains adequate

LI

information on how it is supposecl to work. In fact, good programming practice
is to start development of a new subroutine with the definition of the program

head, thus defininq the j-ntend.ed function of the code: being creaLed. In this
wdy, the program head is a good temporary documentation and quite conceivably,
part of it can be used in the final documentation in the U-brary bind.er.

The fixed-format part of the library binder documefitation

The information in the library binder concerning an in,lividual subroutine will
start with a fixed-format header, see Fig. 2. The items in the header are:

Name: The name of the subprogram. The name should give a hint of the

use of the subprogram.

Number: The number of the subprogram concentrated from the section number

in the systematic library catalogue foll-owed by a sequence number

Example:

2.3 .4.n

Subtitle: A short sentence indicating the purpose of the subprogram and

possibly explaining its name, max 2 lines.

Language: The name of the programming language

Key words: A few words associated with the subprogram.

Implementor:The name of the person who initiat ly implemented the subproqram.

Date: Date of first implementation.

Institute: Name of fnstitut.e

Accepted: Date of acceptance in the Iibrary.

Version: Version number. Irlust be changed when the subprogram is revised.

The free-format part

In this part of the documentation, the different sections may have variable
length. The sections are indicated by block letter headings which all are
compulsory. The sections are divided into subsections, The heading of an
empty subsection j-s omitted. The sectj-ons and the subsections are:

-18-

SCAlIOI]IAUIAlI COlIT ROL LI BRARY

Program documBnlalion

LANGUAGE:

KEYlrlORDS:

IlvlPLEMENTOR:

I NST ITUTE:

ACCEPTED: VTRS I ON :

NUIVIBER:

DATE:

NAIVIE:

SUBT I TLE:

Figure 2. The fixed-format header

-19

PURPOSE

llhe descrlption of the action of the program. The formulas associated with

the routine should be included, at least in the program library description-

The connections between the ordinary problem notations and the names of the

subroutíne arguments should be stated.

Comments:

Information which guides the user of the library to select subroutines.

Relations with other subroutines in Èhe library and alternative subroutines

could be given.

USAGE

This is a conmon section heading for the following:

E¡ggree-lvpe:

SUBROIIIINE, FUNCIION, tlpe FIJNCTION or PROGRAI4

Arguments:

The argument list is given ín the form:

suB(ARGl, ARG2, ...)

The arguments are ordered as described in rule 15 '

Each of the arguments is described' in the format:

argi - use' sLze, dimensioned' input-output,

descriPtion

The actual dimension,o-f vectors and Dìatrices etc. are given in the form:

size(NA) , sLze (t\TlB, N2B), etc-

The dimensionþarameter of the matrices etc. are given in the form:

dimensioned(I8, .) , dimensioned (IlC | 12c, .) etc.

-20-

The input-output clause has three forrts:

(rÌ Input parameter

(o) output rr

G/A) Input and output parameter

This indication should be used for all argurfents except for work areas.

A function identifier is described first in the same format.

Example:

NA - Dímension of matrix, (I)

A - Dynamics matrix, size(NATNA), dimensíoned(IAr.), (f)

PARAM - Parameter vector, size(3), (I)
(1):
(2) ,

. (3): ...
SUB

IERR

Name of subroutine which computes

Error indicator (O)

0: Success

I:

(r)

Commort

The common block statement is given followed by a description of the vari-
ables in the same way as for arguments.

User_sgpgl i ed subrouti nes :

The description of user written subroutines and functions shall have the

fornat:

Program-t)lpe, program-name, arg'ument-list,
purpose of the routine,,

description of the arguments.

Example

2t

SUBROUTTNE FUNC (N, X, Y)

Defines the function Y = F(X) used in

N - Dj-mension of the vectors (T)

X - Argument, size (N), (I)

Y - Returned function value, síze (N), (o)

The actual subroutine name must be declared EXTERNAL and entered

in the argument l-ist of . . .

Read - lùrite

Description of read and written variables incruding their format.

Notes:

Further information about the subrouti-ne. Information about arguments which
mi-ght be equivalenced.

Comments:

Less important information about the subrouti_ne.

Examples:

Valuable if the use of the subprogram is exemplified

METHOD

A short description of the method or the theory behind the subprogram.

rn the library documentation, formulas etc. shourd be given in ccmmon

scientific notation.

-22-

References:

References if any ought to be girren.

CIIARACTERISTTCS

Execution time:

Execution time for a specified problem on a specified computer.

Size

Approximate storage requ-iremenÈs, code and internal variaÌ:les , f.or t.Le sub-

routine itself and iÈs called, internal subroutines (see below). The number

of memory ce}ls neede<f is giVen in decimal form.

The computer system should be specified.

i,iþrer¿ guþrg uli nee regulred :

A list of called subroutines and functions, documented in the bínder.

Internal subroutines r red :

Routines required that are not part of the docgmentation binder.

Revisions:

The revisions of the subroutine are documented as:

name, d.ate

action
I

2

An example of documentation is given in appendix AÌ.

-23-

APPendix Al

Example of documentation

scA ll 0l 1l AUI Ail 0 0 ilT n-0'i

Program documBntalion

LIBRARY

NAME: ,ET@N NUI4BER:

SUBTITLE: car-curates the.eigenvarues and eigenvectors of a rear-
matrix

LANGUAGE: FÞRTRAN IV

KEYWQRDS ¡ Eigenvalues - eigenvectors - real marrix

ItvlPLEfvlENTQR: o. Hallinsstad DATE; Ls76_o4_23

INSTITUTE: Ens. cybernerics, NrH

ACCEPTED: VIRSION: I

EI@N calls subroutines which calculate the eigenvalues and eigenvectors of
a real matrix. EI@N then performs ordering of the eigenvalues with respect
to the real parts: n"{Àf} I Re{À2} > ... Re Àr, , and normalizes tre eigen-
vectors. In order to avoid. complex matrices in case of complex conjugated
eigenvalues, the eigenvector matrix Z has a special form.

USAæ

Efggfep_lypgi suBRourrNE

nts:
EIGEN (A, Z, ER, ET, N, TERR, ¡.{A, }{2, JWI, Jh7L, J!{H, b7)

PURPOSE

A

z

- Real matrix, size (N,N), dimensioned (MA, .), (I)
- Eigenvector matrix, size (N,lt) ,dimensioned (MZ, -) , (O)

If the i-th eigenvalue is real the i-th column of Z is the correspon-
ding real eigenvector. rf eigenvalues i and i+r are a complex
conjuqated pair the columns i and i+l contain the real and imaginary
part of the eigenvector coïresponding to the eigenvalue with positive
imaginary part.

- vector containing the real parts of the eigenvarues, size (N), (o)ER

-25-

EI

N

IERR

MA

MZ

Jü]f

JVIL

J!{H

vü

- vector containing the imaginary parts of the eigenvalues, size

(N) , (o)

- Actual dimension of matrices and vectors, (I)

- Error indicator, (o)

0 : Success

J : If a eigenvalue has not been determined'

- Dimension Parameter of A

- Dimension Parameter of z

- Work vector, sLze (N)

- Work vector, sixe (N)

- !ùork vector , sLze (N)

- tlork vector, size (N)

METIIOD

This algorithm is based upon several works presented by Num. Math' in the

Hand.book Series of Linear Algebra. tf] , lz) , [:]'

It has been pointed out in a work by osborne [¿] that eigenvalue prograÍI

results have errorsat least of order t'I lal I , where e is the machine

precision and I lol I is the Euclidean norm of the given matrix A. Ëlence

he recommends that one precedes the calling of such a routine by certain

diagonal simílarity transformations of A, designed to reduce its norm.

This is done by calling the routine BALAN. BALAN [1] atso has the property

of detecting isolated eigenvalues. After the balancing subroutine ELMHE is

called to obtain the upper Hessenberg transformed matrix, 12) '

The subroutines ELTRA and HQR2 find the eigenvalues and eigenvectors of a

real upper Hessenberg matrix by the QR-method [:]. ftre subroutineBALBA forms

the eigenvectors of a real general matrix by back transforming those of the

corresponding balanced matrix determined by BALAN'

The eigenvalues are then ordered after decreasing values of the real parts.

At last each eigenvector is normalized so that the greatest element in each

vector is equal to 1.0-

-26-

In order to avoid cornplex matrices in each case of corylex conjugated eigen-

values, the eigenvalue matrix z :nas the special form described

in [5]. Its effect on the A matrix when used in a similarity transformation

is demonstrated in the following example [51.

E¡e'oelg'

Let A has the eigenvalues trr, Àr=o+jtrt, Àr=o-jul ,

are real and \, and l, are complex conjugated'

À4.

Àr-

lfhere tr,. and À
4

>oìÀ¿

Íhen

Re

tll

l,zl

l:l

À,. 0

o

00

-lz AZ=
0

0

0

û)0
-{do0

00 trn

ferences

parlett, B.N. and C. Reinch: Balancing a Matrixfor calculation of

Eigenvalues and Eigenvectors.

Nr¡lrer. Math. L3, 293-304 (f969)

Martin, R.S. and lrtilkinson, J.H.: Símilarity Red.uction of a General

Matrix to Hessenberg Form.

peters, G. and Vüilkinson, J.H.: Eigenvectors of Real and complex

Matrices by LR a¡d QR triangularizaLion.

äumer. Math. 16, lB0-204 (f970)

osborne, E. E.: On preconditioning of matrices Jour. AcM7, 338-345

(1960)

t¿l

lsl

lol

27

Ogata, K. : State Space Analysis of Control Systems.

Prentice EaIl (f967)

Smith, Boyle, Garbow, Ikebe, Klema and Moler: Matrix Eigensystem

Routínes - EISPACX< Guide.

Springer-Verlag (1974)

CHARAETERISTICS

EXCSCllgg_tlgg: Tested only on a NORD-IO computer in rtTime-sharing" operation.

With N = 15 the time used was less than 5 sec.

gi=S, The storage requirement for the subroutine and called sr:broutines which

are not a part of the subroutÍne library, is 4930 cells on NORÐ-10 (16 bits
wordlength).

Internal subrou : BALAN, ELTRA, HQR2' BAIBA.

-28-

Appendix A2

Documentation of computer dependent subroutines:

MADD, MULT, RMULT, MMOVE' RMACpN and II4ACON.

scAn0muurAn G0rTn0'l LrBRARy

Program docümBntalion

NAlvlE: MADD

SUBTITLE! Matrix addition and subtraction

LANGUAGE:

KEYI.IORDS:

IIVIPLE|TENTOR:

I NST ITUTE:

ACCEPTED:

NUMBER:

DA

VERS

TE:

ION:

PURPOSE

computes c=A+B or c=A-B, where ArB and c are matríces or vectors.
Transpose(A) and/or Ëranspose(B) may be used instead of A and/or B.

USAGE

Program Type SUBR0UTINE

Argr-ments

MADD(A'B, C, MrN, MINUSTTATTIBT, IATIB,IC)

- Matrix, dimensioned(IAr.), (I)
- Matrix, .dimensioned(IBr.), (I)
- MaËrix, size(MrN), dimensioned(ICr.), (0)

- Number of rows in C, (I)
- Number of colrrmns in C, (I)
- Operation switch, (I). If non-zero A-B computed, else A+8.

- Function switch, (r). rr non-zeïo transpose(A) used instead of A.

- Function switeh, (r). rr non-zero transpose(B) used ínsÈead of B.

- Declared first dimension of A, (I)
- Deelared fírst dimension of B, (I)
- Declared first dimension of C, (I)

A

B

c

M

N

MINUS

IAT

IBT

IA

ÏB

IC

-30-

A may be the same matrix as C in the caLl if IAT=0 and

B may be the same matrix as C if IBT=0.

CHARACTERISTICS

Execution Time

Notes

1)

rlNrvAc L108:

PÐP 15:

33 + M*(5+N,¡,5) us

245 + M*(35+N*40) us

Size

UNTVAC 1108:

PDP 15:

51

90

-31 -

SCAIIOIIIAUIAlI COIIT ROL LI BRARY

Program documentalion

NAME: MULT

SUBTITLT¡ Matrix multiPlieation

NUMBER:

LANGUAGE:

KEYl.tORDS:

ItvlPLEPIENTOR:

I NST ITUTE:

DATE

ACCTPTED: VERS I ON :

PURPOSE

CompuËes the matri¡(,product C=Ar.B, where ArB and C are matrices or vecËors'

Transpose(A) and/or transpose(s) may be used instead of A and/or B.

USAGE

Progr am Type SUBROUTINE

Arguments

MULT(4,8, C, L,M,N, IAT,IBT,ISYM' IA,IB,IC)

A

B

C

L

M

N

IAT

IBT

ISYM

- Matrix, dimensioned(IA'.), (I)

- Matrix, dimensioned(IBr.), (I)

- Matrix, size(i,,N), dimensioned(IC,.), (0)

- Number of rows in C, (I)

- Number of terms in scalar product, (I)

- Number of columns in C' (I)

- Functíon sr¡itch, (I). ff non-ze:Io transpose(A) used instead of A.

- Function switch, (I). If non-zero Èranspose(B) used instead of B.

- Tunction switch, (I). If non-zero only the lower left triangular

half of c is computed and c is synmetrized by copying the lor¿er

triangular half of C into the upper half.

-32-

- Declared first dimensíon of A, (I)
- Declared first dimension of B, (I)

- Declared first dimensíon of C, (I)

CHARACTERISTICS

Executíon Time

IA

IB

IC

IrNrvAc 1108:

PDP 15:

36 + N*(5+ L*(8+M*9)) us

25O + N*(35+ L*(55+M*35)) us

Size

UNIVAC 1108:

PDP]-5:

92

150

PURPOSE

Conrputes B=R*Ar where R is a scalar and A and B are matrices or vectors.

33

SGATIII]IAUI[]I CfllIT ROL LIBRART

Prooram üocu mGnlation

USAGE

Program Type SUBROUTINE

Argumjrnts

RMIILT(R,A, B, M,N, rA,rB)

R - Scalar oPerand, (I)
A - MaËrix operand, size(MrN), diuensioned(IAr.), (I)
B - Matrix result, size(MrN), dimensioned(IBr.), (0)

M - Nr¡mber of rows in A and B, (I)
N - Number of coh:mns in A and B, (I)
IA - Declared first dimension of A, (I)
IB - Declared first dimension of B, (I)

Notes

LANGUAGE:

KEYIüORDS:

IlIPLEIIENTOR:

I NST ITUTT:

ACCEPTED: VERS I ON :

NUlVlBER ¡

DA

SUBTI

TE:

NAME: RMI¡LT

TLE: Real- nr¡mber multiplied with matrix

1) A and B may be the s¿rme matrix in the call.

-34-

CHARACTERISTICS

ExecuÈíon Tíme

nNrvAc 1108:

PDP 15:

16 + N*(4+l,t*6) ps

220 + N*(45+M*40) us

Síze

Unívac 11-08:

PDP].5:

26

85

scAlt0tilAUtAlt c0ilTndl LtBRARY

Program documGntalion

NAI'IE: MMovE

SUBTITLE¡ Move a matrix

NUÍÏBEIR:

LANGUAGE:

KEYWORDS:

Il\4PLEIVIENTOR:

I NST ITUTT:

ACCEPTED:

DATE a

VERS I (]N :

PURPOSE

Moves A to B or transpose(A) to B, where A and B are matrices or vectors.

USAGE

Prosram Type SUBROUTINE

Argument.s

MMOVE(A, B, MrN, rATn rArrB)

A - Matrix operand, dimensíoned(IAr.), (I)
B - Matrix result, size(M,N), dimensioned(IB,.), (0)

M - Number of rows in B, (I)
N - Number of columns in B, (I)
IAT - Function switch, (I) . If non-zero (A) transpose moved inste,ad of A.

IA - Declared first dimension of A, (I)
IB - Declared first dimension of B, (I)

CHARACTERISTICS

Execution Tíne

UNIVAC 1]-08:

PDP 15:

-36-

t5 + u*(4.5+M*1.5) us

ZZO + N*(25+M*20) us

Size

IrNrvAc l-108:

PDP 15:

22

90

SCAlIDIl{AUIAil COIIT NOI LIBRARY

Program docümBnlalion

NAlvlE: IMAcoN

SUBTITLEi rnteger machine dependenr consranrs

LANGUAGE:

KEYi.lORDS:

IIVIPLE[lENTOR:

I NST ITUTI:

ACCEPTED: VERS ION:

NUl!îBER:

DATT

PT]RPOSE

Returns machine-dependent integer constants .

USAGE

Program Type INTEGER FUNCTION

ReËurned integer eonstant.
ConstanË selector, (I)
1: Largest integer allo¡¿ed

2: Largest single precision exponent allowed
3: Largest double preeision exponent allo¡,¡ed

4: Integer word length (bits)
5: Single precision mantissa word length (except
6z Single precision exponent word length (except
7: Double precision mantissa word. length (except
8: Double precision exporient word length (except

Ar,gr¡ments

TMACON(r)

IMACON

I-

sign

sign
s ign
sign

bit)
bit)
bit)
b ir)

SCA]IDIlIAUIA]I OOlIT Ndï LIBRARY

Program documenlalion

SUBTITLE: Real machine dependent constants

LANGUAGE:

KEYl,lORDS:

IlVlPLEIVIENTOR:

I NST ITUTT :

ACCEPTED:

I
a

VERSION:

NUl4BER:

DATE:

NAf'lt RMACON

USAGE

Progr

PURPOSE

Returns machine-dependent real constants.

am ï¡rpe REAL FUNCTION

TS

RMACON

I
- Returned real constant

- Constant selector, (I)
1: Relative single precísion accuracy

2: Largest single precision m¡mber allorred

3: Smallest single precision nr¡mber allor¿ed (except 0.0)
4: Relative double precision accurac)¡

Argunen

RMACON(r)

