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Preface

NORDFORSK, the Scandinavian Council f£or Applied Research, aims at ipitiating

Fh

ic and industrial resezrch
and in utilization of research results. NORDFORSK is a Joint bedy ol the=

nine technical research councils and academiss in the five nordic countries.

One of the objectives of this NORDFORSE-proiect "Computer aided design of
dynamical systems" is to establish a 5candinevian program and subroutine.
library "Scandinavian Control Library". This report contains the common rules
for programming and documentation that will be used fox the programs in this

library.

i, A report concerning the development and organization of the "Scandinavian

Control Library" will be published later in 1975.

This work is a result of a joint effort by the following persons:
Leif Andersson, Hilding Elmgvist, Tommy Essebo, Claes Kallstrdm, Teomas Schénthal,
Johan Wieslander and Karl-Johan Astr#n, tund Institute of Technology. Sweden

and Arne Tysse¢, Oddvar Hallingstad, The Morwegian Institute of Tecomology,

R

Nerway.




1. INTRODUCTION

It is difficult to make general rules in the field of program design
because software and hardware facilities differ quite a lot from one
computer system to another. Especially such things as different prog-

ramming languages and peripherial equipment make it difficult to standardize?

We will concentrate on the design part that is independent of the type of
computer system. General input/output handling such as use of graphical
display and files is dependent of the computer and will therefore not be
treated in the rules. However, regarding exchange of complete program sys-
tems it should be stressed that all computer—-dependent subroutines are

strictly specified and well documented as proposed in this report.

Tt is generally agreed that all programs and subroutines should be written
in Standard Fortran IV as given in USA ANS X3.9 1966. Fortran IV is chosen
because Fortran Compilers are available at most computer systems, and

many of the already existing subroutines are written in Fortran. However,
one should be aware that there exists many different versions of Fortran IV,
and some of the features that are accepted by one computer is not allowed

by another.

Special features will be accepted to some extent if it is possible to modify
the subroutines with a reasonably good editor system. If possible these
special features should be confined to special purpose subroutires. More
complicated programming features which are not mentioned in the standard

should be avoided. Some of these things are discussed in chapter 2.

This report deals especially with the problem of dynamical allocation of
matrices and how a subroutine/program should be documented. Also some

proposals to symbol use and communication with subroutines are presented.

As a basic rule the following could be set up:

The programs should be well structured and well documented, and they should

be written in Fortran IV.

The documentation and all comment statements in the program should be written

in English.




2. DESIGN OF PROGRAMS AND SUBROUTINES

This report does not discuss elementary questions about program design. A
good introduction to the problems can be found in "Kerrighan-Plauger: The
elements of programming style. Mc. Graw-Hill 1974". Some of the rules they

introduce are listed below.

Write clearly - don't be too clever.

Say what you mean, simply and directly.

Write clearly - don't sacrifice clarity for "efficiency""
Let the machine do the dirty work.

Replace repetetive expressions by calls to a common function.
Parenthesize to aveid ambiguity.

Choose variable names that won't be confused.

Avoid the Fortran arithmetic IF.

Avoid unnecessary branches.

Don't use conditional branches as a substitute for a logical expression.
If a logical expression is hard to understand, try transforming it.
Modularize. Use subroutines.

Don't patch bad code - rewrite it.

Write and test a big program in small pieces.

Make sure all variables are initialized before use.

Check some answers by hand.

Make it right before you make it faster.

Make it fail-safe before you make it faster.

Make it clear before you make it faster.

Let your compiler do the simple optimizations.

Don't strain to re-use code; reorganize instead.

Make sure comments and code agree.

Don't just echo the code with comments.

Don't comment bad code - rewrite it.

Use variable names that mean something.

Format a program to help the reader understand it.



2.1. Matrix handling

Many results in automatic control theory are formulated using matrix notation.
This fact implies that in a subroutine library for automatic control problems
there must be a way of handling matrices. When using FORTRAN this is a pro-
blem, mainly because of lack of dynamic allocation mechanism. This chapter
describes how matrices are stored in FORTRAN, a way of handling work areas

and a set of subroutines for basic matrix operations.

Arrays in FORTRAN

Two basic rules for the library are:

1 The subroutines in the library should be independent of problen size

(dimension) .

? The subroutines in the library should be constructed in such a way that
it is possible to write a calling program which can handle different pro-

blem dimensions.

These rules imply that:

3. The actual dimensions of the arrays in the subroutine call must be trans-

ferred to the subroutine.

4 Information about how the arrays in the subroutine call are dimensioned

must be transferred to the subroutine.

In order to calculate the memory location of an array element, the location
of the first element of the array and all except the last maximum dimensions
are needed. All except the last maximum dimensions should thus be trans-

ferred to subroutines via so called dimension parameters. Thus a vector

does not need any dimension parameters. A matrix needs one and a three

dimensional array needs two dimension parameters.



Example:

Consider the following main program and subroutine

C MAIN PROGRAM
DIMENSION A({3,4)
DATA IA/3/

READ (5,100) N1A,N2A

READ (5,110) ((A(1,J), J = 1,N2a),I = 1,N1A)

CALL SUBL1(A,Nl1A,N2A,IA,...)

SUBROUTINE SUBL(A,N1A,N2A,IA,...)
DIMENSION A(IA,1)

DO 10 I

1,N1A

DO 10 J 1,N2A

X = 0.5%a(1,J)

10 CONTINUE

END

The dimension parameter of A is IA = 3 since A is dimensioned (3,4).
The actual dimension of A 1is read into N1A and N2A. When the matrix A
is read,it is stored as illustrated in figure 1. The dimension parameter is
used in the dimension statement in the subroutine,and implicitly when using

the element A(I,J) in the subroutine.

There is in fact a way of avoiding the dimension parameters. If a subroutine
with the dimension statement DIMENSION A(N1A,1) reads in the matrix, then the
matrix would be stored using consecutive memory locations (compare figure 1).
The subroutine SUB1 then should have the same dimension statement, and the

parameter IA could be dropped.

[ TR T ST T TEe T T S O T T N e e e |



This method, however, has the serious draw back that all arrays must be packed
as above,which means that the routines can not be used together with routines

from other libraries not using the same method. This method should thus not

be used.

a1 000700000007 “
S S /Y 3

a1 | ]
a(L,2) 7
a2 [z

A(3,2) | |

i} 4
| A3 [ 77 }

a(2,3) [ s )
I a(3,3) L |

a4 L |

a(2,4) | [

A(3,4) | |

Figure 1. Illustrates how the matrix A is stored. The actual 2x3 matrix

is stored in the shaded elements.

Work areas

FORTRAN does not include dynamic allocation of arrays. In order to make the

subroutines independent of problem size it is thus required that

5 All work areas with problem dependent size should be transferred via

the subroutine call.




The method of using a COMMON-block as allocation area has some serious

drawbacks and should not be used.

Work areas for a subroutine does not contain relevant information outside the
subroutine and will not be manipulated there. The work areas then do not need

any dimension parameters.

6 A work area should be dimensioned in the subroutine using actual dimen-

sions.

Example:

SUBROUTINE SUB2(A,N1A,N2A, IA,Wl,W2,....)
DIMENSION A(1IA,l)
DIMENSION WL (N1A,1), W2(NlA,1)

The work areas of subroutines at a low level in a subroutine hierarchy must
be included in the call to a subroutine at a high level. This means that the

number of work areas in a subroutine call can be large.

Two work areas which do not hold information at the same time "in a subroutine
but have different shapes,must both be included in the call. They can, however,
be equivalenced in the call, which means that the actual parameters are the

sSame.

The equivalence structure can, however, be rather complicated,and if the user
of the subroutine does not make equivalence, then the program will be unnecces-

sarily large.

One way of making the use of the subroutines easier in these cases,is to

introduce an interface routine and allocation vectors. The allocation vector

is partioned, using indices, into a number of work areas,and then the original

subroutine is called using these indices.
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Example:

SUBROUTINE SUB3(N,... Wl,W2,W3,W4)

C This subroutine does the real work

C Wl - work area, size(N)

C W2 - work area, size(N,3)

C W3 - work area, size(N,2)

C W4 - work area, size(N,2)

C

Cc Wl,Ww2 and W3,W4 can share space

Cc
DIMENSION W1(l),W2(N,1) ,W3(N,1),W4(N,1)
END
SUBROUTINE SUB3I(N,...,W)

C This is the interface routine, which only allocates work space
W - allocation vector, size(44N)
DIMENSION W(1)

KWl =1

KW2 = KWL + N
KW3 = KWl

Kw4 = KW3 + 2#N

C
CALL SUB3(N,...,W(KWl) ,W(KW2) ,W(KW3) ,W(KW4))
RETURN
END

The user of the subroutine now only has to care about one work area. The

equivalence structure is also taken care cf in the interface routine.

Using an allocation vector requires a certain programming feature outside
the Fortran IV Standard: The number of indices of a formal parameter may
be greater than one even if the number of indices of the actual parameter

is one.




This straight forward method of handling work areas has one drawback. It
introduces a new small subroutine for all subroutines which are intended to
be called by users,and which have many work areas. There are, however, two

ways of reducing the number of work areas in a subroutine call.

7 Work areas to lower level subroutines can be allocated from an allo-

cation vector in the calling subroutine.

Example:

SUBROUTINE SUB4(N,...,WA,WB,W)
DIMENSION WA(N,1),WB(1)
DIMENSION W(1l)

KXWl = 1

Kw2 KWl + N#N

CAN SUB4I (WA,WB,N,...,W(KWl) ,W(KwW2))

WA and WB are work areas in the subroutine SUB4 and W1l and W2 are

work areas in the subroutine SUB41l.

The other way of reducing the number of work areas is:

§ If a work area is used only to transfer data from one lower level
subroutine to another, then this work area can be allocated in the

subroutine, and the pointer used in the subroutine calls.

Example:

SUBROUTINE SUB5(...,N,:..,W)
DIMENSION W(l),...
Xa =1

| KB = KA + N#N

CALL SUB51(...,W(KAa),W(XB),N,...)

CALL SUBS52(W(KA) ,W(KB),...,N,...)




The subroutine SUB5]1 stores its results in the formal parameters A and
B which actually corresponds to the areas in W which begin at KA resp.

KB. The subroutine SUB52 uses these results via its formal parameters.

The above discussion is summarized in the rule.

9 If the number of work areas is large or there is a complicated equiva-
lence structure, then the subroutine should be rewritten according to

rules 7 and & or an interface routine should be constructed.

The following rules are also introduced.

10 The allocation should be done explicitly by computing pointers (indices).
11 The allocation of a work area of a certain type should be done from an

allocation vector of the same type.

12 Only one allocation vector of each type should be used at each subroutine
level.
13 If the required size of an allocation vector is determined by a compli-

cated formula, the user should have the possibility to enter the actual
size of the allocation vector. The subroutine should test if the actual

size is sufficiently large and use an error parameter if it is too small.

Example:
SUBROUTINE SUBG(N,....IERR,W,NW)
IERR = O
KWl = 1
KW2 = KWl + N
KW3 = KW2 + 2=*N

Kl = KW2 + N
Kwd = Kw2

KW5 = KW4 + N#N
K2 = KW5 + N

IF (MAXO (K1,K2)-1.GT.NW) GOTO 900

“

900 IERR = 1
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Basic matrix operations

The basic matrix operations, addition, subtraction and multiplication tend
to be hard to read when implented using inline code with DO-loops. The
alternative is to use subroutines for these operations. The total object
code then becomes smaller and the execution time can sometimes be reduced if

the subroutines are implemented in assembly language.

Four subroutines for basic matrix operations (MADD,MULT,RMULT and MMOVE) are

documented in the appendix,AZ.

The subroutine MADD performes matrix addition and subtraction. There are
switches to determine if the operands should be transposed. The subroutine
MULT performes matrix multiplication. It has switches to determine if the
operands should be transposed or if the result should be made symmetric. The

subroutine RMULT multiplies a scalar with a matrix and MMOVE moves a matrix.

14 The subroutines MADD, MULT, RMULT and MMOVE should be used when this is

not unnatural.

2.2. Communication with the subroutine

15 If possible the argument list should be ordered in the following way.

o operands (input data)
o results (output data)

o descriptions of operands and results (for example actual dimensions
of matrices)

o other information (for example test quantity, error indicator)
o dimension parameters

o work arrays and allocation vectors (and their sizes)

16 Common blocks should generally be avoided. However, they can be used to

veturn information which may be of interest to a user.
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17

18

19

2.3.
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Operands ought not to be destroyed in a subroutine.

The documentation should tell when arguments may be equivalenced.

Subroutines on a basic level in the program library should have diffe-
rent dimension parameters for all matrices. Groups of matrices, in

the argument list of higher level subroutines, which always have the
same actual dimension and which can be expected to have been dimensioned

equally, should have a common dimension parameter.

The user is allowed to put a test gquantity equal to zero. A computer
dependent default value is then used. If the subroutine uses more than
one test guantity they should be placed in a vector. It shall be
possible to individually determine if defaultvalues should be used by
setting resp elements of the vector equal to zero. The variables for
test quantities must not be altered in the subroutine. The computer
dependent default values should be computed using the functions RMACON

and IMACON (See appendix, A2).

Some rules for the program code

20

27

Input - Output should not be performed in a computational routine. If
I/0 is desirable (as might be e.g. in function minimazation routines)
it should be confined to special I/O subroutines, specified as external
routines in the subroutine call. They should be documented as a "User
supplied subroutine”, but in many cases it would be natural to expect

suitable I/0 routines to be part of the library.

Specification statements should appear before all executable statements

and FORMAT statements and in the order:

o type statements

o dimension statements

o common statements

o equivalence and external statements

o data statements

This is actually required by some FORTRAN compilers.
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27  Computer dependent constants should be obtained through the functions

IMACON and RMACON (See appendix AZ2).

23  The numbers defining labels should appear in increasing order and be

preceeded by one space.

24 Character strings and Hollerith data should be avoided in numerical sub-

programs.
The internal representation of Hollerith data is dependent of the com-

puter word-length.

It is a good habit to use comment statements in the programs. These can in
one way replace flow charts,and it becomes easier to read the programs and

if necessary, to modify them.

How much of comment-statements to be used is dependent of the degree of

documentation required. These things are discussed in next chapter.

25 Comment statements should be written in English.

2.4, Use of symbols

It is of great importance that the use of symbol names is following a certain
standard. This will simplify the reading of program listings. It is well
known that almost every institute has its own standard more or less, and it

is difficult to come to an agreement on this matter.

However, in the following we will give some recommendations with alternatives.

Fortran has automatic type declaration: every symbolic name with a first

letter of I, J, K, L, M and N implies type integer and any other letter
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implies type real. This should be followed as a general rule, but logical
variables should begin with letter L. Identifiers should have at most 6

characters.

Dimension of arrays

There exist many proposals how to solve this standardizing problem. Here is

one example:

26 The names of variables for actual dimension should begin with the letter
N. If a vector, matrix, etc. has an own single variable for the actual
dimension it shall be named Nx , where x 1is a string of characters
indicating the name of the vector, etc. If a matrix, etc. has more than

one own variables for actual dimensions they should be named Nlx, N2x, etc.

Example:
A(NA), B(NB,NB), C(N1LC,N2C)

27 The dimension parameter should follow rule ?6 and begin with the letter

I or M.

Error indicator, warning indicator

28 An error- or warning-indicator should be named IERR. Zero (0) indicates
"no errors" while small positive values (1, 2, 3,...) indicates different

warnings (smaller values) or different error conditions (larger values) .
The indication of one of several possible successful calls should be

done with a strictly positive integer named IND. (1, 2, 3.....).

Larger positive values can be used for error indication.

Work arrays - ‘allocation vectors

29 The name of allocation vector should be W and if it is an integer, JW.

As an alternative could be used H and JH.

The name of work arrays should begin with W or H.

Example: HL1,HZ,Wl,WC.

—



- 14 -

30 The pointers to work areas should begin with the letter K.

A summary of the general symbols is given in Table 1.

Symbol Description
Ix, Mx dimension parameter for x (x 1is a string of characters)
Nx actual dimension for x
NW size of real allocation vector
NJW size of integer allocation vector
Wx, Hx real work areas
JWx, JHx integer work areas
KWx index for work areas
W, H real allocation vector
Jw, JH integer allcocation vector
TIERR error indication
IND indicator
EPS test quantity
I, Jd, X, M, N integers
L logical
Table 1. General symbol table.

Tn Table 2 there is given a summary of proposed names to be used when making
programs and subroutines for design of control systems and parameter identifi-
cation.

As a general recommendation the following letters in the ending of a name,

indicate:
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estimated value
predicted value
initial value
final value
simulated value

mean value

As symbols for time and time increment should be used T and DT.

Proposed symbol

Usually used in text-
books and literature

Description

Q #H o 0O w P

FI,AD
DE,BD
OM,CD
PP,Q2

QQ,Q1
PQ,Q12

W,E

XX,P,S

VV,R1
WwW,R2

VW,R12

EP

i i il

D,C,H
E,D
G,C,L

A, T
2,0
P,B,02

/3,0

|<

System matrix

Control matrix

Process disturbance matrix
Measurement matrix
Measurement-control matrix
Feedback gain

Estimator gain

Discrete version of

A,B,C

Weighting matrix, control vector
Weighting matrix, state vector
Weighting matrix, mixed term
Process noise vector
Measurement noise vector

Control vector

State vector

Measurement wvector

State vector, error covariance
matrix

Covariance matrix, process noise

Covariance matrix, measurement
noise

Covariance matrix, correlated
term

Innovation process

Covariance matrix of the inno-
vation process 4

Table 2. Special symbol names tc be used.
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Examples:

Using the special symbols mentioned above we then have:

XI: x(t) Initial statevector
=" o
YE: ¥ Estimated measurement vector
XXP: Predicted error covariance matrix

3. RULES FOR DOCUMENTATION

These rules on documentation are intended to facilitate the interchange of
programs. Because different groups of people may not use the same standard

notations although they work in the same field, documentation and definition

of the problem scolved are important.

These rules apply to two different situations.

a) Documentation in a program library binder

In this case the reader is interested in:

i) ease of finding a given routine.

ii) ease of reading, especially mathematical formulae, and expressions should

be in a easily readable form.
iii) Completeness.

Point i) implies that at least the first page of documentation of a routine

should have an easily recognized form.

Point 1ii) dictates typographical freedom including the possibility to use

figures.

Point iii) tells us not to impose size restrictions by specifying special

forms to be completed. (The conflict between i) and iii) is resolved later on).

It is highly recommended that the program listing contains the same information
in the same order as the program library binder. This information is concen-

trated to the beginning of the program listing, called the program head. This

ensures that a given libfary routine within itself always contains adequate




=

information on how it is supposed to work. 1In fact, good programming practice
is to start development of a new subroutine with the definition of the program
head, thus defining the intended function of the code being created. In this
way, the program head is a good temporary documentation and quite conceivably,

part of it can be used in the final documentation in the library binder.

The fixed-format part of the library binder documentation

The information in the library binder concerning an individual subroutine will

start with a fixed-format header, see Fig. 2. The items in the header are:

Name: The name of the subprogram. The name should give a hint of the

use of the subprogram.

Number: The number of the subprogram concentrated from the section number
in the systematic library catalogue followed by a sequence number.
Example:

2,.3.4.n

Subtitle: A short sentence indicating the purpose of the subprogram and

possibly explaining its name, max 2 lines.
Language: The name of the programming language.

Key words: A few words associated with the subprogram.

Implementor:The name of the person who initially implemented the subprogram.

Date: Date of first implementation.

Institute: Name of Institute
Accepted: Date of acceptance in the library.

Version: Version number. Must be changed when the subprogram is revised.

The free-format part

In this part of the documentation, the different sections may have variable
length. The sections are indicated by block letter headings which all are
compulsory. The sections are divided into subsections. The heading of an

empty subsection is omitted. The sections and the subsections are:
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SCANDINAVIAN CONTROL LIBRARY
Program documentation

NAME : NUMBER:
SUBTITLE:

LANGUAGE:
KEYWORDS:
IMPLEMENTOR: - DATE:
INSTITUTE:
ACCEPTED: VERSION:

Figure 2. The fixed~format header
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PURPOSE

The description of the action of the program. The formulas associated with
the routine should be included, at least in the program library description.
The connections between the ordinary problem notations and the names of the

subroutine arguments should be stated.

Comments:

Information which guides the user of the library to select subroutines.
Relations with other subroutines in the library and alternative subroutines

could be given.

USAGE

This is a common section heading for the following:

SUBROUTINE, FUNCTION, type FUNCTION or PROGRAM

Arguments:
The argument list is given in the form:
SUB(ARG1l, ARG2, ...)

The arguments are ordered as described in rule 15.

Each of the arguments is described in the format:

arg - use, size, dimensioned, input-output,

description
The actual dimension.af vectors and matrices etc. are given in the form:
size(NA), size(N1B, N2B), etc.

The dimension parameter of the matrices etc. are given in the form:

dimensioned(IB,.) , dimensioned(IlC, I2C,.) etc.
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The input-output clause has three forms:
(I) Input parameter
! (0) Output -

(I/0) Input and output parameter

This indication should be used for all argunents except for work areas.

A function identifier is described first in the same format.

Example:
NA - Dimension of matrix, (I)
A — Dynamics matrix, size(NA,NA), dimensioned(IA,.), (I)
PARAM - Parameter vector, size(3), (I)
(1): ...
(2): ...
(3): ...
SUB - Name of subroutine which computes ... (I)
IERR - Error indicator (O)
0: Success
1:
Common

The common block statement is given followed by a description of the vari-

ables in the same way as for arguments.

The description of user written subroutines and functions shall have the

format:

Program-type, program—name, argument-list,

purpose of the routine,

description of the arguments.
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Example

SUBROUTINE FUNC(N,X,Y)

Defines the function ¥ = F(X) used in ...
N - Dimension of the vectors (I)

X - Argument, size (N), (I)

Y - Returned function value, size (N), (O)

The actual subroutine name must be declared EXTERNAL and entered

in the argument list of ...

Read - Write:

Description of read and written variables including their format.

Notes:

Further information about the subroutine. Information about arguments which

might be equivalenced.

Comments:

Less important information about the subroutine.

Examples:

Valuable if the use of the subprogram is exemplified.

METHOD

A short description of the method or the theory behind the subprogram.

In the library documentation, formulas etc. should be given in common

scientific notation.
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References:

References if any ought to be given.

CHARACTERISTICS

Execution time:

Execution time for a specified problem on a specified computer.

Size:

Approximate storage requirements, code and internal variables, for the sub-

routine itself and its called, internal subroutines (see below). The number

of memory cells needed is given in decimal form.

The computer system should be specified.

A list of called subroutines and functions, documented in the binder.

Internal subroutines reguired:

Routines required that are not part of the documentation binder.

Revisions:

The revisions of the subroutine are documented as:

1. name, date

action

An example of documentation is given in appendix Al.
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Appendix Al

Example of documentation
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SCANDINAVIAN CONTROL LIBRARY
Program documentation

NAME: ,EIcEN NUMBER:

SUBTT-rLEj Calculates the eigenvalues and eigenvectors of a real

matrix

LANGUAGE: rorrran 1v

KEYWORDS: Eigenvalues - eigenvectors - real matrix ‘

IMPLEMENTOR: o©- Hallingstad DATE: 1976-04-23
INSTITUTE: Eng. Cybeinetics, NTH

ACCEPTED: VERSION: 1

PURPOSE

EIGEN calls subroutines which calculate the eigenvalues and eigenvectors of
a real matrix. EIGEN then performs ordering of the eigenvalues with respect
to the real parts: Re{kl} Z_Re{kz} > ... Re A, and noxmalizes the eigen-
vectors. In order to avoid complex matrices in case of complex conjugated

eigenvalues, the eigenvector matrix % has a special form.

USAGE

Program type: SUBROUTINE

EIGEN(A,Z,ER,EI,N,IERR,MA,MZ ,JWI,JWL,JWH,W)

A - Real matrix, size (N,N), dimensioned (MA, .),(I)
- Eigenvector matrix, size (N,N),dimensioned (Mz, . ), (O)
If the i-th eigenvalue is real the i-th column of Z is the correspon-

ding real eigenvector. 1If eigenvalues i and i+l are a complex

conjugated pair the columns i and i+l contain the real and imaginary

part of the eigenvector corresponding to the eigenvalue with positive

imaginary part.

ER — Vector containing the real parts of the eigenvalues, size (N}, (O)




= 25 =
EI - Vector containing the imaginary parts of the eigenvalues, size
N, (0)
N - Actual dimension of matrices and vectors, (I)
IERR - Error indicator, (O)

0 : Success

J : If a eigenvalue has not been determined.

MA — Dimension parameter of A
MZ - Dimension parameter of Z
JWI - Work vector, size (N)

JWL - Work vector, sixe (N)

JWH - Work vector, size (N)

W - Work vector, size (N)
METHOD

This algorithm is based upon several works presented by Num. Math. in the

Handbook Series of Linear Algebra. [1]1 , [2] , [3].

It has been pointed out in a work by Osborne [4] that eigenvalue program

results have errors at least of order eg: lA|| , where € is the machine
precision and ||A|l is the Euclidean norm of the given matrix A. Hence
he recommends that one precedes the calling of such a routine by certain
diagonal similarity transformations of A, designed to reduce its norm.
This is done by calling the routine BALAN. BALAN [1] also has the property

of detecting isolated eigenvalues. After the balancing subroutine ELMHE is

called to obtain the upper Hessenberg transformed matrix, [2].

The subroutines ELTRA and HQR2 find the eigenvalues and eigenvectors of a
real upper Hessenberg matrix by the oR-method [3]. The subroutine BALBA forms
the eigenvectors of a real general matrix by back transforming those of the

corresponding balanced matrix determined by BALAN.

The eigenvalues are then ordered after decreasing values of the real parts.
At last each eigenvector is normalized so that the greatest element in each

vector is equal to 1.0.

L—_
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In order to avoid complex matrices in each case of complex conjugated eigen-
values, the eigenvalue matrix 2 has the special form described
in [5]. 1Its effect on the A matrix when used in a similarity transformation

is demonstrated in the following example [5].

1 X2=O+jw, X3 4 Where kl and A4

are real and A2 and X3 are complex conjugated. Al >0 z_l4

Let A has the eigenvalues A =0-jw, A

Then:
A 0 W
1 0 0
B 0 g w O
Z AZ =
0 W o 0
0] 0 0 A
_— 4_
References
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CHARACTERISTICS

Execution_time: Tested only on a NORD-10 computer in "Time-sharing" operation.

With N = 15 the time used was less than 5 sec.

Size: The storage requirement for the subroutine and called subroutines which

are not a part of the subroutine library, is 4930 cells on NORD-10 (16 bits
wordlength) .

Internal subroutines required: BALAN, ELTRA, HQR2, BALBA.
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Appendix A2

Documentation of computer dependent subroutines:

MADD, MULT, RMULT, MMOVE, RMACON and IMACON.
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SCANDINAVIAN CONTROL LIBRARY
Program documentation

NAME: wmabp ‘ NUMBER:

SUBTITLE: Matrix addition and subtraction

LANGUAGE::

KEYWORDS:

IMPLEMENTOR: ' , DATE:
INSTITUTE:

ACCEPTED: o VERSION:

PURPOSE

Computes C=A+B or C=A-B, where A,B and C are matrices or vectors.

Transpose(A) and/or transpose(B) may be used instead of A and/or B.

USAGE

Program Type SUBROUTINE

Arguments

MADD(A,B, C, M,N, MINUS,IAT,IBT, IA,IB,IC)
~ Matrix, dimensioned(IA,.), (I)

- Matrix, dimensioned(IB,.), (I)

Matrix, size(M,N), dimensioned(IC,.), (0)

~ Number of rows in C, (I)

zZ 2 o W >
I

- Number of columns in C, (I)

MINUS - Operation switch, (I). If non-zero A-B computed, else A+B.

IAT — Function switch, (I). If non-zero transpose(A) used instead of A.
IBT - Function switch, (I). If non-zero transpose(B) used instead of B.
IA - Declared first dimension of A, (I)
IB - Declared first dimension of B, (I)

IC - Declared first dimension of C, (I)
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Notes

1) A may be the same matrix as C in the call if IAT=0 and

B may be the same matrix as C if IBT=0.

CHARACTERISTICS

Execution Time

UNIVAC 1108: 33 + M*(5+N*5) us
PDP 15: 245 + M*(35+N#*40) us

Size

UNIVAC 1108: 51
PDP 15: 90




m
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SCANDINAVIAN CONTROL LIBRARY
Program documentation

NAME: wmuLt NUMBER:

SUBTITLE: Matri}; multiplication

LANGUAGE :

KEYWORDS:

IMPLEMENTOR: , DATE:
INSTITUTE:

ACCEPTED: - VERSION:

PURPOSE

Computes the matrix: product C=A*B, where A,B and C are matrices or vectors.

Transpose(A) and/or transpose(B) may be used instead of A and/or B,

USAGE

Program Type SUBROUTINE

Arguments

MULT(A,B, C, L,M,N, IAT,IBT,ISYM, IA,IB,IC)

A - Matrix, dimensioned(IA,.), (I)

B - Matrix, dimensioned(IB,.), (I)

(G - Matrix, size(L,N), dimensioned(IC,.), (0)

L - Number of rows in C, (1)

M — Number of terms 1in sgalar product, (I)

N — Number of columns in C, (I)

IAT - Function switch, (I). If non-zero transpose(A) used instead of A.
IBT - Function switch, (I). If non-zero transpose(B) used instead of B.
ISYM - Function switch, (I). If non-zero only the lower left triangular

half of C is computed and C is symmetrized by copying the lower
triangular half of C into the upper half.
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IA - Declared first dimension of A, (I)
1B — Declared first dimension of B, (I)
Ic - Declared first dimemsion of C, (I)
CHARACTERISTICS

Execution Time

UNIVAC 1108: 30 + N%(5+ L%(8+M%9)) us
PDP 15: 250 + N#*(35+ Lx(55+M*35)) us

Size

UNIVAC 1108: 92
PDP 15: 150
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SCANDINAVIAN CONTROL LIBRARY
Program documentation

NAME: =rMuLT A NUMBER:

SUBTITLE: Real number multiplied with matrix

LANGUAGE :

KEYWORDS:

IMPLEMENTOR: | , DATE:
INSTITUTE:

ACCEPTED: . - VERSION:

PURPOSE

Computes B=R*A, where R is a scalar and A and B are matrices or vectors.

USAGE

Program Type SUBROUTINE

Arguments

RMULT(R,A, B, M,N, IA,IB)

R - Scalar operand, (I)

A - Matrix operand, size(M,N), dimensioned(IA,.), (I)
B - Matrix result, size(M,N), dimensioned(IB,.), (0)
M - Number of rows in A and B, (I) ’

N - Number of columns in A and B, (I)

IA - Declared first dimension of A, (I)

IB — Declared first dimension of B, (I)

Notes

1) A and B may be the same matrix in the call.
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CHARACTERISTICS

Execution Time

UNIVAC 1108: 16 + Nk (4+M*6) us
PDP 15: 220 + N*(45+M*40) us

Size

Univac 1108: 26
PDP 15: 85
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SCANDINAVIAN CONTROL LIBRARY
Program documentation

NAME: movE . NUMBER:
SUBTITLE: Move a matrix

LANGUAGE :

KEYWORDS:

IMPLEMENTOR: , DATE:
INSTITUTE:

ACCEPTED: o VERSION:

PURPOSE

Moves A to B or transpose(A) to B, where A and B are matrices or vectors.

USAGE

Program Type SUBROUTINE

Arguments

MMOVE (A, B, M,N, IAT, IA,IB)

A - Matrix operand, dimensioned(IA,.), (I)

B - Matrix result, size(M,N), dimensioned(IB,.), (0)

M - Number of rows in B, (I)

N — Number of columns in B, (I)

TIAT — Function switch, (I). If non-zero (A)transpose moved instead of A.
IA — Declared first dimension of A, (I)

IB - Declared first dimension of B, (I)
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CHARACTERISTICS

Execution Time

UNIVAC 1108: 15 + N*(4.5+Mx1.5) us
PDP 15: 220 + N*(25+M*20) us

Size

UNIVAC 1108: 22
PDP 15: 90




- 37 -

SCANDINAVIAN CONTROL LIBRARY
Program documentation

NAME: 1mMacow | NUMBER:

SUBTITLE: Integer machine dependent constants

L ANGUAGE :
KEYWORDS:
IMPLEMENTOR: | _ DATE:
INSTITUTE:
ACCEPTED: . VERSION:

PURPOSE

Returns machine-dependent integer constants.

USAGE

Program Type INTEGER FUNCTION

Arguments
IMACON(I)

IMACON - Returned integer constant.
I - Constant selector, (I)
1: Largest integer allowed
: Largest single precision exponent allowed
: Largest double precision exponent allowed
: Integer word length (bits)
: Single precision mantissa word length (except sign bit)
: Single precision exponent word length (except sign bit)

: Double precision mantissa word length (except sign bit)

2
3
4
5
6
7.
8

: Double precision exponent word length (except sign bit)
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SCANDINAVIAN CONTROL LIBRARY
Program documentatlion

NAME: rmacon NUMBER:

SUBTITLE: Real machine dependent constants

LANGUAGE :

KEYWORDS:

IMPLEMENTOR: | DATE:
INSTITUTE:

| ACCEPTED: - VERSION:

PURPOSE

Returns machine-dependent real constants.

USAGE

Program Type REAL FUNCTION

Arguments
RMACON(I)

RMACON - Returned real constant
I — Comnstant selector, (I)
1: Relative single precision accuracy
: Largest single precision number allowed

2
3: Smallest single precision number allowed (except 0.0)
4

: Relative double precision accuracy




