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Popular summary in English

Random graphs theory has been an important tool to model and solve
problems related to real world networks. Although those problems come
from very different fields, such as for example social networks, electrical
power grids, and Internet network, they share an important common fea-
ture such as a very large number of elements. Due to their large and in-
tricate structures those problems have been first studied in terms of their
elements (nodes) and connections between those elements (edges).

Very often the problems are so complicated that a complete description of
the dynamics happening in the whole network is impossible. Hence there
has been given a lot of attention to the local properties of the network
such as how many nodes are involved in a process or how to estimate the
probability that the elements of the network will interact with each other
in order to produce a certain result.

In this thesis we will focus the attention on a particular category of neural
network, i.e., a network which mimics the dynamics and the connectivity
of neurons in the brain. The nodes of the network are representing neur-
ons, while the edges connecting them are potential synaptic connections.
We propose and analyse a random graph model which may predict syn-
aptic formation of a network and formation of connected clusters which
communicate with each other. In particular, in the resulted networks the
probability of connections depends on the distance.
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Random geometric graphs and

their applications in neuronal

modelling

1 Introduction

This thesis consists of four papers concerned with the study of random
graph models which mimic potential synaptic connections between neurons
in brain. The random graphs introduced here have as common features the
dependence on the distance between the neurons, that is the probability
that two neurons are connected depends on the distance (euclidean, or
graph distance) between them.

In Paper I we introduce a model of an inhomogeneous random distance
graph in one dimension. The graph presents some aspects of random geo-
metric graph as in Penrose (1993) and Cheng and Robertazzi (1989), where
if the distance between any two nodes is smaller than a certain threshold r
then there is a connection with probability one, otherwise the probability
of the connection is a function of the distance.

In Paper II the concept of dependence on the distance is extended for
a model on a two-dimensional torus, as in Janson et al. (2015), where
the probability of connection between two nodes decreases with respect
to the distance. In Paper III and Paper IV we keep the influence on
the distance between nodes and we also introduce the concept of growing
connectivity in time. This growth is meant to be a simplified model for the
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formation of potential synaptic connections between nodes. In particular,
results on the structure of a randomly grown 2d network, and in Paper
IV we study connectivity properties of neurons using theoretical tools and
computational simulations.

2 Graph theory

Many of the basic definitions are taken from Bollobás et al. (2007), Van der
Hofstad (2017), Gut (1999) and Shiryaev (1996). Many of the statements
in the introduction of this thesis can be found with respective proofs in
Van der Hofstad (2017).

Definition 1 (Graph). A graph G is an ordered pair of disjoint sets (V,E),
where V is the set of n vertices and E is the set of edges s.t., E ⊆ V × V
is formed by unordered pairs of elements of V indicated as ei,j = {vi, vj},
for vi, vj ∈ V .

We say that a graph is directed when E is an ordered, i.e., if {vi, vj} 6=
{vj, vi}, otherwise the graph is called undirected. If (vi, vj) ∈ E then we
say that the vertices vi and vj are connected and we denote this by vi ∼ vj.
Given a vertex vi, if there does not exist any edge connecting vi with any
other vertex of V , we call vi an isolated vertex.

Definition 2 (Degree). Given a graph G = (V,E), the degree D(vi) of
a vertex vi ∈ V is defined to be the number of vertices connected with vi
directly by an edge, i.e.,

D(vi) =
n∑

j 6=i,j=1

1{vi∼vj}

When the graph is directed we define the in-degree and out-degree of a ver-
tex vi respectively, as the sum of incoming edges and the sum of outcoming
edges.

Definition 3 (Connected component). A connected component C = C(G)
of a graph G is a subgraph of G s.t., C = (V ′, E ′) with V ′ ⊂ V and E ′ ⊂ E,
where any two vertices in V ′ are connected to each other through a path
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and which is not connected to any other vertices of G. When the size of
the connected component is of the order of the entire graph, then we call it
a giant component.

We will now recall some important stochastic processes that are used to
study some of the random graphs which will be presented later on in the
thesis. We will refer mainly to the definitions and results presented in Gut
(1999).

In general a stochastic process with state S is a collection of random vari-
ables {Xt : t ∈ T, T ⊆ R}, which are defined on the same probability
space (Ω,Σ,P), where T is called the parameter set. If T = N then the
process is said to be a discrete parameter process, while if T = R then it
is a continuous process.

Definition 4 (Poisson process). A Poisson point process is a continuous
parameter stochastic process {X(t), t ≥ 0}, where X(t) is the number of
occurrences in (0, 1], where:
(i) X(0) = 0 a.s.,
(ii) the increments X(tk)−X(tk−1), for k = 1, . . . n, are independent r.vs.,
for all t0 ≤ . . . , tn, with ti ∈ R, for all n ≥ 0,
(iii) there exist λ > 0 s.t., X(t)−X(s) ∼ Po(λ(t−s)), for all s < t, where
λ is defined as the intensity of the process.

Let Tk be the time of the k-th occurrence of the Poisson point process X(t).
Let τk := Tk−Tk−1 be an interval between two consecutive occurrences for
any k ∈ N+. Then {Tk ≤ t} = {X(t) ≥ k} and the following results hold:
(i) for all k ∈ N+, τk are i.i.d r.v, distributed as Exp(1/λ),
(ii) for all k ∈ N+, Tk are r.v. distributed as Γ(k, 1/λ).

We then introduce a stochastic process defined as a branching process,
which is frequently used to investigate the size of connected components
in random graphs. A branching process is a model for describing how a
population evolves in time, or in the case of random graphs, how a graph
connectivity evolves. We suppose that each individual, independently from
each other, generates a random number of successors with the same off-
spring distribution {pi}∞i=0 where pi = P(individual has i successors). Let
X be a r.v. with probability function (pi)i≥0. We denote Zj as the number
of individuals in the j-th generation s.t,
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Z0 = 1,

Zj =

Zj−1∑

i=1

Xj,i,

where {Xj,i} is a double array of i.i.d. random variables. The offspring
distribution of Xj,i is the same as for X and we indicate it as Xj,i ∼ X for
all j, i.

One of the most relevant results on branching processes is that when the
expected value of X is smaller or equal than 1 then the populations dies out
with probability 1, while when E(X) > 1 there is a non-zero probability
that the population will survive. More precisely, define η = P(∃j : Zj = 0)
to be the probability of extinction. The following result, from Gut (1999),
holds.

Theorem 1. Given a branching process with offspring distribution X, and
given GX the probability generating function of X, i.e, GX(s) = E(sX), the
following results hold.
(i) The extinction probability η satisfies the equation η = GX(η).

(ii) η is the smallest non negative root of the equation η = GX(η).

(iii) η = 1 for E(X) ≤ 1 and η < 1 for E(X) > 1.

Given T the total progeny of the branching process defined as T =
∑∞

j=0 Zj
then the following result holds.

Theorem 2. Given a branching process with i.i.d offspring X and with
probability generating function GX(s), the probability generating function
of the total progeny T is given by

GT (s) = sGX(GT (s)).

Let Xi be independent random variables for any i ≥ 1, with the same
distribution as X1,1. Then we define the following recursion

S0 = 1

Si = Si−1 +Xi − 1 = X1 + . . . ,+Xi − (i− 1).
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Let T be the minimum t for which St = 0, i.e.,

T = min{t : St = 0} = min{t : X1 + · · ·+Xt = t− 1},

when T does not exist then we define T =∞.

The above recursion can be now read in terms of the exploration process
of a connected component. Given a connected component C(v) containing
the vertex v in graph G, we start to explore the vertices as follows. During
the explorations the vertices have three different status: active, neutral or
inactive. The status of the vertices will change during the exploration of
the connected component according to the following rules. At time t = 0
the only active vertex is v and all the other vertices are neutral, then we set
S0 = 1. At time t, we choose an active vertex w in an arbitrary way and
we explore all the edges (w, u) where u runs all over the neutral vertices.
If there is a neutral vertex u s.t., it is connected with the active vertex w,
and we say that u has become active, otherwise it stays neutral. After we
have searched all the set of neutral vertices connected to w, we set w to
be inactive and we set St to be equal to the new number of active vertices
at time t.

When there are no more active vertices left, i.e., when St = 0 the process
then terminates and C(v) is then the set of all the inactive vertices with
cardinality |C(v)| = t.

In the previous recursion the variable Xt is the number of vertices that
become active after the exploration of the t-th vertex, while the t-th vertex
becomes inactive. Then St = St−1 +Xt−1 represents the number of active
vertices after the exploration of t vertices.

Another important measure which characterizes random graphs, and real
world networks, is the clustering coefficient. This measure represents how
probable in a network that two nodes share a connection, are connected
with each other.

Given an undirected graph G = (V,E), with |V | = n we define

WG =
∑

1≤i,j,k≤n
1{ij,jk∈E},

which is equal to two times the number of open triples as follows. The
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factor two comes from the fact that in undirected graphs WG counts each
edge twice as (i, j) and (j, i).

Moreover we define

∆G =
∑

1≤i,j,k≤n
1{ij,ik,jk∈E},

which is equal to six times the number of triangles in G.

Then we define CC(G), the clustering coefficient of G, as the ratio of the
number of triangles to the expected number of open triples, i.e.,

CC(G) =
EWG

E∆G

.

When G is a directed graph the computation of the clustering coefficient
can be found in Fagiolo (2007), and in Rubinov and Sporns (2010). In par-
ticular in Rubinov and Sporns (2010) we can find a list of typical measures
of network analysis for both directed and undirected networks.

3 Random graphs

In this section we will briefly introduce the main definitions and some of
the main properties of the most known random graph models such as the
classic random graph G(n,M) and G(n, p) presented by Erdős and Rényi
(1960), the small world network introduced by Watts and Strogatz (1998)
and Newman (2000), and the geometric random graph by Penrose (1993)
and a model in between percolation and classic random graph by Turova
and Vallier (2006), and Turova and Vallier (2010). Many of the statements
can be found with respective proof also in Van der Hofstad (2017).

3.1 Erdős-Rényi random graph

Definition 5. The classic Erdős-Rényi random graph G(n, p) is the graph
defined on a set of vertices V = {1, . . . , n}, where an edge between any two
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vertices is present independently with probability p, and is missing with
probability 1 − p. The graph is equivalently denoted as G(n, λ/p) where λ
is a positive constant.

The degree distribution of G(n, p) follows a Binomial distribution Bin(n−
1, p), i.e., for any given v ∈ V ,

P(D(v) = k) =

(
n− 1

k

)
pk(1− p)n−k.

An important aspect studied for random graphs is the presence of con-

Figure 1: On the left is reproduced a realization of G(100, 1/300) and on the right G(100, 1/50).

nected components and the evolution of their size with respect to the
increasing number of nodes in the graph. In particular the threshold of
the size of the giant component in G(n, p) has been studied intensively.
Here we report the main result.

Theorem 3 (Erdős-Rényi, (1960)). Let p = λ/n , where λ > 0 is a con-
stant.
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If λ < 1, then
|C1|
log n

p−→ 1

1− λ− log λ
,

If λ > 1 then
|C1|
n

p−→ β(λ)

where β = β(λ) ∈ (0, 1) is the unique solution of

β(λ) + e−λβ(λ) = 1.

The proof can be seen in Erdős and Rényi (1960). A characteristic which
makes G(n, p) not very suitable to model real world networks is the pres-
ence of low clustering coefficient. Indeed the clustering coefficient ofG(n, p)
is CC(G(n, p)) = λ/n, which is relatively small with respect to the clus-
tering computed on real networks Watts and Strogatz (1998).

3.2 Scale-free and small-world random graphs

Real world networks are in general complex networks with a very high di-
mension. Although they all have high numbers of vertices, they are mostly
sparse networks, i.e. their degree is low with respect to the maximum
possible degree. Real world network moreover are formed by considering
growing precesses, as for example the collaboration network, which grows
in size as time increases. Let Gn be a random graph. For any n the
proportion of nodes with degree k in Gn is given by

Pk(n) =
1

n

n∑

i=1

1{D(n)
i =k}

where D
(n)
i is the degree of the vertex i for all i = {1 . . . , n}. Then

{P (n)
k }∞k=0 is called the degree sequence of Gn.

We then formalise the definition of a graph being sparse.

Definition 6. A random graph sequence {Gn}∞n=0 is sparse when limn→∞ Pk(n) =
pk, for some deterministic limiting probability distribution {pk}∞k=0.
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We can then define the property of being scale-free as follows.

Definition 7. A random graph process {Gn}∞n=0 is defined to be scale-free
with exponent τ if it is sparse and if there exists τ s.t.,

lim
k→∞

log pk
log(1/k)

= τ.

A scale-free random graph process has a degree sequence that converges
to a limiting probability distribution which has an asymptotic power-low
tail.

We then define the property of a graph process as being small-world. The
main characteristics of small-world networks is both the presence of a small
geodetic distance and high clustering coefficient (see the results presented
by Watts and Strogatz (1998) and Newman (2000)).

Let Hn be defined and the typical distance of Gn, as the graph distance
between two uniformly chosen vertices from within a connected component
of Gn. We define the general property as being small-world as follows.

Definition 8. A random graph process {Gn}∞n=0 is called a “small world”when
there exists a constant K such that,

lim
n→∞

P(Hn ≤ K log n) = 1.

This indicates that the distance between nodes increases slowly as a func-
tion of the number of nodes in the network compared to the maximum
possible which is of order n.

Watts and Strogatz (1998) described the classic model of building a graph
Gn with the small-world property as follows.

The n nodes are placed in a ring, as in Figure 2, and m is defined to be
the number of the neighborhood within which the vertices of the lattice
will be connected (m/2 per side). Then p is set as the probability of an
edge between any two pair of vertices vj and vj to be rewired randomly
from vj to any other node different from vj. This means that when p = 0
the graph is the original Gn while for p = 1, we obtain a random graph
G(n, p).

9



Figure 2: On the left is reproduced a realization of Gn withn = 20, m = 6 and rewiring probability 0, while in the middle
and on the right the rewiring probabilities are 0.3 and 1 respectively.

3.3 Random geometric graphs

In the following section we briefly introduce the basic concepts and results
of random geometric graphs (RGG) from Penrose (1993). We will primarily
focus on the result on two-dimensional case although in Penrose (1993) we
can find general results on the d dimensional case with d ≥ 1. RGG have
been a fundamental tool in developing solutions for wireless networks (see
the results by Cheng and Robertazzi (1989), ?, Gupta et al. (2008) and
Gupta and Iyer (2010)).

Definition 9. The random geometric graph G(n, r) is defined on the set of
vertices with cardinality n distributed in [0, 1]2 independently and uniformly
at random, such that a connection between any two pairs of vertices vi and
vj is present with probability one if the distance between vi and vj is lower

10



or equal than a given positive cut-off constant r, i.e., if ‖ vi − vj ‖≤ r.

In Figure 3 we can see three simulated independent realizations of random
geometric graphs with the same vertex set cardinality and three different
radios of connectivity.

Figure 3: From left to right, computer independent realizations of three RGGs withn = 50, and radius 0.1, 0.2 and 0.3
respectively.

We recall that approximately the expected degree of a typical vertex is
nπr2. Hence the following result on the connectivity properties of G(n, r)
has been prove in Penrose (1993).

Theorem 4 (Connectivity of two-dimensional RGG). Let (rn)n be a se-
quence of non negative numbers, and define xn = πnr2

n − log n, then

lim
n→∞

P(G(n, rn) is connected) =





0 if xn → −∞
e−e

−x
if xn → x ∈ R

1 if xn →∞

11



The following theorem describes the results regarding the threshold for the
formation of the largest connected component as n goes to infinity.

Theorem 5 (Largest connected component). Let C∞(G(n, r)) be the size
of the largest connected component. There exists a non-decreasing continu-
ous function f : [0,∞) → [0, 1) such that the following holds. Given the
sequence (rn)n defined as rn =

√
λ/πn, then

C∞(G(n, r))

n
→ f(λ), a.s.

Furthermore there exists a critical value λc > 0 such that, if λ ≤ λc, then
f(λ) = 0, while if λ > λc then f(λ) > 0.

It is noteworthy that the exact values of λc and f(λ) for the case λ > λc
are not known but have been experimentally computed where λc ≈ 4.51.

3.4 Between percolation and classic random graph

In the original model of percolation theory (see the results presented by
Grimmet (1999)), it is considered the d-dimensional integer lattice. Chosen
a probability p, each edge of the graph Zd is open with probability p and
closed with probability 1 − p. It has been investigated the structural
properties of the obtained random graph consisting on the vertex of Zd
together with the set of open edges.

In the infinite dimensional lattice it is investigated if with positive probab-
ility there is a connected component of open edges. In dimension 1 there is
a critical value pc = 1 such that if p < 1 the probability that a cluster has
size greater than k decreases exponentially fast to zero. In higher dimen-
sions only for d = 2 the value of the critical probability is exactly known
and is given by pc = 1/2. If p < pc then the lattice is composed of finite
open clusters separated by infinite closed clusters. If p = 1/2 the main
question whether the infinite cluster exists with positive probability, and
if p > 1/2 whether there is an infinite open cluster and if with probability
1 it is unique.

In the d-dimensional case it is possible to obtain approximations of the
critical parameter. In percolation models the percolation transition, due
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to the critical probability, can be interpreted as the phase transition in
classic random graphs. In both cases indeed the size of the largest connec-
ted component increases to reach the characteristics of a giant component
which will contain a positive amount of vertex of the graph. The mod-
els are defined with a very consistent difference between each others. In
the classic random graph model there is no definition of distance between
the vertices while in percolation theory the structural geometric distances
are fundamental for the definition of the connectivity structure. The con-
nectivity created by the nearest neighbours in the lattice do not fit many
real topological structures present in real world networks.

Consider for example the model of Turova and Vallier (2006), which cap-
tures the features of both the classic random graph model and percolation
model; both connectivity properties are typical for real networks.

Definition 10. Given a graph Gd
N(p, c) on the set of vertices V d

N = {1, . . . , N}d
in Zd, the edges between any two pairs of vertex i and j are present inde-
pendently with probability

pi,j =

{
p if |i− j| = 1
c
Nd if |i− j| > 1,

(1)

where 0 ≤ p ≤ 1 and 0 < c < N are constant.

Hence the graph Gd
N(p, c) is a mixed model between a random graph model

where any vertex is connected to another vertex with probability c
Nd , and

a percolation model where each pair of neighbours of Zd is connected with
probability p.

Turova and Vallier (2006) proved a phase transition along both parameters
c and p when the dimension of the lattice is 1. Suppose that p is fixed,
then there exists a critical value ccr(p) given by the following relation

ccr(p) =
1− p
1 + p

,

such that if c < ccr(p) the size of the largest connected component C1(Gd
N(p, c))

is of order logN with probability tending to 1 as N goes to infinity. If
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c > ccr(p) then the size of C1(Gd
N(p, c)) increases until it includes a posit-

ive part of the entire graph and it is such that

|C1(Gd
N(p, c))|
N

p−→ β,

as N →∞, where β = β(p, c) is defined to be the maximal solution of

β = 1− 1

E(X)
E(Xe−cXβ).

The result is extended for d-dimension in Turova and Vallier (2010). Let C0

denote an open cluster containing the origin of Z, in the bond percolation
model, and let B(N) be the box of length N . Then we have that the
critical parameter is the following

ccr(p) =
1

E(C0)
.

If c < ccr(p), set y to be the root of

E(c|C0|ec|C0|y) = 1,

and let α = α(p, c) be defined as follows

α = (c+ cy E(cec|C0|y))−1,

then with probability tending to 1 as N →∞ we have

|C1(Gd
N(p, c))| ≤ α log |B(N)|.

If c ≥ ccr it follows that

|C1(Gd
N(p, c))|

B(N)

p−→ β,

as N →∞, where β = β(p, c) is defined as the maximal solution of

β = 1− 1

E(X)
E(Xe−cβ|C0|).
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The same result can be stated for the critical value pcr of the probability p
for fixed c. The phase transition can be proved along both critical values

ccr(p) =
1− p
1 + p

and pcr(c) =
1− c
1 + c

.

The proofs of Turova and Vallier (2010) are based particularly on the
theory of inhomogeneous random graphs, which will be presented in the
next section.

3.5 Inhomogeneous random graphs

Classic random graph models are considered to be homogeneous since the
degree tends to be concentrated around a typical value. Many graphs
based on real world models do not have always this characteristic. Then
the model introduced in Bollobás et al. (2007) is very relevant, which could
include the category of inhomogeneous random graphs. We start reporting
a basic example (from Van der Hofstad (2017)) in order to have intuition
into the idea behind the definitions which will follow and we report some
of the main results on the degree distribution and the formation of a giant
component.

Example 1 (9.25 of Van der Hofstad (2017)). We start to define an in-
homogeneous model as follows. We have a graph with n nodes where to
each node has been assigned a characteristic called type, in a certain type
space S (clearly when the nodes can have just two types is enough con-
sider S = {1, 2}). The space S can be both finite and infinite. We need
to know how many individuals we have of a given type. This quantity is
described in terms of a measure µn, where for every subset A of S, µn(A)
measures the proportion of nodes having a type A ⊆ S. In this model, in-
stead of vertex weights, the edge probabilities are defined through a kernel
κ : S × S → [0,∞). Then the probability that two nodes of types x1 and
x2, are connected is approximately κ(x1, x2)/n.

We will now formalize the above terms. Let us write G(n, pij) to indic-
ate the random graph on vertex set V = {1, . . . , n}, where i, j ∈ V are
connected by an edge with probability pi,j.
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Definition 11 (Kernel). (i) A ground space is a pair (S, µ), where S is a
separable metric space and µ is a Borel probability measure on S.
(ii) A vertex space V is a triple (S, µ, (xn)n≥1), where (S, µ) is the ground
space and (xn)n≥1 is a random sequence of points in S s.t.,

#{i : xi ∈ A}/n p−→ µ(A),

where A ⊆ S is a µ-continuity set.
(iii) A kernel κ on a ground space (S, µ) is a symmetric non negative Borel
measurable function on S × S.

Moreover we need to set some necessary conditions for the kernels. Given
E(G) the number of edges in the inhomogeneous graphGn(p(κ)) = G(n, p(κ))
we define the expectation of this number as E(E(G(n, κ)) =

∑
i<j pi,j,

so the model has a bounded expected degree, i.e., when 1/n
∑

i<j pi,j is
bounded. Moreover the graph should not get decomposed in two dis-
connected components, that is the graph should be irreducible. Those
considerations explain the introduction on the following conditions for the
kernel.

Definition 12 (Graphical and irreducible kernels). A kernel κ is graphical
if the following conditions hold:
(i) κ is continuous a.e. on S,
(ii) The following integral is finite

∫ ∫

S
κ(x, y)µ(dx)µ(dy) <∞,

(iii)
1

n
E(E(Gn(p(κ))))→ 1

2

∫ ∫

S
κ(x, y)µ(dx)µ(dy),

Similarly the definition can be applied for a sequence of kernels (κn) which
is set to be graphical with limit κ when if yn → y and xn → x, than
κn(yn, zn)→ (y, x), where κ satisfies (i) and (ii) and

1

n
E(E(Gn(p(κn)))→ 1

2

∫ ∫

S
κ(x, y)µ(dx)µ(dy).
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A kernel κ is called reducible if

∃A ⊆ S with 0 < µ(A) < 1 such that κ = 0 a.e. on A×(S \A),

otherwise the kernel is irreducible.

We now introduce the main result of the degree sequence of Gn(p(κ)).

Theorem 6 (Degree sequence of IRG). Let (κn) be a graphical sequence
of kernels with limit κ. For any fixed k ≥ 0, set Nk to be the number of
nodes with degree k then,

Nk

n

p−→
∫

S

λ(x)k

k!
e−λ(x)µ(dx),

where for any given type x the function x→ λ(x) is defined as

λ(x) =

∫

S
κ(x, y)µ(dy).

Equivalently
Nk

n

p−→ P(Ξ = k),

where Ξ has a compound Poisson distribution with distribution Fλ given
by

P(Fλ ≤ x) =

∫ x

0

λ(y)µ(dy).

This proves that the degree of a given type x is asymptotically Poisson
with mean λ(x). The distribution for the degree of a (uniformly chosen)
random vertex of Gn(p(κ)) has a compound Poisson distribution.

Let Λ be a r.v., λ(U) where U is a r.v, on S with distribution µ. Let N≥k
be the number of vertices with a degree at least k, and let D be the degree
of a randomly chosen vertex of Gn(p(κn)). From the considerations on the
degree distribution it follows the next corollary on the distribution of the
tails for the degree sequence.
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Corollary 1. Let (κn) be a graphical sequence of kernels with limit κ.
Suppose that P(Λ > t) = µ{x : λ(x) > t} ∼ at−(τ−1) as t → ∞ for some
a > 0 and τ > 2. Then

N≥k
n

p−→ P(Ξ ≥ k) for k fixed, as n→∞

and
P(Ξ ≥ k) ∼ ak−(τ−1) for k →∞.

As for the exploration of the connected components in homogeneous graphs,
also the connectivity of inhomogeneous random graphs can be studied by
the use of branching processes. In particular for the inhomogeneous model
we will use a multitype branching process, i.e. a branching process which
keeps track of the type of each vertex explored. The complete description
of the process can be found in Van der Hofstad (2017) and for general
theory on multitype branching process see Athreya and Ney (1972). Here
will be presented the multitype branching process with Poisson offspring
distribution, followed by the main results on the phase transition of in-
homogeneous random graphs. For complete proofs we suggest to read as
well Bollobás et al. (2007).

A multitype Poisson branching process with kernel κ is defined as it follows.
Every individual of type x ∈ S is replaced in the next generation by a set of
successor distributed as a Poisson process on S with intensity κ(x, y)µ(dy).
Then the number of successor with type in A ⊆ S has as well a Poisson
distribution with mean

∫
A
κ(x, y)d(µy).

Let ζκ(x) be the survival probability of the Poisson multitype process,
starting from the original individual of type x ∈ S. Then the survival
probability is defined as it follows

ζκ =

∫

S
ζκ(x)µ(dx).

Given the linear operator Tκ defined for f : S → R as

(Tκf)(x) =

∫

S
κ(x, y)f(y)µ(dy),
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where f is any measurable function s.t., the integral is defined a.e., for
x ∈ S.

The survival probability ζκ > 0 if and only if ‖Tκ‖ > 1.

The norm of the operator can be defined as follows

‖Tκ‖ = sup{‖Tκf‖2 : f ≥ 0, ‖f‖2 ≤ 1} ≤ ∞.

We also define Φ as a non linear operator as

(Φκf)(x) = 1− e(Tκf)(x), x ∈ S.

Then it is shown that the function ζκ is the maximal fixed point of the non
linear operator Φκ.

Hence the following theorem on the presence of a giant component in in-
homogeneous random graphs holds.

Theorem 7. Given the sequence of irreducible graphical kernels (κn), with
limit κ, let C1 denote the largest connected component of the inhomogeneous
random graph Gn(p(κn)), the following convergence holds:

|C1|
n

p−→ ζκ,

in all cases when ζκ < 1, while ζκ > 0 exactly when ‖Tκ‖ > 1.
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4 Complex brain network

In this section we discuss the complex topological and functional struc-
ture of the brain. In particular we see how tools of random graph theory
have been applied to obtain a better understanding of one of the most
complicated systems.

In general the nodes in brain network structures represent brain regions,
while the link between them can represent anatomical or functional con-
nections (see the results presented by Bullmore and Sporns (2009) and
Rubinov and Sporns (2010)). The activities happening in the brain are
usually divided into two categories, one related to a structural brain net-
work and another that creates a functional brain network.

In Figure 4 we can see a schematic representation of how these structures
are extrapolated by experimental techniques. In Bullmore and Sporns
(2009) one can find a detailed description of each steps taken to obtain the
two structures. Let us briefly present those steps.

The first step consists in defining the network nodes to be considered for
the analysis. For the description of a structural network this is done by
anatomical parcellation, while for functional networks it is done by using
recording sites which will map the transmission of signals between the
selected nodes.

The secondary step estimates a continuous measure associated with the
nodes. The third step generates an associated matrix by coupling all pair-
wise associations obtained between the nodes. Applying a threshold to
every element of the matrix yields an adjacent matrix and the correspond-
ing (usually undirected) graph. This threshold will highly influence the
connectivity description of the two networks, hence several thresholds will
be taken into consideration in order to have a more realistic reproduction
of the feature of the real brain section selected. At the fourth step both
structural and functional network properties can be investigated by graph
theoretical analysis.

The main tools that are used to test the resulting networks are the degree
distribution, the assortativity index, the clustering coefficient, the average
shortest path length and modularity Stam and Reijneveld (2007). The
values of many network measurements are very much influenced by the
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Figure 4: Graph analysis to brain networks. Structural (including either gray or white matter measurements using
histological or imaging data) or functional data (including resting-state fMRI, fMRI, EEG, or MEG data) is
the starting point. Nodes are defined (e.g., anatomically defined regions of histological, MRI or diffusion
tensor imaging data in structural networks or EEG electrodes or MEG sensors in functional networks) and
an association between nodes is established (coherence, connection probability, or correlations in cortical
thickness). The pairwise association between nodes is then computed, and usually thresholded to create a
binary (adjacency) matrix. A brain network is then constructed from nodes (brain regions) and edges (pairwise
associations that were larger than the chosen threshold). Scientific Figure on ResearchGate available from
researchgate.net/Graph-analysis-to-brain-networks-Structural-including-either-gray-or-white-matterfig2 221792911

basic structure of the network itself, hence the significance of a network
statistics should be established by comparing the result with a null hypo-
thesis network. In general the null hypothesis network is considered to be
the classic random graph model where the numbers of edges and vertices
are taken to be the same as the network to be tested.

Often real networks have a high clustering coefficient (CC) with respect
to the corresponding G(n,m) model, while the average shortest path (L)
results to be in both cases being very small Sporns et al. (2002).

In Table 1, some known measurements are reported on the clustering coef-
ficient and the average shortest path length (from Sporns et al. (2002),
Rubinov and Sporns (2010) and Bullmore and Sporns (2009)).
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Table 1: In the table are reported clustering coefficient CC, average shortest path length L and number of nodes N of the
respective neural networks of known neural networks are reported. The values come from Sporns et al. (2002),
Hilgetag et al. (1996).

Network N CC L
C. Elegans 232 0.28 2.65
in vitro neural network 240 0.113 17.58
Macaque visual cortex 32 0.59 1.69
Macaque cortex 73 0.49 2.18
Cat cortex 35 0.60 1.79

In particular from Sporns et al. (2002) we can also compare the computa-
tion done for the clustering coefficient in the specific case of the Macaque
visual cortex with respect to the analogous random graph model. The first
network has CC = 0.59, while the random graph model has CC = 0.32.
The anatomical brain connectivity structure studied until now indicates
that this structure has the opposite characteristic of being both functional
segregated and functional integrated Tononi et al. (1994). This means that
the anatomical network combines the co existence of densely interconnec-
ted groups (clusters) with a robust number of intermodular links. The first
random graph models that captured both these features are small-world
networks. Since then, many other models theoretically ( from Voges et al.
(2010), Sporns et al. (2002), and Kozma and Puljic (2015)), and experi-
mentally, (from Van Ooyen et al. (2014) and Stepanyants and Chklovskii
(2005)), have been developed using ad hoc growing random networks which
mimic the main characteristics of neuronal connectivity.
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5 Main results of the research papers

5.1 Paper I

In Paper I we introduce an inhomogeneous random distance graphGT (c(T ), α)
on an interval [0, T ] ∈ R. The vertex set V is given by a Poisson process
with intensity λ, i.e., every vertex v corresponds to an occurrence time of
this process. We assume that the probability of connection between any
two nodes vi and vj depends on the distance between them. More precisely
if |vj − vi| ≤ r then we set an edge between them, while if |vj − vi| > r
then we assigned the probability of connections to be

pvivj = c(T )/|vi − vj|α,

where r > 0, α ≥ 0, and c(T ) ≥ 0 are the parameters of the model.

Observe that even in the particular case where c(T ) = 0, the resulting
model is an example within a class of random geometric graphs (RGG).
Other models in this class were previously introduced and studied by Pen-
rose (1993), Gupta and Kumar (1998) and Cheng and Robertazzi (1989).
Many of the properties of RGG have applications in the fields of cluster
analysis and wireless networks as i.e., in the studies of Gupta and Kumar
(1998) and Cheng and Robertazzi (1989).

In Section 4.1 (Paper I) we investigate clustering properties of the subgraph
induced by the short connections only. More precisely we define Xi =
Xi(T ) to be the number of vertices in the i-th connected component (or
cluster), and we let N(T ) be the total number of clusters. We denote the
resulting graph G̃T (N(T ), α).

First we prove that the distribution of the size of a single cluster X1 con-
verges as T goes to infinity to the Geometric distribution with parameter
e−λr. Then for a fixed number of clusters K we prove that as T →∞ the
distribution of (X1, . . . , XK) converges to a distribution of a vector of i.i.d
entries distributed as Ge(e−λr).

We also derive the Law of Large Numbers for N(T ). More precisely we
prove that the averaged number of clusters, i.e., N(T )/T converges in L1

and a.s. to a constant as T goes to infinity and we find this constant.
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In Section 4.2 we consider every clusterXi as a macrovertex i, and we define
a new vertex set consisting on these macrovertices: V̂ = {1, . . . , N(T )}.
Then we also define a new graph Ĝ(X) on the vertex set V̂ , this time
considering long range connections. We say that two macrovertices i and j
are connected if there is at least one long range edge between two vertices
belonging to these two macrovertices. Hence, the probability of this event
is given by

P(i ∼ j) = 1−
∏

x,y

(1− c(T )

|x− y|α ),

where the product runs over all pairs of vertices (x, y) with x belonging to
the i-th cluster and y belonging to the j-th cluster. We found approximated
lower and upper bounds for this probability (see Corollary 1).

To study the degree distribution of Ĝ(X) we approximate the distance
between vertices in the pairs (x, y) in the above formula.

This investigation led us to a definition of another RGG model (defined in
Section 4.3) where the probability of edges is inspired by the bounds found
for our original model (Corollary 1).

For the latter model we found for which values of c(T ) and α the degree
distribution converges to a Poisson with constant parameter. This res-
ult allows us to approximate the degree of Ĝ(X) by a certain compound
Poisson distribution (see Section 4.3).

We leave the question of the general connectivity of the model for the
future work.

5.2 Paper II

We consider a model of a graph embedded in a two-dimensional torus.
Again we assume that the probability of the connections decays with the
distance between nodes as in Ajazi et al. (2015). The paper is inspired by
the work of Janson et al. (2015), which introduces a model useful for study-
ing the dynamics and the structure of the neuropil, the densely connected
neural tissue of the cortex.

We consider a random distance graph GN with vertex set VN defined on a
two dimensional discrete torus with probability of connection between any
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two vertex u, v given by

p(u, v) = min

{
c
WuWv

Nd(u, v)
, 1

}
,

where Wv, v ∈ VN i.i.d copies of a r.v. W .

We study the size of the largest connected component. This can possibly
help to understand the propagation of impulses through the network. In
the study of neuronal network the parameters which influence the con-
nectivity of the system change in time due to synaptic plasticity. Hence
it is important to know the scaling of the largest connected component in
order to control parameters responsible for the global connectivity.

We use the theory of inhomogeneous random graph (IRG) by Bollobás
et al. (2007) to investigate the phase transition of GN . Random distance
graphs are not often studied by using IRG theory since they are mostly
out of the rank-1 case. From the IRG theory we can derive the critical
parameter for the formation of the giant component and also compute the
size of the giant component in the supercritical case.

The subcritical phase presented in Theorem 1 is perhaps the first such
result for non rank-1 case. To prove Theorem 1 we use the methods of the
breadth-first search (see, e.g., Van der Hofstad (2017)) taking in to account
the geometry of the graph in the exploration of connected components.

Although the random distance graph GN is intrinsically different from
the classic random graph model G(n, p) proposed by Erdős and Rényi
(1960), in Theorem 1 and Theorem 2 we prove that the asymptotic of
the giant component of GN is the same as in G(n, p) where p is a certain
function of c. This means that in the subcritical phase we have many
relatively small connected components with a size of order logN2, while
in the supercritical case with a high probability there is a unique giant
component which includes a certain fraction of all nodes.

We do not prove, but we make a conjecture that even in the critical case
GN behaves similar similar to G(n, p).
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5.3 Paper III

We introduce a model which mimics the formation of synaptic-dendritic
connections between neurons. The model shows how the probability of
connections depends on the distance between the nodes.

The goal of our study is to describe the graph properties of a network
(as e.g., probability of connections, and degree distribution) composed of
randomly grown 2D neurites, which are represented by the soma together
with a random tree of potential connections. Our model is a simplified
version of the one proposed by Van Ooyen et al. (2014). Van Ooyen et al.
(2014) models the branching of axonal tree and dendritic tree in time
taking into account empirical parameters.

We assume that the nodes v ∈ V which represent the locations of neur-
ons are distributed according to a Poisson process with intensity µ on a
square Λ = [0, D] × [0, D]. At time t = 0 the network is formed by only
disconnected neurons, while as t > 0 an initial segment grow out of every v
with a randomly chosen direction and constant speed. The initial segment
splits in two independent branches at a random time τ exponentially dis-
tributed with parameter 1/λ. The branches are independent and start to
grow a segment with the same manner as the initial branch. This creates
for any node v ∈ V a randomly growing branching tree Tv(t), with spatial
distribution defined by the random parameters µ, λ and t.

In Section 2.2 we define the formation of edges in the network. We derive
the probabilities of these edges. These probabilities provide a complete
description of the network. We find that the dependence on the distance
is not monotone. Hence our model provides some theoretical explanation
for the empirical results of R. Perin (2011).

In Section 3.1 we investigate the degree distribution, in particular we show
that the degree is Poisson distributed with a parameter depending on the
length Lv(t) of a tree Tv(t). We compute the moment generating function
of Lv(t) (see Proposition 3.1). This result allows us to approximate the
tail of degree and show that it is approximately exponential.

In Section 3.2 we study the probability of connection between two neurons
depending on time and distance. We prove that this probability satisfies
certain integral equation. In Section 3.3 we study the marginal case of
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this equation assuming λ = 0 (without branching). We obtain as well
simulated results on the spatial density of the axonal arborization.

The paper is concluded with a discussion on the relevant applications.

5.4 Paper IV

We describe the network properties of the model introduced in Paper III.
Our main goal is to describe the network properties as e.g., in and out de-
gree, frequency of connections, average shortest path and clustering coef-
ficient.

There are just few examples of randomly grown networks which are well
understood analytically by now. Those networks are randomly grown clas-
sic graphs, graphs with preferential attachment and their modifications.
Those models do not consider the space metric characteristics.

Experimental data (R. Perin (2011)) show the importance of the structure
of connectivity and activation processes in the brain. In the last decades
there has been active development of theory of random distance graphs (see
Deijfen et al. (2013) and Penrose (1993)). Observe that the assumption
of monotonicity and symmetry of connections is often considered to be
a main characteristics. In this paper we argue that those assumptions
should not be considered as invariant properties of the network. Indeed
many experimental results (as e.g., Herzog et al. (2007) and Voges et al.
(2010)) describe how the displacement of axonal fields can optimize the
connectivity presents in the network.

We show how the geometrical properties of our model influence the prob-
ability of connections on space and on time. The results we provide are
both analytical and computational. We use as a null hypothesis that the
measurements are made on the classic random graph G(n,m) model.

In Section 3.1 we study both the in-degree and the out-degree of a node.
For the marginal case λ = 0, i.e., without branching. The maximum
of those degrees exhibit the highest discrepancy between our model and
the corresponding G(n,m) model. When λ > 0 the branches growing
from every nodes can expand until they cover the entire space. There are
some particular time intervals where the properties of the network change
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significantly.

In Section 3.2 we study the frequency of connection in order to prove how
the connectivity changes in time and distance. We show that with respect
to the increasing value of λ and time, the connectivity increase almost
linearly before to reach a constant value. Moreover there is a particular
distance where the connectivity reaches a maximum before to decay. In
section 3.3 and 3.4 we show how the network has small-world character-
istics. The presence of small average shortest path and high clustering
coefficient, typical of small-warld networks, it is present in many neuronal
networks as well (see e.g., Stepanyants and Chklovskii (2005) and Watts
and Strogatz (1998)).

6 Conclusions and future development

In the last decade many measurements have become available for the study
of topological and dynamical properties of complex networks. Advance
studies have been made towards the understanding of brain disorders from
a network prospective (see e.g., Dyhrfjeld-Johnsen et al. (2007)). Those
are just some of the many reason why we believe that graph theory is
an important framework for neuronal modelling (see Bullmore and Sporns
(2009)).

It is well recognized that the key challenge for neuromodelling is to develop
graph models with adequate representations of biological reality, as e.g.,
unambiguously assigning edge weights to the connections or interactions
between the nodes (Fornit (2015)).

The aim of this study is to improve the architecture of neuronal network
models, based on realistic connectivity patterns adapted from neuroana-
tomical observations. Therefore, we consider networks with both local
connections and long-range edges. Our study was inspired by the exper-
imental results on growing neural network analysed by R. Perin (2011),
by the computational results of two-dimensional network presented by
Van Ooyen et al. (2014) and by also the theoretical model presented by
Janson et al. (2015). Here we describe formation of random connections in
the network and derive their probabilities. The models predict when there
is a formations of local and global connections and formation of a giant
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component.

In this thesis we considered 2-dimensional network. Observe that is a
known fact that axonal trees form essentially 2-dimensional structures
Rolls (2016). Our analysis is amenable for the 3-dimensional case as well
and is leave it as a open problem. Let us also mention here that a re-
lated 3-dimensional model of cylinder percolation was studied in Tykesson
(2012).

Another direction for improvement modelling is to take into account both
axon and denritic arborazation. Our approach should be useful to describe
the axon-denritic connections as well, however the analogue of equation (4)
in Paper IV will be more involved.

Finally we remark that the major challenge remain to check the impact of
the macrostructures of connections that we derived here for the neurocom-
putations. Observe that despite the enormous amount of literature on use
of random graphs there are practically no result showing advantage of ran-
dom graph theory from neurocomputations. Some remarks on functioning
of Hopfield neuronal network and bootstrap percolation can be found in
Turova (2012).
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Abstract

We introduce a model for an inhomogeneous random graph, where the probability of
edges also depends on the distance between vertices. We investigate the degree distri-
bution. We find for which parameters of the model the degree of a vertex converges in
distribution as the size of a graph goes to infinity and we find the limiting distribution in
some special cases.

1 Introduction

In the last sixty years random graphs have been an important tole to model and analyze many
problems arising from real world networks [3], [4], [5]. In particular neural networks have been
studied in terms of graph structures and functions in order to better understand the complicated
mechanisms which are happening in the brain [10], [15]. In general a network is defined by a set
of objects which are connected to each others in some fashion. In neural networks those objects
represent neurons while the connections between them are synaptic and dendrite arborzations.
The models based on random graphs theory, [13], [2], [1] focus the attention on the importance
of the structural evolution of the system. The connectivity properties depend mostly on the
distance between nodes. In [2], [1] it is shown how specific distances make behave the resulting
network differently. In [11] we can see one example on how the growth of neural networks are
simulated by computational tools (see for example NETMORPH or CX3D). Those programs
study the characteristics of the connectivity of the network as a growing process based on a set
of parameters simulated by experimental results.

The model described in this paper can be viewed as the basic case in one-dimension of
the model developed in [17]. In [17] and [16], the phase transition on the giant component is
studied. Here we analyze features as degree distribution and formation of clusters.

In particular, in our model if the nodes are at a distance smaller than a certain threshold r,
then there is an edge with probability one, as in classic random geometric graph (RGG) ( see
[12], [6]), while if the distance is greater, the probability of connection is scaled by the distance
itself.

In this paper we study initially the main characteristic of the clustering properties between
the nodes considering only short connection smaller or equal than r as in [6]. We derive some
results on the distribution of clusters. Then we incorporate long connections as well, and we
use the clusters as macrovertices of the graph, to investigate the degree distribution.
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2 The model

For any α ≥ 0 and c(T ) ≥ 0 we define GT (c(T ), α) to be a random distance graph on a
set of vertices in R as it follows. For any T > 0, let X(T ) denote the Poisson point process
with intensity λ, i.e. X(T ) has Po(λT ) distribution. Let Tk, for k ≥ 1, be the time of k-th
occurrence and τk := Tk−Tk−1 be the interval between two occurrence, with T1 = τ1. Then the
distribution of the intervals τk follows an Exp( 1

λ
) distribution, and Tk has a Γ(k, 1

λ
) distribution.

We say that at each Tk ∈ R we have a vertex, denoted by vk, and we consider a random
graph on this (random) set of vertices {v1, . . . , vX(T )} . We assume that edges between different
pairs of vertices vi, vj are independent and are given with probability

pvivj :=

{
1 if |vi − vj| ≤ r

c(T )/|vi − vj|α if |vi − vj| > r,
(1)

where r > 0, α ≥ 0, and c(T ) ≥ 0 are the parameters of the model.

3 Related models

When we consider only the short connections happening with probability one between nodes at
distance smaller then r, our graph is an example of RGG. In general the properties of RGG’s
have applications in fields like cluster analysis and wireless networks. We recall here some of
the known properties when n nodes are uniformly distributed in unit circle as in [8]. It has
been studied for which r(n) the graph will be connected. In particular in [9] it is proved that

for r(n) =
√

logn+c(n)
n

the graph will be connected with probability that goes to one if and only

if c(n) goes to infinity as n goes to infinity.
Similar models on the same set of vertices as in our model, i.e. generated by a Poisson point

process with intensity λ, on [0, T ], have been studied in [6]. Two nodes are connected with
probability one if and only if the distance between them is smaller or equal than r. The paper
is mainly focused on the critical transmission radii for which the connectivity between nodes
in the first cluster is preserved. We can use the results of [6] to choose the minimum value of
the product λr in order to have the highest percolation trough the graph. In [6] the sional case
is studied as well.

In [10] and in [1] a model of random distance graph on two-dimensional discrete torus
T2 = (Z/NZ)2 for N ∈ N, N > 1 with vertex set VN = {1, . . . , N}2 has been studied. In [10]
the probability of connections between any two nodes u, v is given as it follows

pu,v = c
1

Nd(u, v)α
, (2)

where d(u, v) is the graph distance.
The model has been studied for α = 1, and dimension greater than one. In [10] the degree

distribution and diameter have been studied. Moreover it has been defined an activation process
where each vertex has two possible initial types, excitatory or inhibitory, and two possible states,
active or inactive. While the types remain unchanged during the process, the states change
according to some specific roles. A phase transition is proved considering the activation process
of single type (excitatory) nodes. In [1] the probability of connection between two nodes u and
v is given by

pu,v = c
WuWv

Nd(u, v)
, (3)

2
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where Wu and Wv are weights associated with the nodes, N2 = |V | and d(u, v) is the graph
distance.

Our model can be included in the one-dimensional case of [1] as it follows. Let v1 be the first
vertex of a collection of all vertices {v1, . . . , vj} such that |vk+1 − vk| ≤ r for all 1 ≤ k ≤ j − 1
and vj+1 − vj > r. Then we define the first cluster to be the collection of vertices {v1, . . . , vj},
and we say that the cluster has cardinality j. Consequently we define the other clusters in
analogous way (see Figure 1 and Figure 2). We place the clusters on the one-dimensional
discrete torus (Figure 4 (b)), where the weights of the nodes are given by the cardinalities of
the macrovertices Xi, and the distance between any two macrovertices i and j is taken to be the
minimum distance d(i, j) with d(i, j) > r such that d(i, j) = dT (|j − i|) where dT (i) is defined
as

dT (i) =

{
i if i ≤ T/2

T − i if i > T/2
(4)

Then the probability of connection between i and j is given by

pi,j = c(T )
XiXj

d(i, j)α

From [1] we can investigate results on the largest connected component. Indeed from Theo-
rem 1 of [1] for given Xi ≡ Xj ≡ 1 we can choose c(T ) such that the degree is of order constant,
(see in section 4.3 details on the scaling of c(T )). Then we have to study for which α and
c(T ) is it possible to apply the exploration process in order to have an analogous result of the
two-dimensional case, where the asymptotic for the size of the largest connected component, in
the subcrtical and supercritical case, is the same as in the classic Erdős-Rényi random graph.

4 Results

In this section we present the main results of the paper considering first just short connections
and then taking into consideration the longest connections as well between clusters of nodes.

4.1 Random distance graphs on the vertices in R.
Given (0, T ] ⊆ R, the vertices are generated by a Poisson process X(T ) with intensity λ. Recall
that the set of vertices, or occurrences, is VT := {v1, . . . , vX(T )}. We want to analyze the sub-

graph G̃T (N(T ), α) of GT (c(T ), α), where we consider only short edges between every pair of
vertices vi and vj which are connected if |vi − vj| < r. We say that k consecutive vertices form
a connected interval if vi and vi+1 are connected for all i ∈ {0, . . . , k − 1} and we denote it
as vi ∼ vi+1. Then we define Xi = Xi(T ) to be the number of vertices in the i-th connected
interval (or i-th cluster). Let N(T ) be the number of clusters.

We observe that the size (i.e. the number of vertices) of the first cluster, under the assump-

tion that we have always at least one vertex, is X1
d
= X̃1|X̃1 ≥ 1 where X̃1 = X̃1(T ) has the

following distribution

P(X̃1 = 0) = P{X(T ) = 0} = e−λT ,

P(X̃1 = 1) = P{(X(T ) = 1) ∪ (X(T ) > 1, T2 − T1 > r)},

P(X̃1 = k) = P{(X(T ) = k), Tk+1 − Tk ≤ r, . . . , T2 − T1 ≤ r)

∪ (X(T ) > k, Tk+1 − Tk > r, Tk+1 − Tk ≤ r, . . . , T2 − T1 ≤ r)}.

3
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for k > 1 an integer number.

Proposition 1. As T → ∞, the probability that X̃1(T ) is equal to k, for all k ≥ 1 is the
following

lim
T→∞

P(X̃1(T ) = k) = (1− e−λr)k(e−λr).

This implied that the distribution of X1 is equal to the distribution of a r.v. Z such that
pZ(k) = pX1(k + 1) for all k ≥ 0, where Z ∼ Geo(e−λr).

(Proof in Section 5).

We study now the probability that the i−th cluster Xi has cardinality ki given that Xj has
cardinality kj, with kj ≥ 1, for all j = 1, . . . , i− 1.

Proposition 2. For all fixed ki ≥ 1, and for fixed i ≥ 1, the distribution of (X1, . . . Xi)
converges as T →∞ to a distribution of a vector with i.i.d. entries, whose distribution is given
by Proposition 1.

(Proof in section 5).
Let ti be the length of the i-th cluster. In particular we have

t1 := {Tk − T1
∣∣K = min{i : Ti+1 − Ti > r}}.

Than, as a simple corollary of Proposition 2, we get the following.

Proposition 3. Let K = min{i : Ti+1 − Ti > r}, we have that, as T →∞, t1(T ) converges in
distribution to

t1 =
K−1∑

j=1

Yj

where Y1, . . . , YK−1 are conditionally i.i.d. and s.t. Yj
d
= τ
∣∣(τ ≤ r), with τ ∼ Exp(λ).

We consider the distribution of N(T ) as T → ∞. The number of clusters can be defined
also as

N(T ) = #{j : Tj − Tj−1 > r, Tj < T}.
Let us define J1 := t1 + R1, as in Figure 1, which corresponds to the length of a cluster and a
length of a gap between the cluster and the consecutive one.

Figure 1: Random graph with two clusters of length t1,t2 with X1,X2 nodes, and with a gap
R1. The r.v. J1 is equal to the sum of t1 and R1.

Knowing the length of the interval T we can expect that the number of clusters is T/E(J1),
i.e., if we consider an interval of given length T , and we know the length of J1, the number
of components of length J1 that we can have in total it is given by T divided by that length.
Indeed the following result holds.

4
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Theorem 1. We have the following convergence in L1 and a.s.

N(T )

T
−→ 1

E(J1)
, as T →∞.

(Proof in Section 5).

4.2 Inhomogeneous random distance graph.

Given a vector of clusters X = (X1, . . . , XN(T )) we define a new graph Ĝ(X, c) as it follows.

Let V̂T = {1, . . . , N(T )} be the set of vertices. We say that each vertex i has type Xi. This

means that i corresponds to the i-th cluster with Xi occurrences. We call any vertex of Ĝ(X, c)
a macro vertex.

We say that two macrovertices i and j are connected if there is at least one long-range edge
between two vertices belonging to these two macrovertices. Then the probability that the i-th
macrovertex is connected with the j-th macrovertex, abbreviated as i ∼ j, is given by

P(i ∼ j) = P{∃ at least one edge between i and j}

= 1−
∏

x,y

(
1− c(T )

|x− y|α
)
,

(5)

where the product runs over all pairs of vertices (x, y) with x belonging to the i-th cluster and
y belonging to the j-th cluster.

Let us consider two consecutive macrovertices i and i+1. We can approximate the distance
from any vertex of this two clusters considering the distance between the Xi-th occurrence
of the i-th macrovertex and the first occurrence of the (i + 1)-th macrovertex. We denote
this distance with the random variable Ri, where Ri ∼ τ |τ > r (Figure 2) and we define the
probability to have a long edge connection by pi,i+1 as

pi,i+1 := P(i ∼ i+ 1
∣∣Xi, Xi+1, Ri) ≈ 1−

(
1− c(T )

Rα
i

)XiXi+1

. (6)

Figure 2: Connection with probability p = pi,i+1 of two consecutive clusters i and i + 1, with
distance Ri grater than r.

Let us define the distance between two not necessary consecutive macrovertices Xi and Xj

(Figure 3) as

Rij :=

j−1∑

k=i

Rk +

j−1∑

k=i+1

tk. (7)
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Then we also define the connection probability of two macrovertices as follows

pi,j := P(i ∼ j
∣∣Xi, Xj, Rij) = 1−

(
1− c(T )

Rα
i,j

)XiXj
. (8)

Note that (6) and (8) are an approximation of (1).

Figure 3: Connection with probability p = pi,i+1 of cluster i with the consecutive cluster i + 1
and connection with probability p̂ = pi,i+2 with cluster i+ 2. The distance between i and i+ 2
is given by the sum of r.v.’s. Ri + ti+1 +Ri+1.

The probability that i is connected with j is

p̂ = P{i ∼ j} = E(Ii∼j)

= E(E(Ii∼j
∣∣Xi, Xj, Ri,j))

= E(P(i ∼ j
∣∣Xi, Xj, Ri,j))

= 1− E
(

1− c(T )

Rα
i,j

)XiXj
.

(9)

Let us set XiXj := Z, q := 1− e−λr and p := e−λr.

Proposition 4. If c(T )→ 0 as T →∞ then

E
{

(1− c(T )

Rα
ij

)Z
∣∣Z
}

= 1− c(T )Z E(R−αij ) +O

(
c(T )2Z2 E

(
1

Rα2
ij

))

= 1− c(T )Z E
(

1

Rα
ij

)
+O(c2(T )).

(10)

(Proof in Section 5).

Corollary 1. The expected probability to have a connection between two macrovertices has the
following bounds

c(T )2λ2

(j − i− 1)αe−λr(α−1)
≤ P(i ∼ j) ≤ c(T )

(j − i− 1)αrαe−2λr
. (11)

(Proof in Section 5).
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4.3 Degree distribution for the model on Z
We compute for which values of c(T ) and α, fixing N(T ) = n, the degree distribution follow a
Poisson distribution as T →∞.

We can associate each macrovertex with the vertices {1, . . . , N(T ) = n} in Z, i.e., each node
i has a type Xi, for all i ∈ {1, . . . n}, then the probability to have a connection between two

macrovertices i and j is set to be p̃ = c(n)
|j−i|α . It is clear that the model has the same properties

as the one above due the bounds (11).

Figure 4: Macrovertices on Z (a) and macrovertices on a circle (b), where the probability of
connection is p̃.

We remind that the model with c = 0 correspond to the percolation model on Z. Let
PDn(i)(k) = P{Dn(i) = k}, where Dn(i) is the degree of vertex i, we have that

Dn(i) =
n∑

i 6=j
j

ξji,

where ξji ∼ Be(p̃ij), moreover ξji for different i, j ∈ {1, . . . , N(T ) = n} are independent r.v.’s.
First, we compute the expectation of the degree distribution:

E(Dn(i)) =
n∑

i 6=j
j

E(ξji) =
n∑

i 6=j
j

p̃ij

=
n∑

i 6=j
j

c(n)

|i− j|α ,
(12)

where the main term of the series is such that




c(n)Θ(n1−α), if α < 1

(n− 1)c(n), if α = 0

c(n)Θ(lnn), if α = 1

(13)

and function Θ(h(n)) has the same order in n as the function h(n). For α ≥ 2 the expected
degree is given by c(n)H(n, α) where H(n, α) is the generalized harmonic number, hence as n
goes to infinity H(n, α) converge to a Reiman zeta function ζ(α) which has constant values for
particular values of α.

7
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We also compute the probability generating function of Dn(i) given by

gDn(i)(t) = E(tDn(i)) =
n−1∏

j=1

(1− pij + pije
t) =

n−1∏

j=1

(1 + (et − 1)pij)

= e
∑n−1
j=1 ln(1+pij(e

t−1)).

(14)

We can use Taylor’s expansions for the logarithm if 0 ≤ α < 1 and c(n) = 1
n1−α . If α = 1 and

c(n) = 1
ln(n)

then
∑n−1

j=1 pij → c, for some c > 0 and
∑n−1

j=1 p
2
ij → 0. Under these conditions we

have that

gDn(i)(t) = e
∑n−1
j=1 pij(e

t−1)+O(p2ij) (15)

and then
gDn(i)(t)

as n→∞
→ e(e

t−1)c, (16)

which is a Poisson probability generating function with intensity c.
The results of the degree distribution on the macrovertices on Z allows us to conjecture

that the degree distribution of each macrovertx i follows a Poisson distribution with a random
parameter, namely

Po



N(T )∑

j=1

XiXj
1

Rα
ij


 .

Indeed given X1, . . . , XN we can write the degree as a sum of Bernoulli random variables
as follows

D(i)
∣∣X1, . . . , XN(T ) =

N(T )∑

j=1

Be(pi,j
∣∣X1, . . . , XN),

where the probability of connection is the following

pi,j = XiXj
1

Rα
ij

.

From [4] we know that the degree for fixed N number of types will follow the theorem on
the degree sequence of IRG, for the finite- type case, where it converges to a compound Poisson
distribution where the expectation is given by

E(Di) = E
(
E(D(i)

∣∣X1, . . . , XN(T ))
)

= E



N(T )∑

j=1

P (i ∼ j)
∣∣X1, . . . , XN


 .

The degree distribution of this model has been also investigated in [7] for special cases of the
distribution of the weights Xi and for c(T ) positive constant. In [7] when the degree distribution
of the weights is regularly varying with exponent 1− τ , i.e., P(Xi > x) = x− (τ −1)L(x) where
the function x → L(x) is slowly varying at infinity, the degree distribution of the graph is as

well regularly varying with exponent γ = −α(τ−1)
d

, where d is the dimension of the space. In
[7] can be seen results on the degree and on the existence of the giant component given the
relations between the parameters of γ.
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5 Proofs

5.1 Proof of Preposition 1.

The probability that in the first connected component there are k occurrence is

P(X̃1 = k) = P{(X(T ) = k, Tk − Tk−1 ≤ r, . . . , T2 − T1 ≤ r)

∪ (X(T ) > k, Tk+1 − Tk > r, Tk − Tk−1 ≤ r , . . . , T2 − T1 ≤ r)},
= P{(X(T ) = k ∩ τk ≤ r ∩ · · · ∩ τ1 ≤ r)}

+ P{X(T ) > k ∩ τk+1 > r, τk ≤ r ∩ · · · ∩ τ1 ≤ r}

(17)

then we can write the first therm of (17) as it follows

P(X(T ) = k, Tk − Tk−1 ≤ r ∩ · · · ∩ T2 − T1 ≤ r)

= P{Tk ≤ T, Tk+1 > T, Tk − Tk−1 ≤ r ∩ · · · ∩ T1 ≤ r}
= P{Tk ≤ T, Tk − Tk−1 ≤ r ∩ · · · ∩ T1 ≤ r}
− P{Tk ≤ T, Tk+1 ≤ T, Tk − Tk−1 ≤ r ∩ · · · ∩ T1 ≤ r}

= P{(
k∑

i=1

τi < T ) ∩
k⋂

i=1

(τi < r)} − P{(
k+1∑

i=1

τi < T ) ∩
k⋂

i=1

(τi < r)}.

(18)

As T → ∞, we obtain using continuity of the probability from below we have the following
limit

lim
T→+∞

P{(
k∑

i=1

τi < T ) ∩
k⋂

i=1

(τi < r)} = P{
k⋂

i=1

(τi < r)}. (19)

Hence as T →∞, we have that P(X(T ) = k, τk ≤ r ∩ · · · ∩ τ1 ≤ r)→ 0 for any fixed k ≥ 1.
The second therm of (17) can be written as

P(X(T ) > k, τk+1 > r, τk ≤ r, . . . , τ1 ≤ r)

= P(Tk ≤ T, τk+1 > r, τ1 ≤ r, . . . , τk ≤ r)

= P(Tk ≤ T, τ1 ≤ r, . . . , τk ≤ r)

− P(Tk ≤ T, τk+1 ≤ r, τ1 ≤ r, . . . , τk ≤ r)

= P{(
k∑

i=1

τi ≤ T ) ∩
k⋂

i=1

(τi < r)} − P{(
k+1∑

i=1

τi > T ) ∩
k+1⋂

i=1

(τi < r)}.

(20)

Then as T →∞ we have by (19) that the probability (17) converges as it follows,

P(X̃1 = k)→ (1− e−λr)k(e−λr), ∀k ≥ 1.

For k ≥ 1, the probability distribution of X1 is such that

P(X1 = k) = P(X̃1 = k|X̃1 ≥ 1)

=
P(X̃1 = k)

P(X̃1 ≥ 1)
,

(21)

hence, as T →∞, we have that P(X̃1 ≥ 1)→ 1 and (21) converges as follows

P(X1 = k)→ (1− e−λr)k(e−λr), ∀k ≥ 1.

Given a r.v. Z such that Z ∼ Geo(e−λr) for all k ≥ 0, it follows that pX1(k + 1) = pZ(k).
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5.2 Proof of Preposition 2.

We prove that the distribution of Xi converges to a geometric distribution as T →∞. We start
considering the second cluster X2. In order to have a second cluster with cardinality at least
one, it has to exist the cluster X1 with cardinality k1 ≥ 1, and there has to be a distance greater
than r between the last occurrence of X1 and the first of X2 (Figure 5). For any k1, k2 ≥ 1,
with k1, k2 ∈ N+, the probability of having the first two clusters of cardinalities k1 and k2 can
be written as follows

P(X̃2 = k2, X1 = k1) = P(X(T ) = k1 + k2, Tk1+1 − Tk1 > r,Ak1 , Ak2)

∪ (X(T ) > k1 + k2, Tk1+1 − Tk1 > r, Tk1+2+k2 − Tk1+1+k2 > r,Ak1 , Ak2) ,

where for any kj ≥ 1, Ak1 = ∩k1−1i=1 {τi+1 − τi < r} and Ak2 = ∩k1+k2−1i=k1+1 {τi+1 − τi < r}.

Figure 5: Representation of the clusters X1 and X2 with respective cardinalities k1 and k2. The
distances Tk1+1 − Tk1 and Tk1+2+k2 − Tk1+1+k2 have to be grater than r.

We can prove with analogous computations as in Proposition 1 that for any k1, k2 ≥ 1, with
k1, k2 ∈ N+, the probability of having the clusters X1 and X2 with cardinality respectively k1
and k2 is given by the following

P(X̃2 = k2, X1 = k1)

= P(X(T ) = k1 + k2, Tk1+1 − Tk1 > r,Ak1 , Ak2)

+ P(X(T ) > k1 + k2, Tk1+1 − Tk1 > r, Tk1+k2+2 − Tk1+k2+1 > r,Ak1 , Ak2).

(22)

Set K = k1 + k2, we can write the first term on the right of equation (22) as it follows

P(X(T ) = K,Tk1+1 − Tk1 > r,Ak1 , Ak2)

= P(TK ≤ T, TK+1 > T, Tk1+1 − Tk1 > r,Ak1 , Ak2)

= P(TK ≤ T, TK+1 − Tk1 > r,Ak1 , Ak2)

− P(Tk1 ≤ T, Tk1+1 ≤ T, Tk1+1 − Tk1 > r,Ak1 , Ak2)

= P(TK ≤ T,Ak1 , Ak2)− P(Tk1 ≤ T, Tk1+1 − Tk1 ≤ r, Ak1 , Ak2)

− P(TK ≤ T, TK+1 ≤ T,Ak1 , Ak2)

+ P(TK ≤ T, TK+1 ≤ T,Ak1 , Ak2 , Tk1+1 − Tk1 ≤ r)

(23)
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As T →∞, by continuity of the probability from below we have that

lim
T→+∞

P(TK ≤ T,Ak1 , Ak2)

= lim
T→+∞

P{(
K∑

i=1

τi < T ) ∩
K⋂

i=1

(τi < r)}

= P{
K⋂

i=1

(τi < r)}

= (1− e−λr)K .

(24)

Hence as T →∞, we have that (23) goes to zero. The second term on the right of (22) can
be written as it follows,

P(X(T ) > k1 + k2, Tk1+1 − Tk1 > r, Tk1+k2+2 − Tk1+k2+1 > r,Ak1 , Ak2)

= P(TK ≤ T, TK+2 > r, Tk1+1 − Tk1 > r,Ak1 , Ak2)

= P(TK ≤ T, Tk1+1 − Tk1 > r,Ak1 , Ak2)

− P(TK ≤ T, TK+2 − TK+1 ≤ r, Tk1+1 − Tk1 > r,Ak1 , Ak2)

= P(TK ≤ T,Ak1 , Ak2)− P(TK ≤ T, Tk1+1 − Tk1 ≤ r, Ak1 , Ak2)

− P(TK ≤ T, TK+2 − TK+1 ≤ r, Ak1 , Ak2)

+ P(TK ≤ T, TK+2 − TK+1 ≤ r, Tk1+1 − Tk1 ≤ r, Ak1 , Ak2).

(25)

From the observation in (24), as T → ∞, we can study the limit of each terms of (25) as it
follows,

lim
T→+∞

P(TK ≤ T,Ak1 , Ak2)

= lim
T→+∞

P{(
K∑

i=1

τi < T ) ∩
K⋂

i=1

(τi < r)}

= P{
K⋂

i=1

(τi < r)}

= (1− e−λr)K ,

(26)

lim
T→+∞

P(TK ≤ T, Tk1+1 − Tk1 ≤ r, Ak1 , Ak2)

= lim
T→+∞

P{(
K∑

i=1

τi < T ) ∩
K+1⋂

i=1

(τi < r)}

= P{
K+1⋂

i=1

(τi < r)}

= (1− e−λr)K+1,

(27)
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lim
T→+∞

P(TK ≤ T, TK+2 − TK+1 ≤ r, Ak1 , Ak2)

= lim
T→+∞

P{(
K∑

i=1

τi < T ) ∩
K+1⋂

i=1

(τi < r)}

= P{
K+1⋂

i=1

(τi < r)}

= (1− e−λr)K+1,

(28)

lim
T→+∞

P(TK ≤ T, TK+2 − TK+1 ≤ r, Tk1+1 − Tk1 ≤ r, Ak1 , Ak2).

= lim
T→+∞

P{(
K∑

i=1

τi < T ) ∩
K+1⋂

i=1

(τi < r)}

= P{
K+2⋂

i=1

(τi < r)}

= (1− e−λr)K+2.

(29)

As T →∞, the equation (25) converges to (1− e−λr)k1+k2(e−λr)2. Hence, we have that for
any k1, k2 ≥ 1,

P(X̃2 = k2|X1 = k1)

=
P(X̃2 = k2, X1 = k1)

P(X1 = k1)
,

as T → ∞, the probability of having the cluster X2 of size k2 ≥ 1 given that we have a
cluster X1 of size k1 ≥ 1 it converges as it follows,

P(X̃2 = k2|X1 = k1)→
(1− e−λr)k1+k2(e−λr)2

(1− e−λr)k1(e−λr) = (1− e−λr)k2(e−λr) as T →∞.

By induction on j can be proved that the probability of having the j-th cluster of size kj,
given the existence of X1, . . . , Xj−1 clusters of cardinalities k1, . . . , kj−1, for all k1, . . . , kj ≥ 1,
as T →∞, it converges to a geometric distribution with expected value e−λr, i.e.,

P(X̃j = kj, X1 = k1, . . . , Xj−1 = kj−1)

P(X1 = k1, . . . , Xj−1 = kj−1)

=
P(X(T ) =

∑j
l=1 kl, Tk1+1 − Tk1 > r, . . . , T∑j−1

l=1 kl
− T∑j

l=1 kl
> r,Ak1 , . . . , Akl)

P(X1 = k1, . . . , Xj−1 = kj−1)

+
P(X(T ) >

∑j
l=1 kl, Tk1+1 − Tk1 > r, . . . , T∑j−1

l=1 kl
− T∑j+1

l=1 kl
> r,Ak1 , . . . , Akl)

P(X1 = k1, . . . , Xj−1 = kj−1)
,

and as T →∞ it converges to

(1− eλr)
∑j
l=1 kl(e−λr)j

(1− eλr)
∑j−1
l=1 kl(e−λr)j−1

= (1− eλr)kj(e−λr).
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5.3 Proof of Theorem 1

We can write the distribution function and the density function of Yj as

FYj(x) = P(τ ≤ x|τ ≤ r) =
P(τ ≤ x, τ ≤ r)

P(τ ≤ r)
=





0 if 0 ≥ x,
1−e−λx
1−e−λr if x ≤ r,

1 if x > r,

fYj(x) =





0 if 0 ≥ x,
λe−λx
1−e−λr if 0 ≤ x ≤ r,

0 if x > r.

The distribution function and the density function of Rj are

FRj(x) = P(τ ≤ x|τ ≥ r) =

{
e−λr−e−λx

e−λr if x ≥ r,

0 if x < r,

and

fRj =

{
λe−λx
e−λr if x ≥ r,

0 if x < r.

Let us compute the expectation of t1; since:

E(t1
∣∣X1 = n) = E(

n−1∑

j=1

Yj)

= (n− 1)E(Yj) = (n− 1)

∫ r

0

xfYj(x) dx

= (n− 1)
λ

1− e−λr
∫ r

0

xe−λx dx = h(n),

(30)

then

E(t1) = E(E(t1
∣∣X1 = n) = E(h(X1)) =

(
1

e−λr
− 1

)
1

1− e−λr
1− e−λr(1 + rλ)

λ
. (31)

Moreover,

E(Rj

∣∣Rj > r) =

∫ ∞

r

x
λe−λx

e−λr
dx =

1 + rλ

λ

and

E(J1) = E(R1) + E(t1) =
eλr

λ
. (32)

We want to prove that, as T →∞,

E
∣∣∣∣
N(T )

T
− 1

E(J1)

∣∣∣∣→ 0.

We start by considering

N(T ) =

X(T )∑

i=1

Ii(τi > r)
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and recalling that, by the strong law of large numbers,

X(T )

T
→ λ a.s. as T →∞.

We observe that I = (I1, . . . , IX(T )) is a stationary random sequence with E(|I1|) < ∞, and I
is ergodic [14]. Here X(T ) → ∞ a.s. as T → ∞ and one can apply the Ergodic Theorem to
N(T )
X(T )

as X(T )→∞. This yields

X(T )

T

N(T )

X(T )
=
X(T )

T

1

X(T )

X(T )∑

i=1

Ii(τi > r)→ λE(Iτ>r) = λe−λr =
1

E(J1)
, (33)

a.s. as T →∞, and also

E



∣∣∣∣
X(T )

T

1

X(T )

X(T )∑

i=1

Ii(τi > r)− λE(Iτ>r)

∣∣∣∣


→ 0 as T →∞. (34)

5.4 Proof of Proposition 4

Given

N =
1

c(T )1/2+δ
> 0, ∀ 0 < δ <

1

2
,

we can write the expectation as follows

E
{(

1− c(T )

Rα
ij

)Z ∣∣Z
}

= E
(
I{Z<N}

(
1− c(T )

Rα
ij

)Z)
+ E

(
I{Z≥N}

(
1− c(T )

Rα
ij

)Z)
,

where Z and Rij are independent. We can use Taylor’s expansion for the function

(1− ε)Z = 1− Zε+O((Nε)2),

for all Z < N , therefore

E
{(

1− c(T )

Rα
ij

)Z ∣∣Z
}

= E
{(

1− I{Z>N}
)(

1− Z c(T )

Rα
ij

+O
(
(
c(T )

Rα
ij

Z)2
) ∣∣Z

}

+ E
{
I{Z≥N}(1−

c(T )

Rα
ij

)Z
∣∣Z
}
.

(35)

If T →∞ we have that c(T )→ 0; then, as N →∞,

E
{

(1− c(T )

Rα
ij

)Z
∣∣Z
}

= 1− c(T )Z E
1

Rα
ij

+O(Z2 E(
c(T )

Rα
ij

)2) +O(E I{Z≥N}).

Since N = 1
c(T )1/2+δ

, for T →∞, both O(E( c(T )
Rαij

Z)2) and O(E I{Z≥N}) converge to zero. By

the Chebyshev’s inequality, we have that

P(Z ≥ N) ≤ EZ2

N2
= c(T )c(T )2δ E(Z2) = O(c(T )) (36)

and then, by Holder’s inequality,

E(XiXj)
2 = E((Xi)

4)1/2 E((Xj)
4)1/2 <∞. (37)

Observe that

E
(
c(T )

Rα
ij

Z

)2

≤ 1

r2
(c(T )EZ)2 = O

(
c(T )2

)
. (38)
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5.5 Proof of corollary 1

From (7) we can write

Rij :=

j−1∑

k=i

Rk +

j−1∑

k=i+1

tk =

j−1∑

k=i+1

Jk +Ri,

and then

ERij =

j−1∑

k=i+1

E Jk + ERi = (j − i− 2)
eλr

λ
+

1 + λr

λ
. (39)

This, together with Jensen’s inequality applied to the function g(x) = x−α, for α ≥ 0, gives us
the following bound

E
(

1

Rα
ij

)
≥ 1

(ERij)α
=

(
λ

(j − i− 2)eλr + 1 + λr

)α
≥
(

λ

(j − i− 2)eλr + eλr

)α

and, observing that Rij ≥ (j − i)r, we have that

E
(

1

Rα
ij

)
≤ 1

((j − i− 1)r)α
.

6 Conclusions

We introduce a one-dimensional random graph model on [0, T ] ⊆ R where the nodes are
distributed according to a Poisson point process with intensity λ and the probability of having
an edge between any pair of nodes is defined by the distance between them.

We study initially the model considering just the probability to have an edge between nodes
that have distance less or equal than r as in [6] and in [12].

We first give a formula for the distribution of nodes in the connected components, or clusters,
for finite T (with T large enough). We prove that this distribution converges, as T goes to
infinity, and we obtain the limiting distribution. We give a formula for the length of each
cluster and we show that the number of clusters, as T goes to infinity, converge in L1 and a.s.,
obtaining also the limiting distribution.

In Section 4.2 we reintroduce the long distance edges between clusters, called macro-vertex,
making our model in the framework of an inhomogeneous structure. We investigate the expected
degree of macro-vertices, we give an approximation for this expectation and we specify also a
upper and a lower bound of this expectation.
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Abstract

In this paper we consider random distance graphs motivated by applications in
neurobiology. These models can be viewed as examples of inhomogeneous random
graphs, notably outside of the so-called rank-1 case. Treating these models in the context
of the general theory of inhomogeneous graphs helps us to derive the asymptotics for the
size of the largest connected component. In particular, we show that certain random
distance graphs behave exactly as the classical Erdős–Rényi model, not only in the
supercritical phase (as already known) but in the subcritical case as well.

Keywords: Inhomogeneous random graph; random distance graph; largest connected
component
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1. Introduction

Random distance graphs are often designed as models of real-world systems where some
of the properties of the connections between vertices are observed to be dependent on their
relative distance (for some early examples, see, e.g. [1], [3], and [15]). It is generally assumed
that the vertices of such models are in some metric space, most often Rd or Zd . The probability
of a connection between any two vertices in these graphs is a function of the distance between
them.

A great demand for this class of models is prompted in particular by developments in
neuroscience. It must be noted that physiological data on the brain structure of a living organism
is a highly costly exercise (see, e.g. the Blue Brain Project of [12]), hence, inevitably it has to
be complemented with theoretical studies. A number of models have been developed along this
line to make mathematical results accessible for applications and, in particular, random graphs
have become a common tool in the exploration of neuronal networks (see, e.g. [16] and [18]
and the references therein).

Recently, a model for the structure and dynamics of the neuropil has been proposed by
Janson et al. [10]. Inspired by this work, we consider here certain random distance graphs,
whose vertices lie on a two-dimensional discrete torus and the connection probabilities decay
both with the distance between the vertices and the total number of vertices in the graph (see
Section 2 for a precise definition). Our results deal with one of the primary questions, namely,
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the size of the largest connected component. This characteristic is very important for the study
of processes on the networks, as, e.g. the propagation of impulses. In complex dynamical
systems the parameters of connectivity change in time; for neuronal networks this is a known
property of the synaptic plasticity. Therefore, it is important to have a complete picture of
the scalings for the largest connected component on the entire parameter space, at least for
some basic test networks. Such a complete description should help to fit the parameters of the
connections in a neuronal model based only on qualitative information on the functioning of a
network.

As a mathematical object, random distance graphs form a particular subclass of the general
inhomogeneous random graph models [6]. The graphs treated in [6] have the following common
feature: edges are placed independently from each other and the probability of edges is, roughly
speaking, of order 1/n, where n is the size of the graph (i.e. the number of its vertices). Briefly,
each of the n vertices is assigned a type, i.e. a value in some separable metric space S. Given
a set of such values {x1, . . . , xn} any two vertices i and j are connected with probability

pn(i, j) = min

{
κ(xi, xj )

n
, 1

}
, (1)

where κ is a symmetric nonnegative measurable function.
Most investigations on random distance graphs have been carried out without much use

of [6] (not counting Example 4.6 of [6] itself, Bollobás et al. [7] is almost an exception). The
reason, perhaps, is that random distance graphs are outside of the so-called rank-1 case, and
thus they belong to a complicated subclass of the inhomogeneous models. The theory of [6]
gives us the critical parameters for the emergence of the giant component and even describes
the size of this component in the supercritical phase. However, the subcritical phase of non
rank-1 models was studied only for some particular subclasses (see [19]), which do not include
the present model. Furthermore, the critical phase has been studied so far only for the rank-1
cases (see [4], [5], and [20]).

The paper is organized as follows. In Section 2 we define our model and outline the
connections with some random graphs models previously studied. The main theorems are
stated in Section 3, whereas their proofs are collected in Section 4.

2. The model

Let N ∈ N, N > 1, and let VN = {1, . . . , N}2 denote the set of vertices in the two-
dimensional discrete torus T2

N = (Z/NZ)2. Define the graph distance d(u, v) between two
vertices u = (u1, u2) and v = (v1, v2) in VN as

d(u, v) = dN(|u1 − v1|) + dN(|u2 − v2|), (2)

where

dN(i) =
{

i, 0 ≤ i ≤ N/2,

N − i, N/2 < i < N,
for i ∈ {0, . . . , N − 1}.

Let W be a nonnegative random variable, and let Wv , v ∈ VN , be independent and identically
distributed (i.i.d.) copies of W . Given the values Wv, v ∈ VN , assume that between any two
vertices u, v ∈ VN an edge is present independently of others and with probability

p(u, v) = min

{
c

WuWv

Nd(u, v)
, 1

}
, (3)

where c > 0 is a parameter. We denote by GN,W the resulting random graph on VN .
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Note that, in the case of constant W ≡ 1, this graph is exactly the one introduced by Janson et
al. [10] and it also has common features with other random graph models considered previously
(see, e.g. [18]). Janson et al. [10] studied a bootstrap percolation process as a model of the
spread of activation in a neuronal tissue. They also derived the size of the diameter of the graph,
thus extending the corresponding results of [6] for graphs with unbounded number of types.

In the language of inhomogeneous graph theory, the model introduced by Janson et al. [10]
can be seen as a homogeneous case (that is, roughly speaking, when the degrees of the vertices
are asymptotically all the same; see Example 4.6 of [6]). Note, however, that the general
form (3) considered here (inspired by [8]) makes the model essentially inhomogeneous.

It is worth mentioning that the model (3) is also closely related to certain bond percolation
models (see [15] and, in particular, [1] and [14]). In such models, the graphs have a countable
set of vertices and, as in the model we investigate here, edges between them are present with a
distance-dependent probability. The main problem is whether, depending on the values of the
parameters, a particular vertex belongs to an infinite cluster with positive probability. It was
shown in [7] that this question for the spread-out percolation model [14] can be resolved using
the theory of inhomogeneous random graphs.

3. Results

It has been already shown in [6, Example 4.6] that in the supercritical case a homogeneous
distance graph has the same asymptotics for the size of largest connected component as in the
classical Erdős–Rényi model. We prove that this result holds for the subcritical case as well.

Theorem 1. Let GN denote a random graph on VN with probability of connections

p(u, v) = min

{
c

Nd(u, v)
, 1

}
, u, v ∈ VN,

and let C(GN) denote the size of the largest connected component in GN . Set

λ = c4 log 2.

Then the following hold.

(i) If λ < 1, we have
C(GN)

log(N2)

P−→ 1

λ − 1 − log λ
as N → ∞. (4)

(ii) If λ > 1 then
C(GN)

N2
P−→ β as N → ∞,

where β = β(λ) is the positive solution of β = 1 − eλβ .

As we noted above, only Theorem 1(ii) follows from the results of [6].

Remark 1. One may observe a certain redundancy here, as statements (i) and (ii) of Theorem 1
are particular cases of the following Theorems 3 and 2, respectively. However, stated separately,
Theorem 1 makes it clear that the largest connected component in GN behaves, asymptotically,
as the one in the Erdős–Rényi graph Gn,p, with n = N2 and p = λ/n.

Furthermore, it is plausible to conjecture (but we do not study this case here) that the analysis
of the critical phase in [20] can be extended to this model as well. This would yield that even
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Phase transition in random distance graphs on the torus 1281

in the critical case, that is, when λ = c4 log 2 = 1, the graph GN has the same asymptotics
for the largest component as Gn,p, with p = 1/n and n = N2, i.e. that the largest connected
component rescaled by n2/3 converges in distribution to a certain positive random variable.

The following theorems treat the general model (3).

Theorem 2. Assume that

EW 2 =
∫ ∞

0
x2μW(dx) < ∞.

Let C(GN,W ) denote the size of the largest connected component in GN,W , and denote again

λ = c4 log 2.

Then
C(GN,W )

N2
P−→

∫ ∞

0
β(x)μW(dx) =: β̂, (5)

where β(x) is the maximal solution to

f (x) = 1 − exp

(
xλ

∫ ∞

0
yf (y)μW(dy)

)
. (6)

Furthermore, β̂ > 0 if and only if
λEW 2 > 1. (7)

Note that the critical parameter λEW 2 in Theorem 2 is similar to the lower bound derived
in Theorem 4.1 of [8] (in fact, it has exactly the same meaning of a certain averaged degree of
a vertex as in [8]) to provide the necessary conditions for percolation.

Theorem 2 follows essentially from the general theory of [6], as we explain below. It tells
us that the limit when N → ∞ of the (scaled) largest component in GN,W coincides with the
corresponding limit for the rank-1 random graph on VN defined by the following probabilities
of connections between any u, v ∈ VN :

p1(u, v) = min

{
λ

WuWv

N2 , 1

}
. (8)

(Note, however, that for any finite N, models (3) and (8) are not equal in distribution.)
Here the largest connected component in the subcritical phase is sensitive to the tail of

the distribution of W . It is known that in models of the form in (8), the size of the largest
component varies between polynomial (see [9]) and logarithmic (see [17]) order depending on
the distribution of W . We shall consider here a particular case of the distribution of W to show
the similarities with Theorem 1.

Theorem 3. Assume that, for some positive ε, EeεW < ∞. If also λEW 2 < 1, there exists a
unique y > 1 which satisfies

y = 1

λM

E(WeλM(y−1)W )

E(W 2eλM(y−1)W )
,

where M = EW . Let C(GN,W ) be the size of the largest connected component in GN,W . Then
we have

C(GN,W )

log(N2)

P−→ 1

log γ
as N → ∞,

where

γ := 1

λE(W 2eλM(y−1)W )
> 1.
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Finally, we remark that our analysis based on the inhomogeneous random graph theory is
well applicable for models of type (3) even for different distance functions d as, e.g. euclidean
distance, as long as one can justify the relations similar to (9) and (27). Also, our approach can
be generalized to the similar models in higher dimensions.

4. Proofs

4.1. Random distance graph via inhomogeneous random graphs

Rescale the set VN as follows:

VN → ṼN =
{(

u1

N
,
u2

N

)
: (u1, u2) ∈ VN

}
.

Hence, ṼN is a set of N2 vertices in the continuous torus T2 := (R/Z)2. Let μL denote the
Lebesgue measure on T2, and let μW be the Borel measure on R+ induced by the random
variable W . Denote S := T2 × R+, and define the product measure μ = μL × μW on this
space. Then the triple V := (S, μ, {(v, Wv) : v ∈ ṼN }) satisfies the definition of a generalized
vertex space from [6], i.e. for any Borel set A ⊆ S, the following convergence holds:

|{v : (v, Wv) ∈ A}|
N2

P−→ μ(A).

Define now, for u 	= v, u, v ∈ T2, the kernel

κ1(u, v) := 1

ρ(u, v)
,

where, for any u = (u1, u2), v = (v1, v2) ∈ T2,

ρ(u, v) = ρ1(|u1 − v1|) + ρ1(|u2 − v2|)
with

ρ1(a) =
{

a, 0 ≤ a ≤ 1
2 ,

1 − a, 1
2 < a ≤ 1.

Furthermore, let κ2(x, y) := xy denote the standard product on R2+.
Finally, we define the kernel on S × S:

κ((u, x), (v, y)) := κ1(u, v)κ2(x, y), (u, x), (v, y) ∈ S,

and construct the random graph GV(N2, κ) (following the notation of [6]) on a given set ṼN

of N2 vertices in S, by placing an independent edge between any pair of vertices xi , xj ∈ ṼN

with probability (see (1))

p̃(xi , xj ) := min

{
c
κ(xi , xj )

N2 , 1

}
.

Proposition 1. The model GN is equivalent to the inhomogeneous random graph model
GV(N2, κ).

Proof. Given a set of types wv, v ∈ VN , let ṽ = v/N for any v ∈ VN . Then the probability
of connection (3) satisfies

p(u, v) = min

{
c

wuwv

Nd(u, v)
, 1

}
= min

{
c
κ1(̃u, ṽ)wuwv

N2 , 1

}
= p̃((̃v, wv), (̃u, wu)). (9)
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Hence, given a set of types wv, v ∈ VN , there is a connection between any two vertices
u, v ∈ VN of GN if and only if there is a connection between the corresponding vertices (̃u, wu)

and (̃v, wv) of the graph model GV(N2, κ). �
It is straightforward to check that the kernel κ is graphical (see Definition 2.7 of [6]), since

it is continuous, κ ∈ L1(S × S, μ × μ), and the number of edges in the graph e(GV(N2, κ))

satisfies the following convergence:

1

N2 Ee(GV(N2, κ)) → 1

2

∫
S

∫
S

κ(x, y) dx dy. (10)

4.2. Proof of Theorem 2

Proposition 1, together with (10), allows us to apply some of the results of [6] to our case.
In particular, we can approximate the size of the connected component by the total progeny of a
multitype Galton–Watson branching process B(x), with type-space S, where the single ancestor
has type x, and the number of offspring of type y of each individual of type x ∈ S has Poisson
distribution with intensity κ(x, y)μ(dy). Denote here βκ(x) and X(x), correspondingly, the
survival probability and the size of the total progeny of this branching process with the ancestor
of type x.

Following [6], let us define the integral operator Tκ :

(Tκf )(x) :=
∫

S
κ(x, y)f (y) dμ(y)

for all measurable functions f (when the integral is defined) on S, and define the norm of Tκ

as
‖Tκ‖ := sup{‖Tκf ‖2 : f ≥ 0, ‖f ‖2 ≤ 1}. (11)

Then, by Theorem 3.1 of [6] (whose applicability here is granted by Proposition 1), we
immediately obtain

C(GN,W )

N2
P−→

∫
S

βκ(x)μ(dx) =: β̂. (12)

Moreover, it was also proved in [6] that the survival probability βκ is the maximal solution to

f (x) = 1 − e−(Tκf )(x), x ∈ S, (13)

and that β̂ > 0 if and only if
‖Tκ‖ > 1. (14)

Observe that it follows directly from the symmetry of our model that the survival probability
βκ(x), where x = (u, x) ∈ T2 × R+, does not depend on u ∈ T2, but it is only a function of
x ∈ R+. Hence, we shall simply write the survival probability as

βκ(x) = βκ(x), x = (u, x) ∈ S,

which, by (13), is the maximal solution to

f (x) = 1 − exp

(
−λ

∫ ∞

0
xyf (y)μW(dy)

)
, x ∈ R+, (15)

i.e. (6). This together with (12) yields (5).
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We are left to prove (7). Firstly, one could use definition (11) to derive straightforwardly

‖Tκ‖ = λEW 2,

which together with (14) would yield (7). However, it is easier to derive (7) using direct
relations between the defined above multitype branching process and a certain homogeneous
Galton–Watson process which we define shortly.

Let us introduce first yet another branching process B1(x) with type-space R+, where the
single ancestor has type x, and the number of offspring of type y ∈ R+ of any individual of
type x ∈ R+ has Poisson distribution with intensity λxyμW(dy). Using the same analysis as
for B, we obtain the survival probability β1

κ (x) of B1(x) as the maximum solution to (15).
Therefore, in the notation of Theorem 2, it holds that

β(x) = β1
κ (x) = βκ(x)

for all u ∈ T2 and for any x = (u, x).
Finally, we define a homogeneous Galton–Watson process B2. This process starts with one

single ancestor and its offspring distribution Ỹ has a compound Poisson distribution

Poisson(W̃λE(W)),

where the random variable W̃ has the following so-called size-biased distribution:

μW̃ (dy) := yμW(dy)

EW
.

Let us denote X1(x) and X2 as the total progeny of B1(x) and B2, respectively. It was
proved in Section 2.2 of [17], that X1(W̃ ) and X2 are equal in distribution, i.e.

X1(W̃ )
d= X2. (16)

In the case of a homogeneous process B2, the necessary and sufficient condition for a positive
survival probability is simplyE(Ỹ ) = λE(W 2) > 1. Therefore, (16) yieldsP(X̃1(W̃ ) = ∞) >

0 if and only if λE(W 2) > 1.
It follows by the properties of a Poisson distribution that the type of a randomly chosen

offspring of the ancestor in the process B1(x) has distribution W̃ for any x ∈ R+. Hence,
for any x, the process B1(x) survives with a positive probability (i.e. β1

κ (x) > 0), if B1(W̃ )

survives with a positive probability (i.e. P(X̃1(W̃ ) = ∞) > 0). Since β1
κ is the maximal

solution to (15), i.e. to (6), it follows that β̂ > 0 (see (5)) if λE(W 2) > 1.
On the other hand, if B1(W̃ ) survives with probability 0 (i.e. if λE(W 2) ≤ 1) then the

equality

0 = P(X̃1(W̃ ) = ∞) =
∫
R+

P(X̃1(x) = ∞)μW̃ (dx) =
∫
R+

β1
κ (x)μW̃ (dx)

implies that β1
κ = 0, μW̃ -almost surely (a.s.), and, hence, μW -a.s. Since β1

κ is the maximal
solution to (15), i.e. to (6), it follows that in this case β̂ = 0.

Summarizing, we find that β̂ > 0 if and only if λE(W 2) > 1. In turn, this yields ‖Tκ‖ =
λE(W 2). This proves the theorem. �
4.3. Proof of Theorem 1

4.3.1. Breadth-first search. Let us fix a vertex v ∈ VN arbitrarily and let Cv(N) denote
the connected component containing v. We use a standard procedure to reveal Cv(N), an
exploration algorithm known as the breadth-first search (see, e.g. [2] or [21]). This is defined
as follows.
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In the course of exploration, the vertices of GN can be in one of the three states: active,
saturated, or neutral. At time i = 0, the vertex v is set to be active, while all the other vertices
are neutral. This ends step i = 0.

We denote by Si the set of active vertices at time i. Hence, |S0| = 1. The state of a vertex
changes during the exploration of Cv(N) as follows.

At each time step i ≥ 1, we choose an active vertex in Si−1 uniformly at random and denote
it by vi . Then each vertex u which is neutral after step i − 1 becomes active at step i, if it is
connected to vi ; otherwise, u stays neutral. After searching the entire set of neutral vertices the
vertex vi becomes saturated. This finishes the ith step of the exploration algorithm.

The process stops when there are no more active vertices, i.e. at the first time i when |Si | = 0,
that is, at time

T = min{i ≥ 1 : |Si | = 0}. (17)

At this time all considered vertices are saturated and they do not have any connection to the
neutral vertices. Hence, Cv(N) coincides with the set of saturated vertices, and, thus, |Cv(N)| =
T .

Let Xi denote the number of vertices becoming active at the ith step. Then the following
recursion holds:

|S0| = 1, |Si | = |Si−1| + Xi − 1 = X1 + · · · + Xi − (i − 1). (18)

Correspondingly, we can rewrite T , defined in (17), as follows:

T = min{i ≥ 1 : X1 + · · · + Xi = i − 1}.
4.3.2. Subcritical case. In this section we assume that λ < 1 and we prove part (i) of Theorem 1.

Upper bound. We start by finding an upper bound on C(GN), the size of the largest connected
component. Namely, we prove that, for any positive ε,

P
{

C(GN)

log N
<

2

1 − λ − log λ
+ ε

}
→ 1 as N → ∞. (19)

The proof is based on the exploration algorithm described above. We also use essentially
the geometry of the discrete torus with the distance defined in (2). Recall, in particular, that the
number Nr of vertices at distance r from any given vertex, for N odd, is given by

Nr =
{

4r, 1 ≤ r ≤ �N/2,
4(N − r), �N/2 < r ≤ N; (20)

while for N even, it is given by

Nr =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
4r, 1 ≤ r < N/2,

2(N − 1), r = N/2,

4(N − r), N/2 < r < N,

1, r = N.

(21)

Recall that the vertices becoming active at the ith step are connected to the vertex vi . Let Xi,r

denote the number of vertices at distance r from vertex vi , which become active at the ith step.
Hence,

Xi =
N∑

r=1

Xi,r .
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Let Ui denote the number of active and saturated vertices at time i (in other words, Ui is the
number of vertices revealed by time i). In particular, by (18), we have

Ui = |Si | + i. (22)

Correspondingly, for any vertex u, let Ui,r (u) be the number of active and saturated vertices at
time i, which are at distance r from u. In particular, for any i ≥ 1 and any vertex u, it holds
that

N∑
r=1

Ui,r (u) = Ui.

The number Xi,r depends on the number Ui−1,r (vi) of active and saturated vertices at time
i − 1 which are at distance r from vi , in the following way:

Xi,r |Ui−1,r (vi ) ∈ binomial(Nr − Ui−1,r (vi), pr), (23)

where we use the notation

pr = c

Nr
= p(u, v) if d(u, v) = r.

Remark 2. In (23) and elsewhere, we write a random parameter for a distribution with the
usual meaning that the distribution is defined conditionally on a given value of the parameter.

Let us introduce the random variables

Zi,r ∈ binomial(Ui−1,r (vi), pr), X+
i,r = Xi,r + Zi,r ∈ binomial(Nr, pr).

Then, we define

X+
i :=

N∑
r=1

X+
i,r .

If a random variable ξ stochastically dominates η we denote this by η � ξ .
It is clear from the above definition that Xi,r � X+

i,r , and, correspondingly, Xi � X+
i .

Therefore,
|Si | � S+

i := X+
1 + · · · + X+

i − (i − 1).

Note that the largest connected component has size larger than k if and only if there is a
component of size at least k. Then

P{C(GN) ≥ k} = P{there exists v : |Cv(N)| ≥ k} = P
{⋃

v∈V

{|Cv(N)| ≥ k

}
.

It follows simply by the symmetry of the model that the random variables |Cv|, v ∈ VN, are
equally distributed. This allows us to derive, from the last equation, the following bound:

P{C(GN) ≥ k} ≤ N2P{|Cv(N)| ≥ k} (24)

for any arbitrarily fixed vertex v.
By the exploration algorithm, we find that the probability for a component Cv(N) to be

larger or equal to k is equal to the probability of having active vertices in each of the k −1 steps
of the exploration, hence,

P{|Cv(N)| ≥ k} = P{|St | > 0 for all t ≤ k − 1}
≤ P{S+

t > 0 for all t ≤ k − 1}
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≤ P{S+
k−1 > 0}

= P
{k−1∑

t=1

X+
t − (k − 2) > 0

}
. (25)

We use the coupling method described in [11] for finding stochastic bounds on X+
i . It follows

that X+
i,r is stochastically bounded from above by a random variable Yi,r

d= Poisson(−Nr log(1−
pr)), i.e. X+

i,r � Yi,r . Therefore, we can stochastically bound X+
i by a Poisson random variable

as follows:

X+
i �

N∑
r=1

Yi,r ∈ Poisson

( N∑
r=1

−Nr log(1 − pr)

)
= Poisson(λN), (26)

where

λN =
N∑

r=1

−Nr log(1 − pr)

=
N∑

r=1

Nr(pr + o(pr))

=
�N/2∑
r=1

4r(pr + o(pr)) +
N∑

r=�N/2+1

4(N − r)(pr + o(pr))

= λ − 2c

N
+ o

(
1

N

)
. (27)

Let Yi , i ≥ 1, be i.i.d. random variables with Poisson(λN) distribution. Then we derive,
using (25) and (26) with (27), the following upper bound for the probability in (24):

P{C(GN) ≥ k} ≤ N2P
{k−1∑

t=1

X+
t > k − 2

}
≤ N2P

{k−1∑
t=1

Yt > k − 2

}
. (28)

Using Chebyshev’s inequality in (28), for any h > 0, we have

P{C(GN) ≥ k} ≤ N2P
{k−1∑

t=1

Yt > k − 2

}

≤ N2 ∏k−1
t=1 EehYt

eh(k−2)

= N2 exp(−h(k − 2))

k−1∏
t=1

exp(λN(eh − 1))

= N2 exp(−h(k − 2)) exp((k − 1)λN(eh − 1)). (29)

The last equation attains its minimum at h = log((k − 1)/kλ), where it is equal to

N2 exp(k(1 − λ + log λ) + ko(1)).

Therefore, setting k = (2/(λ − 1 − log λ) + ε) log N in (29), we find that (19) holds.
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Lower bound. To complete the proof of (4), we will prove that, for any ε > 0,

P
{

C(GN)

log N
>

2

1 − λ − log λ
− ε

}
→ 1 as N → ∞. (30)

Before proceeding to the proof of (30), we derive a useful result, which roughly speaking tells
us that removing an arbitrary set of o(N2) vertices from VN does not change (asymptotically
as N → ∞) the expected degree of a vertex.

Lemma 1. Let nr, r = 1, . . . , N , with 0 ≤ nr ≤ Nr , be an arbitrary sequence such that

N∑
r=1

nr = o(N2).

Then
1

N

N∑
r=1

nr

r
→ 0 as N → ∞.

Proof. We prove the lemma by contradiction. Assume there exists a constant c > 0 such
that, for any M ∈ N, there exists N ≥ M such that

1

N

N∑
r=1

nr

r
≥ c. (31)

Let 0 < δ < min{4, c} and define the sets Nδ and its complementary N δ as follows:

Nδ = {r ∈ {1, . . . , N} : nr ≥ δr}, N δ = {r ∈ {1, . . . , N} : nr < δr}.
Noting that from (20) and (21), we have nr ≤ Nr ≤ 4r for any 0 ≤ r ≤ N , from (31) it follows
that

c ≤ 1

N

N∑
r=1

nr

r

= 1

N

( ∑
r∈Nδ

nr

r
+

∑
r∈N δ

nr

r

)

≤ 1

N

( ∑
r∈Nδ

4 +
∑

r∈N δ

δ

)

= 1

N
(4|Nδ| + δN δ)

= δ + 4 − δ

N
|Nδ|.

In particular, we have

|Nδ| ≥ c − δ

4 − δ
N,

and, therefore,

N∑
r=1

nr ≥
∑
r∈Nδ

nr ≥
∑
r∈Nδ

δr ≥ δ

|Nδ |∑
r=1

r ≥ δ

2
|Nδ|2 ≥ δ

2

(
c − δ

4 − δ

)2

N2,

which contradicts the assumptions. �

available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/jpr.2017.63
Downloaded from https://www.cambridge.org/core. Lund University Libraries, on 14 May 2018 at 10:06:55, subject to the Cambridge Core terms of use,

63



Phase transition in random distance graphs on the torus 1289

Now we can prove (30). We shall follow the construction used already in [17]. For any vertex
v, letV (Cv(N))denote here the set of vertices of the componentCv(N). Observe thatGN can be
decomposed into pairwise disjoint connected components as follows. Set ṽ1 = v. Then, given
Cṽ1(N), . . . , Cṽk

(N), for k ≥ 1 choose a vertex ṽk+1 uniformly in VN \ ⋃k
i=1 V (Cṽi

(N)),
unless the last set is empty, in which case we stop the algorithm. The graph GN is thus
decomposed into pairwise disjoint connected components Cṽ1(N), . . . , CṽM

(N), where M =
M(N) is a bounded random variable, 1 ≤ M ≤ N2, denoting the number of disjoint components
in GN .

Fix ε > 0 arbitrarily and denote KN = (2/(λ − 1 − log λ) + ε) log N . Then we define the
event

EN = {C(GN) ≤ KN }.
Recall that, from (19), it follows that

P{ĒN } → 0 as N → ∞.

This yields, for any k ≥ 1,

P{C(GN) ≤ k} = P{|Cṽ1(N)| ≤ k, . . . , |CṽM
(N)| ≤ k}

≤ P{|Cṽ1(N)| ≤ k, . . . , |CṽM
(N)| ≤ k | EN } + o(1). (32)

Note that, since conditionally on EN the largest connected component is smaller than KN , it
follows that MKN ≥ N2. Hence, for any mN ≤ N2/KN ≤ M , the following bound holds for
the probability in (32):

P{|Cṽ1(N)| ≤ k, . . . , |CṽM
(N)| ≤ k | EN }

≤
mN∏
i=1

P{|Cṽi
(N)| ≤ k | |Cṽ1(N)| ≤ k, . . . , |Cṽi−1(N)| ≤ k, EN }. (33)

Let V0 be an arbitrary set of mNKN nodes, u be a vertex in VN \ V0, and let C̃u = C̃u(V0)

denote the connected component containing u constructed precisely as the original Cv(N) but
on the vertex set VN \ V0.

Then each factor in (33) can be uniformly bounded as follows:

P{|Cṽi
(N)| ≤ k | |Cṽ1(N)| ≤ k, . . . , |Cṽi−1(N)| ≤ k, EN } ≤ max

V0⊆VN : |V0|=mNKN
u∈VN\V0

P{|C̃u| ≤ k},

where we simply used the fact that on a smaller set of vertices, the components are smaller as
well. Therefore, from (33), it follows that

P{C(GN) ≤ k} ≤
(

max
V0 : |V0|=mNKN, u∈VN\V0

P{|C̃u| ≤ k}
)mN

. (34)

In the following, fix the set V0 ⊂ VN arbitrarily but so that

|V0| = mNKN = o(N2).

Fix a vertex u 	∈ V0 arbitrarily, and construct the component C̃u on the vertex set VN \ V0 as
described in the exploration algorithm. Let us denote here u1, u2, . . . , the sequence of saturated
vertices (which corresponds to the sequence v1, v2, . . . , in the original exploration algorithm).

Define n0
r (u) to be the number of nodes in V0 which are at distance r from u, so that

0 ≤ n0
r (u) ≤ Nr and

∑N
r=1 n0

r (u) = |V0| for any u.
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Analogous to the notion used previously, let Ũi here denote the number of active and saturated
vertices at step i in this new exploration process on VN \ V0 (see (22)), and Ũi,r (w) be the
number of those vertices at distance r from the vertex w. Let also n0

i,r = n0
r (ui) denote the

number of the vertices in V0 which are at distance r from the ith saturated vertex ui . By this
definition, and our assumption on |V0| = o(N2), we have

N∑
r=1

n0
i,r = |V0| = mNKN = o(N2) for any i. (35)

Hence, the number of vertices activated at step i at distance r from the ith explored vertex,
which we denote X̃i,r , has the following distribution:

X̃i,r ∈ binomial(Nr − n0
i,r − Ũi−1,r (ui), pr),

and the total number of vertices activated at the ith step is given by

X̃i =
N∑

r=1

X̃i,r .

Using these definitions, we derive, for any k ≥ 1,

P{|C̃u| > k} ≥ P{X̃1 + X̃2 + · · · + X̃t > t − 1 for all t ≤ k − 1}. (36)

To approximate the distribution of X̃i in the last equation, let us recall the following result on
the Poisson approximation.

Lemma 2. (See, e.g. [21].) On a rich enough probability space, we can define a random vector
(X, Y ) so that X

d= binomial(n, λ/n), Y
d= Poisson(λ), and, moreover,

P(X 	= Y ) ≤ λ2

n
.

Given the numbers 0 ≤ ki,r ≤ Nr − n0
i,r , r = 1, . . . , N, i = 1, . . . , k − 1, such that

N∑
r=1

ki,r ≤ k, (37)

let us define couplings (X̃i,r , Z̃i,r ) with the Poisson random variables

Z̃i,r ∈ Poisson((Nr − n0
i,r − ki,r )pr),

which satisfy the conditions in Lemma 2.
Then

Z̃i =
N∑

r=1

Z̃i,r ∈ Poisson(λi,N ), (38)

where

λi,N =
N∑

r=1

(Nr − n0
i,r − ki,r )pr . (39)

To simplify the notation, define the event

FN = {Ũi,r = ki,r ,

N∑
r=1

ki,r ≤ k for all i ≤ k − 1, r = 1, . . . , N}
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and consider

P(Z̃i > k | FN) = P(Z̃i > k, Z̃i = X̃i | FN) + P(Z̃i > k, Z̃i 	= X̃i | FN)

≤ P(X̃i > k | FN) + P(Z̃i 	= X̃i | FN).

Note that

P{X̃i 	= Z̃i | FN } = P
{ N∑

r=1

X̃i,r 	=
N∑

r=1

Z̃i,r

∣∣∣∣ FN

}

≤ P
{ N⋃

r=1

{X̃i,r 	= Z̃i,r}
∣∣∣∣ FN

}

≤
N∑

r=1

P{X̃i,r 	= Z̃i,r | FN }.

By Lemma 2, we have

P{X̃i,r 	= Z̃i,r | FN } ≤ p2
r (Nr − n0

i,r − ki,r ),

which yields

P{X̃i 	= Z̃i | FN } ≤
N∑

r=1

p2
r (Nr − n0

i,r − ki,r )

= c2

N2

N∑
r=1

1

r2 (Nr − n0
i,r − ki,r )

= O

(
log N

N2

)
, (40)

uniformly in i.
Next we consider

P{Z̃1 + · · · + Z̃t > t − 1 for all t ≤ k − 1}

≤ P{X̃1 + · · · + X̃t > t − 1 for all t ≤ k − 1 | FN } +
k−1∑
s=1

P{X̃s 	= Z̃s | FN }. (41)

Note that, by (40),

εk(N) :=
k−1∑
s=1

P{X̃s 	= Z̃s | FN } = O

(
k log N

N2

)
. (42)

Therefore, (41) yields

P{X̃1 + · · · + X̃t > t − 1 for all t ≤ k − 1 | FN }
≥ P{Z̃1 + · · · + Z̃t > t − 1 for all t ≤ k − 1} − εk(N). (43)

We shall construct i.i.d. random variables Z̃−
i , 1 ≤ i ≤ k, which are a.s. smaller than Z̃i ,

1 ≤ i ≤ k, correspondingly.
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First, using assumption (35) and Lemma 1, we derive

∑
r

n0
i,rpr = c

N

∑
r

n0
i,r

r
= o(1). (44)

From now on, we shall assume that

k = a log N for some positive a. (45)

Under this assumption, we have

∑
r

ki,rpr = c

N

N∑
r=1

ki,r

r
≤ c

N

∑
r

ki,r = kc

N
= ac log N

N
= o(1). (46)

Hence, from (44) and (46), we obtain the following bound for λi,N defined in (39):

λi,N =
N∑

r=1

(Nr − n0
i,r − ki,r )pr ≥

N∑
r=1

Nrpr + oi(1), (47)

where oi(1) might depend on i. Note that, by (27),

N∑
r=1

Nrpr = λ + o(1). (48)

Hence, for any (constant)
λ′ < λ, (49)

(47) together with (48) yields the following uniform in i ≤ k bound:

λi,N > λ′. (50)

Recall that Z̃i ∈ Poisson(λi,N ) by (38). Therefore, (50) allows us to construct independent
Z̃−

i ∈ Poisson(λ′), 1 ≤ i ≤ k, such that

Z̃−
i ≤ Z̃i a.s. for each i.

Now we can derive the following bound:

P(Z̃1 + . . . , Z̃t > t − 1, t = 1, . . . , k − 1) ≥ P(Z̃−
1 + · · · + Z̃−

t > t − 1, t = 1, . . . , k − 1)

= P{T ≥ k},
where T denotes the total progeny of a branching process with offspring distribution
Poisson(λ′). Substituting this bound into (43), we obtain

P{X̃1 + · · · + X̃t > t − 1 for all t ≤ k − 1 | FN } ≥ P{T ≥ k} − εk(N),

where the right-hand side is uniform in FN (here we still assume conditions (37) and (45)).
This yields

P{X̃1 + · · · + X̃t > t − 1 for all t ≤ k − 1} ≥ P{T ≥ k} − εk(N),
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and, therefore, by (36),

P{|C̃u| ≤ k} ≤ 1 − P{T ≥ k} + εk(N). (51)

Using a well-known formula for the distribution of the progeny of a branching process (see,
e.g. [13]), we compute

P{T ≥ k} =
∞∑

j=k

(λ′j)j−1

j ! eλ′j ≥ (λ′k)k−1

k! eλ′k,

which, together with the Stirling formula, yields

P{T ≥ k} ≥ 1√
2πλ′

1

k3/2 e−αk

(
1 + O

(
1

k

))
, (52)

where
α = λ′ − 1 − log λ′. (53)

Substituting (52) into (51), we obtain, using (42) for k = a log N ,

P{|C̃u| ≤ a log N} ≤ 1 − 1

AN

(1 + o(1)) + O

((
log N

N

)2)
, (54)

where
AN = √

2πλ′(a log N)3/2Naα.

Choose now arbitrarily a constant

a <
2

α
. (55)

Then (54) yields

P{|C̃u| ≤ a log N} ≤ 1 − 1

AN

(1 + o(1)). (56)

Observe that the value on the right-hand side of the above equation is uniform in the choice of
the set V0 and vertex u. Therefore, we can use bound (56) in (34) to obtain

P{C(GN) ≤ a log N} ≤
(

1 − 1

AN

(1 + o(1))

)mN

. (57)

Finally, we choose
mN = AN log N � AN,

which by (55) also satisfies condition (35), i.e.

mNKN = o(N2),

where

KN =
(

2

λ − 1 − log λ
+ ε

)
log N.

With this choice of mN , bound (57) implies that

P{C(GN) ≤ a log N} = o(1) (58)

for any fixed constant (see (53) and (55))

a <
2

α
= 2

λ′ − 1 − log λ′ .
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By (49), here we can choose any λ′ < λ; therefore, it follows that (58) holds for any

a <
2

λ − 1 − log λ
.

This proves (30), and, therefore, part (i) of Theorem 1 is proved.
This completes the proof of Theorem 1, since part (ii) follows by Theorem 2. �

4.4. Outline of the proof of Theorem 3

A proof of Theorem 3 can be obtained by following the same strategy as in the proof of
Theorem 1(i), in combination with the proof of the corresponding result for the rank-1 model
(8) given in [17]. Therefore, we omit the details here.
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a b s t r a c t

We introduce a growing random network on a plane as a model of a growing neuronal network. The
properties of the structure of the induced graph are derived. We compare our results with available data.
In particular, it is shown that depending on the parameters of the model the system undergoes in time
different phases of the structure. We conclude with a possible explanation of some empirical data on the
connections between neurons.

© 2015 Elsevier Ireland Ltd. All rights reserved.

1. Introduction

Random graphs are commonly used in this century as an impor-
tant tool to model and to analyse the structure and dynamics of real
networks, in particular, neural networks (e.g. Bollobás et al. (2009),
Bullmore and Sporns (2009)). The relations between the structure
of a network and its functional properties are intensively studied. It
is clear that the structure should affect the performance, especially
when it concerns dynamical processes on networks, which in turn
may change the network itself (consult Kozma and Puljic (2015) on
a recent development in this area). These questions generate a lot
of mathematical problems, answers to which might contribute to
better understanding of the physiology of the brain. Although the
models cannot reproduce a living brain, they may close approxi-
mate at least some experiments in-vitro (see the discussion on the
related two-dimensional models in Eckmann et al. (2007)).

Developments in graph theory initiated on-going debates to
which class of random graphs (if any) the neuronal networks might
belong to. Particularly, the issue of finding scale-free properties
attracted a lot of attention (see e.g., Kozma and Puljic (2015) on
recent references on this topic).

Clearly, it is not just an architecture itself what is in focus, but
its relation to the functioning of the networks. Perhaps the most
challenging questions are:

∗ Corresponding author.
E-mail addresses: gmn@maths.lth.se (G.M. Napolitano), tatyana@maths.lth.se

(T. Turova).

1. How to derive the principles of geometric organization of a net-
work using (limited) data on the activity of the network itself?

2. Or inverse question, is it possible to predict the functional prop-
erties of the network given its architecture?

For example, there is a long-standing conjecture on synfire
chains as very efficient functional subgraphs in the brain. There
have been a number of attempts to prove formation of such chains
in an originally homogeneous complete network in a course of
learning (e.g. Turova (2014)), which most often means pruning of
connections according to some rules. Inevitably the resulting graph,
even after some training due to external simulations, depends on
the initial condition, which is most often taken as a random classical
graph.

In this paper we address the issue of this initial condition: what
is the initial architecture which eventually can be moulded into a
functional neuronal network?

Our study is much inspired by the experimental results on grow-
ing neuronal networks reported in Perin et al. (2011), as well
as by the computational results on the modelling and analysis
of 2-dimensional networks presented in Aćimović et al. (2011)
and Mäki-Marttunen (2013). In Perin et al. (2011) the authors
collect and analyse real experimental data, which are very dif-
ficult to obtain, and hence are ought to be incomplete. Use of
computer power is a natural way to compensate this incomplete-
ness.

One of rather recently developed simulators of neuronal growth
is NETMORPH (Koene et al., 2009). The program allows one to get
all the necessary data and helps to develop algorithms to evaluate

http://dx.doi.org/10.1016/j.biosystems.2015.09.002
0303-2647/© 2015 Elsevier Ireland Ltd. All rights reserved.
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the statistical properties of the structure of simulated networks
(Aćimović et al., 2011). The study carried out in Koene et al. (2009)
is largely based on earlier neurite growth models introduced by
Van Pelt and collaborators (see e.g. van Pelt and Uylings (2002),
Uylings et al. (2002)). In particular, in van Pelt and Uylings (2002),
neurons are modelled by rooted binary trees. The growth process is
described by a time and state-dependent branching process, where
the branching probability depends on the centrifugal order of the
edge (that is the graph distance of its branching point from the
tree root), the number of tips (tree leaves) at a given time, and
some other factors influencing the neuronal growth. In that work,
it was argued that the baseline branching rate is a monotonically
decreasing function of time. An accurate description of the process
of outgrowth in van Pelt and Uylings (2002) allows to assess the
parameters of the model and verify them with physiological data.

A model similar to van Pelt and Uylings (2002) has been studied
in Devaud et al. (2000). The model is somewhat simpler, in the sense
that in this case the branching probability is a (time-independent)
exponentially decreasing function of the centrifugal order only, and
depends on two parameters, found by comparison with experimen-
tal data. Remarkably, the model predictions for the value of certain
quantities, such as the distribution of the number of tips, are in
agreement with observations.

We consider here a model of growing connections between
neurons which is much simplified compared to the ones stud-
ied in Aćimović et al. (2011) (mainly computationally), in van
Pelt and Uylings (2002) or in Devaud et al. (2000). Namely, we
assume that the branching intensity is constant in space and time,
ignoring thus the centrifugal order of the neurite and the depen-
dence on the number of active ends. Note also the 2-dimensional
restriction of our model. Taking advantage of the simplicity of the
2-dimensional setting, our approach however is not restricted to
2D and should allow for 3-dimensional extension (in a separate
study though) in the spirit of the model studied in Uylings et al.
(2002). The obvious advantage of studying a simpler model is that
it allows analytical description. In particular, we address here the
metric properties of a randomly grown tree, such as the length and
thickness of its edges. Furthermore, we provide computer simu-
lations of our model, which turn out to be to some extent similar
to those obtained in Aćimović et al. (2011) with NETMORPH pro-
gram.

We notice that since our model is too simple to describe any
compartment of a neuron, due to its analogy with work of Perin et al.
(2011) we shall say that we model terminal branches, or an axonal
tree, so that our growing random tree represents a neurite growth.
However, the biological limitation of our model is obvious, there-
fore we mostly use less specified term “connection” throughout the
paper.

The goal of our study is to describe the graph properties of a
network (as, e.g., probability of connection, degree of the nodes)
composed of randomly grown 2D neurites, which are represented
by the soma together with a random tree of potential connections.
(Note here that we study only “potential connections”, i.e., connec-
tions which eventually can be active or be abandoned in a course
of some dynamics on a network.) One could consider biologically
more plausible mechanisms of growing the random trees of (possi-
ble) connections. What is also important for our analysis, and goes
well in agreement with the morphology of the neurons, is that the
dimension of the trees (“thickness” of axons) are much smaller than
the dimension of the soma, modelled here as a ball of a given radius
around the root of the tree.

Below we identify the probability of connection between two
somata with the probability that the axonal tree stemming from
the soma of one neuron comes in a certain vicinity of the soma
of another neuron. Notice however, that this should be considered
as an initial or a preliminary structure: the functioning neuronal

network is created in a course of some processes on the initial net-
work, which modify the possible connections, as e.g., by pruning
some of them and amplifying others. This learning process is not
considered here. Still, we can observe even with this simple model
some features reported in Perin et al. (2011) on the “real” (in-vitro)
neuronal networks.

There are a few examples of randomly grown networks which
are well understood analytically by now. These are randomly grown
classical graphs, networks with preferential attachment and their
modifications. However, these examples do not take into account
the metric of the space. On the other hand, a subject of random
distance graphs is also well-developed in the last decades (Deijfen
et al., 2013; Penrose, 2003). The issue of including space character-
istics into the analysis based on theory of percolation on graphs is
well recognized (see the discussion in Eckmann et al. (2007)). How-
ever, in theoretical papers on this subject (e.g. Deijfen et al. (2013)),
as well as in the applications for neuronal networks (Eckmann et al.,
2007; Turova and Villa, 2007), usual assumptions are monotonicity
and symmetry (as e.g., decay of the strength with distance). Here we
shall argue that neither of these assumptions should be considered
as a fundamental invariant property of a network. Our observation
is in a good agreement with the results reported in Herzog et al.
(2007), where it is argued that displacement of axonal fields may
optimize the connectivity of a network.

We shall describe the formation of random connections in the
network and derive their probabilities. These probabilities provide
(at least in theory) a complete description of the network. In par-
ticular, this helps to find out the dependence of the connections
on the space in time. Observe that we derive probabilities of the
connections in a growing network, but do not assign probabilities
which fit data or are optimal in some sense, as it is typically done in
computational neuroscience. The model we consider here explains
formation of local as well as global connections. The latter is con-
sidered to be an important feature of a functional network. In fact,
our finding can support and provide some morphological explana-
tion for the so-called patchy connectivity in the cortex, studied in
Voges et al. (2010), Herzog et al. (2007), where it is assumed that
the dendrites are centered in the soma while the center of mass of
axonal fields is at some distance from the soma. In those studies it
was also reported that such networks may exhibit so-called small-
world properties, which are effectively seen as a relatively small
graph distance between the nodes of a graph and are considered
important for the efficient transmission of signals on the network
and the optimization of wiring costs.

The rest of the paper is organized as follows. In Section 2 we
define the model: in Section 2.1 we describe a single unit, and in
Section 2.2 we define a network composed of spatially distributed
units. The results are given in Section 3. In Section 3.1 we study the
degree distribution. In Section 3.2 we study the time and distance-
dependent probability of connection between two neurons. We
show that this probability is a solution to a certain integral equation
which we derive in Section 3.2. Then, in Section 3.3 we discuss one
marginal case of a model without branching. Section 3.4 is devoted
to the numerical analysis of the spatial density of the simulated
axonal arborization. After the concluding remarks in Section 4, we
provide the details of the proofs in the Appendix.

2. Model

The model presented here is a (rather crude) simplification of
the one simulated and studied in Aćimović et al. (2011). We derive
some functional dependencies on the parameters of the distri-
butions of random characteristics of the model, and the degree
distribution in particular.

Here we study only the geometry (or structure) of a network.
We assume that each unit (neuron) of our network develops
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Fig. 1. Example of randomly grown tree Tv(t) defined in Definition 1. (a) An edge starts growing from a vertex v. (b) After an exponentially distributed time a split occurs and
two new branches grow with directions chosen independently and uniformly at random in [− ˛, ˛]. (c) After an exponentially distributed time the rightmost branch splits
again, whereas the second branch keeps growing. The splitting points are indicated by an empty disc. The dashed circles denote the active ends.

independently of other units. We start with a description of the
dynamics of a single unit.

2.1. A single model neuron

We assume that a neuron is represented by a random tree on a
plane with a root at a given point. The root we associate with the
soma and the random tree with the axonal arborization.

Let t ≥ 0 be a parameter of time. At time t = 0 a neuron is repre-
sented by a point ofR2, say v ∈ R2. At any time t ≥ 0 the structure of
the model neuron is given by a graph Tv(t) ⊂ R2 which is a random
graph (with possible self-intersections) on the plane. The dynam-
ics of Tv(t) is governed by two processes: elongation and branching.
This means that from a point v a segment starts to grow at time 0 in
a randomly chosen direction with constant speed. We set this speed
to be 1, which is not a restriction, since the time can be rescaled.
This initial segment splits at some random time, say �0, into two
segments. The random time �0 of splitting is distributed exponen-
tially with mean 1/�. Then, each of the two new segments develops
independently in the same manner. This means that each of the seg-
ments chooses uniformly random direction to grow, and then each
splits at random times �0 + �1 and �0 + �2, where all �i are indepen-
dent and identically distributed. Given a graph at some time t each
of its ends (tips) continues to grow linearly and splits independently
of others.

We consider here a uniform growth, which means that the elon-
gation has a constant speed and the branching intensity � does not
depend on time and on position. Hence, Tv(t) is a random tree on a
plane with possible self-intersections, defined as follows.

Definition 1. Let v ∈ R2.

1. Tv(0) = {v}.
2. Let � be an exponential random variable with expectation 1/�.

Then as long as t < � the graph Tv(t) is an interval of length t
drawn from v in a randomly chosen direction. v is called root, an
interval we call a branch, and the other end of the interval we
call the active end.

3. At time � two independent branches start to grow from the active
end: the directions of the new branches are chosen uniformly at
random within an angle ˛ which is the highest deviation from
the direction of the splitting branch. Each of the new branches
splits independently and with the same intensity �.

Fig. 1 shows an example of the growth process defined above and
Fig. 2 provides two typical computer-generated randomly growing
trees with different choices of the angle ˛. In particular, the trees
in Fig. 2 can be viewed as a simplified representation of the mor-
phology of a neuron in vitro, without distinction between axonal
and dendritic trees, as instead it is reproduced by NETMORPH sim-
ulations (Fig. 3.1, page 17 in Mäki-Marttunen (2013)).

Fig. 2. Computer-simulated random trees with root at origin of the axes and parameter � = 1, at time t = 6. The direction of the new branches is chosen uniformly at random
(2a) in [− �/6, �/6] and (2b) in [− �, �].
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Fig. 3. Example of three Poisson distributed points v, u and w in the region � and a
randomly grown tree Tv(t) from v. The dotted lines illustrate the distances �(u, Tv(t))
and �(w, Tv(t)) from u and w to Tv(t), respectively. The dashed line include the points
of � within distance r from Tv(t). Here, Ar,D(Tv(t)) is represented by the area enclosed
by the dashed curve. According to the definition, the vertex w is connected with the
vertex v, whereas u is not. The area of each shaded region is included twice in the
upper bound formula in Eq. (3).

2.2. Network: space dependence

To define a network we assume that the origins of the neurons
are placed at random points v1, v2, . . ., on a square � : = [0, D] × [0,
D] which form a 2-dimensional Poisson process with intensity �.
Let V = {v1, v2, . . .} be the set of origins of neurons, and let Tv(t), v ∈
V , be a collection of independent graphs each of which is defined
as above.

We define a distance from neuron v to a neuron u as the smallest
Euclidean distance between u and the axonal tree Tv(t) of neuron
v, and denote this distance by �(u, Tv(t)) (see Fig. 3).

Definition 2 ((Distance between neurons in a network at time t)). .
For each u, v ∈ R2 and t ≥ 0, let

�(u, Tv(t)) := min{‖x − u‖ : x ∈ Tv(t)}. (1)

In particular, �(u, Tv(t)) ≤ �(u, Tv(0)) = ‖u − v‖.

Observe that �t(u, v) for t > 0 is a random variable. In particu-
lar, even if the Euclidean distances between neurons u, u′, v satisfy
‖u − v‖ < ‖u′ − v‖, it may happen that �(u, Tv(t)) > �(u′, Tv(t)). We
may assume that the probability of connection between neurons
depends on the “actual” distance �(u, Tv(t)), rather than directly
on ‖u − v‖. This explains some non-monotonicity in the proba-
bilities of connection, even though on average the connectivity
among neurons decreases with the intersomatic distance (see e.g.,
Stepanyants and Chklovskii (2005)). It was also reported in Perin
et al. (2011) that unidirectional connections (and this is the case in
our model) show less abrupt decrease with intersomatic distance.
Such non-monotone features were argued to lead to networks
whose connectivity profiles are optimal for information transfer
(Herzog et al., 2007; Voges et al., 2010).

Observe that the function �t(u, v) := �(u, Tv(t)) is random, and
the symmetry relation �t(u, v) = �t(v, u) holds in distribution only.

We say that there is a synaptic (directed) connection from neu-
ron v to neuron u at time t if u is within distance r to the graph Tv(t),
i.e.,

�(u, Tv(t)) ≤ r, (2)

where r > 0 is a parameter of the model (see Fig. 3).

3. Results

3.1. Degree distribution

For each neuron v we shall study here the (random) number
�v(t) of neurons to which it is connected to via its axonal tree at
time t.

Recall that we assume that the locations of the soma of neu-
rons are random, it is a Poisson point process with intensity �. This
means that the number of neurons in a bounded subset of � with
area A is distributed as a Poisson random variable with mean �A.
For each neuron v we shall study the (random) number �v(t) of neu-
rons to which it is connected to via its axonal tree at time t. Hence,
�v(t) counts the number of points of the Poisson process which are
at distance at most r from the tree Tv(t). Denote

Ar,D (Tv(t)) = area
(

� ∩
{

x : �(x, Tv(t)) ≤ r
})

the area of the r-neighbourhood of Tv(t) within the square �. Then
the degree �v of the neuron v is a Poisson-distributed random vari-
able with a random parameter

Ar,D (Tv(t)) �.

Remark 1. If we assume that the origins of the neurons are not
forming a Poisson process, but are given with a constant density �,
then the degree of v is simply Ar,D (Tv(t)) �.

Let Lv(t) denote the total length of all branches of Tv(t), and let
N(Tv(t)) denote the number of active ends of Tv(t) (the number of
“leaves” in graph theory terminology). Observe that if t < D and |v| +
t < D (set v at the origin, for example, in order to avoid the boundary
effects) then

2rt + �r2 ≤ Ar,D(Tv(t)) ≤ 2rLv(t) + �r2

2
(N(Tv(t)) + 1). (3)

The lower bound in the inequality represents the area around an
edge of length t (remember that we set the elongation speed to
1) and thickness r, that is when no split occurs during the growth
process. The example in Fig. 3 provides a graphical explanation of
the upper bound.

Note that in our simple tree model the distribution of numbers
Lv(t) and N(Tv(t)) can be found in a closed form. We will explain
below how to derive the moment generating function for Lv(t). We
assume here that r is a small parameter, so that r 
 1 
 D. Then as
long as t < D and rL(t) = o(D2) we have

Ar (Tv(t)) ≈ 2rLv(t),

in which case the distribution of �v is well approximated by the
Poisson distribution with random parameter

2rLv(t)�.

Therefore in order to derive the degree distribution we need to
study first the length of the graph. Notice here that the expectation
of the length of a tree is given by

ELv(t) = e�t − 1
�

.

This and more precise characteristics of Lv(t) will be described in
the Appendix.

It is worth noticing that a similar result, that is an exponential
growth of the expected length of the tree, has been found in van
Pelt and Uylings (2002) as a particular case of the model studied
there (cf. van Pelt and Uylings (2002), eq. (17)). The similarity is
made clear by noticing that the number of leaves in a binary tree is
proportional to the total number of edges, hence to the total length
of the tree.
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Proposition 3.1. Let �∗
v be a Poisson-distributed random variable

Po(2rLv(t)�). Then its moment generating function is given by

g�∗
v
(x) = E[ex�∗

v ]

= � − 2r� (ex − 1)
� − 2r� (ex − 1) et(�−2r�(ex−1))

,
(4)

which for every t is finite at least for all 0 ≤ x < c1(t), for some positive
c1(t).

The proof is given in Appendix.
Proposition 3.1 allows us to approximate the tail of the degree

�v, which by the argument above is

P{�v(t) > K} ≈ P{�∗
v > K}.

Using the generalized Chebyshev’s inequality, we derive that for
any t > 0 and 0 ≤ ˛ < c1(t) we have that

P{�v(t) > K} ≈ P{�∗
v > K} ≤ e−˛K E[e˛�∗

v ], (5)

where E[e˛�∗
v ] is a finite number by Proposition 3.1.

In particular this tells us that the tail of the distribution of �v is
approximately exponential here.

Notice that here we defined the degree �v as a connection via
axon to the soma of another neuron, that is from the tree to the
root of another tree. Perhaps, for further studies of the network it is
more justified to study connections through the neurite branches
as well, i.e. from tree to tree. In this case we may observe a different
distribution of the number of connections.

3.2. Geometric properties: probabilities of connection

Here we study the distribution of the tree Tv(t) on the plane.
We shall characterize the probability of directed connection from
one neuron to another (which is a function of time and the dis-
tance between somas of these neurons) as a solution to a certain
functional integral equation.

The key idea to derive this equation is based on the recursive
structure of a tree. Indeed, given a tree Tv(t), it can be decomposed
as a segment stemming from v to the first splitting point and two
other trees attached to this endpoint. Therefore, since the edge
lengths and the angles are chosen independently, the probability
of (not having a) connection from v to a vertex u can be written as
a recursive relation according to the above tree decomposition.

We consider first dependence of �(u, Tv(t)) (see Eq. (1)) on ‖u −
v‖ and t. Due to shift and rotation invariance of the model we have

�(u, Tv(t)) = �(u′, Tv′ (t)), if ‖u′ − v′‖ = ‖u − v‖. (6)

Therefore we introduce the probability of connection from the neu-
ron at u to the neuron at v as a function of ‖u − v‖ and time t. For
any fixed positive r define

pr(t, d) := P{�(u, Tv(t)) ≤ r | ‖u − v‖ = d}. (7)

Notice that pr(t, d) as a function of r for any fixed (t, d) is a
distribution function of the distance �(u, Tv(t)) with ‖u − v‖ = d.

We fix r and shall derive a functional equation for

qr(t, d) := P{�(u, Tv(t)) > r | ‖u − v‖ = d} = 1 − pr(t, d) (8)

d > 0, t > 0, with boundary conditions

qr(t, d) = 0, if d ≤ r, t ≥ 0,

qr(t, d) = 1, if d > r, 0 ≤ t < d − r.

Let S denote the time of first split in the tree Tv(t). By definition
S is an exponential random variable with expectation 1/�, and the
tree Tv(s) for s ≤ S is an interval of length s drawn from v into a
random direction ˛, where ˛ is uniformly distributed over (0, 2�).

Fig. 4. Regions of integration for the integrals in Eq. (9).

Unless this interval intersects the ball of radius r with center at u
(see Fig. 4), two independent processes restart at time S from the
end of this interval.

Consider

qr(t, d) = P{(�(u, Tv(t)) > r) ∩ (S ≤ t) | ‖u − v‖ = d}
+ P{(�(u, Tv(t)) > r) ∩ (S > t) | ‖u − v‖ = d}.

Here, the last term on the right is the probability of not having a
connection by time t and not having any branching by time t, while
the first term on the right is a probability of not having a connection
by time t and having at least one branching by time t. Observe, that
the event {S ≤ t} does include all possible numbers of branching up
to time t:

{S ≤ t} =
⋃

k≥1
({S ≤ t} ∩ {there are k branchings within time [0, t]}) .

However, to write a recurrent relation below we need to specify
only the moment S, after which the process duplicates and two
branches evolve independently. Then, using the fact that

P{S > t} = e−�t,

we derive, for t > d − r and d > r,

qr(t, d) =
∫ +˛0

−˛0

∫ s0(˛)

0

�e−�s

2�
(qr(t − s, d′(s, ˛)))2dsd˛

+
∫ 2�−˛0

˛0

∫ t

0

�e−�s

2�
(qr(t − s, d′(s, ˛)))2dsd˛ + e−�tf (t, d), (9)

where ˛0 = arcsin r
d , s0(˛) = d cos ˛ −

√
−d2sin2˛ + r2,

d′(s, ˛) =
√

d2 + s2 − 2ds cos ˛

is the distance between u = (d, 0) (in polar coordinates with pole v
and polar axis �vu) and the first splitting point (s, ˛) (see Fig. 4), and

f (t, d) = P{�(u, Tv(t)) > r | ‖u − v‖ = d, S > t}
is the probability of not having a connection conditionally that there
is no split within time t. We shall explain now each term on the right
in more details.

The first term in the right-hand side of the Eq. (9) is the prob-
ability not to have a connection, given the first split in the region
defined by −˛0 ≤ ˛ ≤ ˛0 and 0 ≤ s < s0(˛). That is the region outside
the circle of radius r centered at u and bounded by the rays from v
tangent to the circle, see Fig. 4.

The second term is the probability of no connection when
the first split happens in the region with ˛0 ≤ ˛ ≤ 2� − ˛0, where
0 ≤ s ≤ t.

In both of these two first terms on the right in eq. (9) we have
functions qr(t − s, d′)2, where s is the moment of the first split. The
square comes from the fact that after time s we have two inde-
pendent branches which evolve during time t − s. Hence, if the
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probability that a single branch does not make a connection to u
is qr(t − s, d′), the probability that no one of these branches will
make a connection to neuron u is qr(t − s, d′)2. Again, each of these
branches may have any number of splits.

Finally, in the last term f(t, d) is simply the probability that a
segment of length s drawn from the origin v to a uniformly random
direction does not intersect the circle of radii r centred in u, that is

f (t, d) =

⎧
⎪⎨
⎪⎩

1 − 1
�

arccos
d2 + t2 − r2

2td
, if t ∈ [d − r,

√
d2 − r2];

1 − 1
�

arcsin
r

d
, if t >

√
d2 − r2.

The Eq. (9) together with (8) define the probability of connec-
tion as a solution to this equation. An obvious advantage of having
relations (9) is that even if it is not possible to obtain a solution in a
closed form it gives a possibility to study it numerically. However,
this will be a subject of separate study.

3.3. Marginal case: no branching

Let us consider a marginal case � = 0, i.e., no branching occurs
and a tree is reduced to a segment. In this case we derive that the
probability that at time t there is a connection from a fixed neuron
to another one chosen at distance d is

pr(t, d) =

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

0, if t < d − r,

1
�

arccos
d2 + t2 − r2

2td
, if t ∈ [d − r,

√
d2 − r2],

1
�

arcsin
r

d
, if t >

√
d2 − r2.

(10)

This probability decays as r/d for large d or small r, but for fixed d
it reaches a constant value with respect to t.

Notice however, the following spatially homogeneous property
of the connections. Recall that we consider here directed graphs.
Let us assume that one neuron is placed at the origin. Consider the
in-degree of this neuron, which is the number of neurons which
have connections to the one at the origin.

First, due to the assumptions of the network (without the
boundary of the space) we compute the total number of neurons
placed in the annulus

Cd := {u ∈ R2 : d ≤ ‖u‖ ≤ d + 1}.

The area of Cd is �(2d + 1), and thus due to our assumptions the
number of neurons in Cd is a Poisson random variable

Po(��(2d + 1)).

Now taking into account that each of the neurons in Cd is connected
independently to the central one with probability pr(t, d), we get
that for large t and d this number is approximately

Po
(

�(2d + 1)� arcsin
r

d

)
≈ Po (2��r) .

Hence, on average there are about 2��r neurons in every annulus
of width 1 which are connected to the neuron placed at the origin,
and this number does not depend on the distance of the annulus to
the origin.

One may speculate that even when � > 0, with a small probability
some branches of the tree do not branch making a long path and
then branch again, making connections to a localized set distant
neurons. This might support the idea of Voges et al. (2010) on long-
range patchy connections.

3.4. Density of the axonal arborization: simulated results.

We consider and analyse here the spatial properties of the sim-
ulated neurite tree for some � > 0. One may view the results of this
section as an empirical counterpart for Section 3.2, however this
could be only a rough approximation.

Given the graph Tv(t), let us consider the disk Dv(t) of radius t
centered at v. Let us fix some n ∈ N, and consider the partition of
Dv(t) in n annuli Ci(t/n), i = 1, . . ., n, defined by

Ci(t/n) = {x ∈ R2 : (i − 1)t/n < ‖x − v‖ < it/n}.
For each i = 1, . . ., n, we define the partial length 	v(yi) of the

fraction of the graph Tv(t) contained in the circle of radius yi = it/n
and center v. Clearly, by this definition, we have that 	v(yn) = Lv(t).
Note that this procedure is very similar to the one described in
Uylings et al. (2002) and goes back to the study carried out in Sholl
(1953). Next, we set

ıv(yi) =
(

	v(yi) − 	v(yi − t/n)
) n

t
, for i = 1, . . ., n,

as the difference quotient of 	v(yi), that is the length of the graph
Tv(t) contained in the annulus Ci(t/n) divided by t/n. We call ıv(yi)
the density of Tv(t) in the annulus Ci(t/n). This quantity, as we
discuss in the following, will provide an indication of the spatial
distribution of the graph around the root v.

Fig. 5 shows a typical computer-generated tree Tv(t) and the
corresponding plots of the length 	v(yi) (Fig. 5b) and density ıv(yi)
(Fig. 5c).

Hence, for each graph Tv(t) for (at least some) given values t
and other fixed parameters (� is strictly positive) the density of
the graph is maximal at a certain distance d(t) > 0 from the origin
of the neuron. This non-monotonicity affects even the structure of
the connections in the network: there will be more connections
to the neurons in the area of the maximal density of the branches
of Tv(t). In turn one can express this in terms of the probability of
connection: the probability of connection has a maximum at positive
distance d(t) from the origin of a neuron. It is worth noticing that
this result supports the models and results reported in Voges et al.
(2010), Herzog et al. (2007), although in these papers the authors
assumed this type of connection while we were able to derive it
from the model of random growth.

Furthermore, the observation on non-monotonicity may also
provide some qualitative explanation for the experimental results
reported in Perin et al. (2011). Note, however, that neurons
considered in Perin et al. (2011) possess a 3-dimensional organi-
zation, whereas our model is purely 2-dimensional. On the other
hand, the results presented there are obtained from cortical slices
consisting of same layer neurons (layer V pyramidal neurons),
therefore our model may still catch some of their organizational
features.

In particular, it was reported in Perin et al. (2011) (Fig. 3), that
the average number of connections in groups of six neurons, as a
function of the average intersomatic distance within this group, has
a maximum at some positive distance, contrary to the expected
monotone decrease. Our analysis may offer the following expla-
nation of this phenomenon. If we would model the dendrites as
another random arborization stemming from the soma, then the
neurons would be connected if their respective trees of axons and
dendrites are overlapping. Then, the existence of a connection from
a neuron v to a neuron u indicates the location of overlapping of
corresponding trees stemming from u and from v. One may assume
that this is the location of the most dense part of the graph and
thus it is at some distance from the soma. Then, if another neuron
v′ has also a connection to u, this indicates that the trees stem-
ming from v and from v′ span the same location, and therefore
they might form an interconnected group. Furthermore, simply
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Fig. 5. (a) Computer-simulated random tree at time t = 6 with parameter � = 10/9, ˛ = � and corresponding computer-generated plots of the length 	v(yi) (b) and density
ıv(yi) (5c), for i = 1, . . ., n, with n = 1000.

due to the geometric constrain that the highest density of connec-
tions is at some given distance (say, R) from the soma, the number
of neurons in a group which satisfy this condition is also deter-
mined by R and the physical size of neurons. Thus, it may well be
non-monotone.

Considering connections through the arborization suggests
also that the in-degrees of the neurons with overlapping trees
might be highly correlated, independently of their intersomatic
distance. This indicates non-trivial clustering properties, which
are very important for the propagation of signals on a net-
work.

4. Conclusions

The main question we address here is how to incorporate the
space characteristics into a mathematically tractable model of a
growing graph of connections between neurons. We analyse a sim-
ple mathematical model of axonal arborization. We derive some
characteristics of a single unit (as the total length of random tree),
and the degree distribution for the network of potential connec-
tions. We show that the probability of a connection between two
neurons, which is a function of time and space, can be described as
a solution to some integral equation.

We argue that a functional model of a neural network depends
more on the spatial distribution of the graph which models axons
and dendrites, rather than on the Euclidean intersomatic distance.
In particular, we show that a growing network undergoes phases

in time when the probabilities of connections may decay with dis-
tance between the origins of the neurons, but on the other hand,
there are periods of time when this dependence is suppressed. Fur-
thermore, for some parameters of time the maximal strength of the
connections is achieved at a certain positive distance between the
neurons.

We also argue that in our model the condition that two neurons
have at least one common target neuron increases significantly the
probability to have more common target units. Interestingly, this
is also in agreement with the observation in Perin et al. (2011) that
two neurons are more likely to be connected if they both receive
an input from the same common neighbour rather than projecting
to the same common neighbour. This is an important cluster-
ing property for successful propagation of impulses in a network,
which requires a high in-degree. Developing further our simple
model should allow to check theoretically many other experimen-
tal facts.
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Appendix A.

A.1. Length distribution

Let Lv(t) be the total length of all branches of Tv(t). It is easy to
derive that

ELv(t) = e�t − 1
�

.

We shall describe the distribution of Lv(t) more precisely. Let � > 0
and t ≥ 0. Consider the moment generating function of Lv(t)

g(x, t) ≡ gLv(t)(x) = E[exLv(t)].

One can derive that g(x, t) satisfies the integral equation

g(x, t) = e(x−�)t + �

∫ t

0

e(x−�)sg(x, t − s)2ds,

with boundary condition

g(x, 0) = 1.

Differentiating with respect to t, we obtain the initial value problem

∂tg(x, t) = F(x, g(x, t)),

g(x, 0) = 1,
(A.1)

where

F(x, g(x, t)) = (x − �)g(x, t) + �g(x, t)2. (A.2)

Since the function F(x, y) is continuously differentiable in y on R
for any x ∈ R, the Picard-Lindelöf theorem ensures existence and
uniqueness of a solution to (A.1) on an interval containing t0 = 0,
which is given by

g(x, t) = x − �

xe(�−x)t − �
. (A.3)

Analysis of this solution shows that for every t > 0 there is a pos-
itive value c(t) such that the moment generating function (A.3) is
finite on

� = {(x, t) ∈ R2 : t ≥ 0, x < c(t)}.

A.2. Proof of Proposition 3.1

Let �∗
v be a Poisson distributed random variable Po(2rLv(t)�).

Then its moment generating function is given by

g�∗
v
(x) = E[ex�∗

v ] = E[e2r�(ex−1)Lv(t)].

Now using the result (A.3) and the definition of function g(x, t) we
derive from here

g�∗
v
(x) = g(2r�

(
ex − 1

)
, t) = � − 2r� (ex − 1)

� − 2r� (ex − 1) et(�−2r�(ex−1))
, (A.4)

which for every t is finite at least for all 0 ≤ x < c1(t), for some c1(t) > 0.
This ends the proof.
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Abstract

We provide an analysis of a randomly grown 2-d network which models dynamics of
a growing neuronal network taking into account known empirical features of the brain.
We estimate standard network parameters such as degree distribution, average shortest
path length and clustering coefficients, considering all these parameters as functions of
time. Our results show that even a simple network with just a few parameters is capable
of representing a wide spectra of architecture, capturing properties of well-known models,
depending on the time of the network development.

These results create a base for further study of neuronal activity on such networks
as the introduced model allows not only rather straightforward simulations but it is also
amenable to a rigorous analysis.

1 Introduction

Brain connectivity datasets typically represent networks of different parts of the brain con-
nected through anatomical connections (structural networks) or through functional connections
between the areas of the network (functional networks) [4], [17]) . How the brain structure af-
fects the brain performance is an inevitable question in brain studies (see, e.g., discussion in
[16]). Furthermore, as the performance may change the brain structure (learning presumably
does), the question of the structure seems to be relevant only in the context of certain dynamical
processes on networks [9]. Still the underlying physical connections are of the primary interest,
as they provide the initial condition for a network to be developed into a functional system.

Viewing neuronal networks as abstract graphs results in numerous attempts to classify these
networks using their empirical or statistical characteristics such as for example, degree, clus-
tering coefficient or the shortest path [4]. Since there is only a few different well-studied graph
models, this classification remains rather rough as it divides all networks into large classes (see
discussion in [7]), most often referring to Erdos-Renyi classic random graphs, regular random
graphs [5], or the so-called “small world networks” [23]. It is well recognized that the key
challenge for neuromodelling is to develop graph models with adequate representations of bio-
logical reality, as e.g., unambiguously assigning edge weights to the connections or interactions
between the nodes ([7]).

Classic random graphs have a low average shortest path length but also a low cluster co-
efficient, while regular networks have high clustering as well as a high average shortest length
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path [3]. The so-called small world structure has been considered as a good model both for
anatomical and functional connectivity [19] because a low average shortest path length between
connected neurons yields a low wiring cost of the system. Furthermore, small world networks
exhibit high clustering, which is also considered to be a property of biological networks.

Functional integration usually means existence of strongly connected different regions of the
brain. Functional segregation is characterized by the presence in the network of groups called
clusters or modules [15] of highly interconnected units (neurons), however the links between
the groups might have a different strength. In [18] two measures called complexity and entropy
have been introduced to measure those properties in a graph. To demonstrate the efficiency of
such a measurement a network which has a high clustering and a low wiring cost was designed
there with a help of a special technique of graph selection.

As far as the neuromodelling is concerned all classical random graph models miss the im-
portant characteristics, namely the dependence on space, that is, distance between the nodes,
and the dependence on time (see discussion in [7]). Experimental data [13] point out that the
distance between the neurons (nodes in the graph) may have an important role for the structure
and therefore also for the functioning of a neuronal network.

We introduce new models of random graphs which take into consideration the distance and
the time aspects. Let us also mention that mathematically tractable related models of distance
random graphs have already been introduced in [12]. Recently these models got more attention
due to their relation to neural networks [8]. In this paper we develop the network dynamics
of the model introduced in [1]. We compare the properties of the introduced models with the
general random graph model G(n,m) [5]. Recall that G(n,m) is a random graph with n nodes
and m edges chosen at random uniformly out of all possible edges on n nodes without loops.

Here we consider the major characteristics of the graph, the degree distribution, the fre-
quency of connection, the shortest path and the clustering coefficient as functions of the param-
eters of the network, which are the time, the branching parameter, and the distance between
the nodes. We show that tuning the parameters yields structural changes in the model: the
model may possess properties closed, e.g., to the ones of a classic random graph, or to the ones
of a small world network.

We address also the question of the scalings between the parameters. Even if the size of
the neuronal network is finite it is definitely large, and therefore it might be useful to consider
limits when the number of the nodes (a large parameter) goes to infinity, in which case all the
remaining parameters (can be small parameters as well) must be scaled correspondingly. Using
data on physical sizes in a cortex ([14]) one can fit our model into a real scale of biological
network.

2 Model

The network we study in this paper has been introduced in [1]. This model is inspired much by
the study of dendritic trees in [10] as well as by the data gathered in [13]. The model helps to
find out the dependence of the connections on the space in time, and in particular it explains
the formation of local and global connections.

Recall a definition of a directed random growing network from [1]. Let the set of vertices
V be a random set in a square Λ = [−w,w]× [−w,w], w ≥ 0 being a parameter. Each vertex
v ∈ V represents the location of a neuron, and a ball of radius r around this vertex represents
the physical size of the soma together with an area of dense dendrites of this neuron.

Assume that V has a Poisson distribution with some intensity µ. Hence, on the average
there are (2w)2µ nodes in Λ.

We assume that each neuron of a network develops its axonal tree independently of other
neurons. Notice here that for a simplification we consider only axonal trees. To account for
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the dendrites we set a ball of radius r around each location v to represent the physical size of
the soma together with an area of dense dendrites of the neuron at v. (A model with dendritic
arborization can be treated in a similar way, but this we leave for later studies.)

Let t ≥ 0 be a parameter of time. At time t = 0 each neuron is simply represented by
a point v. At any time t ≥ 0 the structure of a network is given by a random graph (with
possible self-intersections) G(t) on Λ whose dynamics is governed by two processes: elongation
and branching of each tree independently. Let us describe the dynamics of a single tree.

From a point v ∈ V a segment, or better a ray, as we actually consider directed graphs,
starts to grow at time 0 in a randomly chosen direction with constant speed. We set this speed
to be 1, which is not a restriction, since the time can be rescaled. This initial ray splits at some
random time into two rays. The time of splitting is exponentially distributed with mean 1/λ.
Then, each of the two new rays develops independently in the same manner, but the directions
of the new branches are independent random variables uniformly distributed on [−α, α], where
parameter α ∈ [0, π] represents the highest deviation from the direction of the splitting ray.
This means that each of the rays chooses an independently random direction (within α) to
grow, and then each splits independently with the same intensity λ. Hence, any α < π yields
some memory of direction in the model.

Denote Tv(t) the resulting tree at time t. Notice, that Tv(t) is a subset of Λ. Given a graph
at some time t each of its ends continues to grow linearly and splits independently of others.

We define a distance from neuron u ∈ V to a neuron v ∈ V as the smallest Euclidean
distance (‖ · ‖) between u and the tree Tv(t) and denote this distance by ρ with

ρ(u,Tv(t)) := min{‖x− u‖ : x ∈ Tv(t)}.

We say that a neuron v ∈ V has a connection to a neuron u at time t if the tree Tv(t) intersects
a ball of radius r > 0 (representing the soma) with a center at u, or equivalently,

ρ(u,Tv(t)) ≤ r. (1)

Finally, define a directed graph G(t) on vertices V (t) by setting an edge from v to u if
ρ(u,Tv(t)) ≤ r. Denote a probability of this edge by

pλ,α(t, u, v) = P{ρ(u,Tv(t)) ≤ r}. (2)

Observe that since every tree develops in the same manner we have

P{ρ(u,Tv(t)) ≤ r} = P{ρ(v,Tu(t)) ≤ r},

therefore the probability (2) depends only on ‖u− v‖:

pλ,α(t, u, v) = pλ,α(t, ‖u− v‖) = P{ρ(u,Tv(t)) ≤ r}. (3)

Recall that in [1] the integral equation was derived for the function pλ,α(t, d) for all λ ≥ 0
when α = π. Let qλ,π(t, d) = 1− pλ,π(t, d). It is derived in [1] that

qλ,π(t, d) =

∫ +φ0

−φ0

∫ s0(φ)

0

λe−λs

2π
(qλ,π(t− s, d′(s, φ)))2dsdφ

+

∫ 2π−φ0

φ0

∫ t

0

λe−λs

2π
(qλ,π(t− s, d′(s, φ)))2dsdφ

+ e−λtq0(t, d),

(4)

where
φ0 = arcsin

r

d

3

85



d′(s, φ) =
√
d2 + s2 − 2ds cosφ

and

q0(t, d) =





1, if t < d− r,
1− 1

π
arccos d2+t2−r2

2td
, if t ∈ [d− r,

√
d2 − r2],

1− 1
π

arcsin r
d
, if t >

√
d2 − r2 .

(5)

The solution to this equation for general λ > 0 remains to be an open problem, but we treat
the case λ = 0 in detail below.

Our focus here is on the statistics of graph characteristics, such as degree distribution, min-
imum length path, clustering coefficient, of simulated G(t) for different parameters α, λ, µ, r, w.
Having in mind the physical interpretation of these parameters we shall assume the following
scaling

w = Θ(1), r = o(1), µ� 1, µr = o(1), (6)

where notation Θ(1) means ”of the order 1”. This means that taking a size of the network in
2-dimensional space as a unit, the number of neurons is very high, the axons are very thin.
This assumption is in agreement with the biological data on cortex [14] that the dendrites of
cells are typically in the region of 500 µm in diameter, and their axons can distribute in patches
200-300 µm across, separated by distances of up to 1 mm ([11]). Notice that we do not fix
values w, r, µ, but treat them as variable parameters of the model.

The introduced model is suitable for simulations as well as for a rigorous analysis. It sat-
isfies demands of the neuroscientific community ([7]) to develop graph models with adequate
characteristics. In particular, probability of connections defined by (4) as a function of other
(biologically motivated) parameters of the model. Similar to (4) equation, however more in-
volved can be derived for general α ∈ [0, π]. It was shown in [1] that solution to (4) is not a
monotone function of the distance between the nodes. Below we empirically confirm this fact
also for α < π. Observe that although this contradicts a common assumption on the mono-
tone decay of neuronal connections with the distance, non-monotonicity between distances in
space and strengths of connections between small group of neurons was already observed by
measurements of [13].

We argue that depending on time t graph G(t) undergoes structural transitions, as its
characteristics exhibit different features depending on the time of the development. As a null
hypothesis we use assumption that the measurements are made on the classic random graph
model G(n,m) with n being equal the number of vertices in the considered graph G(t), and
m being equal the number of edges in G(t). Notice that one can study this model in a torus
to avoid the boundary effects. We will simply consider only the nodes which are far from the
boundary. Thus within time t < w the trees of these nodes are less sensitive to the absence of
nodes outside of Λ.

3 Network analysis

We shall quantitatively describe the connectivity properties in our model and compare them
with the ones which are commonly assumed. In particular, we check what are the conditions
to have “hubs”, i.e., vertices with a very high degree observed in real neuronal tissue ([22]).

3.1 The degree.

The degree of a node v counts the number of edges which are connected to that node. In the
case of a directed network it is natural to define in-degree νinv (t) and out-degree νoutv (t) of a
node v which counts the respective edges of G(t) separately. The degree distribution has an
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immediate neurobiological interpretation as it might be associated with the number of axons
or dendrites.

By definition νoutv (t) counts in our model the number of points of the Poisson process on Λ
which are at a maximum distance r from the tree Tv(t). Let Ar(Tv(t)) denote the set of the
vertices and |Ar(Tv(t))| denote the area of the r-neighborhood of Tv(t) within the square Λ.
Then the out-degree of the neuron v is a Poisson-distributed random variable with a random
parameter |Ar(Tv(t))|µ that is

νoutv (t) ∼ Po(|Ar(Tv(t))|µ) (7)

(we use notation ∼ to denote equality in distribution here). Hence, the out-degree for our
model has a “light tail”, i.e., this does not imply “small-world property”. However, below we
show that tuning parameters one still can observe “hubs” in this model.

Notice that formula (7) for the out-degree distribution does not use the connection prob-
abilities. However, to compute the in-degree νinv (t) we shall make use of these probabilities.
Recall the definition of edges in G(t) (see (1))

νinv (t) =
∑

u∈V \{v}
1{ρ(u,Tv(t))≤r}

d
=

∑

u∈V \{v}
Xu(t), (8)

where, for any t and different u, the random variables Xu(t) are independent and distributed
according to a Bernoulli distribution with parameter pλ,α(t, ‖u− v‖) defined in (3).

3.1.1 No branching case: λ = 0.

Despite being of limited interest for modelling purposes, mathematically, this specific case λ = 0
provides inside for the general one as it is exactly solvable and represents a marginal case for
the model with a positive branching parameter. When λ = 0 the tree Tv(t) is simply a segment
of length t, hence

|Ar(Tv(t))| = 2rt+ πr2,

and in this case using formula (7) we get

νoutv (t) ∼ Po (|Ar(Tv(t))|µ) ∼ Po
(
(2rt+ πr2)µ

)
. (9)

This tells us that for all t as long as rtµ = o(1) the network consists mainly of disconnected
nodes.

Observe that for all r ≤ t ≤ w, where w is at most of order constant by the assumption (6)
all the branches with high probability intersect at a positive angle. Therefore the area of the
intersection of r-neighborhood of any tree with the r-neighborhood of all the remaining trees
in the network is

E
∣∣Ar (Tu(t)) ∩ ∪v∈V \{u}Ar (Tv(t))

∣∣ = O (r |Ar(Tu(t))|) = o (|Ar(Tu(t))|) .

Therefore the out-degrees defined by (9) can approximately be considered as independent since
the respective areas of their trees have a very small overlap. Let Dmax(t) denote the maximal
value Dmax(t) among

|V |/4 ∼ Po
(
µw2

)

i.i.d. copies of (9). Due to the properties of the Poisson distribution

Dmax(t) = oP (1), if µrt� 1

µ
, (10)
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Dmax(t) = ΘP (1), if µrt ∼ 1

µ
, (11)

and with a high probability

log µ

log log µ+ | log c| � Dmax(t)�
(

log µ

| log(µrt)|

)
, if µrt� 1

µ
. (12)

The last bound together with our assumptions (6) tells us that the meaningful range of param-
eters allowing “hubs” with high out-degree in the network requires the following condition

1

µ2
� r � 1

µ
. (13)

Consider now the in-degree. First we note that by (5) (see also [1], Section 3.3) when λ = 0
the probability p0(t, d) that at time t there is a connection from a fixed neuron v to another
one u at distance d = ‖u− v‖ > r is given by

p0(t, d) =





0, if t < d− r,
1
π

arccos d2+t2−r2
2td

, if t ∈ [d− r,
√
d2 − r2],

1
π

arcsin r
d
, if t >

√
d2 − r2 .

(14)

It is clear that for any fixed d, the function p0(t, d) increases in t, reaches its maximum when
t =
√
d2 − r2, and then remains to be at this constant value which depends only on the ratio

r/d.
To avoid boundary effects, assume, r � t < w/3 and consider the in-degree νinv (t) of the

vertex v = 0 at the center of Λ. Fix ε arbitrarily and define

Vn = {u ∈ V : (n− 1)ε < ‖u‖ ≤ nε}. (15)

This gives us the following partition of the set of vertices V

V = ∪n≥1Vn,

where by the definition of the set V each of Vn has also a Poisson distribution

|Vn| ∼ Po(π(2n− 1)ε2µ). (16)

This helps us to find the following stochastic bounds for the in-degree defined in (8):

[ t
ε ]∑

n=1

Po
(
π(2n− 1)ε2µp0(t, (n− 1)ε)

)
� νinv (t) (17)

�
[ t
ε ]+1∑

n=1

Po
(
π(2n− 1)ε2µp0(t, nε)

)
,

which yields the bounds for the expected in-degree:

[√
2w
ε

]

∑

n=1

π(2n− 1)ε2µp0(t, (n− 1)ε) ≤ Eνinv (t) ≤

[√
2w
ε

]
+1∑

n=1

π(2n− 1)ε2µp0(t, nε). (18)

6

88



Let us now rewrite (14) as follows

p0(t, d) =





0, if d > t+ r or d < r,
1
π

arccos d2+t2−r2
2td

, if
√
t2 + r2 ≤ d ≤ t+ r,

1
π

arcsin r
d
, if r < d ≤

√
t2 + r2 .

(19)

Then we derive from (18) for t+ r < w

[√
t2+r2

ε

]
−1

∑

n=[r/ε]

2nε2µ arcsin
r

εn
≤ Eνinv (t) ≤

[ t+r
ε ]+1∑

n=[r/ε]

(2n− 1)ε2µ arcsin
r

εn
. (20)

Passing to the limit ε→ 0 we get

∫ √t2+r2

r

2xµ arcsin
r

x
dx ≤ Eνinv (t) ≤

∫ t+r

r

2xµ arcsin
r

x
dx (21)

=

∫ √t2+r2

r

2xµ arcsin
r

x
dx+O(r2µ) = 2µrt+O(r3/2µ),

which together with (17) yields

νinv (t) ∼ Po
(
2µrt+O(r3/2µ)

)
, (22)

that has the same asymptotics for small r as the out-degree (9).
Observe that despite the same value asymptotics, there is a major difference between the

spacial distribution of the set of vertices contributing to the in-degree and of the set of vertices
contributing to the out-degree of a vertex. Conditionally on the event that vertex v is connected
to a given vertex u the location of the remaining vertices to which v is connected is restricted
to the area close to the interval of length t which starts at v and passes through u. However,
conditionally on the event that u is connected to v, the locations of other vertices connected
to v are almost independent of the location of u. Furthermore, given the value of the in-degree
these vertices are distributed almost uniformly over the ball of radius t (of order constant)
around v.

Figure 1 represents histograms of in-degrees and out-degrees generated from one simulated
network with α = π/2, λ = 1.5, µ = 100, t = 1.5, w = 1. One can observe that these maximal
out-degrees exhibit the highest discrepancy between our model and the corresponding G(n,m)
model. When λ > 0 the differences between in-degree distribution and out-degree distribu-
tion vanish, approaching the case of the Gn,p model where they have the same distribution.
Where Gn,p is the classic random graph with n nodes and an edge present independently with
probability p between any tow pair of vertices.

Notice that when λ = 0 the values of the time t are up to the order of w, that is, bounded
by a constant. After this time the network no longer changes since as soon as the ”axons” pass
the size of the area Λ they do not return to Λ.

3.1.2 Positive branching case: λ > 0.

The out-degree in this case follows the compound Poisson distribution as it is proved in [1].
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4 Analysis of a network with branching λ > 0.

When λ > 0 the axons within area Λ may grow unbounded, or until the r-neighborhood around
all the trees covers the entire area Λ. Hence, as time goes to infinity the network becomes fully
connected. Therefore by analogy with phase transitions in random graphs one expects to find
for each λ > 0 certain time intervals when the properties of network change significantly.

Below we provide the results of the simulated network dynamics to highlight the functions
of different parameters of the network, particularly time.

We remind here as well that the out-degree in this case follows the compound Poisson
distribution as it is proved in [1].
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Figure 1: Frequency of degree of the graphs G(t) and G(n,m) with α = π/2, λ = 1.5, µ = 100,
T = 1.5, w = 1.

4.1 Frequency of connection.

We observed already in [1] that the density in space of the axonal tree is not monotone de-
creasing with the distance from neuron. We expect this monotonicity to be reflected in the
frequency of connections as well.

Given µ = 100, r = 0.01, α = π/2 we generate 100 graphs, with different branching intensity
λ = {0, 5, 10} and for different time moments t within the interval [

√
µr, 3
√
µr]. Furthermore,

we consider different values for the size of the area, namely w. Keeping µ/w2, the intensity of
the nodes per unit area fixed, we simulate change of the distances between vertices for different
values of w (Figure 2d and Figure 3).

We compute the frequency of connections in the graph for different values of the parameters
µ, µ/w2, t, setting

f(t) = fw,µ,r,λ,α(t) =
#{directed edges in the graph G(t)}

#{ordered pairs of vertices of the graph G(t)} .

Hence, f(t) is an approximation for the graph probability pλ,α(t, d) defined in (3). In particular,
our simulated results for α = π also provide an approximation for the solution to the equation
(4) averaged over the entire graph.
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Figure 2 illustrates the growth of the frequencies of connections while increasing the intensity
of branching:

Panel (a) for λ = 0 the number of connections increase slowly until constant;

Panel (b) for small positive λ = 5 the amount of connections is four times higher and continues to
increase over time;

Panel (c) for higher λ = 10 the frequency of the probability grows linearly.

Panel (d) for fixed time t = 3w we compute the frequency fp depending on different distances w.

The dotted curves are the 95% confidence intervals. Connectivity increases with time (lin-
early, as the plot shows) while it decays with the parameter w, which reflects in our simulations
the distance between nodes. The computations could have been done as well keeping the exact
coordinates of the nodes but this would have created a much complex simulations and expensive
in terms of time, then we decide to approximate the distance between the nodes with changing
the space where the nodes could be generated i.e, the parameter w. This allowed us to simplify
more the simulations keeping the characteristic of distance as a parameter which influences the
dynamics of the network.

Letting fixed other parameters than w, the frequency is a function of w which reflects
the distance between the vertices. The frequency is usually non-monotone indeed it attains its
maximum value for a certain range of w. Figure 3 (a,c,e,g) exhibits the geometric characteristics
of the network evolution for w ∈ [0.5, 1, 2, 3] respectively and Figure 3 (b,d,f,h) reports the
corresponding connectivity in the network. At the smallest distance, when w = 0.5 there
are fewer connections than when w ∈ [1, 2], while at w = 1 there is a maximum number of
connections.

Our simulations confirm the following properties of the frequences
– non-monotonicity with respect to the distance (Figure 2d),
– monotone increase in time (Figures 2b and 2c),
– stabilization after a certain time (Figures 2a and 2b).
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Figure 2: (2a)Frequency fp with respect to t for λ = 0, with α = π/2, t = [w, 3w], (2b)Frequency
fp with respect to t for λ = 5, with α = π/2, t = [w, 3w] , (2c)Frequency fp with respect to t
for λ = 10 (2d) Frequency fp with respect to distance w , given λ = 5 given fixed time t = 3w.
The dotted curves are the 95% confidence intervals.

4.2 Shortest path

Given an arbitrarily fixed set of parameters for our model, we now compute the average shortest
path of our graph G(t) and the corresponding G(n,m), that is, where n and m are the same
as for G(t).

If there is at least one directed path from vertex v to vertex u in G(t) we denote dv→u(t)
the length of the shortest path from v to u, i.e., the number of the edges it consists of. When
there is no path from v to u we define dv→u(t) = 0. We also define the directed average shortest
path length as follows

LG(t) =
1

n

∑

v∈V

∑
u∈V : u6=v dv→u(t)

n− 1
. (23)

The simulations show that for a wide range of parameters our model exhibits a low average
shortest path, a property similar to the classic random graph [5], [3].

Figure 4 shows the simulated ratio between the average shortest path of G(t) and G(n,m)
depending on the time t for α = π/6 (4a) and α = π (4b). For both values of α the ratio
remains almost constant between 0.5 and 1.1 when the time is big enough.

Our results show that when the time is small then the average shortest path length between
any two nodes at distance bigger than t is lower in G(t) than in G(n,m). This is due to the
geometry of G(t) since here the length of an edge matters, i.e., only few short connections are
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Figure 3: Trees structures for given value of w ∈ [0.5, 1, 2, 3] and respective graph of connections
G(t).
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possible, while in G(n,m) the same amount of edges can be placed in longer path.
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(a) Ratio between average shortest path of 100
simulations of G(t) and G(n,m), for α = π/6,
λ = 1, r = 0.1, w = 1 and t = [1, 2].
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λ = 1, r = 0.1, w = 1 and t = [1, 2].

Figure 4: For every t ∈ [w, 2w] we simulate 100 graphs and we report with the black cycles the
ratio LL(G(t))/LL(G(n,m)), the red line represent the mean value of this ratio.
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4.3 Clustering coefficient

For the resulting directed graph we will refer to the clustering coefficient defined in [6]. The
number of directed triangles t→v around the node v ∈ V is given by the following equation

t→v =
1

2

∑

w,u∈V
(avw + awv)(avu + auv)(awu + auw), (24)

and for νtotv = νoutv + νinv , the directed clustering coefficient CC→ is defined as follows

CC→ =
1

|V |
∑

v∈V

t→v
νtotv (νtotv − 1)− 2

∑
w∈V avwawv

(25)
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Figure 5: Given the graph G(t) (on the left) and G(n,m) (on the right) for chosen parameters
α = π/4, λ = 6, t = 0.4, w = 0.2, r = 0.1, we compute the respective clustering coefficients
CC→(G) = 0.19 and CC→(G(n,m)) = 0.041, .
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We run 50 independent simulations of G(t) and G(n,m) with r = 0.1, µ = 10, for β with
a range of parameter λ ∈ {0, 1.5, 3}, α ∈ {π, π/2, π/6}, t ∈ {0.2, 0.66, 1.12} and distance
w ∈ {0.28, 0.7, 1.121}.

We compute the clustering coefficient for the graphs with all possible parameters combina-
tions and we report them in Table 1, Table 2 and Table 3. The values in the tables highlighted
in bold are those for which CC→(G) and CC→(G(n,m)) are significantly different from each
other at a significance level of 5%. We observe how the clustering coefficient does not always
increase monotonically with time. For the value λ = 0, (Table (1)) at a fixed distance w = 0.28,
CC→(G) decreases. This fact is due to the geometry of the model. After a certain time the
probability of forming single connections is higher than forming triples. The non-monotone
behavior can also be seen for the parameter λ = 1.5, α = π/2 and λ = 3, α = π/6 respectively
in Table 2 and in Table 3. The combination (λ, α) = (1.5, π/2) produces graphs where the tree
structures have the shape of thigh cones due to the low frequency of branching. Also, despite
the high intensity of branching, the pair (λ, α) = (3, π/6) produces as well a tree area very
small due to the sharp angle of the directions of the trees growth. While when the structures
of all trees grow more uniformly we can observe that the clustering coefficient increases with
time monotonically.

We conclude that our model is capable to possess difference properties depending on the
parameters. In particular, our simulations prove a great variability of the clustering coefficient.
We highlight (in bold in each Table 1, Table 2 and Table 3) the values of the clustering coefficient
which are significantly different for two graph models G(t) and G(n,m). Our simulations show
also non-monotonicity of the value of clustering with respect to time: Table 2, λ = 1.5 and
α = π/2, and Table 3, λ = 3 and α = π/6.

CC→(G) CC→(G(n,m))

λ = 0
w
0.28 0.7 1.121

t
0.2 0.042 0.007 0 0.007 0 0
0.66 0.028 0 0 0 0 0
1.121 0.027 0.002 0.002 0 0 0

Table 1: CC comparison for λ = 0
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CC→(G) CC→(G(n,m))
λ = 1.5
α = π

w
0.28 0.7 1.121

t
0.2 0.067 0 0.002 0.016 0 0.002
0.66 0.186 0.019 0.007 0.092 0.011 0
1.121 0.243 0.091 0.012 0.172 0.031 0.005

λ = 1.5
α = π/2

w
0.28 0.7 1.121

t
0.2 0.029 0 0 0.01 0 0
0.66 0.116 0.025 0.002 0.044 0.005 0
1.121 0.106 0.022 0.007 0.064 0.012 0.006

λ = 1.5
α = π/6

w
0.28 0.7 1.121

t
0.2 0.036 0 0 0.005 0 0
0.66 0.066 0.014 0.002 0.03 0.001 0
1.121 0.074 0.019 0.007 0.03 0.006 0.001

Table 2: CC comparison for λ = 1.5

CC→(G) CC→(G(n,m))
λ = 3
α = π

w
0.28 0.7 1.121

t
0.2 0.062 0 0 0.017 0 0
0.66 0.237 0.045 0.016 0.138 0.007 0
1.121 0.467 0.169 0.065 0.308 0.094 0.02

λ = 3
α = π/2

w
0.28 0.7 1.121

t
0.2 0.038 0 0 0.007 0 0
0.66 0.1 0.028 0.01 0.071 0.012 0
1.121 0.235 0.111 0.027 0.158 0.076 0.015

λ = 3
α = π/6

w
0.28 0.7 1.121

t
0.2 0.047 0.002 0 0.009 0 0
0.66 0.1 0.02 0.003 0.03 0.006 0
1.121 0.08 0.03 0.029 0.031 0.007 0

Table 3: CC comparison for λ = 3
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5 Conclusions

We define a random graph model G(t) which approximates potential synaptic connectivity be-
tween neurons. The network connectivity depends on different parameters which capture the
most relevant features of potential synaptic development like intensity of branching, length,
angle and speed of growth. We investigate the spatial development of those potential synapses,
and show how degree distribution, frequency of connections, average shortest path and cluster-
ing coefficient evolve in time.

We show that the maximum of the in-degree of G(t) does not differ much from the one for
the corresponding G(n,m) graph, unlike the maximum of the out-degree, which is much higher
than the one in G(n,m).

Our results confirm that the frequency of connection increases monotone in time, but the
highest value depends on the distances between the nodes.

Our simulations show for different parameters that our network depending on the parameters
may resemble the typical characteristic of small world structure, i.e., small average shortest path
and high clustering coefficient, or it can be similar to the classic random graph model where
both average shortest path and clustering coefficient are small.

Our study addresses also the question of scaling of the physical parameters to fit the model
into real biological framework.

With this study we propose a model (simplified version of the one introduced in [10]),
which is analytically tractable and allows simulations to mimic some properties of the real
neural networks [2] [20]. The code which we used to produce the simulations is open
under request.

Here we considered 2-dimensional network. Observe that is a known fact that axonal trees
form essentially 2-dimensional structures [14]. Our analysis is amenable for the 3-dimensional
case as well. Let us also mention here that a related 3-dimensional model of cylinder percolation
was studied in [21].

Another direction for improvement modelling is to take into account both axon and denritic
arborazation. Our approach should be useful to describe the axon-denritic connections as well,
however the analogue of equation (4) will be more involved.

References

[1] Ajazi, F., Napolitano, G. M., Turova, T., and Zaurbek, I. Structure of randomly
grown 2-d network. Biosystems 136 (2015), 105–112.

[2] Bollobás, B. The distribution of the maximum degree of a random graph. Discrete
mathematics 32 (1980), 201–203.

[3] Bollobás, B. Random graphs. Cambridge University Press, 2001.

[4] Bullmore, E., and Sporns, O. Complex brain networks: graph theoretical analysis of
structural and functional systems. Nat. Rev. Neurosci. 10, 4 (2009), 312.
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