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Abstract

This thesis consists of four papers.

In the first paper, we study the isotonic regression estimator over a general
countable preordered set. We obtain the limiting distribution of the estimator
and study its properties. Also, it is shown that the isotonisation preserves the
rate of convergence of the underlying estimator. We apply these results to the
problems of estimation of a bimonotone regression function and estimation of
a bimonotone probability mass function.

In the second paper, we propose a new method of estimating a discrete mono-
tone probability mass function. We introduce a two-step procedure. First, we
perform a model selection introducing the Akaike-type information criterion
(CMAIC). Second, using the selected class of models we construct a modified
Grenander estimator by grouping the parameters in the constant regions and
then projecting the grouped empirical estimator onto the isotonic cone. It is
shown that the post-model-selection estimator performs asymptotically better,
in l2-sense, than the regular Grenander estimator.

In the third paper, we use a stochastic process approach to determine the neut-
ron energy in a novel detector. The data from a multi-layer detector consists
of counts of the number of absorbed neutrons along the sequence of the de-
tector’s layers, in which the neutron absorption probability is unknown. These
results are combined with known results on the relation between the absorp-
tion probability and the wavelength to derive an estimator of the wavelength
and to show consistency and asymptotic normality.

In the forth paper, the results of the third paper are generalised to the case
of a multimode Poisson beam. We study the asymptotic properties of the
maximum likelihood estimator of the spectrum and thinning parameters for
the spectrum’s components.

Keywords: Constrained inference, Isotonic regression, Density estimaion, Gren-
ander estimator, Limit distribution, Neutron detection.
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Introduction

The thesis consists of two parts.

The first part (Papers A and B) is dedicated to the order-restricted inference
over general countable preordered sets.

In the second part (Papers C and D) we study the feasibility of a statistical
determination of neutron wavelength and a spectrum for the new generation
of neutron detectors being developed at the European Spallation Source (ESS).

1 Order-restricted inference over countable preordered
sets

Let X be a countable set {x1, x2, . . . } with |X | ≤ ∞, with a preorder � defined
on it. We begin with the definitions of the order relations on an arbitrary set
X and of an isotonic regression over it, cf. [4, 18, 19].

Definition 1.1. A binary relation � on X is a simple order if

(i) it is reflexive, i.e. x � x for x ∈ X ;

(ii) it is transitive, i.e. x1, x2, x3 ∈ X , x1 � x2 and x2 � x3 imply x1 � x3;

(iii) it is antisymmetric, i.e. x1, x2 ∈ X , x1 � x2 and x2 � x1 imply x1 = x2;

(iv) every two elements of X are comparable, i.e. x1, x2 ∈ X implies that either
x1 � x2 or x2 � x1.

A binary relation � on X is a partial order if it is reflexive, transitive and anti-
symmetric, but there may be noncomparable elements. A preorder is reflexive and
transitive but not necessary antisymmetric and the set X can have noncomparable
elements. Note, that in some literature the preorder is called as a quasi-order.

Let us introduce the notation x1 ∼ x2, if x1 and x2 are comparable, i.e. if
x1 � x2 or x2 � x1.
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Definition 1.2. A function f (x) : X → R is isotonic if xi, xj ∈ X and xi � xj
imply f (xi) ≤ f (xj).

Let F is = F is(X ) denote the family of real valued bounded functions f on
a set X , which are isotonic with respect to the preorder � on X . In the
case when |X | = ∞ we consider the functions from the space lw

2 , the Hil-
bert space of real-valued functions on X , which are square summable with
some given non-negative weights w = {w1, w2, . . . }, i.e. any g ∈ lw

2 satisfies
∑∞

i=1 g(xi)
2wi < ∞.

Definition 1.3. A function g∗ : X → R is the isotonic regression of a function
g : X → R over the preordered set X with weights w ∈ Rs

+, with s ≤ ∞, if

g∗ = argmin
f∈F is

∑
x∈X

( f (x)− g(x))2wx,

where wxi = wi, for i = 1, . . . , s.

Similarly one can define an isotonic vector in Rs, with s ≤ ∞, and the isotonic
regression of an arbitrary vector in Rs. Let us consider a set of indices I =

{1, . . . , s}, with s ≤ ∞, with some preorder � defined on it.

Definition 1.4. A vector θ ∈ Rs, with s ≤ ∞, is isotonic if i1, i2 ∈ I and i1 � i2
imply θi1 ≤ θi2 .

We denote the set of isotonic vectors in Rs, with s ≤ ∞, by F is = F is(I).
In the case of an infinite index set we consider the square summable vectors
(with weights w) from lw

2 , the Hilbert space of all square summable vectors
with weights w.

Definition 1.5. A vector θ∗ ∈ Rs, with s ≤ ∞, is the isotonic regression of an
arbitrary vector θ ∈ Rs (or θ ∈ lw

2 , if s = ∞) over the preordered index set I with
weights w ∈ Rs

+ if

θ∗ = argmin
ξ∈F is

∑
i∈I

(ξi − θi)
2wi.

1.1 The isotonic regression estimator

Let g̊ ∈ F is be a fixed unknown function. Assume we are given observations
zi, i = 1, . . . , n, independent or not, that depend on g̊ in some way.
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Now assume that

ĝn = ĝn(z1, . . . , zn)

is a Rs (or lw
2 )-valued statistic. We will call the sequence {ĝn}n≥1 the basic

estimator of g̊. In order to discuss consistency and asymptotic distribution
result we introduce the following basic topologies. When s < ∞, we study the
Hilbert space with the inner product 〈g1, g2〉 = ∑s

i=1 g1,ig2,iwi, for g1, g2 ∈ Rs,
endowed with its Borel σ-algebra B = B(Rs) and when s = ∞ we study the
space lw

2 with the inner product 〈g1, g2〉 = ∑∞
i=1 g1,ig2,iwi, for a fixed weight

vector w satisfying 
inf

i
{wi} > 0

sup
i
{wi} < ∞

(1)

and we equip lw
2 with its Borel σ-algebra B = B(lw

2 ).

Now define the isotonized estimator ĝ∗n by

ĝ∗n = argmin
ξ∈F is

∑
i∈I

(ξi − ĝn,i)
2wi. (2)

We make the following assumptions on the basic estimator ĝn, for the finite,
s < ∞, and the infinite, s = ∞, support case, respectively.

Assumption 1.1. Suppose that s < ∞. Assume that ĝn
p→ g̊ for some g̊ ∈ F is and

Bn(ĝn − g̊) d→ λ, where λ is a random vector in (Rs,B) and Bn is a diagonal s× s
matrix with elements [Bn]ii = nqi with qi being real positive numbers.

Assumption 1.2. Suppose that s = ∞. Let ĝn, for n = 1, 2, 3, . . . , be a sequence of
random vectors taking values in the Hilbert space lw

2 . Assume that ĝn
p→ g̊ for some

g̊ ∈ F is, and Bn(ĝn − g̊) d→ λ, where λ is a random vector in (lw
2 ,B) and Bn is a

linear operator lw
2 → lw

2 , such that for any g ∈ lw
2 it holds that (Bng)i = nqi gi, with

qi being the real positive numbers. Suppose also that any finite s-dimensional cylinder
set in lw

2 is a continuity set for the law of λ.

Note that the matrix Bn in Assumption 1.1 and the operator Bn in Assumption
1.2 allow for different rates of convergence for different components of ĝn, i.e.
the rates qi can be all the same but they do need to.
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The main goal of Paper A is to study the asymptotic behaviour of ĝ∗n, as
n → ∞. For a general introduction to the subject of constrained inference
we refer to [4, 18, 19]. In the continuous case, the asymptotic behaviour of
the regression estimates under monotonic restriction was investigated in, for
example, [8, 21]. The problem of estimating a monotone probability density
function (pdf) was considered in [2, 9, 11, 17]. In [2] the authors studied a
general scheme for order constrained inference in a continuous setup.

This research is mostly motivated by the paper [12], where the authors con-
sidered the problem of estimation of a discrete monotone probability mass
function (pmf). It was shown that the limiting distribution of the constrained
maximum likelihood estimator of a pmf is a concatenation of the isotonic re-
gressions of Gaussian vectors over the periods of constancy of the true pmf p.
Compare to [12], in our work we do not require strong consistency of a basic
estimator ĝn, and we consider general preorder constraints.

In the discrete case some recent results are [5, 6, 10, 12]. The asymptotic distri-
bution of the restricted parametric extremum estimator was considered in [1].
The asymptotic results in Paper A (even in the finite case) does not directly
follow from the paper [1] when the basic estimator is linearly constrained, as,
for example, in the case of a pmf estimation.

The computational aspects of the least squares estimation under bimonoton-
icity constraints, which is an example of a partial order, were studied in [7].
In the paper [20] the authors proposed the algorithms for weighted isotonic
regression under order constraints specified by a directed acyclic graph.

1.2 Review of Paper A

In Paper A we study the estimators for the problem of estimating real valued
functions that are defined on a general countable set and that are isotonic with
respect to a preorder defined on that set. Given the Assumption 1.1 (or As-
sumption 1.2 in the infinite-dimensional case) we establish a limit distribution
result for the proposed estimator ĝ∗n of the form

Bn(ĝ∗n − g̊) d→ ϕ(λ)

in Theorems 3.7 and 4.5 of Paper A, where ϕ is a certain isotonic regression
operator defined in (A.33).
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Also, we consider the case of non-constant weights w, i.e. when in (2) the
vector of weights w depends on n. In this case the limit distribution of the
isotonized estimator is given in Theorems 3.8 and 4.7.

The asymptotic results are applied to the problems of a bimonotone pmf and
a regression function estimation.

1.3 Post-model-selection estimation of a discrete monotone distri-
bution

Assume that x1, x2, . . . , xn is an i.i.d. sample of random variables with un-
known pmf p. Suppose that p = {pi}i∈N+ is a monotone decreasing pmf with
the support in N+. Let k = sup{i : pi > 0}, with both cases k < ∞ and k = ∞
allowed. Assume that p has constant regions of the form

pq1 = · · · = pq1+v1−1 > pq2 = · · · = pq2+v2−1 > · · · > (3)

pqm = · · · = pk,

where qj, for j = 1, . . . m, is the index of the first element in the j-th constant
region, pq1 = p1, m is the total number of flat regions of p, v = (v1, . . . , vm) is
the vector of the lengths (the numbers of points) in the constant regions of p,
so that ∑m

j=1 vj = k.

In order to estimate p we introduce a two-step procedure. First, we perform a
model selection to choose a class of the form

F ∗k,w =
{

f ∈ Rk : f1 = · · · = fw1 ≥

ft2 = · · · = ft2+w2−1 ≥ . . . ≥ fts = · · · = fk

}
, (4)

In the case of an infinite support, when k = ∞, (or when k is very large) we
pick a finite r and introduce F ∗k,w = F ∗k,w,r as the following cone in l2

F ∗k,w,r =
{

f ∈ l2 : f1 = · · · = fw1 ≥

ft2 = · · · = ft2+w2−1 ≥ · · · ≥ ftd = · · · = fr ≥ (5)

fr+1 ≥ fr+2 ≥ fr+3 ≥ . . .
}

.

In general, v, the vector of constant regions of the true pmf p, and, con-
sequently, q, the vector of indices of the first elements in the constant region,
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defined in (3), are unknown. Furthermore, for any choice of a candidate class
F ∗k,w, given in (4) or (5), in general, the vector of constant regions w of the can-
didate class F ∗k,w may or may not be equal to the vector v of constant regions
of the true pmf p, thus we may or may not have F ∗k,w = F ∗k,v.

We aim to find the class F ∗k,w (or, equivalently, the vector w), which contains
p. We derive the following Akaike-type information criterion

CMAIC(F ∗k,w, n) = −2l(x1, . . . , xn|p̂∗n) + B(w), (6)

where l(x1, . . . , xn|p̂∗n) is the log-likelihood and the bias term B(w) is given by
a certain sum of the level probabilities, defined in Paper B.

The selected model class, based on CMAIC, is

ŵn = argminwCMAIC(F ∗k,w, n)

and the post-model-selection estimator p̂∗n of a decreasing pmf p is then given
by

p̂∗n =
S

∑
j=1

p̂∗n(wj)1{ŵn = wj}, (7)

where

p̂∗n(wj) = argmin
f∈F ∗k,wj

∑
i
[ p̂n,i − fi]

2, (8)

is the projection of the empirical estimator p̂n onto the cone F ∗k,wj
.

The main goal of Paper B is to study the asymptotic behaviour of p̂∗n. This re-
search is also motivated by the paper by Jankowski and Wellner [12], discussed
above. Next, we mention the paper [22], where the author studied the prob-
lem of isotonic regression based on i.i.d. data of an estimand with continuous
support and proposed grouping of adjacent observations, isotonisation of the
corresponding means and then interpolation to the whole support.

An information criterion for the parameters under simple order restrictions
was proposed in [3]. A generalization of this criterion in the one-way ANOVA
(ORIC) was proposed in [13]. A further generalisation of ORIC to multivariate
normal linear models (GORIC) is given in [14]. These results on model selec-
tion are not directly applicable to our problem of selecting a proper class F ∗k,w
in (4).
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1.4 Review of Paper B

In Paper B we study the post-model-selection estimator of a decreasing pmf,
defined in (7). First, we describe a computational algorithm for p̂∗n(wj), which
is the l2 projection onto the cone F ∗k,wj

, cf. (8), and obtain its limit distribution.
Second, we derive the information criterion CMAIC(F ∗k,w, n) and prove that
it provides a conservative model selection procedure. Third, we prove that
the model selection based estimator p̂∗n performs asymptotically better, in l2-
sense, that the regular Grenander estimator, in the sense of having an almost
surely asymptotically smaller l2-loss, i.e. it satisfies

P[lim inf
n→∞

{||p̂∗n − p||22 ≤ ||p̂G
n − p||22}] = 1

and, consequently, there exists n1 such that for all n > n1 one has

E[n||p̂∗n − p||22] ≤ E[n||p̂G
n − p||22].

2 Statistical aspects of neutron detection

In the second part of the thesis, in two papers, we discuss the possibilities
of a statistical determination of a wavelength and a wavelength distribution,
respectively, for the new generation of multilayer neutron detectors, being
developed at the European Spallation Source (ESS), situated in Lund, Sweden.

2.1 Case of a unimodal process

We assume that the incident beam X0(t) is a Poisson process with intensity
λ. First, we consider the case when all particles in the beam have the same
wavelength µ, i.e. a unimodal case. Assume that an incident beam of neutrons
hits the first layer of the detector, cf. Figure 1. At the layer a neutron can pos-
sibly be absorbed and detected. If a neutron is not absorbed it will go through
the detector’s layer. We assume that these are the only two possibilities for the
neutron interaction with a layer. Let p be the probability of an absorption of
a neutron, so that 1− p is the probability of its transmission. If a neutron is
absorbed, it will then be detected.

Let Xi(t) be the number of neutrons absorbed at the layer i in the time interval
[0, t]. The values of Xi(t), for i = 1, . . . , k, represent the data available at the

7



experiment. Estimators of the wavelength µ can be indirectly obtained via
estimates of the thinning parameters p, using a functional relation between the
wavelength and the thinning probability, as explained in Paper C. Therefore,
we aim to estimate the parameters (p, λ).

X0(t)

X1(t)

Xtr
1 (t) Xtr

3 (t)Xtr
2 (t) Xtr

k−1(t) Xtr
k (t)

X2(t) X3(t) Xk(t)

Figure 1: The scheme of the detector.

2.2 Review of Paper C

We study the maximum likelihood estimator for the parameters (p, λ) and
show its consistency and asymptotic normality as the number of incoming
neutrons goes to infinity. We combine these results with known results on the
relation between the absorption probability p and the wavelength µ to derive
an estimator of the wavelength and to show its consistency and asymptotic
normality.

2.3 Case of a multimode process

Next, we consider the case of a multimode Poisson process. Assume that the
neutron beam, i.e. the process X0(t), has a constant intensity λ. Assume,
furthermore, that there are s > 1 different kinds of neutrons in the beam, with
different wavelengths µ = (µ1, . . . , µs), such that

µ1 < µ2 < ... < µs. (9)

The values of the wavelengths are assumed to be unknown.

We model the neutron beam, or counting process X0(t), as the sum of the
counting processes that count the number of neutrons that arrive at the face
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of the detector in [0, t], for the individual type neutrons. Thus, we let the
number of neutrons with wavelength µr, which we may label r-neutrons, be
denoted by X(r)

0 (t), where X(r)
0 (t) is a counting process such that X(r)

0 (t) = 0
and with intensity λr, for r = 1, . . . , s. We write X0(t) = ∑s

r=1 X(r)
0 (t) for the

total number of neutrons that arrive at the face of the detector; then X0(t) is a
counting process with X0(0) = 0.

For a given number X0(t) = x0 of the total incoming neutrons in the time
interval [0, t], the vector

(
X(1)

0 (t), X(2)
0 (t), ..., X(s)

0 (t)
)

is assumed to follow a
multinomial distribution with parameters

(
q1, q2, ..., qs

)
, i.e.

(X(1)
0 = x(1)0 , ..., X(s)

0 = x(s)0 |X0 = x0) ∈ Mult(x0, q1, q2, ..., qs), (10)

with

x(1)0 + · · ·+ x(s)0 = x0,

q1 + q2 + ... + qs = 1.

The vector of proportions of numbers of different neutrons q = (q1, q2, ..., qs)

is the spectrum, or distribution, of an incoming neutron beam X0(t). We note
that qr = λr/λ and assume that q does not depend on t.

2.4 Review of Paper D

In this paper we propose estimators of the distribution of events of different
kinds q in a multimode Poisson process. We give an explicit solution for the
maximum likelihood estimator. The inference problem gives rise the Sylvester-
Ramanujan system of equations, cf. [15, 16]. We derive strong consistency
and asymptotic normality of the estimator. Also, we consider the case of a
decreasing spectrum of an incident beam.
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The asymptotic distribution of the isotonic re-
gression estimator over a general countable pre-
ordered set

Dragi Anevski and Vladimir Pastukhov

Centre for Mathematical Sciences, Lund University

Abstract

We study the isotonic regression estimator over a general countable preordered
set. We obtain the limiting distribution of the estimator and study its proper-
ties. It is proved that, under some general assumptions, the limiting distribu-
tion of the isotonized estimator is given by the concatenation of the separate
isotonic regressions of the restrictions of an underlying estimator’s asymp-
totic distribution to the comparable level sets of the underlying estimator’s
probability limit. Also, we show that the isotonization preserves the rate of
convergence of the underlying estimator. We apply these results to the prob-
lems of estimation of a bimonotone regression function and estimation of a
bimonotone probability mass function.

Keywords: Constrained inference, isotonic regression, limit distribution.

1 Introduction

In this paper we study estimators for the problem of estimating real valued
functions that are defined on a countable set and that are monotone with re-
spect to a preorder defined on that set. In the situation when there exists
an underlying, empirical, estimator of the function, which is not necessarily
monotone, but for which one has (process) limit distribution results, we are
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able to provide limit distribution results for the estimators. Our results can
be applied to the special cases of probability mass function (pmf) estimation
and regression function estimation. In the case of estimating a bimonotone
pmf, i.e. a pmf which is monotone with respect to the usual matrix preorder
on Z2

+, we state the limit distribution of the order restricted maximum like-
lihood estimator (mle), thereby generalising previously obtained results by
[16], who treated the one-dimensional case, i.e. the mle of a monotone pmf
on Z+. In fact we are able to state limit distribution results for the mle of
a monotone pmf on Zd

+, for arbitrary d > 1, cf. Theorem 5.4 below. In the
case of estimating a bimonotone regression function, i.e. a function defined
on Z2

+ that is monotone with respect to the matrix preorder on Z2
+, we state

the limit distribution of the isotonic regression estimator, again generalising
previously known results for the isotonic regression on Z+, cf. [16]. In this
setting we would also like to mention [7], that studied algorithms resulting
from the minimisation of a smooth criterion function under bimonotonicity
constraints. In the regression setting we are able to derive the limit distribu-
tions for the isotonic regression of functions that are monotone with respect
to the matrix preorder on Zd

+, for arbitrary d > 1, cf. Theorem 5.3.

We would like to emphasize that the general approach taken in this paper
allows for other preorders than the usual matrix order on Zd. Furthermore,
our approach allows for also other starting basic empirical estimators; one
could e.g. consider non-i.i.d. data settings, treating e.g. stationary (spatially
homogenous) dependent data. In fact one can consider our estimator as the
final step in a, at least, two-step, approach where in the first, or next-to-last,
step, one provides the ”empirical” estimator ĝn of the estimand g̊, for which it
is necessary to have established (process) limit distribution result of the form

n1/2(ĝn − g̊) d→ λ (A.1)

on the appropriate space, e.g. l2, see Assumptions 2.1 and 2.2 below. Note
that we have simplified Assumptions 2.1 and 2.2 slightly in (A.1) for illus-
trative purposes; the rate n1/2 in (A.1) is allowed to differ, even between the
components in the vector ĝn. Given the assumption (A.1) we then establish a
limit distribution result for the proposed estimator ĝ∗n of the form

n1/2(ĝ∗n − g̊) d→ ϕ(λ), (A.2)

in Theorems 3.7 and 4.5, where ϕ is a certain isotonic regression operator
defined in the sequel.
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The general approach in this paper is somewhat reminiscent to the approach
taken in [1], in which one considered a two-step general procedure for iso-
tonization, allowing e.g. different types of dependence structures on the data.
The difference to our paper is that we treat the, arguably, more complex notion
of monotonicity with respect to preorders on d-dimensional spaces, whereas
[1] only treated monotonicity in the one dimensional setting, and, further-
more, that we treat only functions with discrete or countable support, such as
pmfs, whereas [1] treated functions with continuous support, such as pdfs.

This work is mainly motivated by the results obtained in [5, 16]. In [16] the
problem of estimation of a discrete monotone distribution was studied in de-
tail. It was shown that the limiting distribution of the constrained mle of a
pmf is a concatenation of the isotonic regressions of Gaussian vectors over
the periods of constancy of the true pmf p, cf. Theorem 3.8 in [16]. In the
derivation of the limiting distribution in [16] the authors used the strong con-
sistency of the empirical estimator of p as well as the fact that the constrained
mle is given by the least concave majorant (lcm) of the empirical cumulative
distribution function (ecdf).

The problem of maximum likelihood estimation of a unimodal pmf was stud-
ied in [5]. That problem is different from the one being considered here, since
[5] treats only pmfs on Z, whereas we are able to treat multivariate problems
with our approach.

In our work we do not require strong consistency of a basic estimator ĝn,
and we consider general preorder constraints, resulting in an expression for
the isotonic regression that is more complicated than the lcm of the ecdf, c.f
Assumptions 2.1 and 2.2. Also it turns out that the limiting distribution of the
isotonized estimator ĝ∗n can be split deeper than to the level sets of g̊, which
are the analogues of the periods of constancy of g̊ in the univariate case.

For a general introduction to the subject of constrained inference we refer to
the monographs: Barlow R. E. et al. [3], Robertson T. et al. [20], Silvapulle M.
J. [22] and Groeneboom P. et al. [14]. In these monographs the problem of an
isotonic regression has been considered in different settings, and, in particular,
basic questions such as existence and uniqueness of the estimators have been
addressed. In Lemmas 3.1 and 4.2 below we list those properties which will
be used in the proofs of our results.

The asymptotic behaviour of the regression estimates over a continuous setup
under monotonic restriction was first studied in [9, 24], where it was shown
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that the difference of the regression function and its estimate multiplied by
n1/3, at a point with a positive slope, has a nondegenerate limiting distribu-
tion. The problem of estimating a monotone pdf was studied, for example, in
[1, 10, 13, 19]. In [1] the authors studied a general scheme for order constrained
inference in a continuous setup. In the discrete case some recent results are
[4, 5, 11, 16]. In [11] the authors studied risk bounds for isotonic regression.

The remainder of this paper is organised as follows. In Section 2 we intro-
duce some notations and define the estimators. In Section 3 we consider the
finite dimensional case. Theorem 3.7 gives the asymptotic distribution of the
isotonized estimator. Next, in Section 4 we consider the infinite dimensional
case, which is quite different from the finite one. Theorem 4.5 describes the
asymptotic behaviour of the isotonized estimator for the infinite dimensional
case. In Section 5 we first discuss the application of the obtained results to the
problems of estimation of a bimonotone regression function and of a bimono-
tone probability mass function, respectively, and then the corresponding limit
distribution result for d-monotone functions, for an arbitrary d > 1. The limit
distributions are stated in Theorems 5.1, 5.2, 5.3 and 5.4. In Section 5 we make
some final comments about our results and relations to similar problems. We
have gathered proofs of some intermediate results that are stated in the main
body of the paper in an Appendix.

2 The inference problem and notations

In order to introduce the inference problem in detail, we start by introducing
some notations. Let X be a countable set {x1, x2, . . . } with |X | ≤ ∞, with a
preorder � defined on it. We begin with the definitions of the order relations
on an arbitrary set X and of an isotonic regression over it, cf. also [3, 20, 22].

Definition 2.1. A binary relation � on X is a simple order if

(i) it is reflexive, i.e. x � x for x ∈ X ;

(ii) it is transitive, i.e. x1, x2, x3 ∈ X , x1 � x2 and x2 � x3 imply x1 � x3;

(iii) it is antisymmetric, i.e. x1, x2 ∈ X , x1 � x2 and x2 � x1 imply x1 = x2;

(iv) every two elements of X are comparable, i.e. x1, x2 ∈ X implies that either
x1 � x2 or x2 � x1.
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A binary relation � on X is a partial order if it is reflexive, transitive and anti-
symmetric, but there may be noncomparable elements. A preorder is reflexive and
transitive but not necessary antisymmetric and the set X can have noncomparable
elements. Note, that in some literature the preorder is called as a quasi-order.

Let us introduce the notation x1 ∼ x2, if x1 and x2 are comparable, i.e. if
x1 � x2 or x2 � x1.

Definition 2.2. A function f (x) : X → R is isotonic if xi, xj ∈ X and xi � xj
imply f (xi) ≤ f (xj).

Let F is = F is(X ) denote the family of real valued bounded functions f on
a set X , which are isotonic with respect to the preorder � on X . In the
case when |X | = ∞ we consider the functions from the space lw

2 , the Hil-
bert space of real-valued functions on X , which are square summable with
some given non-negative weights w = {w1, w2, . . . }, i.e. any g ∈ lw

2 satisfies
∑∞

i=1 g(xi)
2wi < ∞. We use the same notation F is to denote the functions from

lw
2 which are isotonic with respect to the preorder �.

Definition 2.3. A function g∗ : X → R is the isotonic regression of a function
g : X → R over the preordered set X with weights w ∈ Rs

+, with s ≤ ∞, if

g∗ = argmin
f∈F is

∑
x∈X

( f (x)− g(x))2wx,

where wxi = wi, for i = 1, . . . , s.

Conditions for existence and uniqueness of g∗ will be stated below.

Similarly one can define an isotonic vector in Rs, with s ≤ ∞, and the isotonic
regression of an arbitrary vector in Rs. Let us consider a set of indices I =

{1, . . . , s}, with s ≤ ∞, with some preorder � defined on it.

Definition 2.4. A vector θ ∈ Rs, with s ≤ ∞, is isotonic if i1, i2 ∈ I and i1 � i2
imply θi1 ≤ θi2 .

We denote the set of isotonic vectors in Rs, with s ≤ ∞, by F is = F is(I).
In the case of an infinite index set we consider the square summable vectors
(with weights w) from lw

2 , the Hilbert space of all square summable vectors
with weights w.
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Definition 2.5. A vector θ∗ ∈ Rs, with s ≤ ∞, is the isotonic regression of an
arbitrary vector θ ∈ Rs (or θ ∈ lw

2 , if s = ∞) over the preordered index set I with
weights w ∈ Rs

+ if

θ∗ = argmin
ξ∈F is

∑
i∈I

(ξi − θi)
2wi.

Given a set X with a preorder � on it one can generate a preorder on the set
I = {1, 2 . . . } of indices of the domain in X as follows. For i1, i2 ∈ I , i1 � i2
if and only if xi1 � xi2 . This preorder on the index set I will be called the
preorder induced by the set X and will be denoted by the same symbol �.
Conversely, if one starts with the set I consisting of the indices of the elements
in X , and � is a preorder on I , the above correspondence defines a preorder
on X . Therefore, in the sequel of the paper a bold symbol, e.g. g, will denote
a vector in Rs, with s ≤ ∞, whose i-th component is given by gi = g(xi), for
i = 1, . . . , s, where g(x) is a bounded real valued function on X . In this case
we will say that the vector g corresponds to the function g(x) on X and vice
versa.

Note 1. A real valued function f (x) on the countable set X with the preorder �,
defined on it, is isotonic if and only if its corresponding vector f ∈ Rs, with s ≤ ∞,
is an isotonic vector with respect to the corresponding preorder � on its index set
I = {1, 2, . . . }, induced by the preorder on X . A real valued function g∗(x) on the
set X is the isotonic regression of a function g(x) with weights w if and only if its
corresponding vector g∗ ∈ Rs is the isotonic regression of the vector g ∈ Rs with
respect to the corresponding preorder � on its index set I = {1, 2, . . . } with weights
w.

To state the inference problem treated in this paper, suppose that X is a finite
or an infinite countable preordered set and g̊ ∈ F is is a fixed unknown func-
tion. Suppose we are given observations zi, i = 1, . . . , n, independent or not,
that depend on the (parameter) g̊ in some way. In the sequel we will treat in
detail two important cases:
The data z1, . . . , zn are observations of either of

(i) Zi, i = 1, . . . , n independent identically distributed random variables tak-
ing values in X , with probability mass function g̊.

(ii) Zi = (xi, Yi), i = 1, . . . , n, with xi deterministic (design) points in X and
Yi real valued random variables defined in the regression model

Yi = g̊(xi) + ε i, i = 1, . . . , n,
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where ε i is a sequence of identically distributed random variables with
E[ε i] = 0, Var[ε i] = σ2 < ∞.

Now assume that

ĝn = ĝn(z1, . . . , zn)

is a Rs-valued statistic. We will call the sequence {ĝn}n≥1 the basic estimator
of g̊. In order to discuss consistency and asymptotic distribution result we
introduce the following basic topologies: When s < ∞, we study the Hilbert
space with the inner product 〈g1, g2〉 = ∑s

i=1 g1,ig2,iwi, for g1, g2 ∈ Rs, en-
dowed with its Borel σ-algebra B = B(Rs) and when s = ∞ we study the
space lw

2 with the inner product 〈g1, g2〉 = ∑∞
i=1 g1,ig2,iwi, for a fixed weight

vector w satisfying 
inf

i
{wi} > 0

sup
i
{wi} < ∞,

(A.3)

and we equip lw
2 with its Borel σ-algebra B = B(lw

2 ).

Now define the isotonized estimator ĝ∗n by

ĝ∗n = argmin
ξ∈F is

∑
i∈I

(ξi − ĝn,i)
2wi. (A.4)

The main goal of this paper is to study the asymptotic behaviour of ĝ∗n, as
n→ ∞.

We make the following assumptions on the basic estimator ĝn, for the finite,
s < ∞, and the infinite, s = ∞, support case, respectively.

Assumption 2.1. Suppose that s < ∞. Assume that ĝn
p→ g̊ for some g̊ ∈ F is and

Bn(ĝn − g̊) d→ λ, where λ is a random vector in (Rs,B) and Bn is a diagonal s× s
matrix with elements [Bn]ii = nqi with qi being real positive numbers.

Assumption 2.2. Suppose that s = ∞. Let ĝn, for n = 1, 2, 3, . . . , be a tight sequence
of random vectors taking values in the Hilbert space lw

2 . Assume that ĝn
p→ g̊ for

some g̊ ∈ F is, and Bn(ĝn − g̊) d→ λ, where λ is a random vector in (lw
2 ,B) and Bn

is a linear operator lw
2 → lw

2 , such that for any g ∈ lw
2 it holds that (Bng)i = nqi gi,

with qi being the real positive numbers. Suppose also that any finite s-dimensional
cylinder set in lw

2 is a continuity set for the law of λ.
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Note that the matrix Bn in Assumption 2.1 and the operator Bn in Assumption
2.2 allow for different rates of convergence for different components of ĝn, i.e.
the rates qi can be all the same but they do need to. The values of qi will be
specified later.

3 The case of finitely supported functions

Let us assume that s < ∞, i.e. that the basic estimator {ĝn}n≥1 is a sequence of
finite-dimensional vectors. The next lemma states some well-known general
properties of the isotonic regression of a finitely supported function.

Lemma 3.1. Suppose Assumption 2.1 holds. Let ĝ∗n ∈ Rs be the isotonic regression
of the vector ĝn, defined in (A.4), for n = 1, 2, 3, . . . . Assume also that a ≤ ĝn,i ≤ b
holds for some constants −∞ < a < b < ∞, for all n = 1, 2, . . . and i = 1, . . . , s.
Then the following hold:

(i) ĝ∗n exists and it is unique.

(ii) ∑s
i=1 ĝn,iwi = ∑s

i=1 ĝ∗n,iwi, for all n = 1, 2, . . . .

(iii) ĝ∗n, viewed as a mapping from Rs into Rs, is continuous. Moreover, it is
also continuous if it is viewed as a function on the 2s-tuples of real numbers
(w1, w2, . . . , ws, g1, g2, . . . , gs), with wi > 0.

(iv) ĝ∗n satisfies the same bounds as the basic estimator, i.e. a ≤ ĝ∗n,i ≤ b, for all
n = 1, 2, . . . and i = 1, . . . , s.

(v) ĝ∗n is a consistent estimator of g̊, i.e. ĝ∗n
p→ g̊.

(vi) (ĝn + c)∗ = ĝ∗n + c for all constant vectors c ∈ Rs,
(cĝn)∗ = cĝ∗n for all c ∈ R+.

We make a partition of the original set into comparable sets X (1), . . . ,X (k)

X = ∪k
v=1X (v), (A.5)

where each partition set X (v) contains elements such that if x ∈ X (v), then x
is comparable with at least one different element in X (v) (if there are any), but
not with any other element in X (µ) for any µ 6= v. In fact, the partition can
be constructed even for an infinite set X = {x1, x2, . . .}, since a preorder can
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be represented as the directed graph and any graph can be partitioned into
isolated connected components and the partition is unique, cf. [12].

Now assume that X is finite, that we are given the partition (A.5) and let
g(v)(x), for v = 1, . . . , k, be real valued functions defined on the sets X (v) as
g(v)(x) = g(x), whenever x ∈ X (v), i.e. g(v)(x) is the restriction of the function
g(x) to the set X (v). The family of functions g(v)(x) defined on the set X (v),
which are isotonic with respect to the preorder, will be denoted by F is

(v), for
v = 1, . . . , k.

The next lemma states a natural result of an isotonic regression on X , that it
can be obtained as a concatenation of the individual isotonic regressions of
the restrictions to the comparable sets.

Lemma 3.2. Let g(x) be an arbitrary real valued function on the finite set X with
a preorder � defined on it, and assume that the partition (A.5) is given. Then the
isotonic regression of g(x) with any positive weights w with respect to the preorder
� is equal to

g∗(x) = g∗(v)(x), whenever x ∈ X (v), (A.6)

where g∗(v)(x) is the isotonic regression of the function g(v)(x) over the set X (v) with
respect to the preorder �.

Now let g̊(x) be the fixed function defined in Assumption 2.1, assume that we
are given the partition (A.5) of X and for an arbitrary but fixed v ∈ {1, . . . , k}
let g̊v(x) be the restriction of g̊(x) to X (v). Then if Nv = |X (v)| we can
introduce the vector g̊v = (g̊v,1, . . . , g̊v,Nv) = (g̊v(xi1), . . . , g̊v(xiNv

)), where
xi1 , . . . , xiNv

are the unique points in X (v). Given g̊v(x) we can partition the
set X (v) into mv sets

X (v) = ∪mv
l=1X

(v,l). (A.7)

The partition is constructed in the following way: We note first that the Nv

values in the vector g̊v are not necessarily all unique, so there are m̃v ≤ Nv

unique values in g̊v. Then in a first step we construct m̃v level sets

X̃ (v,l) = {x ∈ X (v) : g̊v(xi) = g̊v,l}

with l = 1, . . . , m̃v.
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Next we note that for any non-singleton level set X̃ (v,l) there might be non-
comparable points, i.e. xi, xj ∈ X̃ (v,l) can be such that neither xi � xj nor
xj � xi hold. Therefore, in the second step for each fixed l we can partition (if
necessary) the level set X̃ (v,l) into sets with comparable elements, analogously
to the construction of (A.5). We can do this for every v and end up in a
partition (A.7) with m̃v ≤ mv ≤ Nv.

In the partition (A.7) each set X (v,l) is characterised by

(i) for every x ∈ X (v,l) we have g̊v(x) = g̊v,l ,

(ii) if |X (v,l)| ≥ 2 then for every x ∈ X (v,l) there is at least one x′ ∈ X (v,l)

such that x ∼ x′.

We have therefore proved the following lemma.

Lemma 3.3. For any countable set X with the preorder � and any isotonic function
g̊(x), defined on it, there exists a unique partition X = ∪k

v=1 ∪
mv
l=1 X (v,l), satisfying

the statements (i) and (ii) above. For the index set I with the preorder � generated
by the set X and any isotonic function g̊(x), defined on X , there exists a unique
partition I = ∪k

v=1 ∪
mv
l=1 I (v,l), satisfying conditions analogous to (i) and (ii) stated

above.

Definition 3.4. The set X will be called decomposable if in the partition, defined in
(A.5), k > 1. In the partition (A.7) the sets X (v,l) will be called the comparable level
sets of g̊(x). In the corresponding partition of the index set I the sets I (v,l) will be
called the comparable level index sets of g̊.

Recall that g(v,l)(x) is the restriction of the function g(x) to the comparable
level set X (v,l), for l = 1, . . . , mv and v = 1, . . . , k.

In the case of a non-decomposable set, the full partition will be written as
X = ∪m1

l=1X (1,l) ≡ ∪m
l=1X (l), so we may then drop the index v = 1. Similarly,

in this case g(1,l)(x) ≡ g(l)(x) denotes the restriction of a function g(x) to the
comparable level set X (l) ≡ X (1,l).

Next, suppose that X is a non-decomposable set, and let us consider an ar-
bitrary function g̊(x) ∈ F is. Assume that for g̊(x) there has been made a
partition X = ∪m

l=1X (l) in (A.7), satisfying (i) and (ii). Define the smallest
comparable level distance of g̊ as

ε̃′ = inf{|g̊l′ − g̊l | : l, l′ = 1, . . . , m, l 6= l′, (A.8)

∃x1 ∈ X (l), ∃x2 ∈ X (l′), such that x1 ∼ x2},
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Note, that ε̃ is always finite and for the finite support case, s < ∞, also ε̃ > 0.

Lemma 3.5. Consider an arbitrary real valued function g(x) on a non-
decomposable finite set X with the preorder � and let ε̃ be defined in (A.8). If

sup
x∈X
{|g(x)− g̊(x)|} < ε̃/2, (A.9)

then the isotonic regression of g(x) is given by

g∗(x) = g∗(l)(x), whenever x ∈ X (l), (A.10)

where g∗(l)(x) is the isotonic regression of the function g(l)(x) over the set X (l) with
respect to the preorder �. Therefore, the function g∗(x) is a concatenation of the
isotonic regressions of the restrictions of g(x) to the comparable level sets of g̊(x).

The next lemma is an auxiliary result which will be used later in the proof of
the asymptotic distribution of ĝ∗n.

Lemma 3.6. Assume Xn and Yn are sequences of random vectors, taking values in
the space Rs, for s ≤ ∞, with some metric on it, endowed with its Borel σ-algebra. If

Xn
d→ X and limn→∞ P[Xn = Yn] = 1, then Yn

d→ X.

Let us consider the sequence Bn(ĝ∗n − g̊), where ĝ∗n is the isotonic regression
of ĝn, which was defined in Assumption 2.1, and with a specified matrix Bn.
As mentioned in Assumption 2.1, we allow different rates of convergence nqi

for different components of ĝn. We however require qi, for i = 1, . . . , s, to be
equal on the comparable level index sets I (v,l) of g̊, i.e. qi, for i = 1, . . . , s, are
real positive numbers such that qi1 = qi2 , whenever i1, i2 ∈ I (v,l).

We introduce an operator ϕ : Rs → Rs defined in the following way. First, for
any vector θ ∈ Rs we define the coordinate evaluation map θ(x) : X → R,
corresponding to the vector θ, by θ(xi) = θi, for i = 1, . . . , s. Then, let θ∗(v

′,l′)(x)
be the isotonic regression of the restriction of θ(x) to the comparable level set
X (v′,l′) of g̊(x), and define

ϕ(θ)i = θ∗(v
′,l′)(xi), (A.11)

for i = 1, . . . , s, with (v′, l′) the (unique) indices such that xi ∈ X (v′,l′).

The asymptotic distribution of Bn(ĝ∗n − g̊) is given in the following theorem.
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Theorem 3.7. Suppose that Assumption 2.1 holds. Then

Bn(ĝ∗n − g̊) d→ ϕ(λ), (A.12)

where ϕ is the operator, defined in (A.11).

Proof.

First, from Lemma 3.3 we have that any preordered set X can be uniquely
partitioned as

X = ∪k
v=1X (v),

X (v) = ∪mv
l=1X

(v,l), (A.13)

and with the partition (A.13) of X (v) determined by the isotonic vector g̊.

Second, as shown in Lemma 3.2, the isotonic regression of g(x) on the original
set X can be obtained as a concatenation of the separate isotonic regressions
of the restrictions of g(x) to the non-decomposable sets in the partition (A.5).
Therefore, without loss of generality, we can assume that the original set X is
non-decomposable. Thus, any x ∈ X is comparable with at least one different
element of X , k = 1, and

X = ∪m1
l=1X

(1,l)

≡ ∪m
l=1X (l)

and g̊1,l ≡ g̊l . Note, that we have dropped the index v.

Third, since ĝn is consistent, by Assumption 2.1, for any ε > 0,

P[sup
x∈X
{|ĝn(x)− g̊(x)|} < ε]→ 1, (A.14)

as n → ∞. Note that the comparable level distance ε̃ of g̊, defined in (A.8),
satisfies ε̃ > 0, and take ε = ε̃/2. Then from Lemma 3.5 we obtain

{sup
x∈X
{|ĝn(x)− g̊(x)|} < ε̃/2} ⊆ {ĝ∗n = ϕ(ĝn)}. (A.15)

Therefore, (A.14) and (A.15) imply

P[ĝ∗n = ϕ(ĝn)]→ 1, (A.16)

as n→ ∞.
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Next, since the isotonic regression is a continuous map (statement (iii) of
Lemma 3.1), the operator ϕ is a continuous map from Rs to Rs. Therefore,
using the continuous mapping theorem, cf. [23], we get

ϕ(Bn(ĝn − g̊)) d→ ϕ(λ). (A.17)

Furthermore, using statement (vi) of Lemma 3.1 and taking into account the
definition of the matrix Bn, we get

ϕ(Bn(ĝn − g̊)) = Bn(ϕ(ĝn)− g̊). (A.18)

Then (A.16), (A.17) and (A.18) imply that

P[Bn(ĝ∗n − g̊) = Bn(ϕ(ĝn)− g̊)]→ 1, (A.19)

as n→ ∞. Finally, using Lemma 3.6, from (A.17) and (A.19) we prove that

Bn(ĝ∗n − g̊) d→ ϕ(λ),

as n→ ∞. �

For a given preorder � on X there exists a matrix A such that Ag ≥ 0 is
equivalent to g is isotonic with respect to �, cf. Proposition 2.3.1 in [22].
Therefore, if there are no linear constraints imposed on the basic estimator ĝn,
Theorem 3.7 can also be established by using the results on estimation when
a parameter is on a boundary, in Section 6 in [2].

Assume that each vector ĝn has the following linear constraint ∑s
i=1 ĝn,iwi

= c (for example, in the case of estimation of a probability mass function it
would be ∑s

i=1 ĝn,i = 1). Then, the expression for a limiting distribution in
Theorem 3.7 does not follow directly from the results in [2] in the case when
ĝn is linearly constrained. However, the result of Theorem 3.7 holds, because,
as established in statement (ii) of Lemma 3.1, isotonic regression with weights
w preserves the corresponding linear constraint.

Next we consider the case when the vector of weights w is not a constant, i.e.
we assume that some non-random sequence {wn}n≥1, where each vector wn

satisfies the condition (A.3), converges to some non-random vector w, which
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also satisfies (A.3). We denote by θ∗w(x) the isotonic regression of θ(x) with
weights w and analogously to (A.11) we introduce the notation ϕw(θ)

ϕw(θ)i = θ∗w(v′,l′)(xi), (A.20)

where θ∗w(v′,l′)(x) is the isotonic regression, with weights w, of the restriction
of θ(x) to the comparable level set X (v′,l′) of g̊(x), where the indices v′ and
l′ are such that xi ∈ X (v′,l′). Define the isotonic regression ĝ∗wn

n of the basic
estimator ĝn. The next theorem gives the limiting distribution of ĝ∗wn

n .

Theorem 3.8. Suppose that Assumption 2.1 holds. Then the asymptotic distribution
of the isotonic regression ĝ∗wn

n of the basic estimator ĝn is given by

Bn(ĝ∗wn
n − g̊) d→ ϕw(λ), (A.21)

where ϕw is the operator, defined in (A.20).

Proof. Without loss of generality, we can assume that the original set X is
non-decomposable. First, since the sequence ĝn is consistent, then for any

P[sup
x∈X
{|ĝn(x)− g̊(x)|} < ε̃/2]→ 1, (A.22)

as n→ ∞, with ε̃ defined in A.8. Using the statement of Lemma 3.5, we obtain

{sup
x∈X
{|ĝn(x)− g̊(x)|} < ε̃/2} ⊆ {ĝ∗wn

n = ϕwn(ĝn)}. (A.23)

Note that the result of Lemma 3.5 holds for any weights wn.

Therefore, from (A.22) and (A.23) we have

P[ĝ∗wn
n = ϕ(ĝn)]→ 1, (A.24)

as n→ ∞.

Second, from statement (iii) of Lemma 3.1, the operators ϕwn , ϕw are continu-
ous maps from R2s to Rs, for all weights wn, w satisfying (A.3). Using the
(extended) continuous mapping theorem, cf. [23], we get

ϕwn(Bn(ĝn − g̊)) d→ ϕw(λ), (A.25)

where w is the limit of the sequence {wn}n≥1.
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Third, using statement (vi) of Lemma 3.1 and the definition of the matrix Bn

we obtain

ϕwn(Bn(ĝn − g̊)) = Bn(ϕwn(ĝn)− g̊). (A.26)

Therefore, (A.26) gives us

P[Bn(ĝ∗wn
n − g̊) = Bn(ϕwn(ĝn)− g̊)]→ 1, (A.27)

as n→ ∞. Finally, using Lemma 3.6, from (A.25) and (A.27) we prove that

Bn(ĝ∗wn
n − g̊) d→ ϕw(λ),

as n→ ∞. �

4 The case of infinitely supported functions

In this section we assume that the original set X = {x1, x2 . . . } is an infinite
countable enumerated set with a preorder � defined on it.

In the case of infinitely supported functions the isotonic regression’s prop-
erties are similar to the ones in the finite case, but the proofs are slightly
different. For completeness we state these properties in the following lemma.

Lemma 4.1. Suppose Assumption 2.1 holds. Let ĝ∗n ∈ lw
2 be the isotonic regression

of the vector ĝn ∈ lw
2 , for n = 1, 2, 3, . . . . Assume also that a ≤ ĝn,i ≤ b holds for

some constants −∞ < a < b < ∞, for all n = 1, 2, . . . and i = 1, . . . , ∞. Then
statements (i) - (vi) of Lemma 3.1 hold, with (iii) suitably changed to the mapping
from lw

2 to lw
2 .

We partition the original set X in the same way as it was done in the finite
case, i.e., first, let

X = ∪k
v=1X (v), (A.28)

where k ≤ ∞ is the number of sets and each set X (v) is such that if x ∈
X (v), then x is comparable with at least one different element in X (v) (if there
are any), but not with any other elements which belong to other sets in the
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partition. Note, that X (v) can have only one element. The partition of X is
unique and X (v) ∩ X (v′) = ∅, for v 6= v′.

Furthermore, for the fixed function g̊ ∈ F is, defined in Assumption 2.2 (or,
equivalently, its corresponding isotonic vector g̊ ∈ F is), we partition each set
X (v) in (A.28) into the comparable level sets of g̊, i.e.

X (v) = ∪mv
l=1X

(v,l), (A.29)

in the same way as it was done in the finite case in (A.7).

Note, that since g̊ ∈ lw
2 and condition (A.3) is satisfied, the cardinality of any

set X (v,l) is less than infinity whenever g̊v,l 6= 0, otherwise we would have
∑∞

i=1(g̊i)
2wi = ∞, which would mean that g̊ 6∈ lw

2 . The set X (v,l) can have
infinitely many elements only if g̊v,l = 0.

For the partition in (A.28) we obtain a result similar to the one obtained in
Lemma 3.2 for the finite case.

Lemma 4.2. Let g(x) be an arbitrary real valued function in lw
2 on the set X with

a preorder � defined on it. Then the isotonic regression of g(x) with any positive
weights w is equal to

g∗(x) = g∗(v)(x), whenever x ∈ X (v), (A.30)

where g∗(v)(x) is the isotonic regression of the restriction of the function g(x) to the
set X (v) over this set with respect to the preorder �.

As a consequence of Lemma 4.2, without loss of generality in the sequel of
the paper we can assume that the original set X is non-decomposable and use
the same notations as in the finite case, i.e. X = ∪m

l=1X (l) ≡ ∪m1
l=1X (1,l) and,

respectively, g(l)(x) ≡ g(1,l)(x) for the restriction of the function g(x) to the set
X (l).

In the case of an infinite support the result of Lemma 3.5 is generally not ap-
plicable, because the value of ε̃ can in this case be zero. We therefore make the
following slight modification of Lemma 3.5. Thus, assume that for a function
g̊(x) ∈ F is we have made a partition X = ∪m

l=1X (l) with m ≤ ∞. Furthermore,
for any finite positive integer number m′ < m ≤ ∞ we choose m′ compar-
able level sets X (lj), such that the values of the function g̊(x) on them satisfy
|g̊l1 | ≥ |g̊l2 | ≥ · · · ≥ |g̊lm′ |. Next, we rewrite the partition as

X = X (l1) ∪ X (l2) ∪ · · · ∪ X (lm′ ) ∪ X (lm′+1), (A.31)
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where X (lm′+1) = X \ X (l1) ∪ X (l2) ∪ · · · ∪ X (lm′ ). Define

ε̃′ = inf{|g̊l′ − g̊l | : l′ ∈ {l1, . . . , lm′}, (A.32)

l ∈ {1, . . . , m}, ∃x1 ∈ X (l),

∃x2 ∈ X (l′), such that x1 ∼ x2},

and note that ε̃′ is always positive.

Lemma 4.3. Consider an arbitrary real valued function g(x) ∈ lw
2 on a non-decomposable

infinite countable set X with the preorder � defined on it. Suppose that ε̃′ is defined
in (A.32). If for some g̊(x) ∈ F is we have

sup
x∈X
{|g(x)− g̊(x)|} < ε̃′/2,

then the isotonic regression of g(x) is given by

g∗(x) = g∗(l
′′)(x), whenever x ∈ X (l′′) , for l′′ ∈ {l1, . . . , lm′ , lm′+1},

where g∗(l
′′)(x) is the isotonic regression of the function g(l

′)(x) over the set X (l′)

with respect to the preorder �. Therefore, the function g∗(x) is a concatenation of the
isotonic regressions of the restrictions of g(x) to the sets X (l1),X (l2), . . . ,X (lm′ ) and
X (lm′+1).

Next we state and prove an auxiliary lemma, see also Problem III.6.3 in [21],
which will be used in the final theorem.

Lemma 4.4. Let Zn, for n = 1, . . . , ∞, be a tight sequence of random vectors in lw
2 ,

endowed with its Borel σ-algebra B. Consider the set of indices I = {1, 2, . . . , ∞} of
the components of the vectors Zn. Assume that for some random vector Z in (lw

2 ,B)
and some rearrangement Ĩ of the original index set I the following holds: For any

positive finite integer s we have Z̃(1,s)
n

d→ Z̃(1,s), where Z̃(1,s)
n and Z̃(1,s) are vectors in

Rs constructed from the elements of the vectors Zn and Z in such a way that the j-th
elements of Z̃(1,s)

n and Z̃(1,s) are equal to the ĩj-th elements of the vectors Zn and Z,
respectively, with ĩj being the j-th index from the rearranged index set Ĩ . In addition,
assume that any cylinder set in lw

2 is a continuity set for the law of Z̃(1,s). Then

Zn
d→ Z.

Finally, the next theorem gives the limiting distribution of ĝ∗n. Similarly to the
finite case we introduce the operator ϕ : lw

2 → lw
2 , defined in the following
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way. For any vector θ ∈ lw
2 we consider the coordinate evaluation map θ(x) :

X → R defined as θ(xi) = θi, for i = 1, . . . , ∞. Then, let

ϕ(θ)i = θ∗(v
′,l′)(xi), (A.33)

where θ∗(v
′,l′)(x) is the isotonic regression of the restriction of θ(x) to the set

X (v′,l′) in the partition of X . The indices v′ and l′ are such that xi ∈ X (v′,l′).
The restriction of ϕ(θ) to the comparable index level set I (v,l) will be denoted
by [ϕ(θ)](v,l)

Theorem 4.5. Suppose Assumption 2.2 holds. Then the asymptotic distribution of
the isotonized estimator ĝ∗n is given by

Bn(ĝ∗n − g̊) d→ ϕ(λ), (A.34)

where ϕ is the operator defined in (A.33).

Proof. Let us consider the partition of the original set X = ∪m
l=1X (l) made

for the function g̊(x). As it was shown above, the cardinality |X (l)| of each
comparable level set in the partition must be less than infinity, unless g̊l = 0,
in which case it can have infinite cardinality. Note that if the number of terms
in the partition is less than infinity, i.e. m < ∞, then some terms (or just one)
in the partition are such that the function g̊(x) is equal to zero on them, i.e.
g̊l = 0. Therefore, in this case we can use the same approach as in the case
of the finite set X (Lemma 3.5), because in this case the smallest comparable
level distance ε̃, defined in (A.8), is greater than zero.

Therefore, further in the proof we assume that m = ∞ and write the partition
as X = ∪∞

l=1X (l). First, for any positive integer m′ < ∞ let us take m′ terms
from the partition of X which satisfy |g̊l1 | ≥ |g̊l2 | ≥ · · · ≥ |g̊lm′ |.

Second, since the sequence ĝn is consistent, then for any ε > 0

lim
n→∞

P[sup
i∈I
{|ĝn,i − g̊i|} < ε] = 1.

Therefore, letting ε = ε̃′/2, with ε̃′ defined in (A.32), by Lemma 8.2 we obtain
that, for the isotonic regression ĝ∗n of ĝn

lim
n→∞

P[ĝ∗i = ĝ∗(l
′′)

i ] = 1, whenever i ∈ I (l′′), (A.35)

for l′′ ∈ {l1, . . . , lm′+1},
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where I (l′), for l′ ∈ {l1, . . . , lm′}, are the comparable level sets and I (m′+1) is
the index set of X (m′+1) = X \ X (l1) ∪ X (l2) ∪ · · · ∪ X (lm′ ).

Third, let us introduce a linear operator A(m′) : lw
2 → Rs, with

s = ∑l∈{l1,...lm′} |X
(l)|, such that for any g ∈ lw

2 the first |X (l1)| elements of the
vector A(m′)g are equal to ones taken from g whose indices are in I (l1), the
second |X (l2)| elements are the ones from g whose indices are from I (l2) and
so on. Therefore, using the result in (A.35), the definition of Bn and statement
(vi) of Lemma 3.1, we have that

lim
n→∞

P[A(m′)ϕ(Bn(ĝn − g̊)) = A(m′)Bn(ĝ∗n − g̊)] = 1. (A.36)

Next, since ϕ is a continuous map, which follows from statement (iii) of
Lemma 4.2, and A(m′) is a linear operator, then from the continuous mapping
theorem it follows that

A(m′)ϕ(Bn(ĝn − g̊)) d→ A(m′)ϕ(λ). (A.37)

and, using Lemma 3.6 and result (A.36), we prove

A(m′)Bn(ĝ∗n − g̊) d→ A(m′)ϕ(λ).

Note, that the number m′ is an arbitrary finite integer. Also, since ϕ is a con-
tinuous map, then the law of ϕ(λ) has the same continuity sets as λ. Moreover,
the sequence Bn(ĝ∗n − g̊) is tight, because Bn(ĝn− g̊) has a limit in distribution
and ||ĝ∗n − g̊)||2 ≤ ||ĝn − g̊)||2. Using Lemma 4.4 we finish the proof of the
theorem. �

Recall that the cardinality of any comparable level set X (v,l) is less than in-
finity whenever g̊v,l 6= 0. Then, as in the finite case, we note that the order
constraints on X (v,l) can be expressed in the form Ag ≥ 0, for some matrix A.
Therefore, one can use the results in [2] to describe the behaviour of [ϕ(g)](v,l)

when |X (v,l)| < ∞. It follows from Theorem 5 in [2] that the distribution of
[ϕ(g)](v,l) is a mixture of 2|X

(v,l)| distributions of the projections of g onto the
cone Atg ≥ 0, where the matrixes At, for t = 1, . . . , 2|X

(v,l)|, are comprised of
the rows of the matrix A.

Next, let us consider the case of non-constant weights w. In this section until
now we assumed that the vector of weights satisfies the condition in (A.3), it
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is fixed, wn = w, so it does not depend on n, and the random elements ĝn in
Assumption 2.2 all take their values in (lw

2 ,B), for some fixed w, with B the
Borel σ-algebra generated by the topology which is generated by the natural
norm of lw

2 .

Now we consider some non-random sequence {wn}n≥1, taking values in the
space R∞, where each wn satisfies the condition in (A.3). The sequence
{wn}n≥1 converges in some norm ‖·‖R on R∞ to some non-random vector
w, which also satisfies the condition in (A.3). Next, let Bn denotes the Borel
σ-algebra generated by the topology which is generated by the natural norm
in lwn

2 . The next lemma shows that the normed spaces lwn
2 are all equivalent.

Lemma 4.6. Suppose that two vectors w1 and w2 satisfy the condition in (A.3). Then
the normed spaces lw1

2 and lw2
2 are equivalent.

Therefore, since the normed spaces lwn
2 are all equivalent, then the topologies

generated by these norms are the same. Then, the Borel σ-algebras Bn gener-
ated by these topologies are also the same. Therefore, the measurable spaces
(lwn

2 ,Bn) are all the same and we will suppress the index n.

Next, analogously to the finite case, let us introduce the notation ϕw(θ)

ϕw(θ)i = θ∗w(v′,l′)(xi), (A.38)

where θ∗w(v′,l′)(x) is the isotonic regression with weights w of the restriction
of θ(x) to the comparable level set X (v′,l′) of g̊(x), where the indices v′ and l′

are such that xi ∈ X (v′,l′). The next theorem gives the limiting distribution of
ĝ∗wn

n .

Theorem 4.7. Suppose the Assumption 2.2 holds. Then the asymptotic distribution
of the isotonic regression ĝ∗wn

n of the basic estimator ĝn is given by

Bn(ĝ∗wn
n − g̊) d→ ϕw(λ), (A.39)

where ϕ is the operator, defined in (A.38).

Proof. First, we note that the result of Lemma 4.4 holds, it we assume that the
random vectors Zn, for n = 1, . . . , ∞ take their values in lwn

2 , if all elements of
wn and its limit w satisfy the condition in (A.3): This follows from the fact that
the measurable spaces (lwn

2 ,Bn) are equivalent, which was proved in Lemma
4.6.
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The rest of the proof is exactly the same as for Theorem 4.5 with ϕ and ĝ∗n
suitable changed to ϕw and ĝ∗wn

n . Also, recall that the result of Lemma 8.2
does not depend on the weights wn. �

5 Application to bimonotone probability mass function
and regression function estimation, and extensions to
d-dimensional problems

In this section we consider the problems of estimation of a bimonotone re-
gression function, in subsection 5.1, and of a bimonotone probability mass
function, in subsection 5.2. Also, we consider the generalisation to the case of
d-dimensional support, in subsection 5.3.

First, let us introduce a bimonotone order relation � on a set X := {x =

(i1, i2)T : i1 = 1, 2, . . . , r1, i2 = 1, 2, . . . , r2}, with r1, r2 ≤ ∞ in the following way.
For any x1 and x2 in X we have x1 � x2 if and only if x1,1 ≤ x2,1 and x1,2 ≤
x2,2. The order relation � is a partial order, because it is reflexive, transitive,
antisymmetric, but there are elements in X which are noncomparable.

Second, note that X with the order relation � defined above is non-decom-
posable, because for any x1 = (x1,1, x1,2) and x2 = (x2,1, x2,2) in X there exist
x3 = (x3,1, x3,2) ∈ X such that x3,1 ≥ x1,1, x3,1 ≥ x2,1 and x3,2 ≥ x1,2, x3,2 ≥ x2,2,
which means that x1 ∼ x3 and x2 ∼ x3, or x4 = (x4,1, x4,2) ∈ X such that
x4,1 ≤ x1,1, x4,1 ≤ x2,1 and x4,2 ≥ x1,2, x4,2 ≥ x2,2, which means that x1 ∼ x4

and x2 ∼ x4. Therefore, in a partition (A.5) k = 1. Also, following our
notations above we denote by I the set of indices of the domain X and use
the same notation � for the order relation on I generated by X .

A real valued function g(x) is bimonotone increasing, i.e. isotonic with respect
to bimonotone order relation � on a set X , if whenever x1 � x2 one has
g(x1) ≤ g(x2), cf. [7]. A real valued function h(x) is called a bimonotone
decreasing function, if whenever x1 � x2 one has h(x1) ≥ h(x2). In the last
case the function h(x) is called antitonic with respect to the order relation �
on a set X , cf. [3, 20]. Note that a fucntion h(x) is antitonic if and only if
g(x) = −h(x) is isotonic with respect to the order relation � on the set X .
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5.1 Estimation of a bimonotone increasing regression function

The problem of estimation of a bimonotone regression function via least squares
was studied in detail in [7], where the authors described an algorithm for min-
imization of a smooth function under bimonotone order constraints.

Suppose we have observed Zi = (xi, Yi), i = 1, . . . , n, with xi the design
points taking values from the set X := {x = (i1, i2)T : i1 = 1, 2, . . . , r1, i1 =

1, 2, . . . , r2, }, with r1, r2 < ∞ and Yi real valued random variables defined in
the regression model

Yi = g̊(xi) + ε i, i = 1, . . . , n,

where ε i is a sequence of identically distributed random variables with E[ε i] =

0, Var[ε i] = σ2 < ∞.

The least squares estimate of g̊(x) under bimonotone constraints is given by

g∗n = argmin
f∈F is

∑
x∈X

( f (x)− ĝn(x))2w(n)
x , (A.40)

where F is denotes the set of all bounded bimonotone increasing functions on
X , ĝn(x) is the average of Yi, i = 1, . . . , n, over the design element x, i.e.

ĝn(x) = ∑n
i=1 Yi1{xi = x}

∑n
i=1 1{xi = x} (A.41)

and

w(n)
x =

∑n
i=1 1{xi = x}

n
. (A.42)

Note that gn(x) in (A.41) is the unconstrained least squares estimate of g̊(x).
The asymptotic properties of nonlinear least squares estimators were studied
in [17, 25]. Assume that the design points xi, with i = 1, . . . , n, satisfy the
following condition

w(n) → w, (A.43)

as n → ∞, where w(n) is a sequence of vectors in R
r1×r2
+ whose components

are from (A.42), and w ∈ R
r1×r2
+ . Given the condition in (A.43) is satisfied, the

basic estimator ĝn(x) is consistent and has the following asymptotic distribu-
tion

n1/2(ĝn − g) d→ Y0,Σ, (A.44)
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where Y0,Σ is a Gausian vector with mean zero and diagonal covariance matrix
Σ, whose elements are given by Σii = σ2wi, for i = 1, . . . , r× s, cf. Theorem 5
in [25].

We next derive the asymptotic distribution of the regression function under
bimonotone constraints.

Theorem 5.1. Given that the condition (A.43) on the design points is satisfied, the
asymptotic distribution of the regression function ĝ∗n(x) under bimonotone constraints
is given by

n1/2(ĝ∗n − g̊) d→ ϕw(Y0,Σ), (A.45)

where ϕw is the operator defined in (A.20) and Y0,Σ is a Gaussian vector defined in
(A.44).

Proof. The requirements of Assumption 2.1 are satisfied. Therefore the result
follows from Theorem 4.5. �

5.2 Estimation of a bimonotone decreasing probability mass func-
tion

In this subsection we treat the problem of estimating a bimonotone decreasing
probability mass function on Z+

2 . Note that this is a natural order restriction
on the pmfs defined on Z+

2 , since a positive bimonotone increasing function
on Z+

2 does not belong to l2.

Suppose that we have observed Z1, Z2, . . . , Zn i.i.d. random variables taking
values in X = Z+

2 := {(i1, i2)T : i1 = 1, 2, . . . , ∞, i2 = 1, 2, . . . , ∞, } with prob-
ability mass function p. The empirical estimator of p is then given by

p̂n,i =
ni

n
, ni =

n

∑
j=1

1{Zj = xi}, i ∈ I , (A.46)

and it is also the unrestricted mle, which generally does not satisfy the bi-
monotonisity constraints introduced above. However, p̂n is consistent, i.e.
p̂n

p→ p and asymptotically Gaussian

n1/2(p̂n − p) d→ Y0,C, (A.47)
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where Y0,C is a Gaussian process in l2, with mean zero and the covariance
operator C such that 〈Cei, ei′〉 = piδi,i′ − pi pi′ , with ei ∈ l2 the orthonormal
basis in l2 such that in a vector ei all elements are equal to zero but the one
with the index i is equal to 1, and δij = 1, if i = j and 0 otherwise, cf. [16].

The constrained mle p̂∗n of p is then given by the isotonic regression of the
empirical estimator p̂n over the set X with respect to the preorder �

p̂∗n = argmin
ξ∈F an

∑
x∈X

(ξx − p̂n,x)
2, (A.48)

where F an denotes the set of all bimonotone decreasing (antitonic with respect
to �) functions on X . This result shown on pages 45–46 in [3] and pages 38–39
in [20].

Next we make the following substitution

θ = −p,

θ̂n = −p̂n, (A.49)

θ̂∗n = −p̂∗n.

Therefore θ̂∗n is the isotonic regression of θ̂n, i.e.

θ̂∗n = argmin
ξ∈F is

∑
x∈X

(ξx − θ̂n,x)
2, (A.50)

where F is denotes the set of all bimonotone increasing (isotonic with respect
to �) functions on X .

We next derive the asymptotic distribution of the bimonotone mle p̂∗n as a
corollary of Theorem 4.5.

Theorem 5.2. The asymptotic distribution of the constrained mle p̂∗n of a bimonotone
probability mass function p is given by

n1/2(p̂∗n − p) d→ ϕ(Y0,C), (A.51)

where ϕ is the operator defined in (A.33) and Y0,C is a Gaussian process in l2 defined
in (A.47).

Proof. The requirements of Assumption 2.2 for the sequence θ̂n defined in
(A.49) are satisfied. Therefore from Theorem 4.5 it follows that

n1/2(θ̂∗n − θ)
d→ ϕ(Y0,C)
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and using the substitution (A.49) we finish the proof. �

5.3 Generalisation to the case of d-dimensional monotone functions

The results obtained in Theorems 5.1 and 5.2 can be directly generalised to
the case of estimation of a d-dimensional monotone (d-monotone) regression
function and a d-monotone pmf.

Let us consider a set

X := {x = (i1, i2, . . . , id)
T : i1 = 1, 2, . . . , r1, i2 = 1, 2, . . . , r2, . . . ,

id = 1, 2, . . . , rd}, with d < ∞, r1, r2, . . . , rd ≤ ∞ (A.52)

and introduce a d-monotone order relation � on it in the following way.
For any x1 and x2 in X we have x1 � x2 if and only if x1,1 ≤ x2,1, x1,2 ≤
x2,2, . . . , x1,d ≤ x2,d. Similarly to the bimonotone case, it can be shown that the
order relation � is a partial order and X is non-decomposable.

Suppose we have observed Zi = (xi, Yi), i = 1, . . . , n, with xi the design points
taking values from the set X defined in (A.52), with r1, r2, . . . , rd < ∞ and Yi
real valued random variables defined in the regression model

Yi = g̊(xi) + ε i, i = 1, . . . , n,

where ε i is a sequence of identically distributed random variables with E[ε i] =

0, Var[ε i] = σ2 < ∞.

The least squares estimate of g̊(x) under bimonotone constraints is given by

g∗n = argmin
f∈F is

∑
x∈X

( f (x)− ĝn(x))2w(n)
x ,

where F is denotes the set of all bounded d-monotone functions on X , the
expressions for ĝn(x) and w(n)

x are the same as in bimonotone case, i.e. given
in (A.41) and (A.42), respectively. Therefore, under condition (A.43) on the
design points xi, we obtain the following corollary.

Theorem 5.3. The asymptotic distribution of the regression function ĝ∗n(x) under
d-monotone constraints is given by

n1/2(ĝ∗n − g̊) d→ ϕw(Y0,Σ),
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where ϕw is the operator defined in (A.20) and Y0,Σ is a Gaussian vector defined in
(A.44).

Proof. The requirements of Assumption 2.1 are satisfied. Therefore the result
follows from Theorem 4.5. �

Next suppose that we have observed Z1, Z2, . . . , Zn i.i.d. random variables
taking values in X defined in (A.52), with r1, r2, . . . , rd ≤ ∞ with probability
mass function p. The mle p̂∗n of p with d-monotone decreasing constraints is
then given by

p̂∗n = argmin
ξ∈F an

∑
x∈X

(ξx − p̂n,x)
2,

where p̂n is the empirical estimator defined in (B.2), F an denotes the set of all
d-monotone decreasing functions on X . The asymptotic distribution of p̂∗n is
given in the following corollary.

Theorem 5.4. The asymptotic distribution of the constrained mle p̂∗n of a d-monotone
probability mass function p is given by

n1/2(p̂∗n − p) d→ ϕ(Y0,C), (A.53)

where ϕ is the operator defined in (A.33) and Y0,C is a Gaussian process in l2 defined
in (A.47).

Proof. Making the same substitution as in a bimonotone case, i.e. in (A.49)
we note that the requirements of Assumption 2.2 are satisfied. Therefore the
result follows from Theorem 4.5. �

6 Conclusions and discussion

We have derived the limit distribution of an estimator that is obtained as the
l2 projection of a basic preliminary estimator on the space of functions that are
defined on a countable set, and that are monotone with respect to a preorder
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on that countable set. Immediate applications that we have stated results for
are to the estimation of d−monotone pmfs and regression functions.

We would like to emphasize a qualitative difference between the estimation of
a pmf over a subset of Zd

+ and the estimation of a pdf over a subset of Rd
+.

We note first that limit distribution results for monotone pdf estimators, to
our knowledge, exist only for the case d = 1, cf. however [18] for the limit
distribution of the non-parametric maximum likelihood estimator (npmle) of
a bimonotone pdf (so when d = 2), indexed by (the Lebesgue measure of)
lower layers. For the case d = 1, the isotonic regression estimator of a pdf
is, for independent data, equivalent to the npmle, i.e. the Grenander estim-
ator, and for dependent data does not have the interpretation of an npmle,
cf. [1] for the limit distribution results for the monotone restricted pdf estim-
ator for arbitrary dependence assumptions on the data. The limit distribution
in the independent data case is then the well known Chernoff distribution
mentioned above, and for dependent data different, cf. Theorem 10 (ii) and
Theorem 11 in [1].

Note also that, in the case d = 1, the order restricted estimator of a pdf is
a local estimator, in the sense that it uses data in a shrinking neighbourhood
around the point of interest, say t0 ∈ R, to calculate the value of the pdf at
t0, and the size of the neighbourhood is of the order n−1/3 for independent
data, and of a different order for dependent data, cf. Table 1 of Section 5 in
[1] for an overview of the possible orders related to the dependence of the
data. Any sensible estimator of a monotone pdf for d ≥ 2 will also use data
in a shrinking neighbourhood around the point of interest, cf. e.g. [15] for
a discussion about rates in this connection. Furthermore, as argued e.g. in
[15], the rates in higher dimensions are slower for monotone pdf estimation.
This is in sharp contrast to the problems treated in this paper, on monotone
pmf estimation, and is explained by the fact that the resulting estimator for
those problems is a global estimator, i.e. it uses data points in a set of size
O(1) around the point of interest to obtain the estimator, irrespective of the
dimension d. The fact that estimators of pdf are local and of pmf are global,
also accounts for that one is able to obtain process limit distribution results
for the pmf estimator, whereas it is only possible to obtain pointwise limit
distribution results for the pdf estimators.

The results stated in this paper are general in terms of the demands on the
basic estimator and on the underlying empirical process. In fact, Assumptions
2.1 and 2.2 only require that there is a limit process for the basic estimator, and
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do not specify any requirements of e.g. dependence for the data. Note, how-
ever, that if one does not require independence of the data, then the identity
between the isotonic regression of a pmf and the mle of a pmf vanishes, since
the product of the marginal pmfs is then not the full likelihood.

By allowing dependent data, we are in a position to straight-forwardly obtain
limit distributions in general situations. One problem that comes to mind is
that of isotonic regression of an ordered pmf on a DAG. The assumption of
monotonicity of the pmf with respect to the natural tree order on the DAG
is sensible; one can e.g. imagine the DAG describing the, say, three categor-
ies that may influence the monthly salary of an employee at a large facility,
with the DAG structure given by the (matrix) preorder on the three categor-
ies. Then, given data on employees salary and covariate readings for the
three categories, one may first construct the empirical estimate of the pmf and
next isotonize that. Knowing the limit distribution of the empirical estim-
ator immediately gives us the limit distribution of the isotonized estimator,
irrespective of whether data are independent or not.

7 Appendix

Proof of Lemma 3.1. The statements (i), (ii), (iii) and (iv) are from [20]
(Theorems 1.3.1, 1.3.3, 1.4.4 and 1.3.4). The statements (v) and (vi) are proved
in [3] (Theorems 2.2 and 1.8).

Note that statement (ii) means that if the basic estimator ĝn satisfies a lin-
ear restriction, e.g. ∑s

i=1 wi ĝn,i = c, with some positive reals wi, then the
same holds for its isotonic regression with the weights w, i.e. for ĝ∗n one has
∑s

i=1 wi ĝ∗n,i = c. �

Proof of Lemma 3.2. Let g(x) be an arbitrary real-valued function defined on
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X . From the definition of the isotonic regression

g∗ = argmin
f∈F is

∑
x∈X

( f (x)− g(x))2wx

= argmin
f∈F is

k

∑
v=1

∑
x∈X (v)

( f (x)− g(x))2wx

=
k

∑
v=1

argmin
f (v)∈F is

(v)

∑
x∈X (v)

( f (v)(x)− g(v)(x))2wx,

where f (v) is the restriction of the function f : X → R to the set X (v). The
second equality follows from (A.5) and the last equality follows from the
fact that since the elements from the different partition sets X (v) are non-
comparable, then any function f ∈ F is can be written as a concatenation of
f (v) ∈ F is

(v), with no restrictions imposed on the values of f (v1) and f (v2) for
v1 6= v2. �

Proof of Lemma 3.5. First, note that if the condition of the lemma is satisfied,
then the function g∗(x) defined in (A.10) on the set X is isotonic. This fol-
lows from Lemma 3.1, statement (iv). Second, assume that the function g∗(x)
defined in (A.10) is not an isotonic regression of g(x). This means that there
exists another function g̃(x), such that

∑
x∈X

(g̃(x)− g(x))2wx < ∑
x∈X

(g∗(x)− g(x))2wx, (A.54)

Using the partition of X , (A.54) can be rewritten as

m

∑
l=1

∑
x∈X (l)

(g̃(x)− g(x))2wx <
m

∑
l=1

∑
x∈X (l)

(g∗(x)− g(x))2wx.

Therefore, for some l′ we must have

∑
x∈X (l′)

(g̃(x)− g(x))2wx < ∑
x∈X (l′)

(g∗(x)− g(x))2wx

or, equivalently,

∑
x∈X (l′)

(g̃(l
′)(x)− g(l

′)(x))2wx < ∑
x∈X (l′)

(g∗(l
′)(x)− g(l

′)(x))2wx,
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with g(l
′)(x), g̃(l

′)(x) and g∗(l
′)(x) the restrictions to the comparable level set

X (l′) of g(x), g̃(x) and g∗(x), respectively. Since the function g∗(l
′)(x) is the

isotonic regression of the function g(l
′)(x) on the set X (l′), the last inequality

contradicts the property of the uniqueness and existence of the isotonic re-
gression g∗(l

′)(x) (statement (i) of Lemma 3.1). �

Proof of Lemma 3.6. This result follows from Theorem 3.1 in [6]. �

Proof of Lemma 4.2. Statements (i), (ii) and (iii) follow from Theorem 8.2.1,
Corollary B of Theorem 8.2.7 and Theorem 8.2.5, respectively, in [20], state-
ments (iv), (v) and (vi) follow from Corollary B of Theorem 7.9, Theorems 2.2
and Theorems 7.5 and 7.8, respectively, in [3]. �

Proof of Lemma 4.2. The proof is exactly the same as in the finite case (Lemma
3.2).

�

Proof of Lemma 8.2. The proof is exactly the same as in the case of a finite
support (Lemma 3.5). �

Proof of Lemma 4.4. This proof is reminiscent of the proofs done for the
spaces R∞ and C(0, 1), the space of continuous functions on unit interval
with uniform topology, cf. Chapters 2 and 3 in [6].

The space lw
2 is separable and complete. Then, from Prokhorov’s theorem [21],

it follows that the sequence Zn is relatively compact, which means that every
sequence from Zn contains a subsequence, which converges weakly to some
vector Z. If the limits of the convergent subsequences are the same, then the
result of the lemma holds.

Since the space lw
2 is separable, the Borel σ-algebra equals the σ-algebra gener-
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ated by open balls in lw
2 [8]. Therefore, it is enough to show that the limit laws

agree on open balls, since finite intersections of open balls in lw
2 constitute a

π-system. To show that the limit laws agree on finite intersections of open
balls, we note that the open ball B(z, ε) in lw

2 can be written as

B(z, ε) = ∩M≥1BM,

where

BM = ∪n≥1AM
n ,

AM
n = {y ∈ lw

2 : ∑
j∈ĩ1,...,ĩM

|zj − yj|2wj < ε2 − 1
n
},

where the indices ĩ1, . . . , ĩM are the M first indices from Ĩ .

The sequence of vectors Z̃(1,M)
n converges weakly to Z̃(1,M) for all finite M,

therefore any subsequence of Z̃(1,M)
n converges weakly to Z̃(1,M). That means

that, with PM
n the laws of an arbitrary but fixed subsequence of Z̃(1,M)

n , and
PM the law of Z̃(1,M), P

(M)
n (A) → P(M)(A) for any P(M)-continuity set A.

Therefore, since the cylinder set AM
n is a continuity set for the limit law P(M),

and by the continuity properties of a probability measure, we obtain

P(B(z, ε)) = lim
M→∞

P(BM)

= lim
M→∞

lim
n→∞

P(AM
n )

= lim
M→∞

lim
n→∞

P(M)(AM
n ),

where P is the law of Z.

Thus, we have shown that the limit laws, P, of the convergent subsequences
of {Zn} agree on the open balls B(z, ε), and, therefore, also on the finite inter-
sections of these open balls. Since the laws agree on the π-system (they are all
equal to P), they agree on the Borel σ-algebra. �

Proof of Lemma 4.6. First, we prove that if w satisfies the condition in (A.3),
then x ∈ lw

2 if and only if x ∈ l2 (l2 is the space of all square summable
sequences, i.e. w = {1, 1, . . . }). Let x ∈ lw

2 , then ∑∞
i=1 x2

i wi < ∞ and we have

(inf
i
{wi})

∞

∑
i=1

x2
i ≤

∞

∑
i=1

x2
i wi < ∞.
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Therefore, since inf
i
{wi} > 0, we have that ∑∞

i=1 x2
i < ∞, which means that

x ∈ l2.

Next, let x ∈ l2, then ∑∞
i=1 x2

i < ∞ and we have

∞

∑
i=1

x2
i wi ≤ (sup

i
{wi})

∞

∑
i=1

x2
i < ∞,

since sup
i
{wi} < ∞. Therefore, x ∈ lw

2 .

Second, let ‖·‖w and ‖·‖ denote the natural norms in lw
2 and l2. We can prove

that if w satisfies the condition in (A.3), then lw
2 and l2 are equivalent, i.e.

there exist two positive constants c1 and c2 such that

c1‖x‖ ≤ ‖x‖w ≤ c2‖x‖, (A.55)

if, for example, c1 = inf
i
{wi} and c2 = sup

i
{wi}. Therefore, since the equival-

ence of norms is transitive, then lw1
2 and lw2

2 are equivalent, provided w1 and
w2 satisfy the condition in (A.3). �
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Estimation of a discrete monotone distribution
with model selection

Dragi Anevski and Vladimir Pastukhov
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Abstract

We introduce a new method of estimating a discrete monotone probabil-
ity mass function. We propose a two-step procedure. First, we perform a
model selection introducing the Akaike-type information criterion (CMAIC).
Second, using the selected class of models we construct a modified Grenander
estimator by grouping the parameters in the constant regions and then pro-
jecting the grouped empirical estimator onto the isotonic cone. We show that
the post-model-selection estimator performs asymptotically better, in l2-sense,
than the regular Grenander estimator.

Keywords: Constrained inference, isotonic regression, density estimation, Gren-
ander estimator, limit distribution.

1 Introduction

In this paper we study a two step procedure for estimating a monotone prob-
ability mass function (pmf). The procedure consists of an order restricted es-
timation step, which takes into account detailed information about the shape
of the estimand, preceded by a model selection procedure step, for selecting
the appropriate class of shape restricted pmfs.

Our procedure is slightly reminiscent of the pioneering paper by Jankowski
and Wellner [12], which was the first to introduce and study two estimators
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that satisfy order restrictions on the unknown pmf, and in fact the work in [12]
is a main motivation for our paper. The two estimators that were introduced
in [12] are the order restricted maximum likelihood estimator (mle) p̂G

n and the
monotone rearrangement of the empirical estimator p̂R

n , respectively. The limit
distributions of the two estimators were established, and it was shown that the
order restricted mle p̂G

n had a smaller l2-risk than the monotone rearrangement
estimator p̂R

n .

Our work is also motivated by [24], which studied the problem of isotonic re-
gression based on i.i.d. data of an estimand with continuous support and pro-
posed grouping of adjacent observations, isotonization of the corresponding
means and then interpolation to the whole support. The procedure studied in
[24] gives a better rate of convergence and a normal limiting distribution of the
restricted estimator, as opposed to the standard n−1/3 rate and the Chernoff
limit distribution that is common in the asymptotic theory for order restricted
inference. The author also discussed the interpolation scheme and a proper
way to make a partition of the support.

The limit distributions of both the rearrangement p̂R
n and the order restricted

mle p̂G
n , depend on the regions of constancy of the estimand, the true pmf

p, which are unknown in general. It is, therefore, not straightforward to use
those limiting distribution results to, for example, construct confidence inter-
vals. Furthermore, in our paper we show that it is not optimal to ignore the
existence of the constant regions in the process of constrained estimation. In
particular, we show that our proposed post-model-selection estimator p̂∗n, per-
forms better than the order restricted mle p̂G

n in the sense of having an almost
surely asymptotically smaller l2-risk, i.e. it satisfies

P[lim inf
n→∞

{||p̂∗n − p||2 ≤ ||p̂G
n − p||2}] = 1, (B.1)

and it is satisfied with the inequality in (B.28) changed to an equality if p is
strictly decreasing. Since it was shown in [12] that p̂G

n performs better than p̂R
n

in this sense, our estimator also performs better than the monotone rearrange-
ment estimator p̂R

n .

The estimator p̂∗n that we propose is a version of the order restricted mle first
introduced in [12], that we however apply an approach which is slightly re-
miniscent to the approach for the continuous support case, used in [24], to and
that we in addition introduce a novel model selection criterion for. The model
assumption for the unknown pmf is that it is monotone, but that it may be not
everywhere strictly monotone, and thus we assume that it may have sets of
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(adjacent) points in its discrete support on which it is constant. Our algorithm
consists of, first, changing the inference problem slightly, by modifying the
estimand p into a new estimand p′, that is also monotone, and that is pos-
sibly and ideally strictly monotone, by grouping the values of p at the levels
of constancy of p. Next, we calculate the order restricted mle of this modified
monotone pmf, and, finally, we expand or interpolate the order restricted mle
into an estimator of the original estimand. We show in Theorem 4.2 below
that, when the grouping of the values is done in an appropriate way, this res-
ulting estimator has a smaller l2 risk than the unmodified order restricted mle
introduced in [12]. However, the procedure for calculating the “estimator”
involves a grouping of the data according to the levels of constancy of the
estimand, and thus it can not be calculated on merely the data; in fact the
algorithm is not an estimator, since its calculation depends on p, the unknown
parameter. If we know the levels of constancy of the estimand it would how-
ever be an estimator, which would outperform the unmodified order restricted
mle p̂G

n that was introduced in [12]. A natural idea is then to try to estimate
the levels of constancy, or rather to make a model selection of the appropriate
pfm, where the outcome from the model selection procedure is the levels of
constancy of the unknown pmf, and then for this selected pmf construct the
above modified order restricted mle. This is in fact the approach we use in
our paper. Thus, we first obtain the regions of constancy of an underlying
pmf p (or at least some of them), using model selection. Previous results in
model selection under order restrictions, cf. [4] and the discussion below, are
not directly applicable to our problem, and in Section 5 we introduce a novel
constrained monotone Akaike-type information criterion (CMAIC). Next, we
use this information in the construction of an order restricted estimator.

An information criterion for the parameters under (simple) order restrictions
was proposed in [4], which studied sampling from normal distributions with
either known variances or with known variance ratios, as well as sampling
from exponential families. A generalization of this model selection criterion
in the one-way analysis of variance model when the population means may
be restricted by a mixture of linear equality and inequality constraints (ORIC)
was proposed in [13]. A further generalisation of ORIC to multivariate normal
linear models (GORIC) is given in [14].

An approach which is somewhat related to ours, in testing for monotone para-
meters, was proposed in [23], where the authors studied tests in which both
the null and the alternative hypotheses describe order restrictions for a finite
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set of parameters, namely

H0 : θ1 = · · · = θq2−1 ≥ θq2 = · · · = θq3−1 ≥ · · · ≥ θqm = · · · = θk

H1 : θ1 ≥ θ2 ≥ · · · ≥ θk−1 ≥ θk,

respectively, with (θ1, . . . , θk) the vector of parameters of interest. This prob-
lem apparently arises in psychiatric research of unipolar affective disorder, cf.
[23]. The authors considered multinomial sampling as well as independent
samples from k populations, with each population following an exponential
family distribution.

In relation to our obtained results on l2-risk bounds, in [7] the authors con-
sidered the problem of estimating a vector θ ∈ Rn under isotonic constraints
and studied the risk bound in isotonic regression. They proved that the rate
of convergence of the risk depends on the shape of the vector θ, i.e. on the
constant regions in θ.

The paper is organised as follows. In Section 2 we give a short review of some
previous estimators of a decreasing pmf. In Section 3 we make a formal state-
ment of the problem and introduce some notation. In Section 4 we consider
the case when the model class, denoted F ∗k,w in the sequel, is fixed, i.e. when
it has been chosen in advance (i.e. not based on the data) and, therefore, does
not change with n. We distinguish between two possibilities for the candid-
ate class; namely that (i) it contains properly the true model class, when the
grouping of the values is done in an appropriate way, and (ii) that it does not
contain the true model class, cf. (B.17) in Section 3 for the proper definition.
First, in Subsection 4.1, we study the case (i), when the selected class contains
the true class, i.e. when F ∗k,w ⊇ F ∗k,v, or, equivalently, when F ∗k,w contains p.
In Theorem 4.2 it is shown that when F ∗k,w contains p, the estimator p̂∗n has,
properly scaled, asymptotically smaller l2-risk, compared to the order restric-
ted mle p̂G

n . Second, in Subsection 4.2 we study the case when the selected
class F ∗k,w does not contain the true class. Next, in Section 5, using the results
of Section 4, we describe the model selection procedure, derive the Akaike-
type information criterion (CMAIC) and study its performance. In Section 6
we study the post-model-selection estimator p̂∗n, taking into account that the
selected class depends on data. We show that the post-model-selection es-
timator p̂∗n has asymptotically smaller l2-risk than the regular order restricted
mle. In Section 7 a simulation study illustrates the behaviour of p̂∗n in com-
parison with p̂G

n . The proofs of all results are given in an Appendix and in the
Supplementary material. The R code for CMAIC and for Algorithms 3.1 and
5.1 is available upon request.
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2 Review of previous estimators of a decreasing probab-
ility mass function

Suppose that we have observed X1, X2, . . . , Xn i.i.d. random variables with
pmf p defined on N+, let k = sup{i : pi > 0}, and note that we allow both
k < ∞ and k = ∞. The model assumption for p is that it is decreasing. The
empirical estimator p̂n of p is then given by

p̂n,i =
ni

n
, (B.2)

where

ni =
n

∑
j=1

1{Xj = i}, (B.3)

for i ∈N+, and it is equivalent to the unrestricted mle

p̂n = argmax
f∈Gk

∏
i

f ni
i , (B.4)

where

Gk =
{

f ∈ Rk
+ :

k

∑
i=1

fi = 1
}

.

The empirical estimator p̂n is unbiased, consistent and asymptotically normal,
cf. [12, 20]. It, however, does not necessarily satisfy the order restriction

p̂n,1 ≥ p̂n,2 ≥ · · · ≥ p̂n,k. (B.5)

An estimator which does satisfy the order restricton (B.5) is the monotone
rearrangement of the empirical estimator, p̂R

n , defined by

p̂R
n = rear(p̂n), (B.6)

where p̂n is the unrestricted mle in (B.2) and rear(v) for a vector v = (v1, . . . , vk)

is the reverse-ordered vector. The monotone-rearrangement estimator, as an
estimator of a pmf, was introduced by [12], and was first used in a statistical
framework, and then as an estimator of a probability density function (pdf),
in [10], cf. also [2] for results on the use of this estimator for pdfs and for
regression functions.

55



The order restricted mle, p̂G
n , is defined by

p̂G
n = argmax

f∈H
∏

i
f ni
i , (B.7)

where H =
{

f ∈ Rk
+ : ∑k

i=1 fi = 1, f1 ≥ f2 ≥ · · · ≥ fk

}
, and it is known to

be equivalent to the isotonic regression of the unrestricted mle, see [5, 12, 17],
i.e. p̂G

n = p̂IS
n , where

p̂IS
n = argmin

f∈F

k

∑
i=1

( p̂n,i − fi)
2,

with F =
{

f ∈ Rk : f1 ≥ f2 ≥ · · · ≥ fk

}
and where p̂n,i is the empirical

estimator defined in (B.2).

The estimator p̂G
n is called the Grenander estimator in [12] and is derived

using an algorithm which can be described as the vector of left derivatives
of the least concave majorant of the cumulative sum diagram (j, Fn(j)), for
j = 1, . . . , k, where Fn(x) is the empirical distribution function Fn(x) =

n−1 ∑n
i=1 1{Xi ≤ x}. Incidently, the algorithm is the same as the one used

to calculate the nonparametric mle of a decreasing pdf on R+, i.e. the original
Grenander estimator.

In [12] the authors showed the consistency of the estimators p̂R
n and p̂G

n . Fur-
thermore, they first established that the empirical estimator is asymptotically
Gaussian, namely that

√
n(p̂n − p) converges weakly in l2 to an infinite di-

mensional Gaussian vector Y0,B with mean zero and the covariance operator
B

< Bei, ei′ >= piδi,i′ − pi pi′ , (B.8)

with ei the orthonormal basis in l2 space, cf. e.g. [9] for Gaussian measures in
infinite dimensional Hilbert spaces. Next, [12] derived the limit distribution
result for the Grenander estimator

√
n(p̂G

n − p) d→ ϕ(Y0,B), (B.9)

where ϕ : Rk → Rk (or ϕ : l2 → l2 if k = ∞) is an operator defined as follows:
for any Y ∈ Rk (or Y ∈ l2), for all constant regions of p

[ϕ(Y)](r,s) = isot{Y(r,s)},
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where [Z](r,s) denotes the restriction of Z ∈ Rk to the index set (r, s) and
isot{·} : Rs−r+1 → Rs−r+1 denotes the isotonic operator, cf. Theorems 3.1 and
3.8 in [12]. In [12] it was also shown that the Grenander estimator p̂G

n has a
smaller l2-risk than both the rearrangement estimator p̂R

n and the empirical
estimator p̂n.

3 Statement of the problem and notation

In this section we state the inference problem and introduce some notations.

Assumption 3.1. Assume that X1, X2, . . . , Xn is an i.i.d. sample of random variables
with unknown pmf p. Suppose that p = {pi}i∈N+ is a monotone decreasing pmf with
support in N+. Let k = sup{i : pi > 0}, with both cases k < ∞ and k = ∞ allowed.
Assume that p has flat regions, of the form

pq1 = · · · = pq1+v1−1 > pq2 = · · · = pq2+v2−1 > · · · > (B.10)

pqm = · · · = pk,

where qj for j = 1, . . . m is the index of the first element in the j-th flat region,
pq1 = p1, m is the total number of flat regions of p, v = (v1, . . . , vm) is the vector of
the lengths (the numbers of points) of the flat regions of p, so that ∑m

j=1 vj = k.

Note, that we allow the flat regions to be one-point sets, namely at the places
where p is strictly decreasing. Thus, if p is strictly decreasing at some index i
and there are j− 1 flat regions to the left of i, some of which may be one-point
sets, then we put vj = 1, so the size of the j-th flat region is 1. Furthermore, if
p is strictly decreasing on the whole support, then m = k and v is a vector of
ones with length k. Also, since ∑i∈N+

pi = 1, we must have vj < ∞ for all j,
i.e. each flat region of p has a finite number of points.

We consider estimation of both the finitely, k < ∞, and infinitely, k = ∞,
supported pmfs p. In the case of finite support, i.e. when k < ∞, the candidate
class H∗k,w of pmfs is of the form

H∗k,w =
{

f ∈ Rk
+ :

k

∑
i=1

fi = 1, f1 = · · · = fw1 ≥

ft2 = · · · = ft2+w2−1 ≥ · · · ≥ fts = · · · = fk

}
, (B.11)
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where t = (t1, . . . ts), with t1 = 1, is the vector of indices of the first elements
of the constant regions, w = (w1, w2, . . . , ws) is the vector of their lengths and
s = |w| = |t| is the number of constant regions in H∗k,w. We can then define
the order restricted mle, p̂∗n, of p, as

p̂∗n = argmax
f∈H∗k,w

∏
i

f ni
i , (B.12)

where the full data is collapsed, by sufficiency, to the count data ni, i = 1, . . . , k,
defined in (B.3).

In the case of an infinite support, i.e. when k = ∞ (and note that we actually
use the following approach also when k is finite but very large), we take some
fixed finite r and consider the candidate class H∗k,w = H∗k,w,r defined by

H∗k,w,r =
{

f ∈ l2 : fi ≥ 0,
k

∑
i=1

fi = 1, f1 = · · · = fw1

≥ ft2 = · · · = ft2+w2−1 ≥ · · · ≥ ftd = · · · = fr (B.13)

≥ fr+1 ≥ fr+2 ≥ fr+3 ≥ . . .
}

,

where t = (t1, . . . td, r + 1, r + 2, . . . ), with t1 = 1 and (t1, . . . td) are the indices
of the first elements of the constant regions for the elements with the indices
less or equal than r. Consequently, the vector of the lengths of the constant
regions is w = (w1, w2, . . . , wd, 1, 1, . . . ). Note, that the true pmf p may have
constant regions for i > r, but in the case of an infinite (or large) support we
only search for the constant regions of p up to some fixed finite index r, and
the constraints for i > r are not active (i.e. they are treated as ≥). Thus, for
this candidate class H∗k,w,r we take into account flat regions of the pmf only on
the finite part {1, . . . , r} of the whole support set. The order restricted mle p̂∗n,
in the case of k = ∞, is defined as in (B.12).

It is convenient to introduce also the cones of vectors that satisfy the appro-
priate order restrictions, but that do not necessarily satisfy the hyperplane
condition that the vectors sum to one. Thus, in the case of finite support, we
introduce F ∗k,w as the following cone in Rk

F ∗k,w =
{

f ∈ Rk : f1 = · · · = fw1 ≥

ft2 = · · · = ft2+w2−1 ≥ . . . ≥ fts = · · · = fk

}
, (B.14)

with t, w and s defined identically to as in the definition of H∗k,w. In the case
of an infinite support, when k = ∞, (or when k is very large) we again pick a
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finite r and introduce F ∗k,w = F ∗k,w,r as the following cone in l2

F ∗k,w,r =
{

f ∈ l2 : f1 = · · · = fw1 ≥

ft2 = · · · = ft2+w2−1 ≥ · · · ≥ ftd = · · · = fr ≥ (B.15)

fr+1 ≥ fr+2 ≥ fr+3 ≥ . . .
}

,

where t, w are defined identially to as in the definition of H∗k,w,r.

In Section 4, we show that the solution to (B.12), under the constraints (B.11),
is given by

p̂∗n = argmin
f∈F ∗k,w

∑
i
[ p̂n,i − fi]

2, (B.16)

where the empirical estimator p̂n,i is defined in (B.4), and, under the con-
straints (B.13), it is given by (B.16) with F ∗k,w replaced by F ∗k,w,r.

The choice of an appropriate r will be discussed in Section 5. Most of the limit
results in the paper hold for both finite and infinite k, and in order to keep the
notations simpler we use the same notation F ∗k,w for both cases and when the
infinite case is different we will emphasise it.

We will say that the class F ∗k,w is generated by the vector w. Furthermore,
we will say that for given k, w1 and w2, the class F ∗k,w1

, generated by w1, is
bigger than the class F ∗k,w2

, generated by w2, if F ∗k,w2
⊆ F ∗k,w1

, with ⊆ given
the ordinary set theoretic meaning. Therefore, for a given class F ∗k,w, defined

in (B.14), there are 2∑s
j=1 wj−s = 2k−s classes bigger or equal to F ∗k,w, and for

a given class F ∗k,w, defined in (B.15), there are 2∑d
j=1 wj−d = 2r−d classes bigger

or equal to F ∗k,w. For a fixed k, there is a one-to-one correspondence between
w and F ∗k,w, therefore, in the sequel of the paper we will sometimes write w
instead of F ∗k,w to denote the corresponding class F ∗k,w.

Note that in general, v, the vector of constant regions of the true pmf p, and,
consequently, q, the vector of indices of the first elements in the constant re-
gion, defined in (D.27), are unknown. Furthermore, for any choice of can-
didate class F ∗k,w, given in (B.14) or (B.15), in general, the vector of constant
regions w of the candidate class F ∗k,w may or may not be equal to the vec-
tor v of constant regions of the true pmf p, thus we may or may not have
F ∗k,w = F ∗k,v. In fact, we can have two possibilities

(i) F ∗k,v = F ∗k,w or F ∗k,v ⊂ F ∗k,w, (B.17)

(ii) F ∗k,v 6⊂ F ∗k,w.
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We note that for any candidate class F ∗k,w, as defined in either (B.14) or (B.15),
in order to have p ∈ F ∗k,w, i.e. in order to have either of the two subcases in (i)
of (B.17), one needs to have at least as many constant regions in the candidate
class F ∗k,w as there are constant regions in p, i.e. one needs s ≥ m, and that

for any j1 ∈ {1, . . . , m} there exist j2 ∈ {1, . . . , s} such that ∑
j1
i=1 vi = ∑

j2
i=1 wi.

Therefore, p ∈ F ∗k,w if and only if there are no active constraints in the class
F ∗k,w in between the following pairs of elements ( fq2−1, fq2), ( fq3−1, fq3) . . . .

We also introduce the following notation for restricting a subset A ⊂ R∞ to a
coordinate set I. Let I ⊂ {1, 2, 3, . . .} be a set of indices. Then we define

[A]I = {x(I) ∈ R|I| : x ∈ A}, (B.18)

where x(I) denotes the length-|I| vector consisting of the I coordinates of x.

Finally, let us introduce the notation Π(y|F ) for the l2 projection of a vector
y ∈ l2 onto a fixed but arbitrary closed convex cone F in l2, i.e.

Π(y|F ) = argmin
z∈F

∑
i
(zi − yi)

2. (B.19)

3.1 An algorithm for a monotone pmf estimator with prior model
selection

In this subsection we describe an algorithm for our proposed estimator. As-
sume that we are given a data set (x1, . . . , xn) of observations from n i.i.d.
random variables X1, X2, . . . , Xn from the pmf p. To estimate the underlying
decreasing pmf p we propose the following model selection based algorithm.
Note that the algorithm is valid in the two cases k < ∞ and k = ∞.

Algorithm 3.1.

1. The model selection.

First, we perform a model selection to obtain the class F ∗k,w. This is described
in detail in Section 5.

2. Grouping of the parameters.

Then, we make a reparametrization by grouping the probabilities which are re-
quired to be equal, according to the constant regions w of the selected class
F ∗k,w. This is done by, at the j-th flat region of p, setting the value of the new
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parameter p′j to be equal to the common probability values of p at the j-th flat
region. The resulting reparametrized true pmf p′ = (p′1, . . . p′s) then satisfies

s

∑
j=1

wj p′j = 1

and the values p′j are strictly decreasing, if the chosen class F ∗k,w is exactly equal
to the true one.

3. Isotonisation of the grouped empirical estimator. First, we define p̂′n =

( p̂′n,1, . . . p̂′n,s), the unrestricted (i.e. without order restrictions) mle, as

p̂′n = argmax
f ′∈G ′s,w

∏
j

f ′
n′j
j , (B.20)

where

G ′s,w =
{

f ′ ∈ Rs
+ :

s

∑
j=1

wj f ′j = 1
}

, (B.21)

and

n′j =
n

∑
l=1

1{Xl ∈ {tj, tj + wj − 1}}. (B.22)

Next, we find the order restricted mle p̂
′G
n of p′ = (p′1, . . . p′s) by, equivalently,

finding the isotonic regression of p̂′n with the weights w = (w1, . . . , ws), i.e. as

p̂
′G
n = argmin

f ′∈F ′s,w

∑
j
[ p̂′n,j − f ′j ]

2wj,

where

F ′s,w =
{

f ′ ∈ Rs
+ : f ′1 ≥ f ′2 ≥ · · · ≥ f ′s

}
. (B.23)

See Section 4 below for a proof of the equivalence of the order restricted mle and
the weighted isotonic regression.

4. Interpolation to the whole support. Finally, we interpolate the estimator
p̂
′G
n , which has its support on the indices (1, . . . , s), to an estimator on the

whole support of p. This is done by writing

p̂∗n = Ap̂
′G
n , (B.24)
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where A is a linear operator from l2 to l2, the application of which y = Ax on
a vector x of dimension dim(x) = s gives a vector y of dimension dim(y) = k
and where the components of y are given by

y(tj :tj+wj−1) = xj

Note that in the case of a finite k, A is a k×m matrix, with non-zero elements:

[A]tj :tj+wj−1,j = 1, (B.25)

and with all other elements not defined in (B.25) equal to zero.

The goal is to investigate the resulting post-model-selection estimator p̂∗n and
compare its performance with the Grenander estimator p̂G

n defined in (B.7).

4 Characterization of the estimator for a fixed model class
and asymptotic results for the estimator

In this section we assume that the candidate model class is fixed, i.e. we
assume that the candidate class does not depend on the data and does not
change with n. To clarify, we thus assume that we have made a choice of the
model class, but that this is a deteministic process, in the sense that it has not
been influenced by the data. In Section 6 below we present a corresponding
treatment of the more realistic scenario in which the selection based estimator
uses a candidate class which is data dependent.

First, we note that the problem in (B.12) is equivalent to (B.16), i.e.

p̂∗n = Π(p̂n|F ∗k,w) (B.26)

with p̂n the empirical estimator, defined in (B.4), F ∗k,w defined in (B.14) or
(B.15), and with Π(·|F ∗k,w) the l2 projection on the cone F ∗k,w, defined in (B.19),
cf. pages 45–46 in [5] and pages 38–39 in [17]. Thus the order restricted mle
coincides with the l2 projection of the empirical estimator onto a correspond-
ing cone. We, therefore, in the sequel study the estimator as being defined in
(B.26), and note that the discussions about and choices of the candidate classes
H∗k,w and H∗k,w,r are transformed to the corresponding discussions about and
choices of for the candidate classes F ∗k,w and F ∗k,w,r.
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4.1 The class F ∗k,w contains the true model class

In this subsection we assume that p ∈ F ∗k,w. First we study the asymptotic
properties of the estimator p̂∗n. In order to introduce the limit random variable,
we introduce below a cone that is adapted from F ∗k,w, by relaxing some of the
restrictions.

Note that since p ∈ F ∗k,w, there must be k1, k2, k3, . . . integers, with ki ≥ 1 for
all i ≥ 1, such that the union of first k1 regions of constancy in F ∗k,w is equal to
the first region of constancy of p, the union of the k2 next regions of constancy
in F ∗k,w is equal to the second region of constancy of p, and so on. We define
the cone G∗k,w,p as the Cartesian product

G∗k,w,p = ×
j≥1

[F ∗k,w]
(qj,qj+vj−1), (B.27)

where [F ∗k,w]
(qj,qj+vj−1) is the cone consisting of the restriction of F ∗k,w to the

coordinates in the j’th region of constancy of p, cf. Assumption 3.1 and (B.18).
Thus we have relaxed some of the previous conditions in F ∗k,w in the defin-
ition of G∗k,w,p, so that there are no active constraints in (B.27) in between
the regions of constancy of p i.e. between (xv1 , xv1+1), (xv1+v2 , xv1+v2+1), . . .
(x∑k−1

j=1 vj
, x∑s−1

j=1 vj+1), where v = (v1, . . . , vs) is the vector of the lengths of the

regions of constancy of true pmf p.

Theorem 4.1. Given that p ∈ F ∗k,w, the estimator p̂∗n is strongly consistent

p̂∗n
a.s.→ p

and its asymptotic distribution is given by

√
n(p̂∗n − p) d→ Π(Y0,B|G∗k,w,p),

where Y0,B is a Gaussian vector in l2 with mean zero and covariance operator B given
by < Bei, ej >= δij pi − pi pj.

The limit random variable in Theorem 4.1 can be seen as a concatenation of
separate isotonic regressions over each region of constancy (qj, qj + vj − 1) of
the Gaussian vector Y0,B, but where the isotonic regression is for functions
that are monotone with respect to a certain preorder that is induced by the
candidate class F ∗k,w and follows from recent results in [3]. The proof of the

63



theorem as well a discussion of the relevant preorder, which we denote �w,
can be found in the appendix. Note however that for the statement of the
theorem it is not necessary to know about the preorder.

The next theorem shows that the estimator p̂∗n performs asymptotically better,
in the l2-sense, than the regular Grenander estimator p̂G

n .

Theorem 4.2. Assume that p ∈ F ∗k,w. Then

P[lim inf
n→∞

{||p̂∗n − p||2 ≤ ||p̂G
n − p||2}] = 1,

Therefore, we have proved that for any pmf p there is n1 such that ||p̂∗n −
p||2 ≤ ||p̂G

n − p||2 a.s. for all n > n1, provided that p ∈ F ∗k,w. Next, in [12] it
was shown that

lim
n→∞

E[n||p̂G
n − p||22] =

m

∑
j=1

vj

∑
i=1

pqj(
1
i
− pqj),

where qj for j = 1, . . . m is the index of the first element in the j-th constant
region, v = (v1, . . . , vm) is the vector of the lengthsof the constant regions of
true pmf p.

Therefore, we have the following corollary

Corollary 4.1. Assume that p ∈ F ∗k,w. Then, there exists n1 such that for all n > n1

one has

E[n||p̂∗n − p||22] ≤ E[n||p̂G
n − p||22].

4.2 The class F ∗k,w does not contain the true model

Assume that F ∗k,v 6⊂ F ∗k,w or, equivalently, that p 6∈ F ∗k,w. Then in this case the
estimator p̂∗n is not consistent. In fact, using the continuous mapping theorem
we have that

p̂∗n = Π(p̂n|F ∗k,w)
a.s.→ Π(p|F ∗k,w) 6= p,

since the projection operator, cf. (B.19), is a continuous map, and where
the inequality on the right hand side follows since p 6∈ F ∗k,w. Therefore,
lim supn→∞ nl2

2(p̂∗n, p) becomes infinite. Below, in Section 5, we will prove
that the classes F ∗k,w which do not include the configuration of the true pmf p
will be asymptotically excluded in the model selection process.
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5 Akaike-type information criterion for model selection

In this section we construct an Akaike-type information criterion to obtain the
vector of regions of constancy w. We assume that the true pmf p belongs to
F ∗k = ∪wF ∗k,w, i.e. that the problem is correctly specified.

5.1 The case of a finite support of p

First, we consider the case when k < ∞ and assume we are given a data
set (x1, . . . , xn) of observations from n i.i.d. random variables X1, X2, . . . , Xn

generated by a pmf p. For some pmf f ∈ F ∗k,w the log-likelihood is given by

l(x1, . . . , xn| f ) =
k

∑
i=1

ni log fi, (B.28)

with ni = ∑n
j=1 1{Xj = i}. We aim to find w, the shape of the underlying pmf

p, i.e. to select the class F ∗k,w which contains p. Note that each vector w is a
certain composition, in the number theoretic sense, of an integer k, which is
the cardinality of the support of the underlying pmf p. For a given k there are
2k−1 different compositions, and therefore 2k−1 different candidate classes of
the form (B.14).

We use the approach originally developed by H. Akaike in [? ], i.e. we choose
the model which gives the lowest Kullback-Leibler discrepancy, cf. [15],

d(p̂∗n) = −2Ep[l(X1, . . . , Xn| f )]| f=p̂∗n , (B.29)

where Ep[·] stands for the expectation with respect to the true pmf p, and
p̂∗n ∈ F ∗k,w is the mle, defined in (B.16). Though d(p̂∗n) cannot be evaluated,
because p is unknown, it can be estimated. In [? ] the author suggested to
estimate d(p̂∗n), for general parametric models, by

d̂(p̂∗n) = −2l(x1, . . . , xn|p̂∗n), (B.30)

which, however, is a biased estimator. We will use the estimate d̂(p̂∗n) as a
basis for our proposed information criterion and bias correct it. We define the
information criterion as

CMAIC = d̂(p̂∗n) + B(w),

65



cf. Definition 5.2 below, where the bias correction B(w) is a certain sum of
level probabilities of a Gaussian vector, defined below in Theorem 5.1. The
remainder of this subsection is dedicated to the derivation of an expression
for B(w), cf. (B.35) below.

Let us assume that p ∈ F ∗k,w for a candidate family F ∗k,w and let us study
d(p̂∗n)− d̂(p̂∗n), where p̂∗n is the constrained mle in (B.16).

First, we note that

d(p̂∗n)− d̂(p̂∗n) = −2Ep[l(X1, . . . , Xn| f )]| f=p̂∗n + 2l(x1, . . . , xn|p̂∗n).

Second, using the result (2.16) in [8], for d(p̂∗n)− d̂(p̂∗n) we have

d(p̂∗n)− d̂(p̂∗n) = Zn + 2V T
n P−1Vn + op(1), (B.31)

where Zn is a random variable such that Ep[Zn] = 0 for all n, Vn =
√

n(p̂∗n− p)
and P is a diagonal k× k matrix with Pjj = pj.

Next, let D ∈ Rk be some cone and let P(D, j, k) denote the probability that
the projection of a standard normal k-dimensional vector on the cone D has j
distinct values, for j = 1, . . . , k, cf. [5, 17, 19]. The asymptotic distribution of
V T

n P−1Vn is given in the next theorem.

Theorem 5.1. The limit distribution of V T
n P−1Vn is given by

V T
n P−1Vn

d→ V , (B.32)

where V has the following distribution

P[V ≤ v] =
s

∑
j=1

P(G∗k,w,p, j, s)P[χ2
j−1 ≤ v],

for any real number v, χ2
j is a chi-square random variable with j degrees of freedom

and s = |w|.

Moreover,

E[V T
n P−1Vn] → E[V ] (B.33)

and
s

∑
j=1

P(F ∗k,w, j, k)(j− 1) ≤ E[V ] ≤ (s− 1). (B.34)
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As a consequence of the obtained bounds in (B.35), we may choose the bias
correction term, B(w), equal to the lower bound of 2E[V ], i.e. we let

B(w) = 2
s

∑
j=1

P(F ∗k,w, j, k)(j− 1). (B.35)

With this choice of bias correction term we finally introduce an information
criterion in the following definition.

Definition 5.2. The monotone-constrained Akaike type information criterion (CMAIC)
for a model class F ∗k,w, is defined by

CMAIC(F ∗k,w, n) = −2l(x1, . . . , xn|p̂∗) + B(w). (B.36)

Note that our choice of B(w) is analogous to [4, 13, 14]. Using the CMAIC
criterion we can next define the selected model class, by equivalently define
the selected vector w.

Definition 5.3. The selected model class, based on CMAIC, is

ŵn = argminwCMAIC(F ∗k,w, n).

We note that the selected model class is F ∗k,ŵn
, that it is random and depends

on n.

5.2 The case of an infinite support of p

Assume that the underlying pmf p has an infinite support, i.e. pi > 0 for all
i ∈ Z+, or that the support is very large. Let us choose some finite integer r
and estimate the constant regions of p only among the index set {1, . . . , r}, i.e.
we aim to select the class F ∗k,w defined in (B.15).

We construct a distribution p on {1, . . . , r + 1}, obtained from p, by

pi = pi for i ≤ r,

pr+1 =
∞

∑
j=r+1

pj.

67



Given a data set (x1, . . . , xn) of observations from n i.i.d. random variables
X1, X2, . . . , Xn generated by a pmf p, the data can be grouped to give us ob-
servations z1, . . . , zn from p, by

zj =
r

∑
i=1

xi1{xj = i}+ (r + 1)1{xj ≥ r + 1}

The empirical estimator of p is given by

p̂i = p̂i for i ≤ r,

p̂r+1 =
∞

∑
j=r+1

p̂j.

Observe that a decreasing pmf p belongs to F ∗k,w, defined in (B.15), if and only
if p ∈ F∗r,w, where F∗r,w is the following cone in Rr+1

F∗r,w =
{
f ∈ Rr+1 : f1 = · · · = fw1 ≥

fw1+1 = · · · = fw1+w2 ≥ · · · ≥ f∑d−1
j=1 wj+1 = · · · = fr

}
. (B.37)

Therefore, with f ∈ F∗k,w the pmf corresponding to f ∈ F ∗k,w, the likelihood
based on the data z1, . . . , zn from p is given by

l(z1, . . . , zn|f) =
r+1

∑
i=1

ni log fi. (B.38)

with ni = ∑n
j=1 1{Zj = i} for i = 1, . . . , r + 1.

We aim to select the class F∗k,w, which contains p. First define the isotonic
regression under monotonicity assumptions only on the first r points in the
support of pmf, by

p̂∗n = argmin
f∈F∗k,w

r+1

∑
i=1

(fi − p̂n,i)
2.

Similarly to the derivation for the finite case above, we obtain the following
bias correction

B(w) = 2
d+1

∑
j=1

P(F∗r,w, j, r)(j− 1). (B.39)
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Definition 5.4. The monotone-constrained Akaike-type information criterion (CMAIC)
for the model class F∗k,w, is defined as

CMAIC(F∗k,w, n) = −2l(x1, . . . , xn|p̂∗n) +B(w). (B.40)

We use the results of the model selection procedure with the use of the inform-
ation criterion CMAIC defined in (B.40), i.e. the obtained vector of lengths of
constant regions (w1, . . . , wd) to construct the candidate class F ∗k,w in (B.15).
Since a candidate class is equivalently specified by the vector w, we may
define the selected model class, based on the data x1, . . . , xn, with the use
of the CMAIC criterion, as in the next definition.

Definition 5.5. The selected model class, based on CMAIC, is

ŵn = argminwCMAIC(F∗k,w, n).

Note that the selected class, F∗k,ŵn
, is random, and depends on n.

5.3 Asymptotic properties of CMAIC

CMAIC(F ∗k,w, n) provides a conservative model selection procedure in the
sense that the parametric classes F ∗k,w which do not include the configura-
tion of the true pmf p will be asymptotically excluded in the model selection
process. We are able to state a slightly stronger result in the next theorem.

Theorem 5.6. Let F ∗1 and F ∗2 be two model classes, defined in (B.14) for the finite
case or in (B.15) for the infinite case, such that p ∈ F ∗1 and p 6∈ F ∗2 . Then

P[lim inf
n→∞

{CMAIC(F ∗1 , n) < CMAIC(F ∗2 , n)}] = 1. (B.41)

5.4 The model selection procedure and its performance

First, we emphasise that CMAIC provides a conservative model selection pro-
cedure in the sense that the chosen class will contain the underlying pmf p, but
that this class is not necessarily the true one. In the case of a strictly decreasing
true pmf p, there is only one model class F ∗k,w, generated by w = (1, 1, . . . , 1),
which contains it, and then the chosen class, using CMAIC, will be the true
one.
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In order to analyse the model selection procedure we make a simulation study.
First, let us consider the following strictly decreasing pmfs:

M1 : p(x) = (4/10, 3/10, 2/10, 1/10),

M2 : p(x) = (6/21, 5/21, 4/21, 3/21, 2/21, 1/21),

M3 : p(x) = (8/36, 7/36, 6/36, 5/36, 4/36, 3/36, 2/36, 1/36),

M4 : p(x) = (10/55, 9/55, 8/55, 7/55, 6/55, 5/55, 4/55, 3/55, 2/55, 1/55),

M5 : p(x) = (12/78, 11/78, 10/78, 9/78, 8/78, 7/78, 6/78, 5/78,

4/78, 3/78, 2/78, 1/78),

M6 : p(x) = (16/136, 15/136, 14/136, 13/136, 12/136, 11/136, 10/136,

9/136, 8/136, 7/136, 6/136, 5/136, 4/136, 3/136, 2/136, 1/136).

Note that in all the above models, the pmfs are decreasing and equidistant
between subsequent values, i.e. pi − pi+1 is positive and does not depend on
i, for all i = 1, . . . , k− 1.

We use a recently developed R package ”restrictor” to compute the level prob-
abilities P(F ∗k,w, j, s), cf. [21], needed for the bias correction B(w) in the calcu-
lation of the CMAIC criterion.

Figure B.1 illustrates the performance of CMAIC for the models M1-M6 for
1000 Monte Carlo samples. Evaluating the plots in Figure B.1 we make an
empirical conclusion on the number n of data points needed to detect a strictly
decreasing model model, with high accuracy, for support size k, and present
the conclusions in Table B.1.
Table B.1: Size of the data set n needed for the support’s size k

k n
k ≤ 5 n > 100k
5 < k ≤ 10 n > 500k
10 < k ≤ 15 n > 1000k
k > 15 n > 2000k

Next, we consider the following models with several constant regions:

M7 : p(x) = 0.2U(4) + 0.8U(8),

M8 : p(x) = 0.25U(2) + 0.2U(4) + 0.15U(6) + 0.4U(8),

M9 : p(x) = 0.15U(4) + 0.1U(8) + 0.75U(12),

where U(k) denotes the uniform pmf on {1, . . . , k}. These are the same prob-
ability mass functions as the ones studied in [12]. Figure B.2 illustrates the
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Figure B.1: Performance of CMAIC for strictly decreasing models M1-M6. Percentage of times that the true model was
chosen versus the sample size n.

performance of CMAIC for the models M7, M8 and M9 for 1000 Monte Carlo
simulations. One can see that as the sample size increases the probability that
the selected class F ∗k,w contains p goes to 1. However, the probability that
the selected class is exactly the true one does not go to 1 as the sample size
becomes larger.

In order to improve the model selection procedure, we propose the following
approach. First, assume we are given a data set (x1, . . . , xn) of observations
from n i.i.d. random variables X1, X2, . . . , Xn, generated by p with the support
{1, . . . , k} with k < ∞. Recall, that there are S = 2k−1 candidate classes F ∗k,w
of the form (B.14) and among them there are T = 2k−m classes containing the
true pmf p.

Second, for a given data set we sort the candidate classes and obtain the se-
quence

{F ∗k,w1
, . . . ,F ∗k,wS

} (B.42)
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Figure B.2: Performance of CMAIC for models M7, M8 and M9. Percentage of times the correct model class was chosen
versus the sample size n.

in ascending order of CMAIC(F ∗k,w, n), i.e. for F ∗k,wi
in (B.42) one has

CMAIC(F ∗k,w1
, n) < · · · < CMAIC(F ∗k,wS

, n).

Third, using Theorem 5.6 and (B.41), we have

P[lim inf
n→∞

{p ∈ F ∗k,wi
, for all i ∈ {1, . . . , T}}] = 1.

Therefore, if the class F ∗k,v is generated by the true pmf p then the following
holds

F ∗k,v ∈ {F ∗k,w1
, . . . ,F ∗k,wT

},
F ∗k,v ⊂ F ∗k,wi

, for all i ∈ {1, . . . , T},
F ∗k,v = F ∗k,wi

, for one of i ∈ {1, . . . , T}

almost surely, as n→ ∞.

Then, in the model selection procedure instead of selecting the class F ∗k,w1

which gives the smallest value of CMAIC, we choose the first class F ∗k,w′ from
(B.42) (with the smallest index i) which satisfies

F ∗k,w′ ∈ {F ∗k,w1
, . . . ,F ∗k,wT′

}, (B.43)

F ∗k,w′ ⊂ F ∗k,wi
, for all i ∈ {1, . . . , T′}

where T′ = 2k−m′ with m = |w′|.

Recall, that if the true pmf p is strictly decreasing, then there is only one model
class F ∗k,w containing it. This class is the one generated by w = (1, 1, . . . , 1).
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Also, the model class F ∗k,w′ with w′ = (k), i.e. the class with one constant
region with the size of the support k, is contained in all classes F ∗k,w of the
form (B.14).

Therefore, if the first class in (B.42) is such that w1 = (1, . . . , 1) then we select
it. Also, if in the model selection procedure we obtain that w′ = (k), then, in
order to avoid a possible misspecification, in this case we also select the model
F ∗k,w1

, i.e. the one with the lowest CMAIC.

The next algorithm summarises the approach described above

Algorithm 5.1.

1. Sort the candidate models {F ∗k,w1
, . . . ,F ∗k,wS

} in an ascending order of
CMAIC(F ∗k,wi

, n).

2. If for F ∗k,w1
the conditions in (B.43) are satisfied, then we select the class F ∗k,w1

.

3. If not, then we check for i = 2 and if for F ∗k,w2
the conditions in (B.43) are

satisfied, then we select the class F ∗k,w2
.

4. We repeat this procedure until the class F ∗k,wi
satisfies (B.43).

5. If for i > 2 the selected class F ∗k,wi
is such that wi = (k), then we select the

class F ∗k,w1
, i.e. the one with the lowest CMAIC.

Note that if the first class F ∗k,w1
is such that w1 = (1, . . . , 1), then T′ = 1 and

the conditions in (B.43) are, obviously, satisfied and, therefore, we select it.
Also, in order to avoid the possible misspecification, we select the class F ∗k,w,
generated by w = (k) only in the case when w1 = (k), i.e. when it provides
the lowest CMAIC.

Next, we note that though the procedure described in Algorithm 5.1 is con-
servative, there is no guarantee that the selected class F ∗k,w′ is exactly equal to
the true one even asymptotically, i.e. in general

P[{F ∗k,w′ = F ∗k,v}] 6→ 1, (B.44)

as n → ∞. Therefore, the Algorithm 5.1 is also merely conservative, but not
consistent in general. In the case of a strictly decreasing pmf p Algorithm 5.1
is however consistent.

Figure B.3 illustrates the performance of Algorithm 5.1 for the models M7, M8
and M9 for 1000 Monte Carlo simulations. One can see that using Algorithm
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Figure B.3: Performance of the model selection procedure of Algorithm 5.1 for the models M7, M8 and M9. Percentage
of times versus the sample size.

5.1 seems to increase the asymptotic probability of selecting the exactly true
class.

In the case of an infinite support of p we can use Algorithm 5.1, but with F ∗k,w
suitably changed to F∗k,w, defined in (B.37).

6 The asymptotic properties of the post-model-selection
estimator p̂∗n

In this section, as apposed to the treatement in Section 4, we take into consid-
eration that the model selection procedure is random, i.e. we let the candidate
class depend on the data set and thus change with n.

Recall that the selected model ŵn is given in Definitions 5.3 and 5.5, for the
finite and infinite cases, respectively. The post-model-selection estimator p̂∗n is
then given by

p̂∗n =
S

∑
j=1

p̂∗n(wj)1{ŵn = wj}, (B.45)

where S is the total number of the candidate classes, i.e. S = 2k−1 in the case
of a finite support, S = 2r−1 if k is large or infinite, and p̂∗n(wj) = Π(p̂n|F ∗k,wj

)

denotes the estimator associated with the class F ∗k,wj
.

Theorem 6.1. The post-model-selection estimator p̂∗n satisfies

P[lim inf
n→∞

{||p̂∗n − p||22 ≤ ||p̂G
n − p||22}] = 1.
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Finally, we have the following corollary result for the risk of the estimator p̂∗n.

Corollary 6.1. For any decreasing pmf p there exists n1 such that for all n > n1 one
has

E[n||p̂∗n − p||22] ≤ E[n||p̂G
n − p||22].

7 Comparison of the estimators and discussion

We have established limit properties for a new, model selection based, estim-
ator of a monotone pmf, as well as performed a simulation study to assess
its finite sample properties. There are two main reasons for our proposal of
an estimator. Firstly, as we have established in this paper, knowledge about
the shape of the distribition in terms of the levels of constancy increases the
accuracy, i.e. one obtains a smaller risk compared to the unmodified order
restricted mle, which is the Grenander estimator. Secondly, the limit distribu-
tion of the Grenander estimator depends on the shape of the pmf, in a very
information dependent way, namely if the point of interest lies in a flat region
for the pmf then the limit distribution at that point is obtained as a pooled
adjacent violators (PAVA) algorithm of a Gaussian vector, whereas if the point
of interest instead lies in a region where the estimand is strictly monotone
then the limit distribution is Gaussian and is identical to the limit distribution
of the unrestricted mle.

The estimator we have presented consists of a two step procedure. In the first
step we introduce a novel information criterion, CMAIC, for model selection in
order restricted inference. The second step, which is the estimation step for the
pmf in the selected model class, uses a novel approach consisting of utilizing
information about the shape of the pmf in a way that increases the precision
of the estimate. The limit distribution for the final estimator is derived using
recent results on pmf estimation for functions that are monotone with respect
to a quasi order, cf. [3].

As noted in [3], the limit distributions in [3] are general and potentially ap-
plicable to arbitrary dependence structures. We believe that the approach in
this paper is also potentially applicable to the estimation of a monotone pmf
which is the marginal distribution of a stationary process, based on observa-
tions of that process. The resulting estimator will then not be an mle, but
instead a marginal or partional mle. Limit results for such a model selection
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Figure B.4: The estimates of the normalised risk E[nl2
2(·, p)] for the estimators: the empirical estimator p̂n, Grenander

estimator p̂G
n and the new estimator p̂∗n for a model selection by the lowest value of CMAIC and with Algorithm

5.1 for the models M7, M8 and M9.

based estimator in the dependent data setting will then depend on extending
the results in [3] to dependent data, as well as on extending the results on
the model selection step to such data. This should be an interesting topic for
future research.

For a visualisation of the performance of the proposed estimator p̂∗n, we make
a simulation study. Figure B.4 illustrates the performance of the estimator
p̂∗n for the cases when the selected model is the one with the lowest value of
CMAIC(F ∗k,w1

, n) and when the selected model is obtained by Algorithm 5.1
for 1000 Monte Carlo simulations.

Figure B.5 illustrates the performance of the estimator p̂∗n for the cases when
the selected model is the one with the lowest value of CMAIC(F ∗k,w1

, n) and
when the selected model is obtained by Algorithm 5.1 for 1000 Monte Carlo
simulations.

The simulation study clearly illustrates that the model selection based ap-
proach has a better asymptotic performance, in l2-sense, than both the em-
pirical estimator and the Grenander estimator. Also, one can see that using
Algorithm 5.1 for a models selection (the point 1 of Algorithm 3.1) seems to
give a smaller asymptotic risk than in the case when the model selection is
performed by choosing the first class F ∗k,w1

from (B.42), i.e. the one with the
lowest CMAIC.
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Figure B.5: The boxplots for l2-distances for the estimators: the empirical estimator p̂n, Grenander estimator p̂G
n and the

new estimator p̂∗n for a model selection by the lowest value of CMAIC and with Algorithm 5.1. The numbers
are the estimates of the means of l2-distances between the estimates and p for the models M7, M8 and M9.

8 Appendix

We first introduce some notations and state some results for the isotonic re-
gression over a general preordered set, cf. [3]. It is possible to derive the limit
properties for the proposed estimator by tracing the steps in the algorithm
for its calculation, and proving that in each step one gets both consistency
and limit distributions results. It is however more straightforward to derive
limit properties for the proposed estimator with the use of some recent results
on limit properties for isotonic regression of functions that are ordered with
respect to a preorder, that were derived in [3].

Consider a set of indices I = {1, . . . , ∞} with some preorder � defined on it.
The preorder is assumed to be arbitrary, and we will below introduce partic-
ular preorders that are relevant for the problem at hand. Then a vector f ∗ is
called the isotonic regression of an arbitrary vector f ∈ l2 over the preordered
index set I if

f ∗ = argmin
ξ∈Θis

∑
i∈I

(ξi − fi)
2,

where Θis denotes the set of all isotonic vectors in l2 with respect to the pre-
order �.

Let f ∈ Θis be an arbitrary but fixed vector, and assume that it satisfies the
assumptions on p in Assumption 3.1. Then, for an arbitrary but fixed integer
a < m we may partition the original index set I in the following way

I = ∪a+1
j=1I(j), (B.46)
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where the set I(j) contains the indices of the j-th constant region of f , i.e.
I(j) = {qj, . . . , qj + vj − 1}, for each j ≤ a, and I(a+1) = {qa+1, qa+1 + 1, . . . }.

Next, let [ f ]I(j) denote the restriction of the vector f ∈ l2 to the j-th index set
in the partition (B.46). We introduce an operator ψa : l2 → l2, defined in the
following way. For any vector f ∈ l2, the operator values of ψ( f ) on each
index I(j) set in (B.46) are given by

[ψa( f )]I(j) = isot{[ f ]I(j)}, (B.47)

where isot{[ f ]I(j)} denotes the isotonic regression of the restriction of the vec-
tor f ∈ l2 to the index set I (j) in the partition (B.46) with respect to the
preorder �. Therefore, ψa( f ) is a concatenation of the separate isotonic re-
gressions, with respect to the preorder �, of the restrictions of f to the index
sets I(j), for j = 1, . . . , a + 1.

We next introduce an appropriate preorder. Consider a candidate class F ∗k,w =

F ∗k,w,r, defined in (B.15), and assumed to contain p. The class F ∗k,w generates a
preorder � on the index set I = {1, 2, . . . }, as follows. We define the order re-
lation � on I by specifying that if i1, i2 ∈ I and the indices belong to different
constant regions of the class F ∗k,w, then if i1 > i2 we let i1 � i2. Further-
more if i3, i4 ∈ I are in the same constant region we specify, unconditionally,
that i3 � i4, and with that specification of course also follows that i4 � i3.
Therefore, when i3, i4 ∈ I are different indices belonging to the same constant
region of F ∗k,w, i.e. i3, i4 ∈ {tj, tj + wj − 1}, for some j = 1, . . . , d, we have both
i3 � i4 and i4 � i3. Thus, the order relation � on I is not antisymmetric; it is
however transitive, and thus it is a preorder, cf. also [5, 17, 19]. To emphasize
that the preorder is generated by F ∗k,w, or equivalently by w, we denote it by
�w.

With this definition we see that for any vector f ∈ l2, f ∈ F ∗k,w if and only if
it is isotonic with respect to the preorder �w on I . Therefore, since From this
equivalence the next result immediately follows.

Lemma 8.1. The estimator p̂∗n = Π(p̂n|F ∗k,w) is identical to the isotonic regression
of the empirical estimator p̂n with respect to the preorder �w on the index set I , i.e.

p̂∗n = argmin
ξ∈Θis

∑
i∈I

(ξi − p̂n,i)
2,

where Θis denotes the set of all isotonic vectors in l2 with respect to the preorder �w .
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We note also that the equivalence mentioned gives a second characterization
of the operator value ψa( f ) of an f ∈ l2, namely if the preorder is �w as
defined above and ψa is the corresponding operator, then

ψa( f ) = Π( f |G∗k,w,p). (B.48)

Indeed, the cone G∗k,w,p, which is defined in (B.27), consists of the Cartesian
product of the cones in F ∗k,w over the regions of constancy of p but without any
constraints in between the pairs of the elements ( fv1 , fv1+1), ( fv1+v2 , fv1+v2+1), . . .
( f∑k−1

j=1 vj
, f∑s−1

j=1 vj+1). Therefore, the result in (B.48) follows by a simple parti-

tion of the total sum of squares into sum of squares over each factor in the
Cartesian product, cf. Lemma 7 in [3] for the strict proof.

We first recall a simple result from [3]. Define

ε = inf{| f̃l′ − f̃l | : l′ ∈ {1, . . . , a}, l ∈ {1, . . . , m}}, (B.49)

where f̃l is the constant value of f on the l’th constant region.

Lemma 8.2. Consider an arbitrary vector f̂ ∈ l2 and an index set I with a preorder
� defined on it. Suppose that ε is defined in (B.49). If for f̂ one has

sup
i∈I
{| f̂i − fi|} < ε/2,

then the isotonic regression of f̂ is given by ψa( f̂ ), i.e.

f̂ ∗ = ψa( f̂ ).

Therefore, the isotonic regression f̂ ∗ of f̂ is a concatenation of the separate isotonic
regressions, with respect to the preorder �, of the restrictions of f̂ to the index sets
I(1), I(2), . . . , I(a) and I(a+1), defined in (B.46).

Proof. The statement of the lemma follows from Lemma 8 in [3]. �

Lemma 8.3. Let A and B be closed convex cones in Rk, for k ≤ ∞, and A ⊂ B.
Then for any y ∈ Rk,

||y−Π(y|A)||2 ≥ ||y−Π(y|B)||2,

||Π(y|A)||2 ≤ ||Π(y|B)||2,

where || · ||2 is the l2-norm.
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Proof. Note, that for any y ∈ Rk the following equalities hold

||y||22 = ||y−Π(y|A)||22 + ||Π(y|A)||22,

||y||22 = ||y−Π(y|B)||22 + ||Π(y|B)||22,

cf. Proposition 3.4.1 in [19]. Next, since A ⊂ B, one has ||y −Π(y|B)||22 ≤
||y−Π(y|A)||22 and this proves ||Π(y|A)||2 ≤ ||Π(y|B)||2. �

Proof of Theorem 4.1. The strong consistency of the estimator p̂∗n follows from
the continuous mapping theorem.

To prove the limit distribution result, let us consider a candidate class F ∗k,w
defined in (B.15), and the preorder �w generated by it. We established in
Lemma 8.1 that the estimator p̂∗n = Π(p̂n|F ∗k,w), is equal to the isotonic re-
gression of the empirical estimator p̂n with respect to the preorder �w on the
index set I .

Therefore, the limit distribution result follows from Theorem 3 in [3], in which
we established the asymptotic distribution of the isotonized estimator, over a
general countable preordered set, and proved the limit distribution result

√
n(p̂∗n − p) d→ ψa(Y0,B),

where Y0,B is the weak limit of
√

n(p̂n− p), which, noting the characterization
(B.48), can be written as

√
n(p̂∗n − p) d→ Π(Y0,B|G∗k,w,p).

�

We note that the limit distribution result in Theorem 4.1 for the finite support
case was derived in Theorem 5.2.1 in [17].
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Supplementary material.

Proof of Theorem 4.2.

Analogously to the proof of Theorem 4.1, let us consider a candidate class F ∗k,w
as defined in (B.15) and containing p. Furthermore, if we let w̃ = (1, 1, . . . )
then we obtain the candidate class F ∗k,w̃, defined as,

F ∗k,w̃ =
{

f ∈ l2 : f1 ≥ f2 ≥ . . .
}

. (B.50)

Then the regular Grenander estimator p̂G
n , which is

p̂G
n = Π(p̂n|F ∗k,w̃)

= argmin
f∈F ∗k,w̃

∑
i
[ p̂n,i − fi]

2, (B.51)

can, with the use of Lemma 8.1, equivalently be viewed as the isotonic regres-
sion of the empirical estimator p̂n with respect to the preorder �w̃ generated
by the class F ∗k,w̃, defined in (B.50). The preorder �w̃ on I is simply a re-
verse order on the integers: for any i1, i2 ∈ I , let i1 �w̃ i2 if i1 > i2. Thus we
have a preorder, associated with F ∗k,w, which we denote by �w and a preorder,
associated with F ∗k,w̃, which we denote by �w̃.

Next, for some integer a > r, where r is the number of flat regions in candidate
class F ∗k,w, we make a partition of the index set I as in (B.46) Let ε be defined
as in (B.49), with f replaced by p. Since the empirical estimator p̂n is strongly
consistent, there exists an integer n1 such that for all n > n1 one has

sup
i∈I
{| p̂n,i − pi|} < ε/2,

almost surely. Therefore, using Lemma 8.2, if n > n1, we obtain

p̂∗n
a.s.
= ψw

a (p̂n),

p̂G
n

a.s.
= ψw̃

a (p̂n), (B.52)

where the operator ψa is defined in (B.47). Here we use the upper-scripts w
and w̃ to emphasise which preorder that the isotonic regression is with respect
to, or equivalently, which preorder the operator ψa is associated to.

Next, we compare ||p̂∗n(w)− p||2 with ||p̂G
n − p||2. We do this by a comparison

separately on each partition set in (B.46). From (B.52), it follows that if n > n1
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then

||p̂∗n(w)− p||2
a.s.
= ||ψw

a (p̂n)− p||2,

||p̂G
n − p||2

a.s.
= ||ψw̃

a (p̂n)− p||2.

First, we note that the separate isotonic regression on the last partition set in
(B.46) is identical for the two preorders, i.e.

[ψw
a (p̂n)]

I(a+1) = [ψw̃
a (p̂n)]

I(a+1)

= argmin
Y1≥Y2≥

∞

∑
i=0

(Yi − p̂n,i+qa+1)
2.

Second, without loss of generality, assume the true pmf p starts with a con-
stant region, so that the first constant region of p has indices (1, . . . , v1) with
v1 > 1. Now, since p belongs to the class F ∗k,w, there must be k1 ≥ 1 regions

of constancy in F ∗k,w whose union is (1, . . . , v1), i.e. such that v1 = ∑k1
i=1 wi,

where (w1, . . . , wk1) are the lengths of the first k1 constant regions in the class
F ∗k,w, cf. also the discussion after (B.17).

Since p is constant on {1, . . . , v1}, by the use of Theorem 1.8 in [5] and Lemma
8.1, we have

[ψw
a (p̂n)]

(1,v1) − [p](1,v1) = [ψw
a (p̂n − p)](1,v1)

= argmin
Z∈C

v1

∑
i=1

(Zi − ( p̂n,i − pi))
2

where C = [F ∗k,w]
(1,v1) ⊂ Rv1 is the cone consisting of the first v1 coordinates

of the candidate class F ∗k,w, defined in (B.15). Similarly

[ψw̃
a (p̂n)]

(1,v1) − [p](1,v1) = argmin
Z∈C̃

v1

∑
i=1

(Zi − ( p̂n,i − pi))
2

where C̃ = [F ∗k,w̃]
(1,v1) ⊂ Rv1 is the cone consisting of the first v1 coordinates

of the candidate class F ∗k,w̃, defined in (B.50). Since C ⊂ C̃, from Lemma 8.3 it
follows that

||[ψw
a (p̂n)]

(1,v1) − [p](1,v1)||2 ≤ ||[ψw̃
a (p̂n)]

(1,v1) − [p](1,v1)||2.
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Similarly, for every constant region of the true pmf p, up to the (a + 1)-th, so
for every (qj, qj + vj − 1) with j < a + 1, one can prove that

||[ψw
a (p̂n)]

(qj,qj+vj−1) − [p](qj,qj+vj−1)||2 ≤
||[ψw̃

a (p̂n)]
(qj,qj+vj−1) − [p](qj,qj+vj−1)||2.

Therefore, we have proved that for all n > n1

||p̂∗n − p||2
a.s.
≤ ||p̂G

n − p||2 (B.53)

�

Proof of Theorem 5.1. The proof is done in three steps.

Step 1. We obtain the asymptotic distribution of the second term in (B.31).
The proof is reminiscent to the one of Theorem 5.2.1 in [17]. In fact, using
Theorem 4.1 for Vn, we have

Vn
d→ Π(Y0,B|G∗k,w,p), (B.54)

where Y0,B
d
= N (0, B), with the covariance matrix Bij = δij pi − pi pj, G∗k,w,p

is the cone defined in (B.27), and where v = (v1, . . . , vs) is the vector of the
lengths of the regions of constancy of the pmf p.

Then, using the continuous mapping theorem, together with Lemma A of
Theorem 5.2.1 in [17], we obtain

V T
n P−1Vn

d→ V ,

where

V = Π(Z|G∗k,w,p)
TPΠ(Z|G∗k,w,p).

where Z = (U − Ū), with U a normal vector with covariance matrix P−1 and
Ū = ∑k

j=1 pjUj. The distribution of V is given in Theorem 5.2.1 in [17], namely

P[V ≤ v] =
k

∑
j=1

P(G∗k,w,p, j, k)P[χ2
j−1 ≤ v], (B.55)

for any real number v, where χ2
j is a chi-square random variable with j degrees

of freedom, χ2
0 ≡ 0, and P(G∗k,w,p, j, k) is the probability that the projection of a
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standard normal k-dimensional vector on the cone G∗k,w,p has j distinct values,
for j = 1, . . . , k, cf. [5, 17, 19]. Furthermore, from Proposition 3.6.1.9 in [19] it
follows that P(G∗k,w,p, j, k) = 0 for all j > s, where s = |w|.

Step 2. We prove the statement (B.33). Recall, that Vn =
√

n(p̂∗n − p). Then
from the strong consistency of p̂n, cf. Theorem 5.2.1 in [17], it follows that
there exists n1 such that for all n > n1,

Vn =
√

nΠ(p̂n|G∗k,w,p)− p),

almost surely. Therefore, for n > n1, using the reduction of error property of
isotonic regression (Theorem 7.6 in [5]) one has

V T
n P−1Vn ≤

√
n(p̂n − p)TP

′−1√n(p̂n − p), (B.56)

almost surely. Next, since the right hand side of (B.56) is asymptotically uni-
formly integrable, then V T

n P−1Vn is also asymptotically uniformly integrable.
The statement in (B.33) now follows from Theorem 2.20 in [20].

Step 3.

The final statement of the theorem, (B.34), is proved in the discussion after
Theorem 5.2.1 in [17]. We detail some parts of the proof in [17] below, in
our notation. The limit random variable was shown in [17] to be equal in
distribution to a more conducive expression, namely

V d
= ||Π(Y |G∗k,w,p)− Ȳ ||22,

where Y is a standard normal k-dimensional vector and Ȳ = k−1 ∑k
j=1 Yj. Note

that

F ∗k,w ⊆ G∗k,w,p ⊆ A∗k,w (B.57)

where A∗k,w is the cone

A∗k,w =
{

f ∈ Rk : f1 = · · · = fw1 ,

ft2 = · · · = ft2+w2−1, . . . , fts = · · · = fk

}
.

Then, since for any of the choices C = F ∗k,w,G∗k,w,p or A∗k,w, we have

||Y − Ȳ ||22 = ||Y −Π(Y |C)||22 + ||Π(Y |C)− Ȳ ||22
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and since (B.57) implies an ordering of ||Y −Π(Y |C)||22, for the three choices
for C, we obtain, almost surely,

||Π(Y |F ∗k,w)− Ȳ ||22 ≤ ||Π(Y |G∗k,w,p)− Ȳ ||22 ≤
≤ ||Π(Y |A∗k,w)− Ȳ ||22. (B.58)

Next, for any choice C = F ∗k,w,G∗k,w,p,A∗k,w, we have

||Π(Y |C)− Ȳ ||22
d
=

k

∑
j=1

P(C, j, k)P[χ2
j−1 ≤ v],

P(C, j, k) = 0, for all j > s.

Note also the P(A∗k,w, j, k) = 0 for j 6= s and P(A∗k,w, s, k) = 1. Therefore,
||Π(Y |A∗k,w) − Ȳ ||22 is distributed as a χ2

s−1 random variable. This finally
shows, by takings expectations of the expression (B.58), that

s

∑
j=1

P(F ∗k,w, j, k)(j− 1) ≤ E[V ] ≤ s− 1,

which ends the proof.

�

Proof of Theorem 5.6. Let k < ∞ and F ∗k,w1
and F ∗k,w2

be two classes, such
that p ∈ F ∗k,w1

and p 6∈ F ∗k,w2
. Next, let p̂∗n(w1) = Π(p̂n|F ∗k,w1

) and p̂∗n(w2) =

Π(p̂n|F ∗k,w2
).

First, using the continuous mapping theorem, we have

(p̂n, p̂∗n(w1), p̂∗n(w2))
T a.s.→ (p, Π(p|F ∗k,w1

), Π(p|F ∗k,w2
))T

= (p, p, p̃)T (B.59)

and p̃ 6= p, by the almost sure consistency of p̂n and since projection on any
F ∗k,w is a continuous map.

Next, note that for the bias correction term B(w), defined in (B.35), the fol-
lowing holds

B(w)

n
→ 0
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as n→ ∞.

Therefore, the statement of the theorem holds if

l(x1, . . . , xn|p̂∗n(w1))

n
− l(x1, . . . , xn|p̂∗n(w2))

n
a.s.→ c > 0,

where l(x1, . . . , xn| f ) is the log-likelihood defined in (B.28).

By the almost sure consistency result (B.59) and since the log-likelihood l(x1, . . . , xn|·)
is a continuous map, we get

l(x1, . . . , xn|p̂∗n(w1))

n
− l(x1, . . . , xn|p̂∗n(w2))

n
a.s.→

k

∑
i=1

pi log pi −
k

∑
i=1

pi log p̃i, (B.60)

from the continuous mapping theorem. Finally since

argmax
∑i fi=1

k

∑
i=1

pi log fi = p,

and by the strict concavity of the logarithm, the right hand side of (B.60) is
strictly greater than zero, which proves the theorem for the finite case.

The proof for the case k = ∞, when the candidate class F ∗k,w is defined in
(B.15), is similar to the finite case, with F ∗k,w1

and F ∗k,w2
properly changed to

F∗r,w1
and F∗r,w2

, B(w) to B(w), p to p, p̂n to p̂n and p̂∗n to p̂∗n. �

Proof of Theorem 6.1. We consider the case of an infinite support (k = ∞),
choose a fixed finite r and a candidate class F ∗k,w, defined in (B.15), and assume
that the true pmf p has the following structure

pq1 = · · · = pq1+v1−1 > pq2 = · · · = pq2+v2−1 > · · · > .

Let a be the number of the constant regions of p up to the element with the
index r, i.e. a is such that r ∈ {qa, qa + va − 1} and pqa = · · · = pr = · · · =
pva−1. Therefore, there are T = 2r−a classes of the form (B.15) containing the
true pmf p, which we may label j = 1, . . . , S
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Suppose p̂∗n is the post-model-selection estimator, defined in (B.45), with F ∗k,ŵn
,

or equivalently ŵn, the selected class. Then, from Theorem 5.6 there exists an
n1 such that for all n ≥ n1

P[F ∗k,ŵn
3 p] = 1.

Therefore, for n ≥ n1 the post-model-selection estimator p̂∗n can be written as

p̂∗n =
S

∑
j=1

p̂∗n(wj)1{wj = ŵn}

= ∑
j=1,...,S:F ∗k,w3p

p̂∗n(wj)1{wj = ŵn}

+ ∑
j=1,...,S:F ∗k,w 63p

p̂∗n(wj)1{wj = ŵn}

a.s.
=

T

∑
j=1

p̂∗n(wj)1{wj = ŵn}, (B.61)

where we have (re)-labeled the classes so that F ∗k,wj
3 p, for j = 1, . . . , T.

Now, let us consider any of the T candidate classes F ∗k,w that contain p, and
let p̂∗n(w) = Π(p̂n|F ∗k,w). Then, from Theorem 4.2 it follows that there exists a
finite ñ, such that for all n > ñ,

||p̂∗n(w)− p||2
a.s.
≤ ||p̂G

n − p||2.

If ñ1, . . . , ñT are the required values of ñ for the T candidate classes, and n2 =

max(ñ1, . . . , ñT), then for all n > n2,

max
j∈1,...,T

||p̂∗n(wj)− p||2
a.s.
≤ ||p̂G

n − p||2, (B.62)

with p̂∗n(wj) = Π(p̂n|F ∗k,wj
) for j ∈ 1, . . . , T, the projections on the classes F ∗k,wj

which contain p.

Finally, let n3 = max{n1, n2}. Then, from (B.61) and (B.62), the post-model-
selection estimator p̂∗n, defined in (B.45), satisfies that for all n > n3,

||p̂∗n − p||2
a.s.
≤ ||p̂G

n − p||2. (B.63)

�
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Abstract

The sparsity of the isotope Helium-3, ongoing since 2009, has initiated a new
generation of neutron detectors. One particularly promising development line
for detectors is the multilayer gaseous detector. In this paper, a stochastic pro-
cess approach is used to determine the neutron’s energy from the additional
data afforded by the multilayer nature of these novel detectors.

The data from a multi-layer detector consists of counts of the number of ab-
sorbed neutrons along the sequence of the detector’s layers, in which the neut-
ron absorption probability is unknown. We study the maximum likelihood
estimator for the intensity and absorption probability, show its consistency
and asymptotic normality, as the number of incoming neutrons goes to in-
finity. We combine these results with known results on the relation between
the absorption probability and the wavelength to derive an estimator of the
wavelength and to show consistency and asymptotic normality.

Keywords: Maximum Likelihood, Multinomial Thinning of Point Processes,
Neutron Detection, Poisson Process, Thinned Poisson Process.
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1 Introduction

The European Spallation Source1 (ESS), sited in Lund, Sweden, is planned
to be operational in 2019 and the world’s leading source for the study of
materials using neutrons by 2025.

In order to address the challenge of developing a new generation of neutron
detectors an international collaboration of 10 neutron scattering institutes in
Europe, Asia and America (the International Collaboration on the Develop-
ment of Neutron Detectors2) was formed in 2010. The members have chosen
as the three most promising technologies for investigation: Scintillator detect-
ors, boron-10 thin film detectors and 10BF3 gas detectors. At present boron-10
thin film detectors seem to be the only realistic solution for large area de-
tectors (> 10 m2 active detector area). For the ESS, novel neutron detectors
represent a critical technology that need to be developed, with corresponding
R&D done as contributions to the ESS design work.

In this paper we study the feasibility and possibilities of the statistical determ-
ination of neutron wavelength for the new generation of neutron detectors
being developed at the ESS.

Assume that a beam of neutrons arrives at the face of the detector. The de-
tector consists of a sequence of boron-10 coated layers, between which there
are gas-filled cavities. The principle of the detector can be described in a sim-
plified manner as follows: a neutron that goes through a boron-10 layer can
sometimes interact with a boron-10 atom in the layer, temporarily exciting the
atom into an unstable state from which it will fall back to a stable state and
thereby emit an electrically charged particle, that will ionise the gas. This elec-
trical potential in the gas filled chamber is detected and the instrument notes
that a neutron has been absorbed, see [4]. The outcome of this is that we have
a count of +1 in the number of neutrons that have passed and been detected.
The probability with which a neutron is absorbed and detected is a function
of the energy content of the neutron, i.e. a function of the neutron wavelength.

If we view the neutron beam as a set of particles that hit the face of the de-
tector, then each neutron will either be absorbed or not at the first layer. If
the neutron is not absorbed at the first layer, it may possibly be absorbed at
the second layer, and so on. From the simplified description above it is clear

1https://europeanspallationsource.se
2http://icnd.org
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that the data from a multilayer detector will consist of counts of the number
of absorbed neutrons along the sequence of the detector’s layers.

By a beam we mean a stream of particles with a certain fixed wavelength µ.
Let the number of neutrons that arrive in the time interval [0, t] be denoted by
X0(t). Then X0(t) is a counting process, such that X0(0) = 0.

A simple model for the process of incoming neutrons X0(t) is that of a Poisson
process with intensity λ. The Poisson model assumption is reasonable since
neutrons are electrically neutral particles and since there are therefore no long-
distance interactions between the particles in the beam, see Chapter 2 in [10]
for a discussion of the model. The intensity λ is assumed to be an unknown
nuisance parameter, and will be estimated.

At a layer each neutron is absorbed with a certain probability p (the absorption
efficiency). The probability of absorption p is also assumed to be an unknown
parameter, its dependence on the wavelength µ of the incident neutron is,
however, of a known functional form, see [4]. This property will be used to
make inference about the parameter µ. For a more thorough introduction to
the subject of neutron interactions we refer to Chapter 2 in [10].

As will be shown later, our data set is generated by a sequentially thinned
Poisson process, which is a special case of multinomial thinning. Inference for
thinned point processes was studied in detail in [5] and [2], where the authors,
in particular, studied the problem of estimation of the thinning parameter p
from the observation of the thinned processes. The thinning parameter p is
defined as a function from an underlying compact metric space to [0, 1], in [5]
and [2]. In[5] the author uses a nonparametric histogram estimator of p and
in [2] the author studies a kernel estimator.

Though the approaches developed in [5] and [2] are quite general, they cannot
be applied to the problem considered in this paper because, first, in our case
the absorption probability (thinning parameter) is homogeneous (does not
depend on the time of experiment) and, therefore, we can use a parametric
approach to estimate it and, second, our data come from the multinomial
thinning of the original Poisson process, not a binomial one as in [5] and [2].

The problem of multinomial thinning of point processes was studied in [7],
where the author, in particular, proved that a point process is Poisson if and
only if the thinned processes are independent and Poisson. However, to our
knowledge, the problem of inference for a sequentially thinned Poisson pro-
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cess has not been studied yet. Given the data, we suggest in this paper a
likelihood approach and study the maximum likelihood estimator (mle) of the
two-dimensional parameter (λ, p), where λ is the intensity and p the thinning
parameter (absorption probability). In this paper, we derive conditions for the
existence of the mle and prove its consistency and asymptotic normality, as the
experiment time (or number of incoming neutrons) goes to infinity. We com-
bine these results with known results for the relation between the absorption
probability and the wavelength to derive a final estimator of the wavelength
and to show consistency and asymptotic normality for the estimator. We also
state results on the precision of the estimator, by deriving a relation between
the width of the confidence interval, for the unknown wavelength, and the
detector construction, in terms of the number of layers used in the detector.
The performance of the estimator is illustrated on simulated data.

There are two main results of this paper. The first establishes the feasibility
of estimating the wavelength of a neutron beam, based only on count data of
the number of detected neutrons. The second determines necessary features
of the detector, which for the specific detector is the number of layers, in order
to be able to estimate the wavelength with a given precision. Following the
construction of the ESS research facility, we intend to apply our estimation
procedures to experimental data.

The paper is organized as follows. Section 2 provides the general scheme
of the neutron detector and the modeling of neutron interactions with the
detector layers. Section 3 is devoted to the inference of the parameters: We
derive the mle for the intensity λ of an incident beam and absorption efficiency
p, in Lemma 3.1 and 3.2 we discuss the uniqueness of the solutions to the score
equations, and in Theorem 3.3, which is one of the main results of this paper,
we derive the strong consistency and asymptotic normality of the mle. In
Corollaries 3.1 and 3.2 we derive the consistency and asymptotic normality of
the mle of the wavelength. Using these final results we are able to construct
confidence intervals for the wavelength. Section 4 gives a simulation study to
explore the estimator’s performance. Section 5 contains a discussion of the
results presented in the paper and plans for future work. Proofs of all results
are given in the Appendix.
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2 Scheme of a discrete spacing detector

Assume that an incident beam of neutrons hits the first layer of the detector,
cf. Figure C.1. At the layer a neutron can possibly be absorbed and detected.
If a neutron is not absorbed it will go through the detector’s layer. We assume
that these are the only two possibilities for the neutron interaction with a layer,
i.e. it is assumed that the probability of an inelastic scattering of a neutron in
the boron layers or in the material of the layers is negligibly small. Let p be
the probability of an absorption of a neutron, so that 1− p is the probability
of its transmission. If a neutron is absorbed, it will then be detected. Let
X1(t) be the number of neutrons that are absorbed at the first layer, so that
Xtr

1 (t) = X0(t)− X1(t) is the number of transmitted neutrons.

X0(t)

X1(t)

Xtr
1 (t) Xtr

3 (t)Xtr
2 (t) Xtr

k−1(t) Xtr
k (t)

X2(t) X3(t) Xk(t)

Figure C.1: The scheme of the detector.

Now assume that the beam of transmitted neutrons Xtr
1 (t) hits the next layer,

at which, again, each neutron can either be absorbed (with the same probab-
ility p as at the previous layer) and then detected, or transmitted again. Let
X2(t) be the number of neutrons that are absorbed at the second layer and let
Xtr

2 (t) = Xtr
1 (t) − X1(t) be the number of transmitted neutrons. We assume

that the registrations (absorptions) of different particles are independent and
the times of absorption and travelling from layer to layer are negligibly small.
This behaviour is repeated at each layer and gives the general scheme for the
neutron beam’s absorption and transmission in the detector.

Let Xi(t) be the number of neutrons absorbed at the layer i in the time in-
terval [0, t] and let Xtr

i (t) be the number of transmitted neutrons in the same
time interval through the layer i, for i = 1, . . . , k. Then Xi(t) and Xtr

i (t) are
counting processes and Xi(0) = 0 and Xtr

i (0) = 0, for i = 1, . . . , k. The next
lemma shows that {Xi(t)}i≥1 are jointly independent Poisson processes with
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parameters λp(1− p)i−1, respectively.

Lemma 2.1. The processes {Xi(t)}i≥1 are jointly independent Poisson processes with
intensities p(1− p)i−1λ.

The statement of Lemma 2.1 follows from the property of a multinomial thin-
ning of a Poisson process cf. Theorem 5.17 in [6], [7], [1].

3 Inference for the parameters

Now suppose that we have run an experiment at the neutron detector, the res-
ult of which is a sequence of counts of the numbers of detected neutrons along
the detector. Let us denote the data as a vector x = (x1, . . . , xk) of integers,
with xi the number of observed neutrons at layer i, for i = 1, . . . , k. From
Lemma 2.1 we know that the data are observations of independent Poisson
distributed random variables, with unknown expectations p(1 − p)i−1λ, for
i = 1, . . . , k.

3.1 The mle of the thinning parameter p and the intensity of an
incident process λ

We are interested in deriving consistency and asymptotic normality of the es-
timators. For this we need to explain what we mean by letting ”the amount
of data” go to infinity. There are several ways to model this. We can either
let the experiment time t increase, or we can view the problem as a repeated
measurement problem and thus make several, n of them, independent meas-
urements during a fixed time interval [0, t] and instead let n go to infinity.
Since we use the Poisson process as a model for the neutron beam, the two
approaches will give quantitatively the same limit results. We choose to view
the problem as a repeated sample problem.

The inference problem can be described as follows. We perform n experi-
ments. For each experiment j = 1, . . . , n, we measure the number of neutrons
Xij detected at layer i = 1 . . . , k during the time interval [0, t]. Thus {Xij}n

i,j=1
are the random variables and {xij}n

i,j=1 are the values which Xij take. Let (p, λ)

denote the parameters, that are assumed to lie in [0, 1]× [0, ∞). Introduce the
vectors Xj = (X1j, . . . , Xkj)

T and xj = (x1j, . . . , xkj)
T, respectively. Note that
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the vectors Xj are independent random vectors with jointly independent com-
ponents Xij, by Lemma 2.1, from n independent experiment rounds. Finally
denote X = [X1, . . . , Xn] and x = [x1, . . . , xn], and note that these are k × n
matrices of discrete random variables and of integers values, respectively.

Thus we let Xij be the number of neutrons observed at the layer i at the exper-
iment round j with probability mass function

f (xij|p, λ) = e−mi
m

xij
i

xij!
,

where mi = p(1− p)i−1λt. Then each vector Xj = (X1j, . . . , Xkj)
T has the joint

distribution

f (xj|p, λ) =
k

∏
i=1

f (xij|p, λ) =
k

∏
i=1

e−mi
m

xij
i

xij!
.

Note, that if k = 1, then m = pλt and, therefore, in this case one can only
estimate the product pλ, and not p and λ separately.

Assume that k > 1. The log-likelihood is then given by

ln(p, λ|x) =
n

∑
j=1

k

∑
i=1

(−mi + xij log mi − log xij!).

The mle ( p̂n, λ̂n) is the solution of the score equations{
1
n

∂ln
∂λ = sn−λt(1−(1−p)k)

λ = 0,
1
n

∂ln
∂p = (1−p)(sn+zn)−zn−λt(k(1−p)k−k(1−p)k+1)

p(1−p) = 0,
(C.1)

where sn = 1
n ∑n

j=1 ∑k
i=1 xij and zn = 1

n ∑n
j=1 ∑k

i=1(i − 1)xij. If we assume that
p̂n(1− p̂n) 6= 0, λ̂n 6= 0 we get the system of equations{

sn − λ̂nt(1− ŷk
n) = 0,

anŷk+1
n − bnŷk

n + cnŷn − dn = 0,
(C.2)

where

an = −sn − zn + ksn,

bn = −zn + ksn,

cn = zn + sn, (C.3)

dn = zn,

ŷn = 1− p̂n.
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Obviously (C.2) has exactly one solution ( p̂n, λ̂n) if and only if the second
equation in (C.2) has exactly one root.

Lemma 3.1. The function

f (y) = anyk+1 − bnyk + cny− dn,

for k > 1 with coefficients given in (C.3), has one zero in the open interval (0, 1)
when the inflection point yi.p. satisfies the inequality

yi.p. :=
bn(k− 1)
an(k + 1)

< 1,

and no zeros in (0, 1) when yi.p. ≥ 1.

Lemma 3.1 gives the condition of existence and uniqueness of ( p̂n, λ̂n), but
there is no guarantee that it holds for a finite n. However, the following result
holds.

Lemma 3.2. Let An = {Equation (C.2) has exactly one root in (0, 1)}. Then An

happens for all sufficiently large n almost surely.

Asymptotic properties of the mle

Theorem 3.3. The mle ( p̂n, λ̂n), given in (C.1), is strongly consistent

( p̂n, λ̂n)
a.s.→ (p, λ),

and asymptotically normal

√
n(( p̂n, λ̂n)− (p, λ))

d→ N (0, [I(p, λ)]−1),

as n→ ∞, where I(p, λ) is the information matrix

I(p, λ) =
1
k

k

∑
i=1

I(i)(p, λ),

where I(i)(p, λ) denotes the information matrix corresponding to f (xij|p, λ) with
fixed i.
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From the theorem above, after simplification, we obtain the following asymp-
totic covariances

σ2
p(p, λ) = [I(p, λ)]−1

pp =
(1− (1− p)k)(1− p)p2

λtq(p, k)
→ (1− p)p2

λt
,

σ2
λ(p, λ) = [I(p, λ)]−1

λλ =
λh(p, k)
tq(p, k)

→ λ

t
,

σ2
p,λ(p, λ) = [I(p, λ)]−1

λp =
kp((1− p)k − (1− p)k−1)

tq(p, k)
→ 0,

as k→ ∞, where

h(p, k) = 1− k2(1− p)k+1 + (2k2 − 1)(1− p)k − k2(1− p)k−1,

and

q(p, k) = (1− p)2k − k2(1− p)k+1 + 2(k2 − 1)(1− p)k

−k2(1− p)k−1 + 1. (C.4)

We are mainly interested in the estimation of p, since there is a functional rela-
tion between the absorption efficiency p and the wavelength µ of the incident
neutrons, cf. (C.5) and (C.6) below. Analysing the behaviour of σ2

p(p, λ),
it can be shown that σ2

p(p, λ) is a strictly decreasing function of k for every
p ∈ (0, 1).

3.2 Estimation of the wavelength µ of an incident beam.

We are interested in estimating the wavelength of a monochromatic neutron
beam. The probability of absorption p depends on the neutron wavelength µ

as (cf. Section 2.3 in [10])

p = 1− e−Σ(µ)ρatdl , (C.5)

where the parameter Σ(µ) is called the cross-section of absorption, ρat is the
atomic density of 10B in the B4C coating and dl is the thickness of the boron
layer. Example values of parameters in a detector are ρat = 1029 m−3, dl = 10−6

m, cf. [4].

The neutron cross-section Σ(µ) can be modelled as

Σ(µ) = ςµ,
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where the coefficient ς is different for different materials, see [10]. Further-
more, the coefficient ς does not depend on the neutron wavelength and has
been measured experimentally, cf. [8]. From the results in [8] we conclude
that the estimator ς̂ of ς is unbiased and asymptotically normal

√
n′(ς̂n′ − ς)

d→ N (0, σ2
ς ),

as n′ → ∞. Here n′ is the number of runs performed in the experiment to
estimate ς and σ2

ς is its asymptotic variance.

Let us rewrite (C.5) as

p = 1− e−χµ, (C.6)

where

χ = ρatdlς,

The plug-in estimator χ̂ = ρatdl ς̂ of χ is then asymptotically normal
√

n′(χ̂n′ − χ)
d→ N (0, σ2

χ), (C.7)

with χ = ρatdlς and σ2
χ = ρ2

atd
2
l σ2

ς .

From (C.6), we obtain

µ(p, χ) = − log(1− p)
χ

. (C.8)

Next, we combine two limit distribution results, for p̂n and for χ̂n′ , to get a
limit distribution for the plug-in estimator of µ. In order to formalize this
in a proper way, we introduce a factor γ, which is merely the (asymptotic)
ratio between n′ and n. The result in a practical finite-sample situation will be
used in exactly that way: by letting γ = n′/n and use the limit distribution to
provide asymptotic confidence intervals or tests.

Corollary 3.1. The plug-in estimator µ̂ = µ( p̂n, χ̂n′) of µ is asymptotically normal
√

n(µ̂− µ)
d→ N (0, σ2

µ),

where

σ2
µ =

[
∂µ

∂p
(p, χ)

]2

σ2
p(p, λ) +

1
γ

[
∂µ

∂χ
(p, χ)

]2

σ2
χ
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as n → ∞, where n is the number of measurements for p̂n and n′ = dγne, γ > 0, ,
is the number of measurement for χ̂n′ (dγne is smallest integer not less than γn).

Introduce the notation

S2
n( p̂, λ̂, χ̂) =

[
∂µ

∂p
( p̂n, χ̂n′)

]2

σ2
p( p̂n, λ̂n) +

1
γ

[
∂µ

∂χ
( p̂n, χ̂n′)

]2

σ̂2
χ, (C.9)

where both the estimate χ̂n′ and the estimate of the variance σ̂2
χ are based on

n′ measurements, and ( p̂n, λ̂n) are the mle of (p, λ) based on n measurements.

The next result follows from Slutsky’s theorem and the continuous mapping
theorem, cf. Chapter 2 in [9].

Corollary 3.2.
√

n(µ̂− µ)

Sn

d→ N (0, 1),

as n→ ∞, where n′ = dγne, γ > 0 and Sn is given in (C.9).

Using the above limit distribution result for the mle µ̂ we can construct the
approximate confidence interval for µ. The approximate 100(1− α) percent
confidence interval for µ is

[µ( p̂n, χ̂n′)− zα/2
Sn√

n
, µ( p̂n, χ̂n′) + zα/2

Sn√
n
], (C.10)

where zα/2 is the α/2-th quantile of the standard normal distribution.

Next, let us rewrite the expression for Sn√
n as

Sn√
n
= S(p)

µ̂ + S(χ)
µ̂ , (C.11)

where

S(p)
µ̂ ( p̂n, λ̂n, χ̂n′) =

1√
n

∂µ

∂p
( p̂n, χ̂n′)σp( p̂n, λ̂n) =

σp( p̂n, λ̂n)√
n(1− p̂n)χ̂n′

, (C.12)

S(χ)
µ̂ ( p̂n, λ̂n, χ̂n′) =

γ√
n

∂µ

∂χ
( p̂n, χ̂n′)σ̂χ =

log(1− p̂n)√
n′χ̂2

n′
σ̂χ. (C.13)

Note that S(χ)
µ̂ does note go to zero in probability as n → ∞. Therefore, we

can view this term as a kind of systematic error, outside of our control.
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4 A simulation experiment

In this section we perform a simulation experiment to evaluate the estimator’s
performance. In particular, we illustrate the dependence of individual terms
in (C.11) on the number of layers (Figure C.2) and on the intensity of a beam
(Figure C.3), and the confidence interval width’s dependence on the number
of layers for several wavelengths (Figure C.5).

We simulate a Poisson process X0(t) a number of times n, for n = 10, 100, for
the parameters values p = 0.05, 0.07, 0.1, λ = 105 s−1, which correspond to
the wavelengths µ = 2.4, 3.4 and 4.9 Å. These are typical neutron wavelengths
for the possible applications of the detector, see [4].

The mle ( p̂n, λ̂n) is calculated for the simulated data. We recall the relation
between χ and ς in (C.7), and note that ρat and dl are known. The estimator
of ς is assumed to be asymptotically normal, with mean value the sample
mean and variance equal to a pooled variance estimate using three series of 15
measurements, which gives in total 45 experimental data points, see [8]. Using
the results of [8] we have the following estimates for χ: χ̂n′ = 2.142× 108 m−1

and σ̂2
χ = 0.021× 108 m−2.

First, we analyse the dependence of the approximal confidence interval on the
number of detector’s layers. Figure C.2 shows the dependence of S(p)

µ̂ and

S(χ)
µ̂ , defined in (C.12) and (C.13), on the number of the layers in the detector

for 10 and 100 runs of the experiment. We note, in particular, that S(p)
µ̂ and

S(χ)
µ̂ are of the same size at k ≈ 25 for n = 10 experimental runs and at k ≈ 15

for n = 100.

Figure C.2: The dependence of S(p)
µ̂ and S(χ)

µ̂ on the number of layers k.
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Second, we study the dependence of the approximate confidence interval on
the intensity of an incident beam λ.
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Figure C.3: The dependence of S(p)
µ̂ and S(χ)

µ̂ on the the intensity of an incident beam λ.

Next, in order to assess the accuracy of the asymptotic approximation we es-
timate the coverage probability of the approximate confidence interval based
on 5000 Monte-Carlo simulations. From Figure C.4 one can see that the devi-
ation of the confidence band’s width is less that 0.5 % even for the quite small
number of repetitions n = 10.

In Figure C.5 we have plotted the confidence interval bars as a function of the
number of layers, for µ = 2.4, 3.4 and 4.9 Å and n = 10, 100.

The results of the simulation experiments show that the errors are rapidly de-
creasing as a function of the number of layers k in the detector, cf. Figure 2,
where the term S(p)

µ̂ we may control by increasing the number of measure-

ments, whereas the term S(χ)
µ̂ we are not able to influence and therefore we

can see as a form of systematic error contribution to the total variance (C.11).
As indicated in Figure 2, for the choice of model parameters, at approximately
10-25 layers the term S(p)

µ̂ that we can affect becomes smaller than the system-

atic error term S(χ)
µ̂ . Figure 3 shows that, again, the term S(p)

µ̂ decreases with

increasing intensity, whereas the term S(χ)
µ̂ is almost not affected by a change

in intensity.

Note that in our simulations for Figure 4, and only here, in our assessment
of the coverage probability for the confidence intervals, we treat the random
variable ς as a constant, since we do not have the original data from which
it was estimated and since we do not know the data generating mechanism.
This implies that in Figure 4 the term S(χ)

µ̂ in (C.11) is not taken into account
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Figure C.4: Dependence of the coverage probability of the approximate confidence interval on the intensity of an incident
beam λ.

in the constriction of the confidence interval.

Finally in Figure C.5 we illustrate that even for a small number of repetitions
(i.e. small effective sample sizes), we obtain good efficiency in the estimation
of the wavelengths.

5 Conclusions

The results here show that it is statistically possible to determine the neut-
ron energy for a monochromatic beam with a good precision using multilayer
neutron detectors. With relatively few layers (≤ 15), already maximal in-
formation can be extracted and many layers do not significantly improve the
precision of the results.

For neutron beams with high intensity (λ ≥ 106 particles), a statistical preci-
sion (width of 99 % confidence interval) of less than 0.1 Å on the determina-
tion of the wavelength of the beam in the range 2.5-5 Å is possible (Fig.C.5).
Uncertainty in the neutron’s cross section of the boron-10 isotope becomes
dominant in the regime of high intensity beams and more than 10-20 layers.
This means again that more than 10-20 layers are not needed (Fig.C.2).

An interesting further outcome of our work is that it shows that it might be
possible, in high intensity experiments, with a precisely determined wavelength
of a monochromatic neutron beam, to improve the statistical measurement of
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Figure C.5: 99% confidence interval for µ based on simulations for n = 10, 100 and p = 0.05, 0.07, 0.1, λ = 105, t = 1s.
The red line is the true value of µ.

the boron-10 cross section by using an inverse of the method described in
this manuscript. The systematic effects of such a measurement might be sig-
nificant. In the limit of low intensity, a precision of 1 Å in determining the
wavelength of the monochromatic neutron beam is still possible.

The asymptotic expansion used in the derivation of the asymptotic normal-
ity of the mle of the wavelength depends on two limit distribution results.
The first is the asymptotic normality of the mle of the absorption probability
p. Since we choose the effective number of neutrons that hits the detector
ourselves, we are able to obtain an approximation which is as fine as wanted.
Furthermore, the term (C.12) in the total efficiency (C.11), resulting from the
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mle of p, can be obtained as small as desired. A possible limitation here is
that a large number of effective neutrons means running the experiment for a
long time. In that case the assumption of a constant intensity Poisson process
as a model may become questionable. A possible remedy for this is to instead
do many repeated runs, while tightly controlling the experimental apparatus,
in order to obtain a homogeneous Poisson process in each run. The second
asymptotic result is the asymptotic normality of the estimator of ς, which we
conclude from [8]. The number of data points used for the estimation of ς

in that paper is 45, and therefore arguably on the boundary of what one can
accept as an asymptotic normality result. A more serious practical limitation
for us is that we are not able to affect the term (C.13) in (C.11) resulting from
the estimator of ς. This puts a limit on the total efficiency that we can obtain
for the wavelength estimation in our experimental setup. It also tells us, as
noted above, that building a detector with many layers is not necessary, since
for such a detector the term that we can affect in (C.11) becomes negligible
compared to term arising from the estimation of ς, and therefore increasing
the number of layers will have negligible effect on (C.11).

In a real detector there may be a degradation in the result achieved coming
from systematic effects resulting from defects in the detector.

In this paper we have considered the Poisson process as a model for the in-
coming beam. Having real data it will in the future be possible to perform
goodness of fit tests, e.g. for assessing the validity of the Poisson process
model. A possible alternative model for the incident beam is the negative
binomial process. In fact, thinning of a negative binomial process also res-
ults in a negative binomial process, cf. [3]. However, unlike in the Poisson
process case, the count processes {Xi(t)}i≥1 will in that case not be independ-
ent, which makes the maximum likelihood approach more complicated. A
possible solution could be to simplify the likelihood using some sort of quasi
likelihood approach, e.g. by treating the count processes as independent and
obtain similar expressions for the likelihood as in this paper. The model fit
testing and negative binomial process modelling may be a direction for pos-
sible future research.

This manuscript concentrated on a monochromatic neutron beam. In the fu-
ture our results will be generalised to discrete and continuous wavelength
distributions for the incoming neutron beam.
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7 Appendix

Proof Lemma 3.1 . For simplicity we skip the lower subscript n but we assume
that a, b, c, d are as defined in (C.3).

We study the monotonicity and convexity/concavity of f̃ on [0, ∞) by study-
ing the signs of f̃ ′ and f̃ ′′ on [0, ∞). For k ≥ 2 we have

f̃ ′ = a(k + 1)yk − bkyk−1 + c,

f̃ ′′ = yk−2k(a(k + 1)y− b(k− 1)).

(i) : The second derivative.
Clearly f̃ ′′(0) = 0. Factoring out kyk−2 ≥ 0, we see that to study the zeros and
signs of f̃ ′′ is equivalent to studying the zeros and signs of

g(y) = a(k + 1)y− b(k− 1),

Clearly g(0) = −b(k− 1) < 0, g(∞) > 0 and g(y) has a unique root

yi.p. =
b(k− 1)
a(k + 1)

.

From the expressions in (C.3) we can see that both a and b are positive and
b > a, which means that yi.p. ∈ (0, ∞).

Thus the function f̃ ′′ is negative to the left of yi.p. and positive to the right of
yi.p. which implies
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a) f̃ is concave on (0, yi.p.), convex on (yi.p., ∞), and thus yi.p. is an inflection
point for f̃ .

(ii) : The first derivative. We see that f̃ ′(0) = c > 0. Furthermore using the
expressions for a, b, c we see that f̃ ′(1) = a(k + 1)− kb + c = 0. From the sign
change of f̃ ′′ at yi.p. we have that f̃ ′ is decreasing on (0, yi.p.) and increasing
on (yi.p., ∞). Now there are two possible cases:

Case A : yi.p. < 1. In this case, the sign change of f̃ ′′ together with f̃ ′(0) = c >
0, f̃ ′(1) = 0 and the continuity of f̃ , implies that for some y1 < yi.p.,

b’) f̃ ′ is positive on (0, y1), negative on (y1, 1), positive on (1, ∞),

which of course implies

c’) f̃ is increasing on (0, y1), decreasing on (y1, 1), increasing on (1, ∞).

Case B : yi.p. ≥ 1. In this case we know that f̃ ′ is decreasing and positive on
(0, 1), decreasing and negative on (1, yi.p.) and increasing on (yi.p., ∞). This
implies that there is an y2 such that f̃ ′ is negative on (yi.p., y2) and positive on
(y2, ∞). Thus the full statement becomes

b”) f̃ ′ is decreasing and positive on (0, 1), decreasing and negative on (1, yi.p.),
increasing and negative on (yi.p., y2), increasing and positive on (y2, ∞).

which implies that

c”) f̃ is concave and increasing on (0, 1), concave and decreasing on (1, yi.p.),
convex and decreasing on (yi.p., y2), convex and increasing on (y2, ∞).

(iii) : The function. We first note that f̃ (0) = −d < 0, and that the expression
for the coefficients a, b, c, d imply f̃ (1) = a− b + c− d = 0. Now we treat the
two cases separately:

Case A: From the sign changes of f̃ ′′ and f̃ ′, it follows that f̃ is concave and
increasing on (0, y1), concave and decreasing on (y1, yi.p.), convex and decreas-
ing on (yi.p., 1). This together with f̃ (0) = −d < 0, f̃ (1) = 0 implies (and in
fact only the information that f̃ is first increasing, then decreasing is enough)
that there is a zero ỹ ∈ (0, 1) for f̃ .
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Case B: In this case we have that f̃ is increasing and concave on (0, 1), which
together with f̃ (0) = −d < 0, f̃ (1) = 0 implies that there is no zero for f̃ in
the open (0, 1).

Finally noting that a zero ỹ of f̃ in (0, ∞), corresponds, via ỹ = 1− p̃, to a zero
p̃ of f in (−∞, 1), the Lemma follows. �

Proof of Lemma 3.2 . From Lemma 3.1, we see that

An =

{
bn(k− 1)
an(k + 1)

< 1
}

.

We will prove that

bn(k− 1)
an(k + 1)

a.s.→ c, (C.14)

as n → ∞, for some constant c < 1. This immediately proves the condition of
the lemma, since if c < 1{

bn(k− 1)
an(k + 1)

→ c
}
⊆ ∪

n≥1
∩

m≥n
Am.

Now to prove (C.14), note that {sj}n
j=1 and {zj}n

j=1 in (C.3) are two sequences
of i.i.d. random variables. Thus from the strong law of large numbers

bn(k− 1)
an(k + 1)

a.s→ k− 1
k + 1

k− (k + 1)(1− p) + (1− p)k−1

(k− 1)− k(1− p) + (1− p)k =: c,

as n→ ∞. One can easily prove that c < 1 by considering the polynomial

(k− 1)(1− p)k+1 − (k + 1)(1− p)k + (k + 1)(1− p)− (k− 1),

which is negative for all k > 1 and 0 < p < 1. This proves the lemma. �

Proof of Theorem 3.3 .

From Lemma 3.1 it follows that there exists n1 such that for all n > n1 the mle
( p̂n, λ̂n) is a differentiable function of (sn, zn), defined in (C.1). Therefore, the
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strong consistency of ( p̂n, λ̂n) follows from the strong law of large numbers
and the continuous mapping theorem.

Next, (sn, zn) is asymptotically normal, which follows from the central limit
theorem. Using the delta method we prove the asymptotic normality of ( p̂n, λ̂n).
�

Proof of Corollary 3.1.

Assume that there has been made n measurements for ( p̂n, λ̂n) and n′ meas-
urements for χ̂n′ , and that ( p̂n, λ̂n) and χ̂n′ are independent. Let n′ = dγne,
with γ a proportionality factor that we introduce for convenience.

From the asymptotic normality of the estimators p̂n and χ̂n′ we have
√

n( p̂n − p) d→ N (0, σ2
p), (C.15)

and

√
n(χ̂n′ − χ) =

√
n
n′
√

n′(χ̂n′ − χ)

=

√
n
dγne

√
n′(χ̂n′ − χ)

d→ N (0,
σ2

χ

γ
), (C.16)

as n → ∞, since limn→∞
n
dγne = 1

γ . Combining (C.15) and C.16, the result
follows from the delta method, see, for example, Chapter 3 in [9]. �
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Paper D

Estimating the distribution and thinning para-
meters of a homogeneous multimode Poisson
process

Dragi Anevski and Vladimir Pastukhov

Centre for Mathematical Sciences, Lund University

Abstract

In this paper we propose estimators of the distribution of events of different
kinds in a multimode Poisson process. We give the explicit solution for the
maximum likelihood estimator and derive strong consistency and asymptotic
normality of the estimator. We also provide an order restricted estimator and
derive its consistency and asymptotic distribution. We discuss the applica-
tion of the estimator to the detection of neutrons in a novel detector being
developed at the European Spallation Source in Lund, Sweden. The inference
problem gives rise a system of equations first studied by Ramanujan.

Keywords: Maximum Likelihood, Multinomial Thinning of Point Processes,
Neutron Detection, Poisson Process, Thinned Poisson Process

1 Introduction

The motivation for the research in this paper comes from neutron detection,
of importance for the European Spallation Source (ESS), which is a large scale
research facility currently being built in Lund, Sweden. The main research
problem from the physicists perspective in this connection is the estimation
of the energy or, equivalently, the wavelength distribution of a neutron beam.
The data in the neutron scattering experiment for the neutron detector type
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that we are considering consists of counts of the numbers of neutrons that
have been absorbed along the layers in the detector. Given the data, the goal
is to estimate the unknown wavelength distribution in the neutron beam that
one has observed. We have previously studied this problem in the simpler
setting of there being exactly one wavelength in the neutron beam, which
was then considered to be unknown, cf. [3]. The goal in [3] was to derive
an estimator of the unknown wavelength, which was a maximum likelihood
estimator (mle), and to derive properties of the estimator, in particular [3]
showed the consistency and asymptotic normality of the mle. Of particular
importance for the physicists are relations between the properties of the mle
and the detector construction, and then, in particular, the number of layers
used.

This paper can be seen as a generalisation of the study in [3], in the sense
that we investigate the same detector type, but are now interested in a set
of wavelengths with finite cardinality, say s, and that both the wavelengths
sizes/values as well as the distribution of the wavelengths in the neutron beam
are unknwon. The goal in this paper is to construct an estimate of these 2s
parameters, and if possible to derive properties of the constructed estimator.

In [3], the neutron beam was assumed to be well described by a time homo-
genous Poisson process, and we take a similar approach here. We assume
that the neutron beam is a sum of individual wavelength neutron beams, each
being described by a Poisson process; the proportions q of the individual
wavelength neutrons in the total sum is however unknown, and is in fact a
parameter that we want to estimate; the total sum is, of course, still a Poisson
process. The data obtained from the detector then consists of counts of neut-
rons that are absorbed and detected in the neutron detector, and we may use
the key observation that the probability of absorption of a specific neutron is,
in principle, a known function of the wavelength. Thus each neutron in the
beam will be absorbed with a probability which depends on the wavelength
of that neutron and one may assume that the absorptions of different neut-
rons, even of the same wavelength, are independent events. This points to the
direction of modeling with the use of thinned Poisson processes.

In fact, we treat in this paper an inference problem that can be stated as the
estimation of the wavelength distribution, as well as the thinning probabilities
p, i.e. the wavelength sizes, of a multimode homogeneous Poisson process.

Having stated the problem and formulated a maximum likelihood estimator,
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we see that the problem becomes difficult to treat directly, if one goes trough
the standard machinery of finding zeros to the score equations. In fact, the
problem may be simiplified by rephrasing it into estimating algebraic func-
tions of some of the 2s parameters, and then having obtained estimates of
the algebraic functions, to try to solve the upcoming algebraic equations for
the variables in those equations. This later problem can be seen as a prob-
lem that was studied by Ramanujan [9], namely solving a system of algebraic
equations, which in our setting can be written as, solving for (q, p) ∈ R2s the
system of k equations

s

∑
r=1

(1− pr)pi−1
r qr = b̂(i)n ,

for i = 1, . . . , k, where b̂(i)n are given numbers, cf. (D.8) below. The solution
was given by Ramanujan [9] and with later refinements given e.g. in [8]. In
our setting q denotes the distribution of the wavelengths, while p denotes the
thinning probabilities for respective wavelength. As shown by Ramanujan, the
necessary number of equations to obtain a solution is 2s− 1, and thus k above
should be 2s− 1.

Using standard results on almost sure consistency and asymptotic normality
for the mle, coupled with continuity and differentiability of the function that
defines the solution of the Ramanujan equations, via the continuous mapping
theorem and the delta method, we obtain almost sure consistency and asymp-
totic normality of the desired mle of (q, p). Taking into account the fact that
the set of frequencies in a beam often is a basic frequency and its overtones,
or equivalently that the set of wavelengths consist of a dominant wavelength
and its fractions, it makes sense to model the wavelength distribution q as a
decreasing sequence. This is a motivation for finding an order restricted es-
timator of q, and we therefore propose the l2 projection of the unrestricted mle
of q on the set of decreasing probability mass functions. We are then able to
use results on consistency and limit distributions for such isotonic regression
estimators, see [7], [10] for results for i.i.d data and [4] for general results.

The remainder of the paper is organised as follows. In Section 2 we give a de-
tailed description of the detector model that is being used, of the Poisson pro-
cess model for the beam and of the Poisson data generated from the detector,
cf. Lemma 2.1. In Section 3 we study the likelihood approach to estimating
the parameters (q, p), and the system of algebraic equations that facilitates
the estimation. In Theorem 3.2 we show that if the number of equations is
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k = 2s − 1 then there is a unique mle of (q, p), obtained by the solution of
the algebraic equations. In Subsection 3.2 and Theorem 3.4 we derive the con-
sistency and asymptotic normality of the mle of (q, p). In Subsection 4.1 we
define an order restricted estimator of q and state its consistency and asymp-
totic distribution in Theorem 4.1. Finally in Section 5 we discuss the obtained
results and some remaining and interesting future problems.

2 Motivation and description of the data generating mech-
anism

The inference problem is motivated by the following problem that arises in
neutron detection. Assume that a neutron beam is pointed at a detector. We
model the number of neutrons that arrive at the face of the detector in the time
interval [0, t] by a counting process X0(t). Assume that the neutron beam, i.e.
the process X0(t), has constant intensity λ. Assume furtherthermore that there
are s > 1 different kinds of neutrons in the beam, with different wavelengths
µ = (µ1, . . . , µs), such that

µ1 < µ2 < ... < µs. (D.1)

The values of the wavelengths are assumed to be unknown. We assume that
we do however know the order in (D.1), and can thus distinguish which label
i to put on a neutron and its wavelengths placement in (D.1), cf. Section 5 for
a discussion on possible extensions.

We model the neutron beam, or counting process X0(t), as the sum of the
counting processes that count the number of neutrons that arrive at the face
of the detector in [0, t], for the individual type neutrons. Thus we let the
number of neutrons with wavelength µr, which we may label r-neutrons, be
denoted by X(r)

0 (t), where X(r)
0 (t) is a counting process such that X(r)

0 (t) = 0
and with intensity λr, for r = 1, . . . , s. We write X0(t) = ∑s

r=1 X(r)
0 (t) for the

total number of neutrons that arrive at the face of the detector; then X0(t) is a
counting process with X0(0) = 0.

For a given number X0(t) = x0 of the total incoming neutrons in the time
interval [0, t], the vector

(
X(1)

0 (t), X(2)
0 (t), ..., X(s)

0 (t)
)

is assumed to follow a
multinomial distribution with parameters

(
q1, q2, ..., qs

)
, i.e.
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(X(1)
0 = x(1)0 , ..., X(s)

0 = x(s)0 |X0 = x0) ∈ Mult(x0, q1, q2, ..., qs), (D.2)

with

x(1)0 + · · ·+ x(s)0 = x0,

q1 + q2 + ... + qs = 1.

The vector of proportions of numbers of different neutrons q = (q1, q2, ..., qs)

is the spectrum, or distribution, of an incoming neutron beam X0(t). We note
that qr = λr/λ and assume that q does not depend on t.

Now assume that the incident beam X0(t) is a Poisson process with intensity
λ. In this case the components X(r)

0 (t), r = 1, . . . , s of the beam are independent
Poisson processes with intensities qrλ, for r = 1, . . . , s, because the vector(

X(1)
0 (t), X(2)

0 (t), ..., X(s)
0 (t)

)
is the thinning of the original Poisson process, cf.

e.g. [6]).

We next introduce the the so called multilayer detector that may be used in
this setting. We assume that detector consists of fixed number of layers, say
k > 1 layers, cf. Fig. D.1. The value of k will be elaborated on below, and will
be shown to be in principle determined by the number of components in the
spectrum, i.e. by the number of different types of neutrons that are present in
the neutron beam.

The detection of neutrons in the multilayer detector can be described as fol-
lows. When an incident beam of neutrons hits a layer of the detector each
neutron in the beam can possibly be absorbed, and then detected, or other-
wise not be absorbed. If the neutron is not absorbed it will go through the
present layer and will subsequently arrive at the next layer. We assume that
at each layer, absorption or passing through are the only possibilities for the
neutron interactions with the layer. We also assume that at each layer, differ-
ent neutron particles interact with the layer independently of each other, i.e.
at each layer the absorptions of different neutrons are independent events.

Let p = (p1, . . . , ps) be the vector of probabilities of transmition (the thinning
parameters), so that 1− pr is the probability of absorption for r-neutron, for
r = 1, . . . , s. It is a physical property of the neutron beam that the probability
of transmission decreases with the neutron wavelength, cf. [2] and references
therein, and therefore the thinning parameters can be modelled as a decreas-
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Figure D.1: The scheme of the detector. Here Y(r)
i (t) is the number of transmitted r-neutrons and Xi(t) = ∑s

r=1 X(r)
i (t) is

the total number of the neutrons absorbed at the layer i.

ing sequence

1 > p1 > p2 > ... > ps > 0. (D.3)

Let us consider a beam of r-neutrons and denote the number of r-neutrons
that are absorbed at the first layer by X(r)

1 (t), so that Y(r)
1 (t) = X(r)

0 (t)−X(r)
1 (t)

is the number of r-neutrons transmitted. Then X(r)
1 (t) and Y(r)

1 (t) = X(r)
0 (t)−

X(r)
1 (t) are non-decreasing counting processes, obtained by the thinning of the

original Poisson process X(r)
0 (t), so that X(r)

1 (t) and Y(r)
1 (t) are independent

Poisson processes with intensities (1− pr)qrλ and prqrλ, respectively, cf. [6].

Now assume that the transmitted beam Y(r)
1 (t) hits the second layer, at which,

again, each r-neutron can be either absorbed or transmitted. Let X(r)
2 (t) be

the number of absorbed neutrons and Y(r)
2 (t) = Y(r)

1 (t)− X(r)
2 (t) the number

of transmitted neutrons, at the second layer. Then, again, X(r)
2 (t) and Y(r)

2 (t)
are obtained by thinning of the Poisson process Y(r)

1 (t) and therefore they are
independent Poisson processes, with intensities pr(1 − pr)qrλ and pr prqrλ,
respectively [6]. By iterating the argument, cf. also [3] for a similar and more
detailed reasoning, we obtain the following result.

Lemma 2.1. {Xi(t)}, for i = 1, . . . , k, are jointly independent Poisson processes with
the rates ∑s

r=1(1− pr)pi−1
r qrλ, respectively.

One can state the goal in this paper as the estimation of the wavelength distri-
bution q of the incident beam as well as of the actual values of the wavelengths
µ, based on observations of the (total) Poisson process, and with the use of the
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multilayer neutron detector, described above. Estimators of the wavelength
values µ can be indirectly obtained via estimates of the thinning parameters
p, using a functional relation between wavelength and thinning probability, as
explained in [3]. The main goal of the paper will however be the estimation
of wavelength distribution q but we will also state estimator for the thinning
probabilities p.

3 Inference for the parameters

In this section we state the inference problem, define the mle of the parameters
(p, q), state conditions for its existence, and derive consistency and asymptotic
normality for the mle of (p, q). Subsequently we introduce an order restricted
estimator of q and derive its consistency and limit distribution.

We start by the following note on the experimental setup, and the data: In
order to derive the limit properties for the estimator, we need to define what
we mean by “letting n go to infinity”. This may be done in, at least, two ways.
We can either let the time t go to infinity, and view the data as stemming
from on Poisson process run for a (very) long time, or we can keep the time t
fixed and gather data from several independent Poisson process runs, cf. [3] a
more detailed discussion about advantages and disadvantages with respective
approach.

We will view the estimation problem as a repeated sample problem. Thus
we assume that during a fixed time interval [0, t] and for fixed intensity λ,
i.e. fixed intensities (λ1, . . . , λr), of an incident beam there are n repeated
measurements. Let xi,j be the observed number of neutrons at layer i, for
i = 1, . . . , k, at the experiment round j, j = 1, . . . , n. Then at each experiment
round j the vector Xj = (X1j, . . . , Xkj) is distributed as according to Lemma
2.1, and furthermore the vectors X1, . . . , Xn are assumed to be independent.

Thus the inference problem is to, given data as above, estimate the pair (q, p)
subject to them lying in the parameter space F ⊂ R2s

+ which is given by

F = {(q, p) ∈ R2s
+ : q1 + q2 + · · ·+ qs = 1

1 > p1 > p2 > · · · > ps > 0}. (D.4)

Note that q is a probability mass function while p is merely a vector of prob-
abilities. We would like to emphasize here that the main object of study is the
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wavelength distribution q. The thinning probabilities p however are also of
interest, since they determine the values of the wavelengths, which we assume
are unknown; if we know the actual wavelength values there is no need to es-
timate the thinning probabilities. Note that we do however know the order of
the wavelength values, cf. (D.1). See Section 5 for further comments on this.

We will use the likelihood approach for making inference about the unknown
parameters (q, p). We define the maximum likelihood estimator (mle) of (q, p)
by

(q̂n, p̂n) = argmax
(q,p)∈F

ln(q, p), (D.5)

where

ln(q, p) =
n

∑
j=1

k

∑
i=1

(−λtmi + xi,j log mi + xi,j log(λt)− log xi,j!) (D.6)

is the log likelihood, and

mi =
s

∑
r=1

(1− pr)pi−1
r qr

is the total expected number of absorbed neutrons at layer i divided by the
intensity λ and the time t.

3.1 Existence and uniqueness of the mle

In this subsection we prove the existence of the mle (q̂n, p̂n), introduced in
(D.5), and obtain an explicit expression for it.

First, we note that working directly with the parameters (q, p), we obtain the
first derivatives of ln(q, p|x) and trying to solve the score equations proves
to be quite cumbersome. Moreover, one can show that the log-likelihood
ln(q, p|x) seen as a function on the parameter space F ⊂ R2s is not a concave
function, which makes it difficult to find a solution (q̂n, p̂n) even numerically.

We will therefore reparametrise the problem as an inference problem for the
vector (m1, . . . , mk) of expected total numbers of observed neutrons, divided
by λt, and having found a solution to this simpler inference problem, solve an
upcoming system of equations for obtaining the solution to (D.5). Introduce
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the notation b̂n = (b̂(1)n , . . . , b̂(k)n ), where

b̂(i)n =
∑n

j=1 xi,j

nλt
,

We then rewrite (D.6) as

g(m1, . . . , mk) :=
k

∑
i=1

(−mi + b̂(i)n log mi) (D.7)

=
ln(q, p|x)

nλt

and note that we have dropped the last two terms in (D.6), in the last equality.
The function g(m1, . . . , mk) reaches its unique global maximum at m̂i b̂

(i)
n , for

i = 1, . . . , k. Therefore, if (q̃n, p̃n) is a solution to the following system of
equations 

m1(q, p) = b̂(1)n ,
m2(q, p) = b̂(2)n ,

. . .
mk(q, p) = b̂(k)n ,

(D.8)

and if it satisfies the constraints in (D.4), then (q̂n, p̂n) = (q̃n, p̃n), i.e. the
solution is the mle.

In order to reformulate the system of equations (D.8) on matrix form, we
introduce the vectors ân = (â(1)n , . . . , â(k+1)

n ), where

â(1)n = 1,

â(i)n = 1−
i−1

∑
l=1

b̂(l)n , (D.9)

for i = 2, . . . , k + 1, and for u ∈ R2s we define the matrices C(u) and D(u) as

C(u) =


us us−1 us−2 · · · u1

us+1 us us−1 · · · u2

us+2 us+1 us · · · u3
...

...
...

. . .
...

u2s−1 u2s−2 u2s−3 · · · us

 (D.10)
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and

D(u) =


0 0 0 · · · 0
u1 0 0 · · · 0
u2 u1 0 · · · 0
...

...
...

. . .
...

us−1 us−2 us−3 · · · u1

 (D.11)

We next obtain a preliminary result saying that, for large enough n, the ran-
dom matrix C(ân) is non-singular, almost surely.

Lemma 3.1. There exists n1 such that for any n > n1

P[det(C(ân)) 6= 0] = 1.

Proof. First, note that from the strong law of large numbers one has

C(ân)
as→ C(a),

where a denotes the a.s. limit of the sequence ân and, therefore, the matrix
C(a) is given by

C =


∑s

r=1 ps−1
r qr ∑s

r=1 ps−2
r qr ∑s

r=1 ps−3
r qr · · · ∑s

r=1 qr

∑s
r=1 ps

rqr ∑s
r=1 ps−1

r qr ∑s
r=1 ps−2

r qr · · · ∑s
r=1 prqr

∑s
r=1 ps+1

r qr ∑s
r=1 ps

rqr ∑s
r=1 ps−1

r qr · · · ∑s
r=1 p2

r qr
...

...
...

. . .
...

∑s
r=1 p2s−2

r qr ∑s
r=1 p2s−3

r qr â(2s−3)
n · · · ∑s

r=1 ps−1
r qr

 (D.12)

with q1, . . . , qs, p1, . . . , ps the true values of the parameters q and p. Next, note
that C(ân) can be diagonalized as

C(ân) = VQV T,

where

V =


1 1 1 · · · 1
p1 p2 p3 · · · ps

p2
1 p2

2 p2
3 · · · p2

s
...

...
...

. . .
...

ps−1
1 ps−1

2 ps−1
3 · · · ps−1

s
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and Q is a diagonal matrix with diagonal elements given by the vector q. Since
V is a square Vandermonde matrix and p1 > p2 > ... > ps, it is full-rank i.e.
rank(C) = s. Therefore det(C(ân)) 6= 0. The continuous mapping theorem
then implies

det(C(ân)) → det(C(a)),

almost surely, which implies the statement of the lemma. �

Next, we study the system of equations in (D.8). We will follow closely
Ramanujan’s derivation of the solution, cf. [9]. Define the function

ϕ(θ) =
d1 + d2θ + d3θ2 + · · ·+ dsθ

s−1

1 + c1θ + c2θ2 + · · ·+ csθs ,

with the vectors c = (c1, . . . , cs), d = (d1, . . . , ds) given by

c = C(ân)
−1[ân]

(s+1,2s),

d = [ân]
(1,s) + D(ân)c,

and where [ân](i,j) denotes the restriction of the vector ân in Rk+1 to the index
set (i, j). The next result says that if C(ân) is nonsingular and if we have a cer-
tain relation between the number of layers and the support of the wavelength
distribution, then the mle exists, and is unique, up to permutations of the
indices.

Theorem 3.2. Assume that k = 2s− 1 and det(C(ân)) 6= 0. Then the solution to
(D.8) is unique, up to permutations of the indices, and is given by

(q̃n, p̃n) = (y, z),

where y, z ∈ Rs are the coefficients in the following representation of ϕ(θ),

ϕ(θ) =
y1

1− z1θ
+

y2

1− z2θ
+ · · ·+ ys

1− zsθ
. (D.13)

Proof. First, recall that the system in (D.8) is given by
q1(1− p1) + q2(1− p2) + · · ·+ qs(1− ps) = b̂(1)n ,

q1(1− p1)p1 + q2(1− p2)p2 + · · ·+ qs(1− ps)ps = b̂(2)n ,
. . .

q1(1− p1)pk−1
1 + q2(1− p2)pk−1

2 + · · ·+ qs(1− ps)pk−1
s = b̂(k)n .

(D.14)
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Note, that (D.14) can be simplified as

q1 + q2 + · · ·+ qs = â(1)n

q1 p1 + q2 p2 + · · ·+ qs ps = â(2)n

q1 p2
1 + q2 p2

2 + · · ·+ qs p2
s = â(3)n

. . .
q1 pk

1 + q2 pk
2 + · · ·+ qs pk

s = â(k+1)
n

(D.15)

The system of equations in (D.15) for k = 2s− 1 was studied and solved by
Ramanujan in his third paper, published in the Journal of Indian Mathemat-
ical Society cf. [9]. From the results in [9] it follows that if det(C(ân)) 6= 0,
then the solution of (D.15) exist, it is unique, up to permutations of the indices
{1, . . . , s}, and given by (y, z), the coefficients in the parametrisation (D.13). �

Since the solution is invariant under permutation of the indices, we may
choose any permutation as the correct, and since we know the order for the
wavelength values, cf. (D.1), the choice is simple: we choose the known and
correct order.

3.2 Asymptotic properties of the mle

Before we obtain the asymptotic distribution of the estimator we prove an
auxiliary lemma. Assume that k = 2s − 1. We may rewrite the system of
equations (D.15) as 

F1(q, p, u) = 0
F2(q, p, u) = 0

. . .
F2s(q, p, u) = 0

, (D.16)

with u = ân, where the functions Fi : R3s → R are given by

Fi(q, p, u) = q1 pi−1
1 + q2 pi−1

2 + · · ·+ qs pi−1
s − ui,

for i = 1, . . . , 2s. We see that the system of equations in (D.16) gives an implicit
definition of a function ψ(u) : R2s = Rk+1 3 u → (q, p) ∈ R2s. The Jacobian
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matrix for the system (D.16) is then given by

J(q, p) =


1 · · · 1 0 · · · 0
p1 · · · ps q1 · · · qs

p2
1 · · · p2

s 2q1 p1 · · · 2qs ps
...

. . .
...

...
. . .

...
p2s−1

1 · · · p2s−1
s (2s− 1)q1 p2s−2

1 · · · (2s− 1)qs p2s−2
s

(D.17)

The next lemma shows that the function ψ(u), implicitly defined by the equa-
tions (D.16), is differentiable.

Lemma 3.3. Assume that u is such that det(C(u)) 6= 0. Then the function ψ,
implicitly defined by (D.16), is differentiable at the point u.

Proof. The statement of the lemma will follow from the implicit function
theorem, for which we now check the conditions.

First we note that (D.16) is a rewriting of (D.15) which is a simplification of
(D.14) which is identical to (D.8). Theorem 1 says that if det(C(u)) 6= 0, at
some u, then there are unique (q, p) which satisfy (D.8), which implies that
(q, p) are unique solutions to (D.16).

Second, the functions Fi(q, p, u), for i = 1, . . . , 2s, are differentiable and con-
tinuous.

It remains to prove that the Jacobian J in (D.17) is a non-singular matrix, i.e.
to show that det(J) 6= 0. In fact, we note that q can be factored out of the
determinant, i.e.

det(J(q, p)) = q1 · · · qs · det(W(p)),

where

W(p) =


1 · · · 1 0 · · · 0
p1 · · · ps 1 · · · 1
p2

1 · · · p2
s 2p1 · · · 2ps

...
. . .

...
...

. . .
...

p2s−1
1 · · · p2s−1

s (2s− 1)p2s−2
1 · · · (2s− 1)p2s−2

s

 . (D.18)

We rewrite W(p) on column matrix form as

W(p) = [w(p1), w(p2), . . . , w(ps), w(1)(p1), w(1)(p2), . . . , w(1)(ps)], (D.19)
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where w(p) = (1, p, p2, . . . , p2s)T, and w(1)(p) denotes the vector of compon-
entwise first derivatives of the column w(p).

Consider ρ(x) = det(W(x, p2, . . . , ps)), which is a polynomial of order (4s− 4)
in x. Let us show that the multiplicity of the component p2 of the root (p, q)
is equal to 4. The third derivative ρ(3)(x) of the polynomial is equal to

ρ(3)(x) = det([w(x)(3), w(p2), . . . , w(ps), w(1)(x), w(1)(p2), . . . , w(1)(ps)])

+ 3 det([w(x)(2), w(p2), . . . , w(ps), w(2)(x), w(1)(p2), . . . , w(1)(ps)])

+ 3 det([w(x)(1), w(p2), . . . , w(ps), w(3)(x), w(1)(p2), . . . , w(1)(ps)])

+ det([w(x), w(p2), . . . , w(ps), w(4)(x), w(1)(p2), . . . , w(1)(ps)]).

It follows that for x = p2, each term contains two equal columns. Therefore,
we have proved that ρ(3)(x) = 0 at x = p2, which implies that the multiplicity
of p2 is at least 4. Now since det(W(p1, p2, . . . , ps)) is symmetric (with no
sign change, since flipping two of the arguments pi, pj means flipping four
columns in the matrix at once), then any pi, for i = 2, . . . , s is also a root
of ρ(x) = det(W(x, p2, . . . , ps)), and the same argument as above shows that
they all have multiplicity at least 4. Since there are s− 1 roots and ρ(x) is of
order (4s− 4), the multiplicity is exactly 4, for each root. Therefore, we have
shown that

det(W(x, p2, . . . , ps)) = c
s

∏
j=2

(x− pi)
4,

where c is a leading coefficient. Using the symmetry of the determinant, we
may replace any of the pi’s with x and study the upcoming polynomial, to
obtain

det(J(q, p)) = c1q1 · · · qs ∏
pi 6=pj

(pi − pj)
4,

where c1 is a constant.

Thus, we have shown that det(J) 6= 0, provided pi 6= pj for all i 6= j. The fact
that the unique solution (p, q) to (D.8) satisfies pi 6= pj for all i 6= j follows
from a refinement of Ramanujan’s theorem, given in [8]. �

Theorem 3.4. Let k = 2s− 1. Then the mle (q̂n, p̂n) in (D.5) is strongly consistent

(q̂n, p̂n)
a.s.→ (q, p),
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and asymptotically normal

√
n((q̂n, p̂n)− (q, p)) d→ N (0, Σ2),

as n→ ∞.

Proof. From Lemma 3.3 it follows that for u, such that det(C(u) 6= 0, the
system of equations in (D.16) gives an implicit definition of a differentiable
function ψ : R2s → R2s. Let a denote the a.s. limit of the sequence ân, and
recall that, because of the definition of the matrix C(a) in (D.12), and of the
function ψ,

(q, p) = ψ(a). (D.20)

Combining Theorem 3.2 and Lemma 3.1, it follows that there exists an n1, such
that for all n > n1, (q̃n, p̃n) is the solution to (D.8), so that furthermore one
has

(q̃n, p̃n)
a.s.
= ψ(ân). (D.21)

Recall that we can claim that (q̃n, p̃n) is equal to the mle (q̂n, p̂n) only when
the restrictions in F , cf. (D.4), are satisfied for (q̃n, p̃n), which we will check
below. Then, from (D.20), (D.21) and since ân

a.s→ a, using the continuous
mapping theorem we obtain the consistency result

(q̃n, p̃n)
a.s.→ (q, p).

for (q̃n, p̃n).

Now, let us consider the vector ân, defined in (D.9). Note that [ân](2,2s) can be
written as

[ân]
(2,2s) = 1− Lbn,

where L is a lower triangular (2s− 1)× (2s− 1) matrix of ones. Using a central
limit theorem one can show that

√
n([ân]

(2,2s) − [a](2,2s))
d→ N (0, Σ2

A), (D.22)

as n→ ∞, where

Σ2
A = LΣ2

mLT,
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with Σ2
m = diag([m](1,2s−1)). Recall that the first element of ân is deterministic

and equals 1, cf. (D.9), and thus we do not include it in the limit result (D.22).

Let ∂ψ(u) be the matrix of partial derivatives of ψ(u), i.e.

∂ψ(u) =



∂ψ1
∂u1

(u) ∂ψ1
∂u2

(u) ∂ψ1
∂u3

(u) · · · ∂ψ1
∂u2s

(u)
∂ψ2
∂u1

(u) ∂ψ2
∂u2

(u) ∂ψ2
∂u3

(u) · · · ∂ψ2
∂u2s

(u)
∂ψ3
∂u1

(u) ∂ψ3
∂u2

(u) ∂ψ3
∂u3

(u) · · · ∂ψ3
∂u2s

(u)
...

...
...

. . .
...

∂ψ2s
∂u1

(u) ∂ψ2s
∂u2

(u) ∂ψ2s
∂u3

(u) · · · ∂ψ2s
∂u2s

(u)


(D.23)

The values of ∂ψ(u) can be found using the implicit function theorem. In fact,
the j-th column ∂ψ(u)[j] of ∂ψ(u) is the solution of the following system of
linear equations

J∂ψ(u)[j] = 1(j),

where 1(j) ∈ R2s is defined by 1(j)
j = −1 and 1(j)

l = 0 for l 6= j, cf. (D.16). The
solution exists and it is unique, when det(J) 6= 0, which is true for u = ân for
all n ≥ n1, and for u = a. Thus the matrices ∂ψ(ân) are (uniquelly) given for
all n ≥ n1, and so is the matrix ∂ψ(a).

Since the derivatives ∂ψ are continuous, using (D.22) and the delta method,
cf. [11], we derive the limit distribution for (q̃n, p̃n),

√
n((q̃n, p̃n)− (q, p)) d→ N (0, Σ2),

as n→ ∞, with

Σ2 = [∂ψ(u)]1:2s,2:2s × Σ2
A × [∂ψ(u)]T1:2s,2:2s,

where we use the notation [·]1:2s,2:2s for denoting a matrix without the first
column.

Finally, (q̂n, p̂n) = (q̃n, p̃n) if and only if (q̃n, p̃n) ∈ F , with F defined in (D.4).
Since (q̃n, p̃n) is strongly consistent, there exists an n2 > n1 such that for all
n > n2

P[(q̃n, p̃n) ∈ F ] = 1.

Thus, the mle (q̂n, p̂n) is consistent, almost surely, and has the same asymp-
totic distribution as (q̃n, p̃n), which ends the proof. �

130



We note the having obtained an estimator of p one can use a functional relation
between a thinning probability and a wavelength value, cf. [12], similarly to as
in Corollaries 1 and 2 in [3]. The derivation is straightforward and is omitted.

4 Order restricted estimation of the parameters

We note that the components in the mle are not necessarily ordered vectors,
and that we have order restrictions on both the wavelength distribution q and
the thinning probabilities p.

We therefore address order restricted problems in this section. In Subsection
4.1 we treat order restricted inference for the wavelength distribution q. The
estimator in that subsection is obtained as the l2 projection of the mle of q
on the set of decreasing vectors. When projecting on this space we note that
the order of the wavelengths µ1, . . . , µs is assumed to be known. We note that
since the system of algebraic equations used to obtained the mle is symmetric
with respect to permutation of the s pairs (pi, qi), i = 1, . . . , s, any order that
we choose for the solution is ok; we choose however the the order that we
know to be correct, cf. the comment after Theorem 3.2.

4.1 Estimating a decreasing wavelength distribution

In this subsection we assume that it is known that the wavelength distribution
q is a decreasing vector and construct an appropriate estimator, based on the
mle defined previously. In fact our estimator is the l2 projection of the mle of
q on the space of positive and decreasing vectors, i.e. the isotonic regression
of the vector q̂n.

We define the set Q∗ ⊂ Rs

Q∗ = {q ∈ Rs : q1 ≥ q2 ≥ · · · ≥ qs for r = 1, . . . , s, } (D.24)

and assume that the true value satisfies q ∈ Q∗. Note first that since q is
supposed to be a probability mass function, we should really demand that Q∗
is a subset of positive s-dimensional vectors and furthermore that there should
be a linear constraint. This is however not necessary when projecting a vector
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that already is a probability mass function, since isotonic regression preserves
linear constraints as well as upper and lower bounds of the vector, cf. [10] for
these results and a general overview of order restricted inference.

We define the monotone constrained estimator of q as

q̂∗n = argmin
q∈Q∗

s

∑
r=1

(qr − q̂n,r)
2, (D.25)

i.e. q̂∗n is the isotonic regression of the mle q̂n. We note that from the error
reduction property of the isotonic regression we have

||q̂∗n − q||α ≤ ||q̂n − q||α (D.26)

for all α ≥ 1, cf. [10].

In order to obtain the asymptotic distribution of q̂∗n, we need to specify the
exact shape of the pmf q, since the shape of q will determine the limit distri-
bution. In particular we need to specify the regions where q is constant. Thus
we assume that the true vector q ∈ Rs has the following structure

qt1 = · · · = qt1+v1−1 > qt2 = · · · = qt2+v2−1 > · · · > (D.27)

qtm = · · · = qs,

where tj for j = 1, . . . m is the index of the first element in the j-th flat region,
qt1 = q1, m is the total number of flat regions of q, v = (v1, . . . , vm) is the
vector of the lengths (the numbers of points) of the flat regions of q, so that
∑m

j=1 vj = s.

We define the map ϕ = ϕq : Rs → Rs by specifying that for any Y ∈ Rs, for
all constant regions (tj, tj + vj − 1) of q,

[ϕ(Y)](tj,tj+vj−1) = argminy∈{y∈R
vj :y1≥...≥yvj}

||Y(tj,tj+vj−1) − y||2,

where || · ||2 denotes the l2-norm in Rvj , so that the values of [ϕ(Y)](tj,tj+vj−1)

are given as the separate isotonic regression of Y over the region of constancy
(tj, tj + vj − 1). Note that if the region of constancy is of length 1 then the
isotonic regression of Y at that region (point) is equal to the value of Y at that
point. With this definition, we see that ϕ(Y) is a concatenation of separate
isotonic regressions over each region of constancy of the true q, cf. [7] and [4]
for a more detailed description of the map (operator).

Finally we obtain consistency and the asymptotic distribution of the estimator
q̂∗n.
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Theorem 4.1. Suppose q satisfies (D.27), and let k = 2s− 1. Then the order restric-
ted estimator q̂∗n defined in (D.25) is strongly consistent

q̂∗n
a.s.→ q,

and has the asymptotic distribution

√
n(q̂∗n − q) d→ ϕ(Qq),

as n → ∞, where Qq is the limit distribution of q̂n, i.e. Qq = N (0, [Σ2]1:s,1:s), with
Σ2 defined in Theorem 3.4.

Proof. The strong consistency follows from the consistency of the mle q̂n and
the error reduction property of the isotonic regression. The asymptotic distri-
bution of q̂∗n follows by Theorem 2 in [4], see also Theorem 5.2.1 in [10], and
[7]. �

5 Discussion

In this paper we have derived the mle (q̂n, p̂n) of the distribution of events
of differnet types q of a multimode Poisson process and the thinning probab-
ilities p, based on data from sequential thinning of the Poisson process. We
have established that the number, k, of sequential thinnings needed in order
to solve a system of algebraic equations that determine the mle is k = 2s− 1,
where s is the length of the vector q, cf. Theorem 3.2. In Theorem 3.4 we
derived the strong consistency and asymptotic normality of the mle (q̂n, p̂n).
We have constructed an order restricted estimator q̂∗n of q, and in Theorem 4.1
we derived the consistency and asymptotic distribution of q̂∗n.

A possible way to improve the efficiency for the order restricted estimator
may to use model selection to choose the appropriate class of probability
mass functions q, or of vectors of probabilities p. The model class may be
determined by the regions of constancy, as defined (D.27). One advantage
with having knowledge about the specific sets of regions for the unknown
vector is that one can then use the knowledge to construct an order restricted
estimator that outperforms the regular isotonic regression estimator, as shown
in [5] . In [5] we have introduced an information criterion which can be used
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for model selection in order restricted inference and also we have provided a
post model selection estimator, and derived asymptotic properties for it. An
attempt to adapt the methods developped in [5] to the problem treated in this
paper may be of interest.

In the assumptions for the experiment that we perform we state that although
the values of the wavelengths are assumed to be unknown, we however do
know their order, and this is given in (D.1). Thus the indices 1, 2, . . . , s cor-
respond to an ordered set of wavelengths and one goal has been to estimate
their values. When estimating q a possibly reasonable loosening of this as-
sumption in a real world physics experiment may be to not know the order
of the wavelengths. Then one may assume that there is an order (D.1) for the
unknown wavelengths but that one does not know that the indices, or labels,
1, 2, . . . , s is the correct ordering. The problem would then be to estimate q,
under the assumption of an order on the values of q (which is ordered in the
reverse way to the wavelengths) but in which one does not know the correct
order. A problem which is reminiscent to this, but then in a simpler setting,
was treated in [1], in which one derived a likelihood based estimator for an
unknown ordered probability mass function in which one does not know the
correct order.
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