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A Structured Linear Quadratic Controller for Transportation Problems

Martin Heyden, Richard Pates and Anders Rantzer

Abstract— We study a linear quadratic control problem for
transportation optimization on a directed line graph. We show
that the solution to the Riccati equation associated with this
problem is highly structured. The feedback law is almost upper
triangular, and the synthesis of the feedback law is given by a
recursion, making it scalable. The structure of the feedback law
also allows for an efficient realization of the controller using a
local communication scheme.

I. INTRODUCTION

In this paper we study a transportation problem on a line
graph. The problem can be formulated as an infinite horizon
Linear Quadratic (LQ) problem:

min
u

E

(
∞

∑
t=0

x[t]T Qx[t]

)
Subject to x[t +1] =

√
αAx[t]+Bu[t]+w.

(1)

In the above, A,B,Q are compatibly dimensioned matrices.
The constant α a scalar, and w a vector of normally dis-
tributed zero mean random variables. Our main contribution,
which is presented formally in Sec. III, is to show that when
A,B,Q have a particular structure, an optimal control u can
be obtained from the formula

uk = βk(gk+1 + rk+1)− (1−βk)
k

∑
i=1

gi + ri.

Here gk and rk can be interpreted as local measurements
for node k. We give a closed form expression of βk, which
is iteratively calculated. Furthermore, when the system is
extended to larger size, the βk’s need not be recalculated.
Interestingly this means that the resulting controller is inher-
ently structured, and exhibits a closed form solution that is
easily updated as the graph shrinks or grows. Moreover, for
the transportation problem, the control loop has a natural
scalable interpretation that relies on a simple and local
communication scheme. These important observations will
be highlighted in Sec. IV.

The described properties are interesting for large scale
system since classical methods such as LQ- and H∞-control
often becomes infeasible as the feedback matrices are gen-
erally dense. This leads to requirements on each actuator to
have global information. Furthermore, if there were to be
a small change to the system, the entire control synthesis
would normally need to be recalculated.
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At its heart, this work is another contribution to the field
of structured optimal control. Early work include studies on
team game problems. In those problems, a set of agents have
different information and work toward a common goal. See
for example [8], [4].

More recently, attempts to formalize the role of structure
have been made. In [9], it is shown that subject to satisfying a
quadratic constraint, the Youla parameterization inherits the
structure of the control, allowing for efficient computation
of optimal controllers. [5] presents a class of decentralized
controllers for the LQ problems, where the controller and
plant satisfy the same delay and sparsity constraints. In [10],
a poset-causal constraint on the controller is added to the
H2 problem. This constraint is similar to the structure of the
controller that we attain, by solving a unconstrained problem.

Examples where the structure is not imposed on the
controller, but rather a consequence of the plant include [1],
where it is shown that for spatially invariant systems, the
optimal controller is localized in space. In [6], an optimal
control problem for coordination is solved. The solution is
structured, containing a diagonal part and a rank one part.

Our controller allows for a structured controller that solves
the unconstrained problem. Furthermore, the controller can
be efficiently calculated via a closed form iterative expres-
sion. Our work relies on a classical Riccati based method.

Notation

We let 0 denote a column vector of zeros, and 1 a
column vector of ones. The first basis vector is written as
e1 = [1,0, . . . ,0]T . For these three type of vectors, the size
is always clear from context. Furthermore, we let E denote
expectation and R the rational numbers.

II. MOTIVATING PROBLEM

Consider transportation of goods with unit delay on a line
graph. Such dynamics can be described by the following
difference equations,

gk[t +1] =gk[t]−uk−1[t]+ rk[t]+wk

rk[t +1] =uk[t].
(2)

Here gk is the amount of goods in node k and rk is the goods
in transit, about to be received at node k. wk is zero mean
white noise. The input uk is the amount of goods that is sent
from node k+1 to node k. See Fig. 1 for an illustration of
the three node case.

Remark 1: We do not restrict the input uk to be positive.
We will instead work around a nominal flow, a negative
input will correspond to sending less goods compared to the
nominal flow.
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Fig. 1. Illustration of the states for delayed mass transfer on a linegraph
of three nodes.. The delays are implemented using states at the links, ri that
corresponds to the mass in transit. The value gk is the mass in each node.

Now, for N nodes, let the state space x ∈ R2N−1 be
described by

x = [gN ,rN−1,gN−1, . . . ,r1,g1], (3)

and input space u ∈ RN−1 by

u = [uN−1, . . . ,u1]. (4)

Starting with N = 2 the system can be described by x[t+1] =
A2x[t]+B2u[t], with

A2 =

1 0 0
0 0 0
0 1 1

 , B2 =

−1
1
0

 . (5)

Now, given that we have a state space description for k−1
nodes, we can find one for k nodes by adding one node,
one delay state, and one input according to (3) and (4). This
gives the following recursion

Ak =

1 0 0T

0 0 0T

0 e1 Ak−1

 , Bk =

−1 0T

1 0T

0 Bk−1

 . (6)

For a graph of N nodes we let A = AN and B = BN . We can
then write the dynamics for the N node system as x[t +1] =
Ax[t]+Bu[t]. If there were a decay of goods with decay rate√

α , the dynamics would be x[t +1] =
√

αAx[t]+Bu[t].
Note that the problem is not symmetric, and the underlying

graph is directed. We say that the links are in the direction
from the sender to the receiver. We also define downstream
as in the direction of the links, and upstreams as the opposite
direction.

We can let g= 0 correspond to the optimal inventory level.
This will not change the dynamics. Then it is reasonable to
penalize deviation from this inventory levels. Let Q = QN be
defined as

QN = diag(qN ,0,qN−1,0, . . . ,q1). (7)

Then xT Qx will describe the total penalty, where we allow
for different nodes to have different weighting.

Now assume that we can never reach the optimal inventory
levels everywhere, due to there not being enough goods.
Then there will be no need to penalize goods in transit, as
they are already implicitly punished by not being available
in any node.

III. SPARSE CONTROLLER FOR A LQ PROBLEM

In this section we aim to solve two optimal control
problems subject to the dynamics and cost function in the
previous section. The first problem is the infinite horizon LQ
problem, given in (1). The second problem is a discounted

infinite horizon LQ problem. Let the discount factor α take
values 0 < α < 1. The problem is formulated as

min
u

E

(
∞

∑
t=0

α
tx[t]T Qx[t]

)
Subject to x[t +1] = Ax[t]+Bu[t]+w.

(8)

Remark 2: The reader has by now noticed that there is
no penalty on the input. This is not a coincidence, and will
indeed be necessary for the results that will be presented.

We now aim to solve problems (1) and (8). This is done
using a Riccati based approach.

The difference Riccati equation appears when solving
finite horizon LQ problems, see for example [2]. If the
iteration of the difference equation converges to a fix-point,
then that fix-point solves the algebraic Riccati equation.
This equation can then be used to solve the infinite horizon
problem. Some of the available convergence and uniqueness
results can be found in [3]. These do however require a
penalty on the input given by a positive definite matrix. Work
on Riccati equation with singular input penalty includes
[7]. We will use a simple proof to show that the feedback
law given by the solution to the Riccati equation is indeed
optimal.

It is easy to show that for both problem formulations in
(1) and (8), the corresponding difference Riccati equation is

X j+1 = αAT X jA−αAT X jB(BT X jB)−1BT X jA+Q.

Note that the index j denotes the iteration number, instead of
the size of the system. Any fix-point satisfies the algebraic
Riccati equation,

αAT XA−X +Q = αAT XB(BT XB)−1BT XA. (9)

We show that, for these matrices, there exist at least one
positive definite solution of (9) by explicitly constructing
it. The proposed solution is highly structured. Next, we
show that the solution can be used to construct the optimal
feedback law.

Theorem 1: Given A = AN ,B = BN as in (5)-(6) and Q =
QN as in (7), recursively define γk as

γk+1 = α
qk+1γk

qk+1 + γk
, γ1 = αq1.

Also define X̃ = X̃N by the recursion:

X̃k+1 =

0 0 0T

0 γk γk1T

0 γk1 γk11T + X̃k

 , X̃2 =

0 0 0
0 γ1 γ1
0 γ1 γ1

 .
Then one positive definite solution to the Riccati equation
(9) is given by

X =
1

1−α
γN11T +Q+ X̃ , (10)

Proof: See Appendix.



The corresponding feedback matrix K = −(BT XB)−1BT XA
for X in (10) is given by

Kk+1 =

[ qk+1
qk+1+γk

− γk
qk+1+γk

− γk
qk+1+γk

1T

0 Kke1 Kk

]
,

K2 =
[

q2
q2+γ1

− γ1
q2+γ1

− γ1
q2+γ1

]
.

(11)

This gives the input u = Kx,

uk =
qk+1

qk+1 + γk
(gk+1 + rk+1)−

γk

qk+1 + γk

k

∑
i=1

gi + ri

uN−1 =
qN

qN + γN−1
gN−

γN−1

qN + γN−1

N−1

∑
i=1

gi + ri.

(12)

Theorem 2: The feedback law in (12) is optimal for (1)
and (8).

Proof: We prove the theorem for (1). The closed loop
system (

√
αA+BK) is asymptotically stable (see Lemma 1

in appendix). Furthermore, by Lemma 2 (also in appendix)
we have that only stabilizing controllers can be optimal.

Let X be the solution to the algebraic Riccati equation (9).
Let Us be the set of input sequences so that x→ 0 as t→∞.
Then ∀u ∈Us and subject to the system dynamics,

lim
T→∞

T−1

∑
t=0

x[t]T Qx[t]+ xT [N]Xx[N] = lim
T→∞

T−1

∑
t=0

x[t]T Qx[t].

We know that u = Kx minimizes the LHS, and thus also
minimizes the RHS, which is the infinite horizon problem.

Remark 3: Let Γk = ∑
N−1
i=k γi. Then X̃N can be written as

X̃N =



0 0 0 . . . 0 0 . . . 0 0
0 ΓN−1 ΓN−1 . . . ΓN−1 ΓN−1 . . . ΓN−1 ΓN−1
0 ΓN−1 ΓN−1 . . . ΓN−1 ΓN−1 . . . ΓN−1 ΓN−1
...

...
...

. . .
0 ΓN−1 ΓN−1 Γk Γk . . . Γk Γk
0 ΓN−1 ΓN−1 Γk Γk . . . Γk Γk
...

...
...

...
...

. . .
0 ΓN−1 ΓN−1 Γk Γk Γ1 Γ1
0 ΓN−1 ΓN−1 Γk Γk Γ1 Γ1


.

In this representation it is clear that X is highly structured.
In fact, it only has N−1 degrees of freedom.

A. Change of Variables

We also present the main points of the theorem in a new set
of variables. In these coordinates the cost to go is tridiagonal,
and the calculation of each input relies on only two states.
Take z = Sx with S = SN defined recursively,

Sk =

1 1 1T

0 1 1T

0 0 So

 S−1
k =

1 −1 0T

0 1 −eT
1

0 0 S−1
k−1

 , (13)

starting at

S2 =

1 1 1
0 1 1
0 0 1

 , S−1
2 =

1 −1 0
0 1 −1
0 0 1

 .

Let [z2N−1, . . . ,z1] = z = Sx. We can relate the new variables
to the nodes by noting that z2k = ∑

k
i=1 gi + xi = fk. Here we

have defined fk, which is the amount of goods downstream
of node k+ 1. In this representation the cost to go matrix
becomes tridiagonal,

xT Xx = z(S−1)T XS−1z = zT (X∗N + et
1e1

1
1−α

γN)z.

With X∗N defined by the recursion:

X∗k =

 qk −qk 0
−qk qk + γk−1 0

0 0 X∗k−1

 , X∗2 =

 q2 −q2 0
−q2 q2 + γ1 0

0 0 q1


The input u = K∗z = KS−1z relies on only two elements per
input,

uk =
qk+1

qk+1 + γk
z2k+2− z2k =

qk+1

qk+1 + γk
fk+1− fk

uN−1 =
qN

qN + γN−1
( fN−1 +gN)− fN−1.

IV. TWO IMPORTANT OBSERVATIONS

We now highlight two important properties of the results
in the previous section. The feedback synthesis is scalable
in one direction, and the implementation allows for a simple
and efficient communication scheme.

A. Scalable Synthesis

The proposed method for solving the Riccati equation does
so exactly, and its time-complexity is linear in the number
of nodes.

Furthermore, the solution for a problem of size N, can be
used to construct the solution for a problem of size N + 1.
This follows from the recursive nature of the calculation
of γN and that the feedback law is unchanged in the old
nodes when a new node is added. The only calculations
that are required to implement the new feedback law is
to calculate γN . This can be done using γN−1 which was
already calculated. Furthermore, the solution for size N−1
can be recovered from the solution for N. If the node
furthest upstreams were to be removed, there would not be
any effect on any of the remaining links. Hence, it is very
computationally efficient to add and remove nodes upstream.

In general, when adding a node, only the nodes upstream
of the new node needs their γ’s to be recalculated, while the
nodes downstream can keep theirs.

B. Distributed Implementation

It is reasonable to assume that node k + 1 decides the
value of uk. Then gk+1 and rk+1 are local measurements.
To implement the feedback, each node need in addition to
the local information access to the sum fk = ∑

k
i=1 gi + xi,

which is the sum of goods downstream of node k+1. fk can
be calculated by recursion through the graph:
• Receive fk−1.
• Calculate fk = fk−1 +gk + rk.
• Send fk upstream.
The main benefit of this scheme is that the number of

communication channels is proportional to the number of



nodes. If each node were to communicate with every other
node, the number of communication channels would instead
be proportional to the square of the number of nodes.

One downside is that node k can not send its information
until it received information from node k− 1. Thus, the
latency of the communication is proportional to the number
of nodes. It is also vulnerable to faulty communication
channels as it becomes impossible to calculate the output for
every node upstreams of the faulty communication channel.

V. APPLICATION TO TRANSPORTATION

So far we have assumed that there is an underlying flow
that allows for the implementation of the feedback law. Now
we give an example with the dynamics considered and where
there exists a natural net flow.

Consider inventory control for a set of stores. Then there is
some transportation between the stores to keep the inventory
level at an optimal level. We assume the topology of the
stores and transportation takes the form of a directed line
graph. This does not require that the stores are geographically
distributed as a line.

Let the amount of goods in node k be denoted ĝk. The
transportation is in the direction of the graph and has a delay
of one time unit. Let the nodes be numbered in increasing
order as we go upstream. We denote the goods in transit from
node k as r̂k−1. Then the incoming goods to node k is r̂k.
The amount of goods sent downstream in the graph by node
k is denoted ûk−1. There are also external influences ŵk ∈
N (w̄k,σk) for each node, which corresponds to consumption
and external transportation. See Fig. 2 for an illustration. The
dynamics of edges and nodes are given by{

ĝk[t +1] = ĝk[t]+ (r̂k[t]− ûk−1[t])+ ŵk[t]
r̂k[t +1] = ûk[t].

(14)

Each node k have a utility function describing how much
it values having an inventory level of ĝk goods,

Uk(ĝk) = qkĝk(ak− ĝk). (15)

The parameters qk and ak should both be positive. These
utility functions have the property that the benefit of having
access to more goods is decreasing with the amount of goods,
that is ∂ 2U/∂ 2(ĝ) < 0. Furthermore, when ĝk > ak/2 we
have that ∂U/∂ (ĝ) < 0. The intended working area is 0 <
ĝ < ak/2.

ĝN
ŵN r̂N−1 . . .

ĝk
r̂k r̂k−1

ŵk

. . .
ĝ1

r̂1 ŵ1

Fig. 2. Illustration of the inventory control problem. Each node k
corresponds to a store with inventory level ĝk . Each store is affected by an
external net production ŵk . To balance the inventory level over the stores
there is transportation between the stores. r̂k is the goods in transit from
store k+1 to store k.

We value higher inventory levels more the earlier we get
them. Thus the following pay off function is chosen

min
u

E
∞

∑
t=0

α
t

N

∑
k=1

Uk(ĝ[t])

Subject to dynamics in (14).

We assume that there is a underlying flow in the graph,
which could for example have been found using static opti-
mization. However, due to the variable external influences,
we want to apply feedback around this static flow. Then the
transportation is happening independent of our choice of u,
and we can assume that it has already been paid for. Thus
we do not put any penalty on the input u.

Further, assume that the expected production and con-
sumption are equal. The problem can be transformed to a
problem of the form of (8) by controlling around the nominal
flow. To do so, we must change variables so that the pay-off
function is quadratic. We do this by letting g= ĝ−ak/2. The
utility function and the change of variables are depicted in
Fig. 3. The new variable g can be interpreted as the negative
demand for each node. Also, note that g is negative in the
intended working area.

The input and flows will be controlled around the nominal
flow ū = r̄, so that û = ū+u, r̂ = r̄+ r. For the details, see
Lemma 3 in Appendix. Note that for û to be non-negative,
we need u≥−ū.

For a simulation of the system, see Fig. 4. A discount
factor of α = 0.95 and utilities U(ĝi) = ĝi(1− ĝi) were used.
The noise had variance w̄ = 0.0.0025 for all i.

VI. CONCLUSIONS

We have presented a recursive solution to a class of
optimal control problems. This solution is easily extended as
the system grows. The structure of the feedback law allows
for an efficient implementation using a local communication
scheme. We have showed that the optimal control problem
can be used to solve an inventory control problem.

It is expected that the results presented here will generalize
to tree graphs and periodic B matrices. This is subject to
future work.

APPENDIX

Proof of Theorem 1: The theorem is trivially to show for
N = 2. Now assume that the theorem holds for N− 1. Let

ĝk

U(·)

gk

Fig. 3. Plot of utilities in (15) and the relationship between g and ĝ. g can
be interpreted as the negative demand for each node.



Ao = AN−1, Bo = BN−1, Qo = QN−1 and X̃o = X̃N−1 denote
the matrices for the system of size N−1. Then the relation
between the old and the new system matrices are given by

A =

1 0 0T

0 0 0T

0 e1 Ao

 , B =

−1 0T

1 0T

0 Bo

 , Q =

qN 0 0T

0 0 0T

0 0 Qo

 ,
X̃ =

0 0 0T

0 γN−1 γN−11T

0 γN−11 γN−111T

+
0 0 0T

0 0 0T

0 0 X̃o

 .
We start with the RHS of (9). Standard calculations and

noting especially that e1 = Aoe1 and e1X̃o = 0 gives

(BT XB)−1 =

[
(qN + γN−1)

−1 0T

0 (BT
o XoBo)

−1

]

BT XA =

[
−qN γN−1 γN−11T

0 BT
o XoAe1 BT

o XoAo

]
Define Ko =−(BT

o XoBo)
−1BT

o XoAo. Corresponding definition
for the system of size N gives

−K = (BT XB)−1BT XA =[
− qN

qN+γN−1

γN−1
qN+γN−1

γN−1
qN+γN−1

1T

0 −Koe1 −Ko

]
.

Let, for the system of size N−1,

Ξo = AT
o XoBo(BT

o XoBo)
−1BT

o XoAo.

Then, for the system of size N

Ξ = AT XB(BT XB)−1BT XA =
q2

N
qN+γN−1

− qN γN−1
qN+γN−1

− qN γN−1
qN+γN−1

1T

− qN γN−1
qN+γN−1

γ2
N−1

qN+γN−1
+ eT

1 Ξoe1
γ2

N−1
qN+γN−1

1T + eT
1 Ξo

− qN γN−1
qN+γN−1

1 γ2
N−1

qN+γN−1
1+Ξoe1

γ2
N−1

qN+γN−1
11T +Ξo

 .

0 5 10 15 20

0.14

0.16
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0.2

time
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ĝ

ĝ3
ĝ2
ĝ1

Fig. 4. Simulation of store dynamics in (14). The goal is to keep optimal
inventory level in the three stores. Due to a discount factor and a net flow
through the graph, the levels are higher in the stores upstreams.

For the LHS of (9) we have, AT 11T A = 11T ,

AT (X̃ +Q)A =

0 0 0T

0 γN−1 γN−11T

0 γN−11 γN−111T

+
qN 0 0T

0 eT
1 AT

o (X̃o +Qo)Aoe1 eT
1 AT

o (X̃o +Qo)Ao
0 AT

o (X̃o +Qo)Aoe1 AT
o (X̃o +Qo)Ao


The induction base can be rewritten as

−γN−111T +αAT
o (X̃o +Qo)Ao− X̃o = αΞo.

While the Riccati equation itself can be rewritten as

−γN11T +αAT (X̃ +Q)A− X̃ = αΞ.

For element (2,2), (2,3), (3,2), and (3,3) of the Riccati
equation, we would like to show that

−γN11T +αAT
o (X̃o +Qo)Ao− X̃o +(α−1)γN−111T

= α

(
γ2

N−1

qN + γN−1
+Ξo

)
.

Applying the induction base gives

γN− γN−1 +(α−1)γN−1 = α
γ2

N−1

qN + γN−1

Which is easy to show being true. For element (1,1) we need
to show that,

−γN +αqN−α
q2

N
qN + γN−1

,

equals zero. It can be rewritten as

−γN + γN +α
q2

N
qN + γN−1

−α
q2

N
qN + γN−1

= 0.

Finally, for the remaining elements of the Riccati equation,
we have that

−γN =−α
qNγN−1

qN + γN−1
=−γN .

We have that X > 0 since 11T > 0, Q≥ 0 and X̃N ≥ 0. The
last inequality follows from that X̃N = ∑k BT

k Bk, with

B = [0, . . . ,0,
√

γk, . . . ,
√

γk].

�
Lemma 1: Given A = AN , B = BN in (6), K = KN in (11),

and an arbitrary constant p, pA+BK has one eigenvalue with
value p and 2N−2 eigenvalues with value zero.

Proof: Let βk =
qk+1

qk+1+γk
. Then pAk + BkKk can be

written recursively, given Ao, Bo, Ko of the system of size
k−1, as

pAk +BkKk =

p−βk−1 1−βk−1 (1−βk−1)1T

βk−1 βk−1−1 (βk−1−1)1T

0 pAo +BoKoe1 pAo +BoKo

 ,
with

pA2 +B2K2 =

p+β1 1−β1 1−β1
β1 β1−1 β1−1
0 1 1

 .



Using the change of variables defined in (13), with So = Sk−1,
and that 1T (pA+BK) = p1T , we have that

S(pA+BK)S−1 =
p 0 0

βk−1 0 0

0 So(pAo +BoKo)e1
So(pAo +BoKo)e1(−eT

1 )+

So(pAo +BoKo)S−1
o

 .
Note that S−1

o e1 = e1. The lower right element of
S(pA+BK)S−1 can the be written as

So(pA+BK)S−1
o (−e1eT

1 + I).

Assume that So(pA + BK)S−1
o is lower diagonal, and that

the only non zero diagonal element is element (1,1). Then
So(pA+BK)S−1

o (−e1eT
1 + I) is strictly lower diagonal. Then

(pA + BK) has one eigenvalue of value p and the other
eigenvalues have value 0. Note also that S(pA + BK)S−1

satisfies the assumption of being lower diagonal with element
(1,1) being the only non zero diagonal element.

It is easily checked that S2(pA2 +B2K2)S−1
2 satisfies the

assumption of being lower diagonal with (1,1) being the only
diagonal element. Thus the lemma holds for all N ≥ 2 by
induction.

Lemma 2: Given A = AN and B = BN in (6) and Q = QN
in (7). Let x[t +1] = Ax+Bu. Then

lim
T→∞

T

∑
t=0

x[t]T Qx[t] (16)

is bounded, only if x[T ]→ 0,T → ∞.
Proof: We prove the lemma by proving that

N

∑
t=0

x[t]T Qx[t] = 0

only if x[0] = 0. Assume that there exists a x[0] 6= 0 s.t (16)
holds. Then at least one rk[0] = c 6= 0. Then uk−1[0] = c,
which gives that rk−1[1] = c. This will eventually lead to
r1[ζ ] = c, with ζ <N. This will however give that g1[ζ +1] =
c, which gives a non zero cost.

Lemma 3: Assume that ∑
N
i=1 w̄i = 0 and ∑

N
i=k w̄i = ek > 0

for k ≥ 2. Then there exists ūk = r̄k = ek > 0 such that, for
all k and any ĝk

ĝk[t +1] = ĝk[t]+ (r̄k[t]− ūk−1[t])+ ŵk[t] = ĝk[t]+w (17)

with wk = ŵk− w̄k ∈N (0,σk). Also, let uk = ûk− ūk, rk =
r̂k − r̄k, gk = ĝk − ak/2. Take x = [gN ,rN−1, . . .r1,g1], u =
[uN , . . . ,u1]. Then the solution to

max
ŝ

∞

∑
t=0

α
t

N

∑
k=1

Uk(ĝk), (18)

subject to dynamics in (14) can be found as û = ū+u, where
s is the solution to (8) with A,B,Q as in (6) and (7).

Proof: The change of variables from ĝk to gk does not
change the dynamics of the system, so

gk[t +1] = gk[t]+ (r̂k−1[t]− ûk[t])+ ŵk[t].

Working around the nominal flow with uk and rk gives, by
using (17),{

gk[t +1] = gk[t]+ (rk[t]−uk−1[t])+wk[t]
rk[t +1] = uk[t].

These dynamics are described by x[t +1] = Ax[t]+Bu[t]+w
with A and B as in (6). For the optimization criterion, note
that

max
ĝk

qkĝk(ak− ĝk) = max
gk
−qkg2

k−0.25a2
k

and
argmax

gk

−qkg2
k−0.25a2

k = argmin
gk

qkg2
k .

We then have that minimizing xT Qx gives the maximum
utility.
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